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Abstract

During embryonic development, cells undertake a series of fate decisions to form a complete organism comprised of various
cell types, epitomising a branching process. A striking example of branching occurs in humans around the time of
implantation, when primordial germ cells (PGCs), precursors of sperm and eggs, and somatic lineages are specified. Due
to inaccessibility of human embryos at this stage of development, understanding the mechanisms of PGC specification
remains difficult. The integrative modelling of single cell transcriptomics data from embryos and appropriate in vitro
models should prove to be a useful resource for investigating this system, provided that the cells can be suitably ordered
over a developmental axis. Unfortunately, most methods for inferring cell ordering were not designed with structured (time
series) data in mind. Although some probabilistic approaches address these limitations by incorporating prior information
about the developmental stage (capture time) of the cell, they do not allow the ordering of cells over processes with more
than one terminal cell fate. To investigate the mechanisms of PGC specification, we develop a probabilistic pseudotime
approach, branch-recombinant Gaussian process latent variable models (B-RGPLVMs), that use an explicit model of
transcriptional branching in individual marker genes, allowing the ordering of cells over developmental trajectories with
arbitrary numbers of branches. We use first demonstrate the advantage of our approach over existing pseudotime algorithms
and subsequently use it to investigate early human development, as primordial germ cells (PGCs) and somatic cells diverge.
We identify known master regulators of human PGCs, and predict roles for a variety of signalling pathways, transcription
factors, and epigenetic modifiers. By concentrating on the earliest branched signalling events, we identified an antagonistic
role for FGF receptor (FGFR) signalling pathway in the acquisition of competence for human PGC fate, and identify
putative roles for PRC1 and PRC2 in PGC specification. We experimentally validate our predictions using pharmacological
blocking of FGFR or its downstream effectors (MEK, PI3K and JAK), and demonstrate enhanced competency for PGC
fate in vitro, whilst small molecule inhibition of the enzymatic component of PRC1/PRC2 reveals reduced capacity of cells
to form PGCs in vitro. Thus, B-RGPLVMs represent a powerful and flexible data-driven approach for dissecting the
temporal dynamics of cell fate decisions, providing unique insights into the mechanisms of early embryogenesis. Scripts
relating to this analysis are available from: https://github.com/cap76/PGCPseudotime

1 Introduction A striking example of transcriptional branching occurs in early human

. o . development, when the inner cell mass (ICM) of the blastocyst segregates
During embryogenesis, individual cells undertake a series of cell fate . . . . T
. . . into hypoblast and epiblast, with the latter subsequently differentiating
decision to form a complete embryo comprised of myriad cell types. Each . .
o . . . . ] into ectoderm, mesoderm, and endoderm during the process of
cell fate decision can be thought of in terms of a bifurcation (Poincaré . . . . o .
. . . i gastrulation (Irie, Tang, and Azim Surani 2014). At around this time, circa
1885), with the expression levels of key marker genes diverging between . . . .
. o X . o weeks 2-3 in humans, primordial germ cells (PGC), the embryonic
the two cell fates, epitomising a branching process. Reciprocal behavior is . . ;
. o o precursors of gametes, are also specified (Irie et al. 2015; Kobayashi et al.
encountered in recombination processes, where two or more statistical . .
. i 2017). Later, at weeks 5-6, specified PGCs undergo comprehensive
processes converge, such as when two or more intermediate cell types . . . i
. L ; epigenetic reprogramming that includes almost complete erasure of DNA
share a common terminal fate. A key challenge is to infer the mechanisms . .
methylation marks throughout the genome, save for a few escapee regions

(Guo et al. 2015; Tang et al. 2015; Gkountela et al. 2015). During this

period, PGCs also proliferate and migrate towards the genital ridges

and inductive signals of these decision-making processes by identifying
the ordering of bifurcations of individual genes using single-cell RNA-

sequencing.
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where, after colonising the gonads, they begin sexually dimorphic
programs of gametogenesis. As precursors of the germline, PGCs are
ultimately responsible for passing on all genetic and epigenetic
information to the next generation, and any aberrant development has the

potential to lead to infertility or cancers of the germ line.

Despite recent advances in understanding of PGC development (Irie et al.
2015; Tang et al. 2015), the mechanisms of human PGC development
remain poorly understood. Current understanding, based on studies in
mouse and pig embryos, suggests that two signalling pathways cooperate
to allow PGC fate: WNT signalling renders epiblast cells competent to
respond to BMP2/4 resulting in the specification of a founder PGC
population in the posterior epiblast (Ohinata et al. 2009; Aramaki et al.
2013; Kobayashi et al. 2017). While mouse PGC development has been
reasonably well characterised, the specification and development of
human PGCs remains only partially understood, primarily due to
inaccessibility of early human embryos. Crucially, recent studies have
shown that SOX17 and PRDM1 are key regulators of PGC fate in humans
(Irie et al. 2015; Tang et al. 2015), making their specification distinct from
that in mice, which involves the combined action of Prdml, Prdml14, and
Tfap2c¢ (Magnusdottir et al. 2013; Nakaki et al. 2013). Due to these
differences, along with notable divergence in embryo morphology (Irie,
Tang, and Azim Surani 2014), in vitro derivation of human PGC-like cells
(PGCLCs) from human pluripotent stem cells has emerged as a model to
examine the earliest mechanisms regulating hPGC development (Sasaki
et al. 2015; Irie et al. 2015). Interestingly, human ESCs in conventional
cultures have low competence to form PGCLCs, but hESCs grown in a
specially formulated “competent” medium gain competence for PGC fate
and respond to BMP signalling, giving rise to PGCLCs that presumably
resemble pre-migratory in vivo PGCs (Irie et al. 2015).

The integrative analysis of single cell RNA-seq data from pre-
implantation embryos, specitfied PGCs, and appropriate in vitro models,
should provide unique opportunities to dissect the dynamics of early PGC
cell fate decisions. Such analysis requires that cells be correctly ordered
along a continuous developmental trajectory. However, most approaches
for pseudotemporal ordering of scRNA-seq datasets rely on manifold
learning: that is, a preliminary dimensionality reduction, with cells
ordered over the reduced dimensional space, typically by utilising curve
fitting or graph-theoretic approaches (Trapnell et al. 2014; Bendall et al.
2014; Marco et al. 2014; Jiand Ji 2016; Setty et al. 2016). Such approaches
do not generally account for uncertainty in the ordering, nor do they
usually provide an interpretable relationship between the inferred
pseudotime and chronological time. The latter limitation is compounded
when inferring pseudotimes for datasets with multiple branches: if one
branch has fewer observations, or else a period of quiescence, the branch
will often be artificially truncated compared to the others. Such truncation
can be undesirable when investigating complex developmental programs,
where signalling from adjacent tissues influence cell fate decisions,
making it necessary to place branches on consistent timeframes. Finally,
in the past, scRNA-seq datasets tended to be of low temporal resolution,
albeit with observations in many cells, which reflect a continuum of
developmental states (Yan et al. 2013; Guo et al. 2015; Petropoulos et al.
2016; Borensztein et al. 2017; Huang et al. 2017). However, due to

decreased costs, sScRNA-seq datasets are now routinely generated over
finely resolved time series, including the early stages of embryogenesis
(Yan et al. 2013; Guo et al. 2015; Petropoulos et al. 2016; Borensztein et
al. 2017; Huang et al. 2017; Ibarra-Soria et al. 2018; Han et al. 2018) and
during PGC development (Guo et al. 2015; Li et al. 2017). While
individual populations of cells associated with the different stages still
reflect a continuum of states, with some degree of overlap between stages,
the existence of a well-defined capture time provides highly informative
prior information about the ordering of cells, which most approaches are

incapable of utilising.

To address these various limitations, and investigate the mechanisms of

PGC specification, we develop a probabilistic approach to
pseudotemporal ordering. Our approach incorporates prior information
about developmental stage of cells (capture time), and uses an explicit
model of branching at the level of marker genes, providing an interpretable
model of cell fate decision making designed specifically for time-series
scRNA-seq data. Using our model, we combine data from preimplantation
embryos, PGCs, somatic tissues, and human embryonic stem cells
(hESCs), to dissected the transcriptional program and signalling pathways
of human PGC competence, specification, and development. Our analysis
highlights the importance of known PGC genes, and suggested several
novel regulators. Analysis suggested the importance of polycomb
repressive complexes 1 and 2 (PRC1 and PRC2) in PGC specification, and
small-molecule inhibition of PRC1/2 enzymatic activity was shown to
reduce PGC specification using human in vitro models of PGC
specification. Crucially, identification of the earliest branching pathways
highlighted putative roles for FGF receptor (FGFR) signalling in the
acquisition of competence for human PGC fate, which was experimentally
validated in vitro. Indeed, pharmacological blocking of FGFR or its
downstream effectors (MEK, PI3K and JAK) enhanced the competency
for PGC fate in vitro. Thus, our approach can inform genetic and

signalling perturbations for cell fate decisions.

2 Results

Early human PGC development remains underexplored, since the use of
human embryos around the time of specification is limited by ethical and
practical considerations. This has necessitated the development of in vitro
models of PGC development to bridge the gap in understanding at key
developmental stages (Irie, Sybirna, and Surani 2018). Statistical
approaches are required to correctly leverage multiple in vivo and in vitro

datasets to identify priority targets for more focused experiments.

To separate out the developmental trajectories of PGCs from those of
gonadal somatic cells, we ordered single cells along a two-component
branching process, with informative priors placed over the pseudotimes
centered on the cells’ developmental stage (Reid and Wernisch 2016)
(Figure 1; Supplementary Materials Section 1). We used scRNA-seq data
from hPGCs and age-matched neighbouring somatic tissues from weeks 4
through to 19 (Guo et al. (2015); GEO GSE63818), as well as pre-
implantation embryos (oocytes, zygotes, two-cell, four-cell, morula and
blastocyst-stage cells), and conventional hESCs at passages 0 and 10 (Yan
et al. (2013); GEO GSE36552). A summary of the various cell types is
included in Supplementary Table 1.
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Figure 1: (a) Here we performed an integrative analysis of human cells from preimplantation
embryos, hESCs, hPGCs and age matched soma. Due to the structured nature of the data, we
decided to take a Bayesian approach to the analysis allowing us to take advantage of useful prior
information, such as capture time. (b) Initially data is ordered by capture time over a range of
marker genes. Using an iterative (Monte Carlo) approach, we permute cells along the pseudotime
by perturbing a subset of cells along the x-axis (ii) or by allowing cells to swap branch assignments
(iii). Following each perturbation, the marginal likelihood or “evidence” can be computed, and
used to determine whether to accept or reject the proposed move. (c) After many iterations, cells
are ordered along a branching process that reflects the developmental progression of the system.
In this case, we can identify a sequential branching of marker genes 1 and 2, with the first branch
(iv, vi), and a subsequent branching and recombination (v, vii). By comparing the pseudotime of
these branching events between genes (compare iv with vi, and v with vii) we can identify the
earliest events in cell fate decisions and the developmental hierarchy.

Based on preliminary benchmarking experiments, ordering of cells was
based on the expression levels of 44 marker genes identified from Irie et
al. (2015), which included PGC, pluripotency, mesoderm, and endoderm
markers. To evaluate the accuracy of our approach we used unlabelled
data i.e., assuming the branch-labels and capture-times for hESCs and
blastocyst cells were unknown variables to be assigned during inference.
Our approach correctly placed the unlabelled late-blastocyst cells between
morula-stage and week 4 (Wk4) cells (Figure 2(a)). Furthermore, whilst
hESCs are derived from the ICM of blastocysts, our approach placed them
between day 6 blastocysts and Wk4 cells (PGCs and soma), albeit with
some degree of overlap. This suggests that hESCs cultured under these
conditions are developmentally more advanced than cells of the ICM,
consistent with conventional hESCs sharing characteristics with the post-

implantation epiblast (Tang et al. (2016); Figure 2(a), inset).

To further evaluate the performance of our approach, we calculated: (i)
the Pearson’ correlation coefficient between the inferred pseudotime, and
the developmental stage; and (ii) a branch discrepancy metric between

somatic and PGC lineages:

T
2
Ay = Z (,u(ti(PGC)) - ,u(ti(soma)))

i=1
where u(t;(PGC)) is the mean inferred pseudotime of PGC cells at
developmental stage i. For comparison, we ordered cells using established
methods including Monocle2 (Qiu et al. 2017), TSCAN (Ji and Ji 2016),
Wishbone (Setty et al. 2016), SCUBA (Marco et al. 2014), SLICER
(Welch, Hartemink, and Prins 2016) and GrandPrix (Ahmed, Rattray, and
Boukouvalas 2018). Results are summarised in Supplementary Table

2/Supplementary Figure 3.

Overall, our approach offered the best performance, with Pearson’
correlation of 0.96 for the PGC branch and 0.95 for the soma branch, with
low branch-discrepancy metric (A,= 0.004) indicating good alignment
between the two lineages. Monocle2, TSCAN, and GrandPrix all
performed well at ordering cells albeit with slightly lower correlation
coefficient, with GrandPrix also doing a good job of aligning the two
branches (A= 0.02). Whilst other approaches showed a general ability
to separate out pre-implantation cells from PGC or soma, they did not
necessarily place cells along a continuous trajectory, and did not appear

able to align different branches.

To evaluate the effect of more complex branching structures, we also
ordered cells along a 3-component branching process, explicitly
modelling where ESCs and soma diverged from the PGC trajectory. Here
we additionally investigated the effect of using increased numbers of
genes in the algorithm: using 44 marker genes; 87 marker genes; and the
top 101 most varied genes as an unbiased alternative to our marker-based
strategy. In all cases the B-RGPLVM ordered cells along a continuous
developmental trajectory, with high correlation between pseudotime and
capture time, and low branch-discrepancy metric. Performance did not
appear to increase as the number of observed genes was increased,
suggesting that cells could be accurately ordered with around 40 marker

genes, in agreement with preliminary analysis using other datasets.
3.2.2. Inferring branching structure on a genome scale

The preliminary ordering of cells suggested that key PGC makers SOX17
and PRDM1 branched earlier than late markers such as DAZL. Although
the data was not resolved enough to distinguish the order of branching
between SOX17 and PRDMI, the posterior distribution suggested that
SOX17 branched prior to late PGC markers such as DAZL with >90%

certainty.

To identify novel regulation on a genome scale, we subsequently used
independent B-RGP regression (Penfold et al. 2018) to infer branching on
a gene-by-gene basis, conditional on the estimated pseudotime. Whilst this
allowed inference of branching for all expressed genes, this increased
scalability comes at a loss of information about posterior distribution of
pseudotimes, and does not quantify the uncertainty in ordering. For each
gene, we explicitly assumed one of three models: (i) somatic cells
branched from the base process (the hPGCs trajectory), with hESCs and
hPGCs following an identical process (see Figure 2(d, e, f)); (ii) both soma
cells and hESCs branched from the main process, with hESCs later
recombining towards Wk4 PGCs (Figure 2(g)); and (iii) all processes were
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identically distributed (no branching). Similarly to our approach in
(Penfold et al. 2018) we used the Bayesian information criterion (BIC) to
determine the branching structure for each gene (Supplementary Section
3). The number of genes assigned to each group is indicated in
Supplementary Figure 4(a), and shows that most genes were non-

branching i.e., not differentially expressed.
3.1 In vivo dynamics of human PGC development.

In total, 3,930 genes were identified as being up-regulated in hPGCs
versus soma, with 1,355 down-regulated. It is likely that these genes are
involved in a broad range of biological processes, including the
acquisition of competence for PGC fate, PGC specification and
maintenance, as well as epigenetic reprogramming, migration, and
gametogenesis. We therefore performed a preliminary GO and KEGG
pathway analysis using a permissive p-value (p<0.1, Bonferroni corrected
hypergeometric test), to identify biological processes that branched early
in development (Supplementary File 1). Our analysis revealed several
early terms related to BMP and WNT signalling, with subsequent terms
associated with epigenetic reprogramming, proliferation and cell
migration, and later terms relating to testosterone signalling, meiosis, and
gametogenesis which, together, reflect the expected progression of hPGC
development (Lawson et al. 1999; Ohinata et al. 2009; De Felici 2013;
Leitch, Tang, and Surani 2013; Kobayashi et al. 2017).

A histogram of the time of branching between PGCs and soma (Figure
2(c)) shows a multi-modal distribution, with most responses occurring
after blastocyst-stage, but prior to week 4, consistent with the expected
timing for PGC specification at around weeks 2-3 of development (see
e.g., (De Felici 2013; Tang et al. 2016)). Importantly, even when using a
point estimate for pseudotime, the two key regulators of human PGC fate,
SOX17 and PRDM1 (Irie et al. 2015), were still shown to branch early,
prior to late PGC markers such as DAZL (Figure 2(d, e, f)). In addition to
regulating human, but not mouse, PGC fate, SOX17 is a known endoderm
TF in mice and humans (Kanai-Azuma et al. 2002; Seguin et al. 2008). It
is therefore possible that a subset of its target genes are shared between
human endoderm and PGC lineages. To test this, we looked at genes that
were differentially expressed in hESCs following overexpression of
SOX17 compared to parental hESC lines (Seguin et al. (2008);
GSE10809). Genes that branched between PGCs and soma were
statistically enriched for genes that were differentially expressed in
response to SOX17 overexpression (p<1x107°, hypergeometric test using
Enrichr). Reanalysis of this microarray data showed that common genes
included the PGC regulator PRDM1, known to act downstream of SOX17
(Irie et al. 2015). Crucially, the overlapping targets of SOX/7 were,
themselves, shown to branch early compared to the dataset as a whole
(p<1x107, Kolmogorov—Smirnov test), and earlier than testosterone

signalling, involved in later male germ cell development (Figure 2(h)).

To reveal additional regulatory mechanisms that could be contributing to
PGC specification and maintenance, we used Enrichr (Chen et al. 2013;
Kuleshov et al. 2016) to find transcriptional signatures present within our
set of branched genes, and used a Kolmogorov-Smirnov (KS) test to

identify those signatures that branched significantly earlier than average
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Figure 2: (a) Inferred pseudotemporal ordering of individual cells over a two-component
branching component correctly identifies the developmental ordering of blastocyst stage cells and
ESCs, suggesting hESCs are developmentally more advanced than blastocyst stage. (b) ESCs at
passage 10 appear to be developmentally more advanced than at earlier passages, having
statistically later pseudotimes. (¢) Histogram of branching time (soma versus PGCs) indicates a
multimodal response. (d, e, f) Key PGC regulators SOX17 and PRDMI branch early in the
pseudotime series, prior to late PGC markers such as DAZL. (g) SOX2, a pluripotency and neuronal
cell fate gene, branches between ESCs and the inferred in vivo dynamics. (h) Identified targets of
SOX17 and BMP4 from perturbation studies in ESCs show early branching between PGCs and
soma. (i) TNF response appears to be concomitant with genes associated with epigenetic
reprogramming and the migratory phase of PGC development.

branching times in the dataset. That is, we looked for early and statistically
significant overlaps between genes that branched (PGCs versus soma) and
those that were up-regulated or down-regulated in the literature in a variety
of species and cell types following knockout or overexpression studies,
upon treatment with hormones, growth factors, and cytokines, or were
overrepresented in Encode ChIP datasets or the ChEA database. Although
none of the Enrichr perturbations were performed directly in PGCs, and

results might therefore be contextually very different to our system, the
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presence of an early and statistically robust transcriptional signature is
worthy of further investigation. Furthermore, we envisage that in this way
it may be possible to identify signalling molecules secreted from
surrounding tissues and therefore not branching in the examined

transcriptome itself.

In agreement with the early branching of genes with BMP-related
GO/KEGG terms around the time of PGC specification, comparison with
the Enrichr database showed a strong overlap of branched genes with those
differentially expressed in hESCs following treatment with BMP4
(p<5x10™, Enrichr SG). The identified targets of BMP4 branched early
in the pseudotime series compared to branch times overall (p<5x10*, KS-
test; Figure 2(h)), reflecting the known role of BMP4 as a PGC-inductive
signal (Lawson et al. 1999). We further identified the transcriptional
signatures of several putative BMP and WNT effector genes, including
Parathyroid Hormone Like Hormone (PTHLH, adjusted p<5¢”, Enrichr
SG), which increases mesenchymal cells’ responsiveness to BMP4 (Hens
etal. 2009), and has been implicated in the emergence of germ cell cancers
(Sandberg, Meloni, and Suijkerbuijk 1996; Mostert et al. 1998). Other
signatures included X-linked inhibitor of apoptosis (XI4P, p<5x107%,
Enrichr SG) which, besides modulating BMP and WNT signalling, has
also been associated with seminomas, cancers originating from PGCs
(Kempkensteffen et al. 2007; Oosterhuis and Looijenga 2005). Within
branched genes, we also noted strong signatures of genes involved in
canonical WNT signalling, including both CTNNBI (p<5x10™"*, Enrichr
SG; p<0.001, KS-test), GSK3 (p<5x10°, Enrichr Kinase; p<0.05, KS-
test), as well APC Membrane Recruitment Protein 1 (AMERI, p<le-11,
Enrichr SG; p<5x10, KS-test), and its target, Wilms Tumor 1 (WTI,
p<5x107, Enrichr SG) . These findings are in keeping with WNT and BMP
serving as major PGC induction signals and thus prove the efficacy of our

framework.

Amongst the early enriched gene signatures was overexpression of the
transcription factor NANOG (p<0.05 KS-test). In mouse in vitro models
NANOG is sufficient to directly induce PGC-like cell fate by binding and
activating enhancers of Prdml and Prdmil4 (Murakami et al. 2016),
although loss of function studies have yielded equivocal results as to its
requirement for mouse PGC fate (Chambers et al. 2007; Yamaguchi et al.
2009; Carter et al. 2014). NANOG is highly expressed in human PGCs
and PGCLCs, but, unlike in mouse cells, its overexpression does not
induce PGCLCs (Kobayashi et al. 2017). Nevertheless, we identified a
number of putative NANOG binding sites within the 10kb flanking
regions of PRDM] using FIMO (Supplementary File 2), suggesting a
possible functional role. It would be of interest to test the involvement of
NANOG in hPGCLC fate using an inducible knockout.

In addition to picking up known PGC regulators, we were also able to
identify other pathways potentially involved in human PGC fate, including
a putative role for tumour necrosis factor (TNF) signalling in PGC
development, based on the enrichment of KEGG term ‘TNF signalling
pathway’, and the TNF transcriptional signature (p<1x10™'°, Enrichr SG).
Targets of TNF were shown to branch later than BMP4/SOX17-
responsive genes, and around the same time as genes that branched in
response to perturbations of TETI, TET2, and TET3 (Figure 2(i)). This

places the timing of TNF-signalling roughly in concordance with
epigenetic reprogramming in proliferating, migratory PGCs. Although
TNFA has roles in apoptosis, previous studies in mouse models suggest it
can stimulate proliferation of pre-gonadal PGCs in culture (Kawase et al.
1994; Makoolati, Movahedin, and Forouzandeh-Moghadam 2016). Whilst
TNF, itself, was not identified amongst the branched genes, and its
expression appears to be generally low in PGCs (Tang et al. 2015), one of
its receptors, TNFRSF1A4, was found to be branched, and we cannot
exclude that TNF is secreted from surrounding tissues. Indeed, TNFA is
expressed in Schwann cells (Wagner and Myers 1996), and TNF
signalling might therefore support PGCs proliferation and survival as they

migrate along the nerve fibres to the genital ridges (Mollgard et al. 2010).

3.1.1 Branched genes were enriched for targets of polycomb repressive
complexes 1 and 2 (PRCI and PRC2)

Branched genes were also enriched for the signature of epigenetic and
chromatin modifiers, including the histone demethylase KDM3A4 (p<1x10
*, Enrichr SG; p<0.001, KS-test), methyltransferase DNMTI (p<5x10~,
Enrichr; NS, KS-test), and dioxygenases TETI (p<l1x10™, Enrichr SG),
TET?2 (p<5x10*, Enrichr SG), and TET3 (p<5x10~, Enrichr SG), which
contribute to PGC DNA demethylation via conversion of the modified
genomic base S-methylcytosine (5mC) into 5-hydroxymethylcytosine
(5hmC) (Ito et al. 2010). In general, genes associated with perturbations
of epigenetic and chromatin modifiers appeared to branch later than genes
associated with perturbations of WNT and BMP signalling, in line with
existing experimental evidence (Tang et al. 2015). Amongst the related
enriched GO terms, we noted several related to cAMP activity, and the top
10 enriched motifs between genes up-regulated in PGCs and the ChEA
database included several cAMP modulators, including CREB1 (p<5x10
*Enrichr ENCODE) and CREM (p<5x10"*°, Enrichr ChEA), consistent
with studies in mice that identify roles for cAMP signalling in mouse PGC

proliferation and epigenetic reprogramming (Ohta et al. 2017).

The polycomb group (PcG) of proteins are a diverse and evolutionary
conserved family of proteins that function as epigenetic modifiers and
transcriptional regulators (Chittock et al. 2017). Two key complexes are
polycomb repressive complex 1 PRCI, an E3 ubiquitin ligase that
monoubiquitinate lysine 119 of histone H2A (H2AK119ubl), and
polycomb repressive complex 2 (PRC2), which functions as a
methyltransferases that targets histone H3 lysine 27 for mono-, di- and
trimethylation (H3K27mel, 2, 3). Amongst genes that branched between
PGCs and soma, we noted a particularly strong overrepresentation for
targets of PRC1 and PRC2. Indeed, PRC-related terms were amongst the
most frequently enriched terms when comparing branched genes with
ChEA/Encode databased (Supplementary File 3). This included
enrichment for targets of core PRC2 components SUZ12 (p<Ix107%,
Enrichr ChEA) and EZH2 (p<1x10™", Enrichr ChEA), and proteins known
to bind or co-localise with PRC2, including JARID1A (p<1x10~', Enrichr
ChEA), JARIDIB (p<1x107), JARID2 (p<Ix10"*; ChEA), and KDM6A
(5x10-*', Enrichr ChEA). We also saw enrichment for PRC1 components
RING1B (5x10", Enrichr ChEA) and RNF2 (5x10"; Enrichr ChEA), as
well as non-canonical components such as YY1 (1x10™ Enrichr
ENCODE) and MAX (p<lel0™, Enrichr ENCODE). The expression
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patterns of PRCI/PRC2 components following pseudotime ordering
revealed highly dynamic regulation (Supplementary Figure 6). K-means
clustering of gene bodies of early-branching genes (t, < 0.6) by RING1B
occupancy and ubiquitination level in hESCs (GSE104690) allowed
identification of putative targets of PRC1, which included the key PGC
specifier SOX17 (Supplementary Figure 7 and 8).

Together these results suggest PRC1/2 may play an important role in PGC
development. To establish a possible role of PRC1/2 on PGC
specification, we used small molecule inhibitors to target the enzymatic
activity of core components of PRC1 and PRC2 using an in vitro model
of PGC specification. Our results reveal that inhibition of PRCI1
RING1B/BMI1-dependent ubiquitination using PRT 4165, reduced PGC
specification in a dose-dependent manner (Supplementary Figure 9).
Previous studies suggest that the small molecule inhibitor
DETA/NONOate could be used to suppress expression of YY1 (Hongo et
al. 2005). Treatment with DETA/NONOate reduced PGCLC efficiency
(Supplementary Figure 10), however, DETA/NONOate is also known to
activate the NO signalling pathway, and we could not rule out a YY1-
independent mode of action. Finally, a preliminary inhibition of PRC2
EZH2-mediated histone methylation via DZNep further suggested
reduced efficiency of PGCLC specification (Supplementary Figure 11).
These results highlight the ability of pseudotime models to identify targets

for intervention that result in a phenotype.

3.2 Differences between inferred in vivo and in vitro dynamics of

human development

Current knowledge of human germ cell specification is largely informed
by in vitro PGCLC derivation from hESCs. While it is challenging to
directly validate these findings in vivo, we reasoned that we could
highlight the most relevant processes by comparing the inferred dynamics
of PGC induction in early embryos with pseudotemporally ordered
hESCs. In particular, the ability to derive human PGC-like cells
(PGCLCs) from hESCs in vitro prompted us to regard the hESC to
hPGCLC transition as a recombination process. Comparison of the
PGCLC transcriptome with that of in vivo PGCs suggests that PGCLCs
closely resemble pre-migratory PGCs (Irie et al. 2015), and we therefore
considered recombination to occur between hESC and the earliest
available PGC dataset (Wk4). Thus, the comparison of hESC and hPGC
dynamics represents a branch-recombinant process, whereby specified
hPGCs and hESCs branch from a common precursor (around blastocyst
stage), with hESC dynamics allowed to recombine with W4 hPGCs upon

exposure to appropriate stimuli.

We first identified the subset of genes that showed divergent behaviour
between ESCs and in vivo datasets. This revealed 1,331 branching genes
which were up-regulated in hESCs compared to in vivo. The timing of
divergence between inferred in vivo and in vitro dynamics is shown in
Supplementary Figure 4(c). GO analysis of these groups identified several
enriched terms, including those relating to cell adhesion, response to
hormones, and, importantly, response to BMP4 and WNT, as well as terms
relating to germ cell development and meiosis (see Supplementary File 3).

We next attempted to identify perturbations that could potentially drive

hESCs back towards hPGC identity i.e., for genes up-regulated in hESCs
versus hPGCs, we searched for perturbations that down-regulated those

genes.

Amongst the most highly enriched signatures was the overexpression of
SOX17 (p<5x10_9, Enrichr SG). De novo motif analysis using DREME
(Bailey 2011) on 1kb windows upstream of the TSS identified two motifs
(p<1x10", p<5x107) resembling that of human PRDM1 (p<0.01, p<5x10
’, TOMTOM, Gupta et al. (2007)), and genes were enriched against DE
genes in bulk RNA-seq data from PRDMI-overexpressing cells
(Kobayashi et al. 2017) showed a significant overlap (p<5x10%,

hypergeometric test).

A strong signature was also noted for KIT (p<Ix10”, Enrichr SG),
potentially highlighting an important role of its ligand, SCF, in PGC cell
fate. SCF has been implicated in PGC proliferation and migration (Hoyer,
Byskov, and Mollgard 2005; Mollgard et al. 2010) and is added to the in
vitro culture medium used to derive PGCLCs from hESCs (Irie et al.
2015). Although KITLG is not expressed in hPGCs or hPGCLCs (Tang et
al. 2015; Irie et al. 2015), the expression of KIT is significantly up-
regulated in hPGCs, and SCF (encoded by KITLG) is potentially secreted
from adjacent cells. Indeed SCF is expressed in Schwann cells (Mollgard
et al. 2010), as well as Sertoli and Leydig cells (Sandlow et al. 1996), and
we note that a KITLG positive subpopulation appears to exist in the

somatic cells, around the time of PGC migration and gonad colonisation.

3.2.1 Early branching identifies key regulators of competence for PGC
fate

Human ESCs in conventional cultures (KSR-based medium supplemented
with FGF2) have low potential to form germ cells, but acquire competency
for PGCLC fate in the presence of TGFp, LIF, FGF2 and the inhibitors of
GSK3p (CH), p38 (SB), INK (SP) and MEK (PD03) kinases (4i medium,;
Gafhni et al. (2013); Irie et al. (2015)). 41 hESCs self-renew in a competent
state and can form high numbers of PGCLCs when exposed to BMP2/4
and supporting cytokines in embryoid body (EB) cultures (Irie et al. 2015).
The mechanisms underlying such dramatic change in developmental
potential of 4i (competent hESCs) versus conventional hESCs remain to
be elucidated.

We decided to focus on signalling that may be involved in conferring PGC
competence to hESCs. For this, we first compared the genes up-regulated
in hESCs to the inferred in vivo dynamics for PGCs. This revealed
enrichment for the downregulation of BRAF (p<1x10*, Enrichr SG) and
FGF2 (p<1x10", Enrichr Ligand), two upstream regulators of MEK
signalling. Crucially, FGF2-responsive genes were found to branch very
early in vivo (soma vs PGCs) compared to overall branch times (p<5x10
6, KS-test) and was the topmost enriched ligand perturbation identified
from comparisons of ESCs towards PGC fate (Suppelmentary File 5). This
branching occurred concurrent with, or prior to the BMP4/SOX17-
responsive genes (p<0.05, FGF2 vs BMP4; NS, FGF2 vs SOX17, see
Figure 2(h)), suggesting that FGF2 may function earlier than key
specifiers of PGC fate, with potential roles in conferring competency for
PGCLC fate. While FGF2 is present in both conventional and 4i
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conditions, 41 cells are maintained in the presence of an inhibitor of MEK,
an effector of FGF receptor (FGFR) signalling. It is therefore possible that
partially negating the effect of FGF signalling via the inhibition of
downstream pathways of FGFR, might contribute to PGC competence

acquisition by pluripotent cells.

Comparison of branching between soma and PGCs identified early
signatures for a number of kinase perturbations that mimic the use of the
inhibitors in the 41 medium sustaining competent hESCs. These included:
(i) knockdown of GSK3B (p<5x10®, Enrichr Kinase; p<0.05, KS-test)
(CH is a GSK3p inhibitor); (ii) knockdown of MAP2K1 (p<Ix107,
Enrichr; p<0.05, KS-test), a component of the MAP kinase signal
transduction pathway upstream of MEK signalling (PD03 is a MEK
inhibitor); and (iii)) MAPK14 (p<5x10~, Enrichr; p<0.01, KS-test), a
regulator of p38 (SB is a p38 inhibitor). Branch times for genes associated
with these perturbations were suggestive of early roles. Of note, we did
not identify statistically significant overlaps with pathways downstream
of INK kinases, inhibited by the fourth inhibitor in 41 hESCs (SP).

To experimentally test the involvement of these signalling pathways in
PGC competence, we compared PGCLC induction efficiencies from
hESCs cultured in either complete competent (4i) medium (control) or
lacking one of the 4 inhibitors: (i) “4i-CH” (4i without GSK3B inhibitor);
(ii) “4i-PD03” (41 without MEK inhibitor); (iii) “4i-SB” (4i without p38
inhibitor), and (iv) “4i-SP” (4i without JNK inhibitor). hESCs were
cultured in these alternate media for at least one passage and collected for
standard PGCLC differentiation (as in Irie et al. (2015)). PGCLC
induction efficiency was then quantified by flow cytometry
(Supplementary Figure 12). This was facilitated by the use of PGC-
specific knockin reporter cell line NANOS3-tdTomato (N3tdTom;
Kobayashi et al. (2017)) and staining for PGC surface markers AP and

CD38 (Irie et al. 2015).

This identified that while removal of CH (GSK3pi) and SP (JNKi) from
4i did not significantly change PGCLC competence, withdrawal of PD03
(MEKIi) and SB (p38i) strongly reduced the propensity of hESCs to form
PGCLC:s (Figure 3(a)), consistent with a predicted role for MEK and p38
but not JNK signalling in conferring PGC competence. Considering the
crucial role of WNT signalling for PGC competence in mice (Ohinata et
al. 2009; Aramaki et al. 2013), it was surprising that CH (WNT agonist,
Ying et al. (2008)) withdrawal did not impact on PGCLC competence. We
hypothesized that 4i hESCs might produce WNT in an autocrine fashion.
Indeed, the number of PGCLCs generated from hESCs grown with WNT
pathway inhibitor IWR-1 (IWR, Chen et al. (2009)) either in the presence
or the absence of CH, was reduced compared to the control (Figure 3(b)).

Notably, “4i-CH” and “4i-SB” cultures deteriorated at later (>4) passages,
reflecting the importance of these inhibitors to sustain self-renewal of 4i
hESCs (Gatni et al. 2013). Low competency observed upon withdrawal of
SB (p38i) was likely caused by the induction of trophectoderm-like
differentiation, as judged by the expression of lineage markers, CDX2 and
HANDI (Supplementary Figure 13).

The most drastic effect on PGCLC competence was observed upon
withdrawal of MEK inhibitor, PD03, with a strong reduction in the
induction of PGCLC (Figure 4(b)), although unlike “4i-CH” or “4i-SB”,
“4i-PD03” cells could be maintained for many passages (>20).
Importantly, the defect of “4i-PD03”” hESCs to differentiate to PGCLCs

could be rescued (within one passage) if PD03 was reintroduced; Figure

4(c)).
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Figure 3. Quantification of PGCLC induction efficiency from hESCs grown in indicated
conditions relative to 4i hESCs. PGCLCs induction efficiency was defined as the percentage of
live NANOS3-tdTomato/AP (N3+AP+) or NANOS3-tdTomato/CD38-double positive cells. Data
are shown as mean + SD of 2 or 4 independent experiments. * p <0.05, **** P <(0.0001, ns: not
significant (p > 0.05), Holm-Sidak t-test (on relative frequency of N3+AP+ cells). (a) MEK and
p38 inhibitors withdrawal from 4i medium decreases PGCLC competence of hESCs. (b) Inhibition
of WNT signalling by small molecule inhibitor IWR reduces PGCLC competence.
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Figure 4. FGFR-MEK signalling is a negative regulator of human PGCLC competence.
(a) MEK inhibitor withdrawal from 4i medium decreases PGCLC competence of hESCs.
Representative flow cytometry plots of EBs derived from 4i and “4i-PD03” hESCs. (b)
Quantification of PGCLC induction efficiency from “4i-PD03” relative to 4i hESCs. Data are
shown as mean + SD of 9 independent experiments. **** p < 0.0001, Holm-Sidak t-test (on
relative frequency of N3+AP+ cells). (c) “4i-PD03” differentiation defect can be rescued by
reintroducing PD03. hESCs grown in “4i-PD03” for >10 passages were transferred to complete
4i medium (with PD03) for 1 or 3 passages and subjected to PGCLC induction. Induction
efficiency is shown relative to “4i-PD03”-derived PGCLCs; n=1. (d) hESCs grown with FGFR
inhibitor PD17 show enhanced PGCLC competence. Data are shown as mean + SD of 2 or 3
independent experiments. * p <0.05,ns: not significant (p >0.05), Holm-Sidak t-test (on relative
frequency of N3+AP+ cells). Red lines and asterisks refer to comparison of “4i-PD03” to other
conditions.

Since our analysis revealed early branching of an upstream component of
this signaling pathway, namely FGF2 (see Supplementary File 3), we
asked if inhibition of FGF receptor (FGFR) could mimic the effect of
MEK inhibition. To address this, we transferred the cells cultured in “4i-
PD03” to “4i-PD03+PD17” (4i where MEK inhibitor PD0325901 was
substituted for FGFR inhibitor PD173074). Not only did FGFR inhibition
rescue the differentiation defect of “4i-PD03” cells, but it also markedly
enhanced PGCLC competence compared to the 4i control (in the presence
of high PD17 concentrations; Figure 4(d)). However, these cells showed
decreased viability and collapsed after 2-3 passages. Importantly, FGFRi

showed a dose-dependent positive effect on competence (Figure 4(d)) and
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cells grown with lower PD17 concentration could be maintained longer.
Together, these data show that, in agreement with our computational
prediction, FGF-MEK pathway is a negative regulator of human PGCLC
competence; blocking this cascade by FGFRi or MEKi promotes PGCLC

competence in hESCs.

Next, we explored the reason for enhanced competence of FGFRi-treated
versus MEKi-treated cells. Major downstream components of FGFR
signalling are RAS-MEK-ERK, PI3K-AKT, and JAK-STAT (Lanner and
Rossant 2010). Indeed, the comparison of dynamics of PGC development

with somatic cells identified strong enrichment for these three pathways.
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Figure 5. PI3K and LIF/JAK/STAT pathways negatively regulate PGCLC competence.
(a) PI3K inhibition promotes PGCLC competence. Quantification of PGCLC induction
efficiency from cells grown in indicated conditions relative to 41 hESCs. Data are shown as mean
+ SD of 10 independent experiments. * p < 0.05, *** p < 0.001, **** p < 0.0001, ns: not
significant (p >0.05), Holm-Sidak t-test (on relative frequency of N3+AP+ cells). Red lines and
asterisks refer to comparison of “4i-PD03” to other conditions. (b) Short exposure (1 passage)
of hESCs to JAK inhibitor CAS increases PGCLC competence to form mature CD38+ PGCLCs.
Quantification of PGCLC induction efficiency from cells grown in 4i+CAS relative to 4i hESCs.
Longer culture with CAS changed colony morphology and decreased competence. (¢) LIF
withdrawal from 4i hESCs promoted PGCLC competence, although the magnitude of the effect
was mild. Data are shown as mean + SD of 10 independent experiments. * p<0.05, Holm-Sidak
t-test (on relative frequency of N3+AP+ cells).

Thus, we saw enrichment of appropriate GO/KEGG terms, and
transcriptional signatures of EGFR (p<1x10™"°, Enrichr Kinase; p<0.0005
KS-test) and Platelet Derived Growth Factor Receptors Alpha (PDGFRA,
p<1x10™", Enrichr Kinase; p<0.005 KS-test) and Beta (PDGFRB, p<5x10"
', Enrichr Kinase; p<0.001 KS-test), implicated in the activation of ERK,
AKT, and STAT1/3/5 signaling pathways, as well as MET (p<5x10™°,
Enrichr Kinase; p<0.01 KS-test), which functions upstream of RAS-ERK
and PI3K-AKT signalling. We also noted a strong signature for the down-
regulation of JAK1/2 (p<5x10™*, Enrichr Kinase; p<0.05 KS-test), and an
enrichment for PI3K signalling, which included transcriptional signatures
of AKTI (p<1x10”, Enrichr Kinase; p<0.05 KS-test), CSFIR (p<5x107,
Enrichr Kinase; p<0.01 KS-test), the regulatory subunit of PI3K leading
to activation of AKT1, and NTRK3 (p<5x10~, Enrichr; p<0.05 KS-test),
which also activates PI3K-AKT signalling. PI3K/AKT pathway was of
particular interest, since it is activated downstream of insulin signalling,
which was one of the most statistically enriched ligand perturbations from
the Enrichr database (p<Ix10”, Enrichr ligand; p<0.01 KS-test)
promoting hESC to hPGC transcriptome transition.

We therefore hypothesized that simultaneous inhibition of MEK and other
pathways downstream of FGFR could mimic the effect of FGFRi and
increase PGCLC competence. To test this, we supplemented complete 4i
cultures with either LY (LY294002, PI3K inhibitor) or CAS (CAS457081-
03-7, JAK inhibitor). This revealed a trend for enhanced PGCLC
competence of “4i+LY” hESCs (Figure 5(a)). Importantly, “4i+LY” cells
did not exhibit increased cell death as seen with FGFRi; instead they
proliferated at rates similar to 4i hESCs and formed homogeneous dome-
shaped colonies. Furthermore, “4i-PD03+LY” cells, especially at later
passages exhibited competence comparable to control 4i hESCs (Figure
5(a)), pointing to a synergistic action of MEK/ERK and PI3K/AKT
signalling pathways. We also observed a positive effect of JAK pathway
inhibition on PGCLC competence (Figure 5(b)). This is in line with the
enhanced competence of hESCs cultured in 4i without LIF, an agonist of
JAK-STAT (Figure 5(c)). Interestingly, differentiation of 4i+CAS”
hESCs yielded more CD38" cells (Figure 5(c)), which represent more
mature PGCLCs (Irie et al. 2015). Of note, longer culture of hESCs with
JAK inhibitor changed colony morphology and subsequently reduced
competence (Figure 5(b)). These cultures could not be maintained,
highlighting differential requirements for JAK/STAT signalling in 4i
versus conventional hESCs (Gatni et al. 2013; Onishi and Zandstra 2015).
It is therefore possible to speculate that the observed effect of FGFR
inhibition could be explained by: (i) enhanced competence due to PI3K
pathway inhibition and transient JAK/STAT inhibition; (ii) decreased
viability and loss of pluripotency due to JAK/STAT inhibition. The
relationship between these signalling pathways and their contribution to
pluripotency maintenance and PGC competence acquisition warrant
further investigation. Together, these data show that B-RGPs could predict
the relevance of specific signalling pathways to PGC competence even in
the absence of all relevant data points (single-cell transcriptomes of 4i
(competent) hESCs and PGCLCs).

Finally, we set out to test if in addition to promoting competence, blocking
MEK signalling could also enhance PGCLC specification. To this end,
we supplemented the differentiation medium with MEK inhibitor PD03 or
induced a genetic construct for dominant-negative ERK expression (DN-
ERK) at the onset of differentiation (Figure 6(a)). Intriguingly, both
perturbations reduced PGCLC numbers compared to controls (Figure 6(b,
¢)). ERK activation during PGCLC induction is likely triggered by the
supplementation of the differentiation medium with EGF (Irie et al.,
2015), which activates similar intracellular pathways to FGF ligands
2004). Of note, inhibition of PI3K
differentiation did not abrogate PGCLC specification, suggesting that,
unlike MEK, PI3K signalling is dispensable for PGCLC induction
(Supplementary Figure 15). Altogether, this shows that the timing of

(Schlessinger throughout

FGFR signalling is crucial for context-specific cell fate decisions and our
methodology allows predicting relevant changes in signalling and gene

expression in a time-resolved manner.
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Figure 6. MEK-ERK inhibition during PGCLC induction interferes with PGCLC
specification. (a) Workflow of the experiments and the scheme of the construct for DN-ERK
transgene expression. Either PD03 or DMSO (vehicle) was added to the differentiation medium.
Alternatively, to induce DN-ERK, PGCLC medium was supplemented with doxycycline (dox).
(b) Supplementation of the differentiation medium with PD03 drastically decreases PGCLC
specification efficiency. Data (relative frequency of live N3+AP+ cells) are shown as mean + SD
of 4 independent experiments. **** P < 0.0001, Holm-Sidak t-test. (¢) DN-ERK expression
during PGCLC differentiation reduces the efficiency of PGCLC specification. Data (relative
frequency of live N3+AP+ cells) are shown as mean + SD of 3 independent experiments using
2 DN-ERK-expressing clones. ** p <0.01, Holm-Sidak t-test.

3 Discussion

Transcriptional branching and recombination are frequently encountered
in developmental biology. Single-cell transcriptomics has emerged as tool
for investigating the nature of these bifurcations, but requires cells first be
computationally ordered along pseudo-developmental trajectories.
Increasingly, scRNA-seq datasets are generated as part of more structured
experiments, including finely resolved whole-embryo developmental time
series (Briggs 2018). Unfortunately, most pseudotime approaches cannot,
or do not, leverage the additional information. Here we have developed a
probabilistic model capable of inferring a posterior distribution over
pseudotimes, that also utilises prior information about capture. Our
approach encodes an explicit model of a bifurcations occurring at the level
of individual marker genes, providing a more interpretable result than

standard dimensionality reduction.

Although our model was more accurate than other approaches for time
series data, this increased accuracy comes at a significantly increase in
computational cost. However, concurrent with our study, Boukouvalas,
Hensman, and Rattray (2018) have built on the earlier work of Yang et al.
(2016) to develop Branching Gaussian processes, a probabilistic
framework for the inference of bifurcations in single cell transcriptional
datasets. Unlike our approach, which utilised MCMC to deal with
unlabelled datasets, these branching GPLVM focused on efficient,
scalable wvariational approximations for a two-branch system,
implemented using GPflow (Matthews et al. 2016), and were therefore
applicable for much larger datasets. By focusing on early branching events
they identified key regulators of haematopoietic differentiation which,
together with our own work, and other GPLVM approaches (Ahmed,
Rattray, and Boukouvalas 2018), demonstrates the usefulness of

probabilistic approaches to pseudotime.

Having established the advantages of B-RGPLVMs over other approaches
for time series scRNA-seq data, we used our approach to investigate the
dynamics of cell fate decision of human primordial germ cells (hPGCs).
We correctly identified key early regulators of PGC fate, most notably
SOX17, a classic endoderm marker gene that was only recently shown to
play a prominent role in human PGC specification (Irie et al. 2015; Tang
et al. 2015). Furthermore, by jointly leveraging in vivo and in vitro
datasets, we could suggest the importance of correct suppression of SOX2
and concomitant up-regulation of SOX17 in hPGC lineage. Interestingly,
mouse PGCs do not require Sox/7 and instead express Sox2. Many more
unexplored differences exist between mouse and human PGC
transcriptomes (Tang et al. 2015), and an integrative analysis of mouse
and human datasets could prove useful in identifying such divergent

regulators.

By looking at the earliest branching events, we identified putative
regulators that may play a role prior to PGC specification, in the
acquisition of PGC competence. Here, we identified possible roles for
FGFR signalling and its downstream branches (MEK/ERK, PI3K/AKT
and JAK/STAT) in conferring human PGC competence. Importantly,
these observations were validated experimentally using an in vitro system
for derivation of PGC-like cells (PGCLCs) from hESCs. Indeed, blocking
FGFR or its downstream effectors (MEK, PI3K and JAK) by specific
inhibitors enhanced the competency of hESCs to form PGCLCs.

We also noted that branched genes were highly enriched for PRCI and
PRC2 binding. Preliminary small molecule inhibition of the enzymatic
components of RINGIB and EZH2 resulted in reduced ability of
competent ESCs to form PGCLCs. PRC1/2 components showed highly
dynamic pseudotime trajectories, both around the time of specification and
in post-migratory PGCs, suggesting that PRC1/2 components such as
MAX may have further important roles in later hPGC development,
consistent with studies in mouse models (Yokobayashi et al. 2013; Suzuki
et al. 2016; Endoh et al. 2017).

Whilst we could correctly identify several events in the acquisition of
competency and specification, key intermediate cell types were absent
from both our in vivo and in vitro datasets. Notably, single cell RNA-seq
for competent (4i) hESCs and PGCLCs were unavailable, although bulk
RNA-seq measurements exist (Irie et al. 2015). A key future development
will therefore aim to combine the use of single-cell and bulk RNA-seq
data in a principled way. Since bulk measurements represent population
averages, B-RGPs would be ideally suited to this purpose, due to the
ability of GPs to incorporate integral observations (Rasmussen and
Williams 2006). Likewise, as GPs can naturally incorporate derivative
observations, GPLVMs provide an ideal framework for leveraging other

useful information such as RNA velocity (La Manno et al. 2018).

Another informative approach would require generation of single cell
transcriptomic profiling of intermediate cell types, providing a higher
temporal resolution of the intermediate events that lead to the acquisition
of competence and specification of hPGCs. The emergence of other in
vitro models for human PGCLC derivation (Kobayashi et al. 2017), as
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well as in vitro models of embryogenesis (Harrison et al. 2017; Sozen et
al. 2018; Beccari et al. 2018; Deglincerti et al. 2016; Martyn et al. 2018),
provides further opportunities for dissecting these causal regulations; by
identifying differences and similarities in the dynamics of branching
between different in vitro models, we could separate out the underlying

biological mechanisms from culture-induced adaptations.

Finally, the transition from pluripotency to PGC competence and
ultimately to PGCs can be reversed later in development upon germ cell
tumour formation, exemplifying a recombination event. Seminoma and
embryonal carcinoma are two types of germ cell tumours that share
similarities with PGCs and ESC, respectively (Surani 2015), which can be
distinguished using the markers identified from in vitro human PGCLC
specification; seminomas and PGCs express CD38 and SOX17, while
embryonal carcinomas and hESCs express SOX2 and CD30 (Irie et al.
2015). This underscores the importance of interrogating the transcriptional
and epigenetic control of human germ cell fate and its specification from
pluripotent progenitors. Ultimately, the use of B-RGPLVMs on
transcriptomics data from tumour cells could shed light on the sequence
of events that lead to their formation, identify cancer markers, and guide

therapeutic interventions.
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Supplementary materials to Bayesian inference of transcriptional
branching identifies regulators of early germ cell development

1 Branch-recombinant Gaussian process latent variable models (B-RGPLVMs)

The ability to leverage capture time and other important prior information into pseudotime algorithms, as well as the ability
to quantify uncertainty in the pseudotemporal ordering, is particularly desirable given the inherent limitations of pseudotime
approaches (see discussion in Campbell and Yau (2015); Weinreb et al. (2017)). Unfortunately, most approaches for
pseudotime ordering fail to incorporate such information, a significant omission given the trend towards increasingly
structured (finely resolved time-series) scRNA-seq datasets.

Bayesian approaches represent an ideal framework for leveraging prior information, and previous studies by Reid and
Wernisch (2016) have demonstrated how capture time can be incorporated into pseudotime algorithms using Bayesian
approaches based on Gaussian process latent variable models (GPLVMs; Lawrence (2003, 2005)). Within these models, it
is assumed that there are M cells measured at one of T < M distinct known capture times, t. = (ty, ..., ty), and the aim is
to infer a corresponding set of pseudotimes, t,, = (3, ..., Tyy), such that the gene expression profiles vary smoothly over
pseudotime in a way that reflects the general developmental trajectory. The pseudotimes, t,, are assigned a prior
distribution that is Gaussian distributed conditional on the capture time, t., t,[|t; ~ N (t,, a21). Within the GPLVM the
expression profile f; of each gene i is assigned an independent Gaussian process prior, f; ~ GP(u;(t,), k;(tp, tp)), where
ui(t,) denotes the mean function and k;(t, t,,) the covariance function. Different choices of covariance function encode
different prior distributions over the expression profiles of the individual genes, and can be used to encode a vast range of
dynamic behaviour. Reid and Wernisch (2016) assume a Matérn covariance function:

ki(tp ty) = A+ V3 |t, — t)l/Oexp(V3 |t, — t)1 /)

where ¢ is a global length-scale and 1; are gene-specific scaling factors. The expression data for each gene i over the
observed cells is modelled as a noisy version of their underlying expression profile, y; ~ N (f;(t,), w?), where w;
represents gene-specific noise levels. As the Gaussian process prior is conjugate to this likelihood, f; can be directly
marginalised:

[ POt P (RS = Nty Koy, + 02D)

where My, represents a vector of the mean function evaluated at the pseudotimes times t,, and K tptp the covariance matrix.
Finally, the composite likelihood for pseudotimes can be written as:

£(6) = el | | [ POl e)P(rle)ar.

In general, it is not computationally feasible to evaluate this product over all genes, and a representative set of genes must
be selected instead. This might include taking known marker genes, which has previously been shown to accurately order
cells in other approaches (Campbell and Yau 2018), or using the top most variable genes (Reid and Wernisch 2016). Until
recently, no explicit GP treatment for branching processes existed, and these kinds of models were thus limited to single
developmental trajectories (Reid and Wernisch 2016). However, recent studies by Yang ef al. (2016) have derived explicit
covariance functions for a two-branch process allowing pseudotime approaches for two-branch systems (Boukouvalas,
Hensman, and Rattray 2018), and subsequent studies have demonstrated how compositions of covariance functions can be
used to define branching processes of arbitrary complexity (Penfold et al. 2018). Within this paper, we will consider
processes with one or two bifurcations. A two-branch system with observations at t = (t, ..., ty), and branch-labels, z =
(z1, ---»2Zm), 2z; € [1,2], can be described by the following correlated processes:

@) ~ GP(u(0), ky (¢, 1)),
£(6) ~ GP(f, (D), CPy, (Ko, k3 (£, £1))),
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where u(t) represents the mean function for the base process, Ky = K, (t,t') denotes a zero-kernel, and CP;, (kq, k;)
denotes a change-point kernel (Lloyd et al. 2014), defined as:

CP,, (ky(t, t) ltcz(t t") = a®k,(t, t)a(t) + (1 — a(t))k, (¢, t)(1 — a(t")),
where (1 - a(t)) =1+ tanh (——) /2. In this system the hyperparameter, t;, controls the time at which the second

trajectory diverges from the basal process A three-branch process with observations at identical times as above and branch
labels z = (z, ..., zy), z; € [1,2,3], can be defined via the following set of correlated processes:

f® ~ GP(u(®), ki (t,£9),
70 ~ 67 (H1(0,CPy, (Ko ko 6,1)))
£ ~ 67 (F(5), CPy,. (Ko, k3 (2,£))).

For this system, cells corresponding to label 1 can be interpreted as the basal developmental process, from which two
developmental programs independently diverge at times t;, and t;, . Finally, we can consider a three-branch system, where
cells correspond to branch 2 diverging at time t;, , and cells corresponding to branch 3 diverging at t, and later
reconverging at time ¢, This system is described by the following coupled processes:

f1(®) ~ GP(u(®), ks (&, 1)),
f2(t) ~ GP ( f1(t), CB, (Ko, CPy, (Ko'

N(AD))
f3(t) ~ GP (f1 (D), CPtb3(KO' ko (.t ))) )

As with the standard GPLVM, each gene can be assigned an independent B-RGP prior over the pseudotimes, and the aim
is to order cells over a smooth, bifurcating process. The composite likelihood for the B-RGPLVM is:
N,

£(t) = PGl [ | [ POulFato )Pl 2

where y;is the vetctor of gene expression for the ith gene. While inference of the posterior distribution over pseudotimes
is analytically intractable, we may readily sample from it using Markov chain Monte Carlo, with pseudotimes updated via
a Metropolis step, hyperparameters sampled via hybrid Monte Carlo and, where necessary branch labels updated via a
Gibbs step. We can apply a perturbation to the pseudotime tj, = T(tp'|tc)tc which is accepted with probability
P(accept) = min(1, A), where:

_ T(tp|tp’)P(tp’|t )Hz 1fP(}’z|fu p ) )P(fi|tplrz)dfi
T(tp’|‘p)P(tp|tC) z=g1fp(yi|fi' p’ )P(fi|tp'z)dfi

Other updates can be applied, for example the swapping of two randomly selected cells, and more principled approaches
to such permutation-based updates for pseudotime are developed by Strauss, Reid, and Wernisch (2018). Finally, if we are
dealing with situations where cell fate is uncertain, we can Gibbs sample the branch label for cell i:

P(tp|te) 02 P(Vilf ity 2\2i 2; = 1)P(fi|tp, Z)af;
sk, P(tylte) HIiV:%fP()’iVi' t,, 2\z;, z; = k)p(fi|ty, 2)as;

P(z = Ity e, Y1, o) Yug 2\Z ) =

where L represents the number of cell types.
1.1. Benchmarking B-RGPLVM

To assess our ability to pseudo-temporally order data over a branching process using B-RGPLVMs, we first benchmark
using existing microarray time series data measuring the Arabidopsis thaliana transcriptional response to the necrotrophic
bacteria, Botrytis cinerea (Windram et al. (2012); GEO GSE39597). This dataset consists of two time-series: (i) a control
time series, detailing changes in gene expression in Arabidopsis over a 48-hour period at two-hour intervals; and (ii) a time-
matched infection series, in which Arabidopsis has been inoculated with B. cinerea. The infection time series has previously
been used to benchmark GPLVMs for pseudo-time ordering (Reid and Wernisch 2016). As outlined by Reid and Wernisch
(2016), we first grouped the individual measurements into four groups containing six consecutive time points, artificially
reducing the temporal resolution of each time series dataset from 24 time points to 4. We then attempted to recapture the
correct ordering of cells using an increasing number of randomly selected genes within the B-RGPLVM. Here we selected
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10, 20, 40, and 80 genes at random from the set of 150 previously used by Reid and Wernisch (2016). By doing so, we
aimed to identify how the accuracy of the model changed with respect to increased number of gene observations, and thus
empirically identify the number of genes required for accurate pseudotime ordering. We performed 5 different randomly
initialised runs, with 10,000 samples in the MCMC chain, discarding the first 5,000 steps for burn-in. Run time was in the
region of 10 hours, although this could be decreased using MATALBs parallel processing toolbox. Note that for each
independently initialised run, a separate random selection of genes was chosen to gauge variability in the inferred ordering
with respect to different genes.

Since the time series were generated using bulk microarrays, with measurements based on populations of cells, we expected
a smoothly varying process, and thus for the covariance function we used a two-component branching covariance function
composed of squared-exponential covariance functions.

K(tt',zz') = kmock tt)+ Cptb,s (KOf ktreatment (t, t,))6z,26z’,2 + .86t,t’6z,z’ >

where Kmock (t, ') = SEemock t,t) = O"r%wckexp ((t - tl)/ZZmockz) and Ktreatment(t, t") = SEGtreatmem t,t) =
02 eatment€XP ((t = t")/2lireqtment ) - The hyperparameters in the model therefore corresponded to the length-scale and
process variance of the base process (the control data), the length-scale and process variance of the perturbed process (the
infected data), and the change point time (branch time) and branch rate for the change-point kernel. Hyperparameters were
initially fitted using maximum likelihood estimates based on the low-resolution capture times, 8 < argy max L(9|tp =
t. ,y). Length-scale, process-variance, and noise hyperparameters were then fixed for the remainder of the inference. For
the change-point time hyperparameter, t,, we assumed a univariate smoothed box prior distribution with linear decay in
the log domain, P(tyla,b) = a(n(t, — a))(1 — a(n(t, — b))), where o(z) = 1/(1 + exp (—z) ), and a = 0, b = 33,
andn = 33.

In Supplementary Figure 1, we plot the inferred pseudotime ordering for control and infection datasets versus the true
ordering of data as the number of genes used within the GPLVM increased, with N € (10,20,40,80). We note that, in
general, the accuracy of the models appears to increase as the number of genes increases. For the case N = 40, 4 out of 5
replicates were nearly perfectly ordered for both the infected and control time series, with a mean correlation of >0.97 and
>0.98 respectively over the five runs (for N=40). No obvious improvement was seen when increasing the number of marker
genes to 80 (Supplementary Figure 1(c)). Consequently, when pseudo-temporally ordering data, we used >40 genes.

For comparison purposes, we also performed pseudotime using the full list of 150 marker genes previously used by Reid
and Wernisch (2016) as taken from the main text of Windram et al. (2012). Here we used two approaches:

e Monocle2 (Qiu et al. 2017). We first ran Moncle2 using the combined control and treated datasets. Subsequently
we ran it on the control and treated datasets separately. The later analysis showed higher correlation between
inferred pseudotime and measurement time and are the results reported here.

e TSCAN (Ji and Ji 2016). We used the online TSCAN app (https://zhiji.shinyapps.io/TSCAN) on the control and
treated datasets separately. As the data was already log normalised we applied no normalisation. We used PCA
for dimensionality reduction, with number of components set using the ‘Automatically select optimal dimension
for PCA’ option. Finally the number of clusters was selected with the ‘Use optimal cluster number’ option, and
pseudotimes exported as csv files.

In supplementary Figure 2 we plot the measurement time versus inferred pseudotime for Moncle2 and TSCAN respectively
for the control and infected datasets. For TSCAN we saw Pearson correlation of 0.74 and 0.81 respectively in the control
and infected datasets, whilst for Monocle2 we found a correlation of 0.85 and 0.83 respectively. For the BRGPLVM we
found a mean correlation of 0.97 and 0.99 respectively over five runs (for N=40).
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Supplementary Figure 1: The pseudotemporal order (y-axis) is plotted against the true order (x-axis) for Arabidopsis thaliana transcriptional data for
the control time-series (a) and Botrytis cinerea infected time series (b). (¢) The mean correlation (over 5 random initialisations) between time and
pseudotime as the number of marker genes increases.
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Supplementary Figure 2: The pseudotemporal order (y-axis) is plotted against the true time (x-axis) for Arabidopsis thaliana transcriptional data using
Monocle2 (Top) and TSCAN (Bottom) respectively.

2 PSEUDOTEMPORAL ORDERING OVER DEVELOPMENTAL TRAJECTORIES

Single cells from pre-implantation embryos, PGCs, somatic cells and ESCs (Guo et al. 2015; Yan et al. 2013) were initially
pseudotemporally ordered over a two-component branching process using 44 marker genes. For each of the 44 genes, the
trajectory for specification of PGCs was chosen to represent the base process, due to this class having the most data points,
with developmental trajectories for soma representing the branch process. Pre-blastocyst stage cells were randomly
assigned to either branch with equal probability, whilst branch labels for blastocyst stage cells and ESCs were inferred
within the algorithm. We performed five randomly initialised runs, using 30,000 steps in the MCMC chain, in some cases
taking >48 hours using a single CPU, although key bottlenecks are embarrassingly parallel, and runtime could be reduced
dramatically using the MATLAB parallel computing toolbox. The order of cells at step 30,000 appeared to show good
overall correlation across these five runs, with mean correlation coefficient, (R) = 0.9768 + 0.003.

For comparison purposes we also pseudotemporally ordered cells using a variety of other pseudotime methods, including
GrandPrix (Ahmed, Rattray, and Boukouvalas 2018), Monocle2 (Qiu et al. 2017), SLICER (Welch, Hartemink, and Prins
2016), and SCUBA (Marco et al. 2014), TSCAN (Ji and Ji 2016), Wishbone (Setty et al. 2016).

e GrandPrix (Ahmed, Rattray, and Boukouvalas 2018). We ran GrandPrix using data from the soma and PGC
lineages, capture times were first scaled lie in the interval [0, 1]. We used two latent dimensions, with cells
assigned Gaussian priors based on capture time along the first latent dimension and standard deviation of 0.05.
Ordering was chosen based on the position along latent dimension 1.

e  Moncole2 (Qiu et al. 2017). Here we ran Monocle2 several times. Initially we included all in vivo cells and
attempted to capture the bifurcations between soma and PGCs. Within the algorithm, we used SOX17 and WT1
as marker genes for terminal fates of PGC and soma, respectively. In the second instance, we separated out the
data, first combining pre-implantation data with PGCs, to infer the PGC trajectory, and then combining pre-
implantation with soma. The greatest correlation between developmental stage and pseudotime was found for the
second run i.e., running on the two branches separately.

e SCUBA and SLICER algorithms were run using default settings.

e TSCAN (Ji and Ji 2016). To generate pseudotimes we ran TSCAN using the online app. PCA was used for
dimensionality reduction, and clusters were selected using the optimal cluster number option. Finally, we manually
tuned the ordering of clusters and selected the combination that gave the greatest correlation between
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developmental stage and pseudotime.

e  Wishbone was run using the accompanying GUI, using default settings. Due to numerical issues, we ran with a
reduced number of genes compared to that used for Monocle2, TSCAN, SCUBA and SLICER.

Scripts for non-web-based pseudotime methods are available from the GitHub repository:
https://github.com/cap76/PGCPseudotime

We evaluated the accuracy of the various approaches by comparing the correlation between the inferred pseudotime order
and developmental stage for soma and PGCs separately, and by evaluating a branch-discrepancy metric. Results
summarised in Supplementary Figure 1 and Supplementary Table 2. All methods appeared able to broadly separate out
the different cells types e.g., pre-implantation, PGCs and soma, but did not necessarily place cells along continuous or
consistent trajectories. GPLVM-based approaches offered the best overall performance in terms of branch alignment,
followed by Monocle2 and TSCAN.

We also performed GPLVM using an explicit three-branch process. To test that the algorithm was ordering cells in a
meaningful way, we checked whether the posterior distribution of pseudotime had diverged from the prior distribution
using a Chi-squared test under the null hypothesis that pseudotime was normally distributed with variance defined by the
prior. Here we rejected the null hypothesis with a highest p value of <1x10* , indicating that the posterior distribution
had diverged from the prior distribution.
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Supplementary Figure 3: Comparison of pseudotime ordering using MONOCLE, TSCAN, Wishbone, SCUBA and SLICER versus B-RGPLVM. Here
we indicate the inferred pseudotime (y-axis) versus the true developmental stage. All approaches appear to be able to generally separate out pre-
implantation cells from either PGCs or soma, with B-RGPLVMs performing best. Together, these observations highlight the increased accuracy afforded
when including prior information about capture time in B-RGPLVMs and a more realistic generative model in terms of an underlying branching process.
Note that the distribution of cells from pre-implantation embryos will be identical when comparing within a method.

Supplementary Table 1. Number of cells for each cell type

Source

Stage N
ESCs 34
Pre-implantation 90
PGCs 242
Soma 86

Yan et al. (2013)
Yan et al. (2013)
Guo et al. (2015)
Guo et al. (2015)

Supplementary Table 2. Benchmarking of pseudotime algorithms on the PGC data

Stage R (PGC) R (soma) Ay
GPLVM (2-branch) 0.96 0.95 0.004
GPLVM (3-branch) 0.98 0.97 0.002
GPLVM (3-branch) 0.97 0.96 0.006
GPLVM (3-branch) 0.99 0.99 0.003

GrandPrix 0.84 0.87 0.02
MONOCLE2 0.84 0.87 0.35
SCUBA 0.85 0.85 1.1
SLICER -0.50 -0.80 1.1
TSCAN 0.85 0.92 0.44
Wishbone 0.74 0.80 0.48

3 COMPLEX BRANCHING DURING EARLY EMBRYO DEVELOPMENT IN HUMANS

Once a point estimate for the pseudotemporal order of cells had been established, we looked for more complex branch-
recombinant structures on a genome scale, by fixing pseudo-times according to the order at step 30,000 in our earlier
pseudotime analysis. As the pseudotimes are fixed, this is simply a case of fitting GP model with different branch structures
(B-RGP regression). Here we considered the dynamics of PGCs, somatic cells, and ESCs. Each of the three groups was
randomly assigned pre-implantation cells with equal probability, except for the ESCs, which partially overlapped with
blastocyst stage cells; here we instead randomly assigned pre-blastocyst cells. This assignment reflects our expectation that
divergence between PGCs and soma occurs post blastocyst. To capture the dynamics necessary to drive ESCs towards
week 4 PGC fate, we also assigned half of the male hPGCs to the ESCs class. For model 1, we assumed:

frec(t) ~ ng(c, kpgc(t, f')):
fsoma(t) ~ GP (fPGC ®), CPy, (Ko: kpgc(t, t'))).

fesc(t) ~ GP (fPGC @®), CPtT(CPtb (Ko' kesc(t, t')), Ko))'

representing genes in which somatic cells diverged from PGCs, and where ESCs diverged from the in vivo dynamics of
PGC specification before recombining at around week 4. For model 2, we assumed:

frec(@®), fesc(t) ~ 9?(5' kpgc(t, t'));
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froma(®) ~ 6P (focc (), CPy, (Ko, ksoma (£ £1) ).

This model represents genes that showed divergence between PGCs and soma, with ESCs identically distributed to PGCs.
Finally, for model 3 we assumed:

frec (), fsoma (), fesc(t) ~ GP (C‘ kpec(t, t')),

representing genes that showed no divergence between PGCs, soma or ESCs. Because these datasets represent single-cell
measurements that might be intrinsically less smooth than the microarray datasets, we assumed a Matérn covariance
function throughout. As in previous analyses, we optimised hyperparameters to their MAP values and used the BIC to
select the branching structure for each gene. The frequency of the three groups is indicated in Supplementary Figure 9(a),
which shows that most genes were not differentially expressed i.e., non-branching. A histogram of the timing of branching
is indicated in Supplementary Figure 9(b, c), and shows that of the genes that diverge between PGCs and soma, most do
so between blastocyst stage and week 4, as expected.
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Supplementary Figure 4: (a) Frequency of the different groups. (b) Timing of branching between PGC and somatic cells. (¢) Time of recombination
between ESCs and inferred in vitro dynamics.

Following GO analysis on the individual groups using permissive p-values (p<0.1 following multiple hypothesis test
correction), we ordered terms by the pseudo-time at which 50% of their associated genes had branched, as previously done
in Yang et al. (2016). In Figure 16 we indicate a heatmap representation of this ordering, where the x-axis represents the
pseudo-time, the y-axis represents individual GO terms, and the colour indicates the fraction of genes that had branched.
From these heatmaps we can see a continuum of responses. An associated table containing the full list of terms associated
with the y-axis is available in Supplementary Table 4.
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Supplementary Figure 5: Individual GO terms for genes that were up-regulated in PGCs versus soma, according to the timing at which at least 50% of
the genes associated with each term had branched. See also associated Supplementary Table 4.
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Supplementary Figure 6: Pseudotime trajectories for male PGCs for (a) polycomb repressive complex 1 (PRC1) and (b) polycomb repressive
complex 2 (PRC2) reveal highly dynamic changes during development.
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Supplementary Figure 7: The clustering of early-branched genes by the level of RNF2 and H2AK119ub levels in H1 ESCs (over gene bodies +/- 5kb).
Crucially these sites remain accessible during PGC development, as indicated by chromatin accessibility (NOME-seq) in week 11 male hPGCs (Guo et
al. 2017).
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Supplementary Figure 8: Gene browser track for RNF2, H2AK119ub and YY1 at several PGC-related genes, SOX17, TFAP2C, PRDM1, and DPPA3.
The H2AK119ub mark was found at SOX17 and TFAP2C in H1 ESCs, but not at PRDM1 or STELLA. YY1 has been shown to bind SOX17, TFAP2C
and PRDM1, but not STELLA, in HEK293 cells. Crucially, several key putative targets of RNF2 and YY1 were shown to be accessible in week 11 male

hPGCs (Guo et al. 2017)
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Supplementary Figure 9: W15-NANOS3-tdTomato reporter line in in PGC media and following increase dose PRC1 RING1B/BMI1-dependent

ubiquitination inhibitor PRT 4165 (12uM, 25uM, 50uM). (b) FACS quantification in two independent replicates: (middle row) control, 12uM, 25uM,
50pm; (bottom row) control 30uM, 40uM, 50uM.
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Supplementary Figure 10: W15-NANOS3-T2A-tdTomato reporter line in PGC media and following increase dose with small molecule inhibitor
DETA/NONOate. (b) FACS quantification in two independent replicates: (middle row) control, 0.1mM, 0.5mM and 1mM; (bottom row) 0.25mM,
0.5mM, 1mM.

Supplementary Figure 11: W15-NANOS3-tdTomato in PGC media (left) and with EZH2-mediated histone methylation inhibitor DZNep (1uM).
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Supplementary Figure 12: Scheme of the experimental workflow used to test the roles of individual components of the 41 hESC medium to sustain
PGCLC competence. hESCs cultured in 4i medium were transferred to media lacking one of the kinase inhibitors for at least one passage. These cells
were then subjected to standard PGCLC induction with BMP2 and supporting cytokines. PGCLC induction efficiency was assessed by flow cytometry
as percentage of live cells expressing PGC markers AP, CD38 and NANOS3. Changes in PGCLC induction efficiency were thus used as proxy of changes
in competence for PGC fate.

4.1. ANALYSIS OF SOX17 OVEREXPRESSION LINES

We identified differentially expressed genes in hESC lines constitutively over-expressing SOXI7 (Seguin et al. (2008);
GSE10809). Differential expression was evaluated using a Student’s t-test on log2 fluorescence versus parental lines using
a cut-off of p<0.03 and log?2 fold change >2, similar to Seguin et al. (2008).

4.2. GENE SET ENRICHMENT ANALYSIS

Gene set based enrichment analysis was used to identify significantly enriched terms using Enrichr database. Here we
focused on enrichment of GO 2017 and KEGG 2016 terms using permissive p-values (p<0.1 following multiple hypothesis
testing correction). Using Enrichr we also looked for enrichment of Kinase Perturbations from GEO, Single Gene
Perturbations from GEO, and Ligand Perturbations from GEO, using p-value cut-off of p<0.05 (following multiple
hypothesis testing correction).

S EXPERIMENTAL PROCEDURES

5.1 CELL CULTURE AND PGCLC DIFFERENTIATION

hESCs (W15-NANOS3-tdTomato or WIS2-NANOS3-T2A-tdTomato (N3-tdTom, Kobayashi et al. (2017)) were cultured
as in (Irie et al. 2015) on irradiated mouse embryonic fibroblasts (MEFs) (GlobalStem) in 4i medium (Supplementary Table
5) or modifications therefrom (Supplementary Table 6). Media were replaced every day. hESCs were passaged by single-
cell dissociation using 0.25% Trypsin-EDTA (GIBCO). 10 uM ROCK inhibitor (Y-27632, TOCRIS) was added for
24 hours after passaging.

To induce PGCLCs (Irie et al. 2015), hESCs were trypsinized, filtered and plated into ultra-low cell attachment U-bottom
96-well plates (Corning, 7007) at 4,000 cells/well density in 100 ul PGCLC medium (Supplementary Table 7) The plate
was centrifuged at 300g for 3 minutes and placed into a 37°C 5% CO, incubator until embryoid body (EB) collection for
downstream analysis. Reporter fluorescence intensities were monitored daily throughout differentiation using Olympus
IX71 microscope.

Supplementary files 3-7 available as separate spreadsheets.

Supplementary Table 5. Competent (4i) medium composition.

Component Final Concentration Supplier

Knockout DMEM - GIBCO

Knockout serum replacement (KSR) 20% GIBCO
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L-glutamine 2 mM GIBCO
Nonessential amino acids 0.1 mM GIBCO
2-mercaptoethanol 0.1 mM GIBCO
Penicillin-Streptomycin 100 U/ml (Penicillin) GIBCO

0.1 mg/ml (Streptomycin)

Human LIF 20 ng/ml Stem Cell Institute (SCI)
bFGF 8 ng/ml SCI
TGF-p1 1 ng/ml Peprotech
CHIR99021 (CH) 3uM Miltenyi Biotec
PD0325901 (PD) 1 uM Miltenyi Biotec
SB203580 (SB) 5uM TOCRIS bioscience
SP600125 (SP) 5uM TOCRIS bioscience
Supplementary Table 6. Modifications of the 4i medium used in the competence screen.
Component Final Concentration
4i-PD03 4i as in Supp. Table 5 without PD0325901
4i+PD17 4i as in Supp. Table 5 supplemented with indicated concentrations of PD173074 (TOCRIS bioscience)
4i-PD03+PD17 4i-PD as above supplemented with indicated concentrations of PD173074 (TOCRIS bioscience)
4i+LY 4i as in Supp. Table 5 supplemented with 10 uM LY294002 (Sigma)
4i-PD+LY 4i-PD as above supplemented with 10 pM L'Y294002 (Sigma)
4i+IWR 4i as in Supp. Table 5 supplemented with 2.5 pM IWR-1 (Sigma)
4i-CH 4i as in Supp. Table 5 without CHIR99021
4i-CH+IWR 4i as in Supp. Table 5 without CHIR99021 supplemented with 2.5 uM IWR-1 (Sigma)
4i-SB 4i as in Supp. Table 5 without SB203580
4i-SP 4i as in Supp. Table 5 without SP600125
4i-LIF 4i as in Supp. Table 5 without human LIF
4i+JAKi 4i as in Supp. Table 5 supplemented with 1pM CAS457081-03-7
Supplementary Table 7. PGCLC induction medium composition
Component Final Concentration Supplier
Glasgow’s MEM (GMEM) - GIBCO
KSR 15% GIBCO
L-glutamine 2 mM GIBCO
Nonessential amino acids 0.1 mM GIBCO
2-mercaptoethanol 0.1 mM GIBCO
Penicillin-Streptomycin 100 U/ml (Penicillin) GIBCO

0.1 mg/ml (Streptomycin)
Sodium pyruvate I mM Sigma

BMP2 500 ng/ml SCI
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Human LIF 1 pg/ml SCI

SCF 100 ng/ml R&D Systems

EGF 50 ng/ml R&D Systems
ROCK inhibitor (Y-27632) 10 uM TOCRIS bioscience
5.2. Flow Cytometry

D4 or D5 EBs were washed in PBS and dissociated with 0.25% Trypsin-EDTA for 15 min at 37°C. Cells were resuspended
in FACS buffer (3% FBS in PBS) and incubated with antibodies specified in Supplementary Table 8. After washing with
FACS buffer, the cells were recorded on BD LSR Fortessa. Data were analysed using FlowJo (Tree Star).

Supplementary Table 8. Antibodies used for flow cytometry

Name Dilution Manufacturer
Alkaline Phosphatase PerCP-Cy5.5 #561508 2.5 pl/assay BD Pharmingen
Alkaline Phosphatase AF647 #561500 2.5 w/assay BD Pharmingen
CD38 PerCP-Cy5.5 #303522 2.5 wl/assay BioLegend
CD38 AF647 #303514 2.5 wl/assay BioLegend
Alkaline Phosphatase PerCP-Cy5.5 #561508 2.5 pl/assay BD Pharmingen

5.3. Real-Time Quantitative RT-PCR

Total RNA was extracted from unsorted hESCs using RNeasy Mini Kit (QIAGEN). cDNA was synthesized using
QuantiTect Reverse Transcription Kit (QIAGEN). qPCR was performed on a QuantStudio 12K Flex Real-Time PCR
machine (Applied Biosystems) using SYBR Green JumpStart Taq ReadyMix (Sigma) and human-specific primers
(Supplementary Table 9). The AACt method was used for quantification of gene expression. Three technical replicates
were used for each biological replicate.

5.4. Dominant-negative ERK expression

For inducible expression of dominant-negative ERK1 (DN-ERK), a cDNA from pFLAG-CMV-hErk1(K71R) (Addgene
plasmid #49329) encoding human ERK1 with K71R mutation (Robbins et al. 1993) was cloned (into a doxycycline (dox)-
inducible PB-TRE-3G vector (Kobayashi et al. 2017) to yield pPB-TRE-3G-DN-ERK-IRES-EGFP. The plasmid was
generated using In-Fusion cloning (Clontech) according to manufacturer’s recommendations. Primers used for cloning are
specified in Table 6. N3tdTom hESCs were co-lipofected with 2 pg PB-TRE-3G-DN-ERK-IRES-EGFP, 2.5 pug PBase and
0.5 ug pPBTET3G-Neo (Kobayashi et al. 2017). Lipofection was performed using OptiMEM (GIBCO) and Lipofectamin
2000 (Invitrogen) according to manufacturer’s recommendations.

Supplementary Table 9. Oligos used in the study.

Name Used for 5'-3' sequence

SOX2 h_F qPCR GGGAAATGGGAGGGGTGCAAAAGAGG
SOX2 h_R qPCR TTGCGTGAGTGTGGATGGGATTGGTG
OCT4_h-m_F qPCR GCTGGAGCAAAACCCGGAGG
OCT4_h-m_R qPCR TCGGCCTGTGTATATCCCAGGGTG
CDX2 h_F qPCR TCACCATCCGGAGGAAAGCC

CDX2_h_R qPCR CTCTCCTTTGCTCTGCGGTT
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HANDI1_h_F qPCR CGTGAGAGCAAGCGGAAAAG

HANDI1_h_R qPCR AATCCTCTTCTCGACTGGGC

In-Fusion pPBTRE3G-
hERKI1_F Cloning cectegtaaagtcgaCGCCGCCACCatgGCGGCGGCGGCGGCTCAG

In-Fusion pPBTRE3G-

EGFP_R Cloning gggcceeggtgtcgaCTTACTTGTACAGCTCGTCCATGCCG
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Supplementary Figure 13. Withdrawal of p38 inhibitor from 4i results in hESC differentiation. hESCs were cultured
in respective media for 4 passages and collected for qPCR analysis. Data are shown as mean (of three technical replicates
each) + SD of 2 independent experiments. * p < 0.05, ns: not significant (p > 0.05), Holm-Sidak t-test.
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Supplementary Figure 14. Withdrawal of MEK inhibitor from 4i results in changes to hESC colony morphology
and induces expression of endoderm-related markers. (a) Representative pictures of hESCs cultured in complete 4i or
“4i-PD03” media. (b) qPCR showing pluripotency and endoderm marker genes expression in bulk hESCs cultured in 4i
and “4i-PD03” media. Data are shown as mean (of three technical replicates each) + SD of 5 independent experiments. *
p <0.05, ** p<0.01, ns: not significant (p > 0.05), Holm-Sidak t-test.
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Supplementary Figure 15. Inhibition of PI3K during differentiation does not abrogate PGCLC specification. Data
are shown as mean + SD of 2 independent experiments. * p < 0.05, Holm-Sidak t-test.
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