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Abstract 
During embryonic development, cells undertake a series of fate decisions to form a complete organism comprised of various 
cell types, epitomising a branching process. A striking example of branching occurs in humans around the time of 
implantation, when primordial germ cells (PGCs), precursors of sperm and eggs, and somatic lineages are specified. Due 
to inaccessibility of human embryos at this stage of development, understanding the mechanisms of PGC specification 
remains difficult. The integrative modelling of single cell transcriptomics data from embryos and appropriate in vitro 
models should prove to be a useful resource for investigating this system, provided that the cells can be suitably ordered 
over a developmental axis. Unfortunately, most methods for inferring cell ordering were not designed with structured (time 
series) data in mind. Although some probabilistic approaches address these limitations by incorporating prior information 
about the developmental stage (capture time) of the cell, they do not allow the ordering of cells over processes with more 
than one terminal cell fate. To investigate the mechanisms of PGC specification, we develop a probabilistic pseudotime 
approach, branch-recombinant Gaussian process latent variable models (B-RGPLVMs), that use an explicit model of 
transcriptional branching in individual marker genes, allowing the ordering of cells over developmental trajectories with 
arbitrary numbers of branches. We use first demonstrate the advantage of our approach over existing pseudotime algorithms 
and subsequently use it to investigate early human development, as primordial germ cells (PGCs) and somatic cells diverge. 
We identify known master regulators of human PGCs, and predict roles for a variety of signalling pathways, transcription 
factors, and epigenetic modifiers. By concentrating on the earliest branched signalling events, we identified an antagonistic 
role for FGF receptor (FGFR) signalling pathway in the acquisition of competence for human PGC fate, and identify 
putative roles for PRC1 and PRC2 in PGC specification. We experimentally validate our predictions using pharmacological 
blocking of FGFR or its downstream effectors (MEK, PI3K and JAK), and demonstrate enhanced competency for PGC 
fate in vitro, whilst small molecule inhibition of the enzymatic component of PRC1/PRC2 reveals reduced capacity of cells 
to form PGCs in vitro. Thus, B-RGPLVMs represent a powerful and flexible data-driven approach for dissecting the 
temporal dynamics of cell fate decisions, providing unique insights into the mechanisms of early embryogenesis. Scripts 
relating to this analysis are available from: https://github.com/cap76/PGCPseudotime 

1   Introduction  
During embryogenesis, individual cells undertake a series of cell fate 
decision to form a complete embryo comprised of myriad cell types. Each 
cell fate decision can be thought of in terms of a bifurcation (Poincaré 
1885), with the expression levels of key marker genes diverging between 
the two cell fates, epitomising a branching process. Reciprocal behavior is 
encountered in recombination processes, where two or more statistical 
processes converge, such as when two or more intermediate cell types 
share a common terminal fate. A key challenge is to infer the mechanisms 
and inductive signals of these decision-making processes by identifying 
the ordering of bifurcations of individual genes using single-cell RNA-
sequencing. 

 
A striking example of transcriptional branching occurs in early human 
development, when the inner cell mass (ICM) of the blastocyst segregates 
into hypoblast and epiblast, with the latter subsequently differentiating 
into ectoderm, mesoderm, and endoderm during the process of 
gastrulation (Irie, Tang, and Azim Surani 2014). At around this time, circa 
weeks 2-3 in humans, primordial germ cells (PGC), the embryonic 
precursors of gametes, are also specified (Irie et al. 2015; Kobayashi et al. 
2017). Later, at weeks 5-6, specified PGCs undergo comprehensive 
epigenetic reprogramming that includes almost complete erasure of DNA 
methylation marks throughout the genome, save for a few escapee regions 
(Guo et al. 2015; Tang et al. 2015; Gkountela et al. 2015). During this 
period, PGCs also proliferate and migrate towards the genital ridges 
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where, after colonising the gonads, they begin sexually dimorphic 
programs of gametogenesis. As precursors of the germline, PGCs are 
ultimately responsible for passing on all genetic and epigenetic 
information to the next generation, and any aberrant development has the 
potential to lead to infertility or cancers of the germ line. 
 
Despite recent advances in understanding of PGC development (Irie et al. 
2015; Tang et al. 2015), the mechanisms of human PGC development 
remain poorly understood. Current understanding, based on studies in 
mouse and pig embryos, suggests that two signalling pathways cooperate 
to allow PGC fate: WNT signalling renders epiblast cells competent to 
respond to BMP2/4 resulting in the specification of a founder PGC 
population in the posterior epiblast (Ohinata et al. 2009; Aramaki et al. 
2013; Kobayashi et al. 2017). While mouse PGC development has been 
reasonably well characterised, the specification and development of 
human PGCs remains only partially understood, primarily due to 
inaccessibility of early human embryos. Crucially, recent studies have 
shown that SOX17 and PRDM1 are key regulators of PGC fate in humans 
(Irie et al. 2015; Tang et al. 2015), making their specification distinct from 
that in mice, which involves the combined action of Prdm1, Prdm14, and 
Tfap2c (Magnusdottir et al. 2013; Nakaki et al. 2013). Due to these 
differences, along with notable divergence in embryo morphology (Irie, 
Tang, and Azim Surani 2014), in vitro derivation of human PGC-like cells 
(PGCLCs) from human pluripotent stem cells has emerged as a model to 
examine the earliest mechanisms regulating hPGC development (Sasaki 
et al. 2015; Irie et al. 2015). Interestingly, human ESCs in conventional 
cultures have low competence to form PGCLCs, but hESCs grown in a 
specially formulated “competent” medium gain competence for PGC fate 
and respond to BMP signalling, giving rise to PGCLCs that presumably 
resemble pre-migratory in vivo PGCs (Irie et al. 2015).  
 
The integrative analysis of single cell RNA-seq data from pre-
implantation embryos, specified PGCs, and appropriate in vitro models, 
should provide unique opportunities to dissect the dynamics of early PGC 
cell fate decisions. Such analysis requires that cells be correctly ordered 
along a continuous developmental trajectory. However, most approaches 
for pseudotemporal ordering of scRNA-seq datasets rely on manifold 
learning: that is, a preliminary dimensionality reduction, with cells 
ordered over the reduced dimensional space, typically by utilising curve 
fitting or graph-theoretic approaches (Trapnell et al. 2014; Bendall et al. 
2014; Marco et al. 2014; Ji and Ji 2016; Setty et al. 2016). Such approaches 
do not generally account for uncertainty in the ordering, nor do they 
usually provide an interpretable relationship between the inferred 
pseudotime and chronological time. The latter limitation is compounded 
when inferring pseudotimes for datasets with multiple branches: if one 
branch has fewer observations, or else a period of quiescence, the branch 
will often be artificially truncated compared to the others. Such truncation 
can be undesirable when investigating complex developmental programs, 
where signalling from adjacent tissues influence cell fate decisions, 
making it necessary to place branches on consistent timeframes. Finally, 
in the past, scRNA-seq datasets tended to be of low temporal resolution, 
albeit with observations in many cells, which reflect a continuum of 
developmental states (Yan et al. 2013; Guo et al. 2015; Petropoulos et al. 
2016; Borensztein et al. 2017; Huang et al. 2017). However, due to 

decreased costs, scRNA-seq datasets are now routinely generated over 
finely resolved time series, including the early stages of embryogenesis 
(Yan et al. 2013; Guo et al. 2015; Petropoulos et al. 2016; Borensztein et 
al. 2017; Huang et al. 2017; Ibarra-Soria et al. 2018; Han et al. 2018) and 
during PGC development (Guo et al. 2015; Li et al. 2017). While 
individual populations of cells associated with the different stages still 
reflect a continuum of states, with some degree of overlap between stages, 
the existence of a well-defined capture time provides highly informative 
prior information about the ordering of cells, which most approaches are 
incapable of utilising. 
 
To address these various limitations, and investigate the mechanisms of 
PGC specification, we develop a probabilistic approach to 
pseudotemporal ordering. Our approach incorporates prior information 
about developmental stage of cells (capture time), and uses an explicit 
model of branching at the level of marker genes, providing an interpretable 
model of cell fate decision making designed specifically for time-series 
scRNA-seq data. Using our model, we combine data from preimplantation 
embryos, PGCs, somatic tissues, and human embryonic stem cells 
(hESCs), to dissected the transcriptional program and signalling pathways 
of human PGC competence, specification, and development. Our analysis 
highlights the importance of known PGC genes, and suggested several 
novel regulators. Analysis suggested the importance of polycomb 
repressive complexes 1 and 2 (PRC1 and PRC2) in PGC specification, and 
small-molecule inhibition of PRC1/2 enzymatic activity was shown to 
reduce PGC specification using human in vitro models of PGC 
specification. Crucially, identification of the earliest branching pathways 
highlighted putative roles for FGF receptor (FGFR) signalling in the 
acquisition of competence for human PGC fate, which was experimentally 
validated in vitro. Indeed, pharmacological blocking of FGFR or its 
downstream effectors (MEK, PI3K and JAK) enhanced the competency 
for PGC fate in vitro. Thus, our approach can inform genetic and 
signalling perturbations for cell fate decisions. 

2   Results 
Early human PGC development remains underexplored, since the use of 
human embryos around the time of specification is limited by ethical and 
practical considerations. This has necessitated the development of in vitro 
models of PGC development to bridge the gap in understanding at key 
developmental stages (Irie, Sybirna, and Surani 2018). Statistical 
approaches are required to correctly leverage multiple in vivo and in vitro 
datasets to identify priority targets for more focused experiments. 
 
To separate out the developmental trajectories of PGCs from those of 
gonadal somatic cells, we ordered single cells along a two-component 
branching process, with informative priors placed over the pseudotimes 
centered on the cells’ developmental stage (Reid and Wernisch 2016) 
(Figure 1; Supplementary Materials Section 1). We used scRNA-seq data 
from hPGCs and age-matched neighbouring somatic tissues from weeks 4 
through to 19 (Guo et al. (2015); GEO GSE63818), as well as pre-
implantation embryos (oocytes, zygotes, two-cell, four-cell, morula and 
blastocyst-stage cells), and conventional hESCs at passages 0 and 10 (Yan 
et al. (2013); GEO GSE36552). A summary of the various cell types is 
included in Supplementary Table 1.  
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Based on preliminary benchmarking experiments, ordering of cells was 
based on the expression levels of 44 marker genes identified from Irie et 
al. (2015), which included PGC, pluripotency, mesoderm, and endoderm 
markers. To evaluate the accuracy of our approach we used unlabelled 
data i.e., assuming the branch-labels and capture-times for hESCs and 
blastocyst cells were unknown variables to be assigned during inference. 
Our approach correctly placed the unlabelled late-blastocyst cells between 
morula-stage and week 4 (Wk4) cells (Figure 2(a)). Furthermore, whilst 
hESCs are derived from the ICM of blastocysts, our approach placed them 
between day 6 blastocysts and Wk4 cells (PGCs and soma), albeit with 
some degree of overlap. This suggests that hESCs cultured under these 
conditions are developmentally more advanced than cells of the ICM, 
consistent with conventional hESCs sharing characteristics with the post-
implantation epiblast (Tang et al. (2016); Figure 2(a), inset). 
 
To further evaluate the performance of our approach, we calculated: (i) 
the Pearson’ correlation coefficient between the inferred pseudotime, and 
the developmental stage; and (ii) a branch discrepancy metric between 
somatic and PGC lineages: 
 

	
  ∆#	
  = 𝜇 𝑡𝑖 𝑃𝐺𝐶 − 𝜇 𝑡𝑖 𝑠𝑜𝑚𝑎
2

𝑇

𝑖=1

 

where 𝜇 𝑡3 𝑃𝐺𝐶  is the mean inferred pseudotime of PGC cells at 
developmental stage 𝑖. For comparison, we ordered cells using established 
methods including Monocle2 (Qiu et al. 2017), TSCAN (Ji and Ji 2016), 
Wishbone (Setty et al. 2016), SCUBA (Marco et al. 2014), SLICER 
(Welch, Hartemink, and Prins 2016) and GrandPrix (Ahmed, Rattray, and 
Boukouvalas 2018). Results are summarised in Supplementary Table 
2/Supplementary Figure 3. 
 
Overall, our approach offered the best performance, with Pearson’ 
correlation of 0.96 for the PGC branch and 0.95 for the soma branch, with 
low branch-discrepancy metric (∆#= 0.004) indicating good alignment 
between the two lineages. Monocle2, TSCAN, and GrandPrix all 
performed well at ordering cells albeit with slightly lower correlation 
coefficient, with GrandPrix also doing a good job of aligning the two 
branches (∆#= 0.02). Whilst other approaches showed a general ability 
to separate out pre-implantation cells from PGC or soma, they did not 
necessarily place cells along a continuous trajectory, and did not appear 
able to align different branches.  
 
To evaluate the effect of more complex branching structures, we also 
ordered cells along a 3-component branching process, explicitly 
modelling where ESCs and soma diverged from the PGC trajectory. Here 
we additionally investigated the effect of using increased numbers of 
genes in the algorithm: using 44 marker genes; 87 marker genes; and the 
top 101 most varied genes as an unbiased alternative to our marker-based 
strategy. In all cases the B-RGPLVM ordered cells along a continuous 
developmental trajectory, with high correlation between pseudotime and 
capture time, and low branch-discrepancy metric. Performance did not 
appear to increase as the number of observed genes was increased, 
suggesting that cells could be accurately ordered with around 40 marker 
genes, in agreement with preliminary analysis using other datasets.  
 
3.2.2. Inferring branching structure on a genome scale 

The preliminary ordering of cells suggested that key PGC makers SOX17 
and PRDM1 branched earlier than late markers such as DAZL. Although 
the data was not resolved enough to distinguish the order of branching 
between SOX17 and PRDM1, the posterior distribution suggested that 
SOX17 branched prior to late PGC markers such as DAZL with >90% 
certainty. 
 
To identify novel regulation on a genome scale, we subsequently used 
independent B-RGP regression (Penfold et al. 2018) to infer branching on 
a gene-by-gene basis, conditional on the estimated pseudotime. Whilst this 
allowed inference of branching for all expressed genes, this increased 
scalability comes at a loss of information about posterior distribution of 
pseudotimes, and does not quantify the uncertainty in ordering. For each 
gene, we explicitly assumed one of three models: (i) somatic cells 
branched from the base process (the hPGCs trajectory), with hESCs and 
hPGCs following an identical process (see Figure 2(d, e, f)); (ii) both soma 
cells and hESCs branched from the main process, with hESCs later 
recombining towards Wk4 PGCs (Figure 2(g)); and (iii) all processes were 

Figure 1: (a) Here we performed an integrative analysis of human cells from preimplantation 
embryos, hESCs, hPGCs and age matched soma. Due to the structured nature of the data, we 
decided to take a Bayesian approach to the analysis allowing us to take advantage of useful prior 
information, such as capture time. (b) Initially data is ordered by capture time over a range of 
marker genes. Using an iterative (Monte Carlo) approach, we permute cells along the pseudotime 
by perturbing a subset of cells along the x-axis (ii) or by allowing cells to swap branch assignments 
(iii). Following each perturbation, the marginal likelihood or “evidence” can be computed, and 
used to determine whether to accept or reject the proposed move. (c) After many iterations, cells 
are ordered along a branching process that reflects the developmental progression of the system. 
In this case, we can identify a sequential branching of marker genes 1 and 2, with the first branch 
(iv, vi), and a subsequent branching and recombination (v, vii). By comparing the pseudotime of 
these branching events between genes (compare iv with vi, and v with vii) we can identify the 
earliest events in cell fate decisions and the developmental hierarchy. 
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identically distributed (no branching). Similarly to our approach in 
(Penfold et al. 2018) we used the Bayesian information criterion  (BIC) to 
determine the branching structure for each gene (Supplementary Section 
3). The number of genes assigned to each group is indicated in 
Supplementary Figure 4(a), and shows that most genes were non-
branching i.e., not differentially expressed. 
 
 3.1 In vivo dynamics of human PGC development. 

In total, 3,930 genes were identified as being up-regulated in hPGCs 
versus soma, with 1,355 down-regulated. It is likely that these genes are 
involved in a broad range of biological processes, including the 
acquisition of competence for PGC fate, PGC specification and 
maintenance, as well as epigenetic reprogramming, migration, and 
gametogenesis. We therefore performed a preliminary GO and KEGG 
pathway analysis using a permissive p-value (p<0.1, Bonferroni corrected 
hypergeometric test), to identify biological processes that branched early 
in development (Supplementary File 1). Our analysis revealed several 
early terms related to BMP and WNT signalling, with subsequent terms 
associated with epigenetic reprogramming, proliferation and cell 
migration, and later terms relating to testosterone signalling, meiosis, and 
gametogenesis which, together, reflect the expected progression of hPGC 
development (Lawson et al. 1999; Ohinata et al. 2009; De Felici 2013; 
Leitch, Tang, and Surani 2013; Kobayashi et al. 2017). 
 
A histogram of the time of branching between PGCs and soma (Figure 
2(c)) shows a multi-modal distribution, with most responses occurring 
after blastocyst-stage, but prior to week 4, consistent with the expected 
timing for PGC specification at around weeks 2-3 of development (see 
e.g., (De Felici 2013; Tang et al. 2016)). Importantly, even when using a 
point estimate for pseudotime, the two key regulators of human PGC fate, 
SOX17 and PRDM1 (Irie et al. 2015), were still shown to branch early, 
prior to late PGC markers such as DAZL (Figure 2(d, e, f)). In addition to 
regulating human, but not mouse, PGC fate, SOX17 is a known endoderm 
TF in mice and humans (Kanai-Azuma et al. 2002; Seguin et al. 2008). It 
is therefore possible that a subset of its target genes are shared between 
human endoderm and PGC lineages. To test this, we looked at genes that 
were differentially expressed in hESCs following overexpression of 
SOX17 compared to parental hESC lines (Seguin et al. (2008); 
GSE10809). Genes that branched between PGCs and soma were 
statistically enriched for genes that were differentially expressed in 
response to SOX17 overexpression (p<1x10-35, hypergeometric test using 
Enrichr). Reanalysis of this microarray data showed that common genes 
included the PGC regulator PRDM1, known to act downstream of SOX17 
(Irie et al. 2015). Crucially, the overlapping targets of SOX17 were, 
themselves, shown to branch early compared to the dataset as a whole 
(p<1x10-7, Kolmogorov–Smirnov test), and earlier than testosterone 
signalling, involved in later male germ cell development (Figure 2(h)).  
 
To reveal additional regulatory mechanisms that could be contributing to 
PGC specification and maintenance, we used Enrichr (Chen et al. 2013; 
Kuleshov et al. 2016) to find transcriptional signatures present within our 
set of branched genes, and used a Kolmogorov-Smirnov (KS) test to 
identify those signatures that branched significantly earlier than average 

branching times in the dataset. That is, we looked for early and statistically 
significant overlaps between genes that branched (PGCs versus soma) and 
those that were up-regulated or down-regulated in the literature in a variety 
of species and cell types following knockout or overexpression studies, 
upon treatment with hormones, growth factors, and cytokines, or were 
overrepresented in Encode ChIP datasets or the ChEA database. Although 
none of the Enrichr perturbations were performed directly in PGCs, and 
results might therefore be contextually very different to our system, the 

Figure 2: (a) Inferred pseudotemporal ordering of individual cells over a two-component 
branching component correctly identifies the developmental ordering of blastocyst stage cells and 
ESCs, suggesting hESCs are developmentally more advanced than blastocyst stage. (b) ESCs at 
passage 10 appear to be developmentally more advanced than at earlier passages, having 
statistically later pseudotimes. (c) Histogram of branching time (soma versus PGCs) indicates a 
multimodal response. (d, e, f) Key PGC regulators SOX17 and PRDM1 branch early in the 
pseudotime series, prior to late PGC markers such as DAZL. (g) SOX2, a pluripotency and neuronal 
cell fate gene, branches between ESCs and the inferred in vivo dynamics. (h) Identified targets of 
SOX17 and BMP4 from perturbation studies in ESCs show early branching between PGCs and 
soma. (i) TNF response appears to be concomitant with genes associated with epigenetic 
reprogramming and the migratory phase of PGC development. 
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presence of an early and statistically robust transcriptional signature is 
worthy of further investigation. Furthermore, we envisage that in this way 
it may be possible to identify signalling molecules secreted from 
surrounding tissues and therefore not branching in the examined 
transcriptome itself. 
 
In agreement with the early branching of genes with BMP-related 
GO/KEGG terms around the time of PGC specification, comparison with 
the Enrichr database showed a strong overlap of branched genes with those 
differentially expressed in hESCs following treatment with BMP4 
(p<5x10-14, Enrichr SG). The identified targets of BMP4 branched early 
in the pseudotime series compared to branch times overall (p<5x10-4, KS-
test; Figure 2(h)), reflecting the known role of BMP4 as a PGC-inductive 
signal (Lawson et al. 1999). We further identified the transcriptional 
signatures of several putative BMP and WNT effector genes, including 
Parathyroid Hormone Like Hormone (PTHLH, adjusted p<5e-5, Enrichr 
SG), which increases mesenchymal cells’ responsiveness to BMP4 (Hens 
et al. 2009), and has been implicated in the emergence of germ cell cancers 
(Sandberg, Meloni, and Suijkerbuijk 1996; Mostert et al. 1998). Other 
signatures included X-linked inhibitor of apoptosis (XIAP, p<5x10-26, 
Enrichr SG) which, besides modulating BMP and WNT signalling, has 
also been associated with seminomas, cancers originating from PGCs 
(Kempkensteffen et al. 2007; Oosterhuis and Looijenga 2005). Within 
branched genes, we also noted strong signatures of genes involved in 
canonical WNT signalling, including both CTNNB1 (p<5x10-18, Enrichr 
SG; p<0.001, KS-test), GSK3β (p<5x10-6, Enrichr Kinase; p<0.05, KS-
test), as well APC Membrane Recruitment Protein 1 (AMER1, p<1e-11, 
Enrichr SG; p<5x10-6, KS-test), and its target, Wilms Tumor 1 (WT1, 
p<5x10-7, Enrichr SG) . These findings are in keeping with WNT and BMP 
serving as major PGC induction signals and thus prove the efficacy of our 
framework. 
 
Amongst the early enriched gene signatures was overexpression of the 
transcription factor NANOG (p<0.05 KS-test). In mouse in vitro models 
NANOG is sufficient to directly induce PGC-like cell fate by binding and 
activating enhancers of Prdm1 and Prdm14 (Murakami et al. 2016), 
although loss of function studies have yielded equivocal results as to its 
requirement for mouse PGC fate (Chambers et al. 2007; Yamaguchi et al. 
2009; Carter et al. 2014). NANOG is highly expressed in human PGCs 
and PGCLCs, but, unlike in mouse cells, its overexpression does not 
induce PGCLCs (Kobayashi et al. 2017). Nevertheless, we identified a 
number of putative NANOG binding sites within the 10kb flanking 
regions of PRDM1 using FIMO (Supplementary File 2), suggesting a 
possible functional role. It would be of interest to test the involvement of 
NANOG in hPGCLC fate using an inducible knockout. 
 
In addition to picking up known PGC regulators, we were also able to 
identify other pathways potentially involved in human PGC fate, including 
a putative role for tumour necrosis factor (TNF) signalling in PGC 
development, based on the enrichment of KEGG term ‘TNF signalling 
pathway’, and the TNF transcriptional signature (p<1x10-10, Enrichr SG). 
Targets of TNF were shown to branch later than BMP4/SOX17-
responsive genes, and around the same time as genes that branched in 
response to perturbations of TET1, TET2, and TET3 (Figure 2(i)). This 

places the timing of TNF-signalling roughly in concordance with 
epigenetic reprogramming in proliferating, migratory PGCs. Although 
TNFA has roles in apoptosis, previous studies in mouse models suggest it 
can stimulate proliferation of pre-gonadal PGCs in culture (Kawase et al. 
1994; Makoolati, Movahedin, and Forouzandeh-Moghadam 2016). Whilst 
TNF, itself, was not identified amongst the branched genes, and its 
expression appears to be generally low in PGCs (Tang et al. 2015), one of 
its receptors, TNFRSF1A, was found to be branched, and we cannot 
exclude that TNF is secreted from surrounding tissues. Indeed, TNFA is 
expressed in Schwann cells (Wagner and Myers 1996), and TNF 
signalling might therefore support PGCs proliferation and survival as they 
migrate along the nerve fibres to the genital ridges (Mollgard et al. 2010). 
 
3.1.1 Branched genes were enriched for targets of polycomb repressive 
complexes 1 and 2 (PRC1 and PRC2) 
  
Branched genes were also enriched for the signature of epigenetic and 
chromatin modifiers, including the histone demethylase KDM3A (p<1x10-

5, Enrichr SG; p<0.001, KS-test), methyltransferase DNMT1 (p<5x10-5, 
Enrichr; NS, KS-test), and dioxygenases TET1 (p<1x10-4, Enrichr SG), 
TET2 (p<5x10-4, Enrichr SG), and TET3 (p<5x10-5 , Enrichr SG), which 
contribute to PGC DNA demethylation via conversion of the modified 
genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine 
(5hmC) (Ito et al. 2010). In general, genes associated with perturbations 
of epigenetic and chromatin modifiers appeared to branch later than genes 
associated with perturbations of WNT and BMP signalling, in line with 
existing experimental evidence (Tang et al. 2015). Amongst the related 
enriched GO terms, we noted several related to cAMP activity, and the top 
10 enriched motifs between genes up-regulated in PGCs and the ChEA 
database included several cAMP modulators, including CREB1 (p<5x10-

44, Enrichr ENCODE) and CREM (p<5x10-90, Enrichr ChEA), consistent 
with studies in mice that identify roles for cAMP signalling in mouse PGC 
proliferation and epigenetic reprogramming (Ohta et al. 2017). 
 
The polycomb group (PcG) of proteins are a diverse and evolutionary 
conserved family of proteins that function as epigenetic modifiers and 
transcriptional regulators (Chittock et al. 2017). Two key complexes are 
polycomb repressive complex 1 PRC1, an E3 ubiquitin ligase that 
monoubiquitinate lysine 119 of histone H2A (H2AK119ub1), and 
polycomb repressive complex 2 (PRC2), which functions as a 
methyltransferases that targets histone H3 lysine 27 for mono-, di- and 
trimethylation (H3K27me1, 2, 3). Amongst genes that branched between 
PGCs and soma, we noted a particularly strong overrepresentation for 
targets of PRC1 and PRC2. Indeed, PRC-related terms were amongst the 
most frequently enriched terms when comparing branched genes with 
ChEA/Encode databased (Supplementary File 3). This included 
enrichment for targets of core PRC2 components SUZ12 (p<1x10-23, 
Enrichr ChEA) and EZH2 (p<1x10-10, Enrichr ChEA), and proteins known 
to bind or co-localise with PRC2, including JARID1A (p<1x10-51, Enrichr 
ChEA), JARID1B (p<1x10-73), JARID2 (p<1x10-8; ChEA), and KDM6A 
(5x10-21, Enrichr ChEA). We also saw enrichment for PRC1 components 
RING1B (5x10-10, Enrichr ChEA) and RNF2 (5x10-10; Enrichr ChEA), as 
well as non-canonical components such as YY1 (1x10-58, Enrichr 
ENCODE) and MAX (p<1e10-52, Enrichr ENCODE). The expression 
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patterns of PRC1/PRC2 components following pseudotime ordering 
revealed highly dynamic regulation (Supplementary Figure 6). K-means 
clustering of gene bodies of early-branching genes (𝑡# < 0.6) by RING1B 
occupancy and ubiquitination level in hESCs (GSE104690) allowed 
identification of putative targets of PRC1, which included the key PGC 
specifier SOX17 (Supplementary Figure 7 and 8).  
 
Together these results suggest PRC1/2 may play an important role in PGC 
development. To establish a possible role of PRC1/2 on PGC 
specification, we used small molecule inhibitors to target the enzymatic 
activity of core components of PRC1 and PRC2 using an in vitro model 
of PGC specification. Our results reveal that inhibition of PRC1 
RING1B/BMI1-dependent ubiquitination using PRT 4165, reduced PGC 
specification in a dose-dependent manner (Supplementary Figure 9). 
Previous studies suggest that the small molecule inhibitor 
DETA/NONOate could be used to suppress expression of YY1 (Hongo et 
al. 2005). Treatment with DETA/NONOate reduced PGCLC efficiency 
(Supplementary Figure 10), however, DETA/NONOate is also known to 
activate the NO signalling pathway, and we could not rule out a YY1-
independent mode of action. Finally, a preliminary inhibition of PRC2 
EZH2-mediated histone methylation via DZNep further suggested 
reduced efficiency of PGCLC specification (Supplementary Figure 11). 
These results highlight the ability of pseudotime models to identify targets 
for intervention that result in a phenotype. 
 
3.2 Differences between inferred in vivo and in vitro dynamics of 
human development  

Current knowledge of human germ cell specification is largely informed 
by in vitro PGCLC derivation from hESCs. While it is challenging to 
directly validate these findings in vivo, we reasoned that we could 
highlight the most relevant processes by comparing the inferred dynamics 
of PGC induction in early embryos with pseudotemporally ordered 
hESCs. In particular, the ability to derive human PGC-like cells 
(PGCLCs) from hESCs in vitro prompted us to regard the hESC to 
hPGCLC transition as a recombination process. Comparison of the 
PGCLC transcriptome with that of in vivo PGCs suggests that PGCLCs 
closely resemble pre-migratory PGCs (Irie et al. 2015), and we therefore 
considered recombination to occur between hESC and the earliest 
available PGC dataset (Wk4). Thus, the comparison of hESC and hPGC 
dynamics represents a branch-recombinant process, whereby specified 
hPGCs and hESCs branch from a common precursor (around blastocyst 
stage), with hESC dynamics allowed to recombine with W4 hPGCs upon 
exposure to appropriate stimuli. 
 
We first identified the subset of genes that showed divergent behaviour 
between ESCs and in vivo datasets. This revealed 1,331 branching genes 
which were up-regulated in hESCs compared to in vivo. The timing of 
divergence between inferred in vivo and in vitro dynamics is shown in 
Supplementary Figure 4(c). GO analysis of these groups identified several 
enriched terms, including those relating to cell adhesion, response to 
hormones, and, importantly, response to BMP4 and WNT, as well as terms 
relating to germ cell development and meiosis (see Supplementary File 3). 
We next attempted to identify perturbations that could potentially drive 

hESCs back towards hPGC identity i.e., for genes up-regulated in hESCs 
versus hPGCs, we searched for perturbations that down-regulated those 
genes.  
 
Amongst the most highly enriched signatures was the overexpression of 
SOX17 (p<5x10-9, Enrichr SG). De novo motif analysis using DREME 
(Bailey 2011) on 1kb windows upstream of the TSS identified two motifs 
(p<1x10-17, p<5x10-7) resembling that of human PRDM1 (p<0.01, p<5x10-

3, TOMTOM, Gupta et al. (2007)), and genes were  enriched against DE 
genes in bulk RNA-seq data from PRDM1-overexpressing cells 
(Kobayashi et al. 2017) showed a significant overlap (p<5x10-24, 
hypergeometric test). 
 
A strong signature was also noted for KIT (p<1x10-3, Enrichr SG), 
potentially highlighting an important role of its ligand, SCF, in PGC cell 
fate. SCF has been implicated in PGC proliferation and migration (Hoyer, 
Byskov, and Mollgard 2005; Mollgard et al. 2010) and is added to the in 
vitro culture medium used to derive PGCLCs from hESCs (Irie et al. 
2015). Although KITLG is not expressed in hPGCs or hPGCLCs (Tang et 
al. 2015; Irie et al. 2015), the expression of KIT is significantly up-
regulated in hPGCs, and SCF (encoded by KITLG) is potentially secreted 
from adjacent cells. Indeed SCF is expressed in Schwann cells (Mollgard 
et al. 2010), as well as Sertoli and Leydig cells (Sandlow et al. 1996), and 
we note that a KITLG positive subpopulation appears to exist in the 
somatic cells, around the time of PGC migration and gonad colonisation.  
 
3.2.1 Early branching identifies key regulators of competence for PGC 
fate 
 
Human ESCs in conventional cultures (KSR-based medium supplemented 
with FGF2) have low potential to form germ cells, but acquire competency 
for PGCLC fate in the presence of TGFβ, LIF, FGF2 and the inhibitors of 
GSK3β (CH), p38 (SB), JNK (SP) and MEK (PD03) kinases (4i medium; 
Gafni et al. (2013); Irie et al. (2015)). 4i hESCs self-renew in a competent 
state and can form high numbers of PGCLCs when exposed to BMP2/4 
and supporting cytokines in embryoid body (EB) cultures (Irie et al. 2015). 
The mechanisms underlying such dramatic change in developmental 
potential of 4i (competent hESCs) versus conventional hESCs remain to 
be elucidated. 
 
We decided to focus on signalling that may be involved in conferring PGC 
competence to hESCs. For this, we first compared the genes up-regulated 
in hESCs to the inferred in vivo dynamics for PGCs. This revealed 
enrichment for the downregulation of BRAF (p<1x10-8, Enrichr SG) and 
FGF2 (p<1x10-12, Enrichr Ligand), two upstream regulators of MEK 
signalling. Crucially, FGF2-responsive genes were found to branch very 
early in vivo (soma vs PGCs) compared to overall branch times (p<5x10-

6, KS-test) and was the topmost enriched ligand perturbation identified 
from comparisons of ESCs towards PGC fate (Suppelmentary File 5). This 
branching occurred concurrent with, or prior to the BMP4/SOX17-
responsive genes (p<0.05, FGF2 vs BMP4; NS, FGF2 vs SOX17, see 
Figure 2(h)), suggesting that FGF2 may function earlier than key 
specifiers of PGC fate, with potential roles in conferring competency for 
PGCLC fate. While FGF2 is present in both conventional and 4i 
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conditions, 4i cells are maintained in the presence of an inhibitor of MEK, 
an effector of FGF receptor (FGFR) signalling. It is therefore possible that 
partially negating the effect of FGF signalling via the inhibition of 
downstream pathways of FGFR, might contribute to PGC competence 
acquisition by pluripotent cells. 
 
Comparison of branching between soma and PGCs identified early 
signatures for a number of kinase perturbations that mimic the use of the 
inhibitors in the 4i medium sustaining competent hESCs. These included: 
(i) knockdown of GSK3B (p<5x10-6, Enrichr Kinase; p<0.05, KS-test) 
(CH is a GSK3β inhibitor); (ii) knockdown of MAP2K1 (p<1x10-3, 
Enrichr; p<0.05, KS-test), a component of the MAP kinase signal 
transduction pathway upstream of MEK signalling (PD03 is a MEK 
inhibitor); and (iii) MAPK14 (p<5x10-5, Enrichr; p<0.01, KS-test), a 
regulator of p38 (SB is a p38 inhibitor). Branch times for genes associated 
with these perturbations were suggestive of early roles. Of note, we did 
not identify statistically significant overlaps with pathways downstream 
of JNK kinases, inhibited by the fourth inhibitor in 4i hESCs (SP). 
 
To experimentally test the involvement of these signalling pathways in 
PGC competence, we compared PGCLC induction efficiencies from 
hESCs cultured in either complete competent (4i) medium (control) or 
lacking one of the 4 inhibitors: (i) “4i-CH” (4i without GSK3B inhibitor); 
(ii) “4i-PD03” (4i without MEK inhibitor); (iii) “4i-SB” (4i without p38 
inhibitor), and (iv) “4i-SP” (4i without JNK inhibitor). hESCs were 
cultured in these alternate media for at least one passage and collected for 
standard PGCLC differentiation (as in Irie et al. (2015)). PGCLC 
induction efficiency was then quantified by flow cytometry 
(Supplementary Figure 12). This was facilitated by the use of PGC-
specific knockin reporter cell line NANOS3-tdTomato (N3tdTom; 
Kobayashi et al. (2017)) and staining for PGC surface markers AP and 
CD38 (Irie et al. 2015). 
 
This identified that while removal of CH (GSK3βi) and SP (JNKi) from 
4i did not significantly change PGCLC competence, withdrawal of PD03 
(MEKi) and SB (p38i) strongly reduced the propensity of hESCs to form 
PGCLCs (Figure 3(a)), consistent with a predicted role for MEK and p38 
but not JNK signalling in conferring PGC competence. Considering the 
crucial role of WNT signalling for PGC competence in mice (Ohinata et 
al. 2009; Aramaki et al. 2013), it was surprising that CH (WNT agonist, 
Ying et al. (2008)) withdrawal did not impact on PGCLC competence. We 
hypothesized that 4i hESCs might produce WNT in an autocrine fashion. 
Indeed, the number of PGCLCs generated from hESCs grown with WNT 
pathway inhibitor IWR-1 (IWR, Chen et al. (2009)) either in the presence 
or the absence of CH, was reduced compared to the control (Figure 3(b)).  
 
Notably, “4i-CH” and “4i-SB” cultures deteriorated at later (>4) passages, 
reflecting the importance of these inhibitors to sustain self-renewal of 4i 
hESCs (Gafni et al. 2013). Low competency observed upon withdrawal of 
SB (p38i) was likely caused by the induction of trophectoderm-like 
differentiation, as judged by the expression of lineage markers, CDX2 and 
HAND1 (Supplementary Figure 13). 
  

The most drastic effect on PGCLC competence was observed upon 
withdrawal of MEK inhibitor, PD03, with a strong reduction in the 
induction of PGCLC (Figure 4(b)), although unlike “4i-CH” or “4i-SB”, 
“4i-PD03” cells could be maintained for many passages (>20). 
Importantly, the defect of “4i-PD03” hESCs to differentiate to PGCLCs 
could be rescued (within one passage) if PD03 was reintroduced; Figure 
4(c)).  

 

Since our analysis revealed early branching of an upstream component of 
this signaling pathway, namely FGF2 (see Supplementary File 3), we 
asked if inhibition of FGF receptor (FGFR) could mimic the effect of 
MEK inhibition. To address this, we transferred the cells cultured in “4i-
PD03” to “4i-PD03+PD17” (4i where MEK inhibitor PD0325901 was 
substituted for FGFR inhibitor PD173074). Not only did FGFR inhibition 
rescue the differentiation defect of “4i-PD03” cells, but it also markedly 
enhanced PGCLC competence compared to the 4i control (in the presence 
of high PD17 concentrations; Figure 4(d)). However, these cells showed 
decreased viability and collapsed after 2-3 passages. Importantly, FGFRi 
showed a dose-dependent positive effect on competence (Figure 4(d)) and 

Figure 3. Quantification of PGCLC induction efficiency from hESCs grown in indicated 
conditions relative to 4i hESCs. PGCLCs induction efficiency was defined as the percentage of 
live NANOS3-tdTomato/AP (N3+AP+) or NANOS3-tdTomato/CD38-double positive cells. Data 
are shown as mean ± SD of 2 or 4 independent experiments. * p ≤ 0.05, **** P ≤ 0.0001, ns: not 
significant (p > 0.05), Holm-Sidak t-test (on relative frequency of N3+AP+ cells). (a) MEK and 
p38 inhibitors withdrawal from 4i medium decreases PGCLC competence of hESCs. (b) Inhibition 
of WNT signalling by small molecule inhibitor IWR reduces PGCLC competence. 
 

Figure 4. FGFR-MEK signalling is a negative regulator of human PGCLC competence.                      
(a) MEK inhibitor withdrawal from 4i medium decreases PGCLC competence of hESCs. 
Representative flow cytometry plots of EBs derived from 4i and “4i-PD03” hESCs. (b) 
Quantification of PGCLC induction efficiency from “4i-PD03” relative to 4i hESCs. Data are 
shown as mean ± SD of 9 independent experiments. **** p ≤ 0.0001, Holm-Sidak t-test (on 
relative frequency of N3+AP+ cells).  (c) “4i-PD03” differentiation defect can be rescued by 
reintroducing PD03. hESCs grown in “4i-PD03” for >10 passages were transferred to complete 
4i medium (with PD03) for 1 or 3 passages and subjected to PGCLC induction. Induction 
efficiency is shown relative to “4i-PD03”-derived PGCLCs; n=1. (d) hESCs grown with FGFR 
inhibitor PD17 show enhanced PGCLC competence. Data are shown as mean ± SD of 2 or 3 
independent experiments. * p ≤ 0.05, ns: not significant (p > 0.05), Holm-Sidak t-test (on relative 
frequency of N3+AP+ cells).  Red lines and asterisks refer to comparison of “4i-PD03” to other 
conditions. 
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cells grown with lower PD17 concentration could be maintained longer. 
Together, these data show that, in agreement with our computational 
prediction, FGF-MEK pathway is a negative regulator of human PGCLC 
competence; blocking this cascade by FGFRi or MEKi promotes PGCLC 
competence in hESCs. 
 
Next, we explored the reason for enhanced competence of FGFRi-treated 
versus MEKi-treated cells. Major downstream components of FGFR 
signalling are RAS-MEK-ERK, PI3K-AKT, and JAK-STAT (Lanner and 
Rossant 2010). Indeed, the comparison of dynamics of PGC development 
with somatic cells identified strong enrichment for these three pathways. 

Thus, we saw enrichment of appropriate GO/KEGG terms, and 
transcriptional signatures of EGFR (p<1x10-19, Enrichr Kinase; p<0.0005 
KS-test) and Platelet Derived Growth Factor Receptors Alpha (PDGFRA, 
p<1x10-11, Enrichr Kinase; p<0.005 KS-test) and Beta (PDGFRB, p<5x10-

7, Enrichr Kinase; p<0.001 KS-test), implicated in the activation of ERK, 
AKT, and STAT1/3/5 signaling pathways, as well as MET (p<5x10-10, 
Enrichr Kinase; p<0.01 KS-test), which functions upstream of RAS-ERK 
and PI3K-AKT signalling. We also noted a strong signature for the down-
regulation of JAK1/2 (p<5x10-14, Enrichr Kinase; p<0.05 KS-test), and an 
enrichment for PI3K signalling, which included transcriptional signatures 
of AKT1 (p<1x10-9, Enrichr Kinase; p<0.05 KS-test), CSF1R (p<5x10-5, 
Enrichr Kinase; p<0.01 KS-test), the regulatory subunit of PI3K leading 
to activation of AKT1, and NTRK3 (p<5x10-5, Enrichr; p<0.05 KS-test), 
which also activates PI3K-AKT signalling.  PI3K/AKT pathway was of 
particular interest, since it is activated downstream of insulin signalling, 
which was one of the most statistically enriched ligand perturbations from 
the Enrichr database (p<1x10-7, Enrichr ligand; p<0.01 KS-test) 
promoting hESC to hPGC transcriptome transition. 
 

We therefore hypothesized that simultaneous inhibition of MEK and other 
pathways downstream of FGFR could mimic the effect of FGFRi and 
increase PGCLC competence. To test this, we supplemented complete 4i 
cultures with either LY (LY294002, PI3K inhibitor) or CAS (CAS457081-
03-7, JAK inhibitor). This revealed a trend for enhanced PGCLC 
competence of “4i+LY” hESCs (Figure 5(a)). Importantly, “4i+LY” cells 
did not exhibit increased cell death as seen with FGFRi; instead they 
proliferated at rates similar to 4i hESCs and formed homogeneous dome-
shaped colonies. Furthermore, “4i-PD03+LY” cells, especially at later 
passages exhibited competence comparable to control 4i hESCs (Figure 
5(a)), pointing to a synergistic action of MEK/ERK and PI3K/AKT 
signalling pathways. We also observed a positive effect of JAK pathway 
inhibition on PGCLC competence (Figure 5(b)). This is in line with the 
enhanced competence of hESCs cultured in 4i without LIF, an agonist of 
JAK-STAT (Figure 5(c)). Interestingly, differentiation of 4i+CAS” 
hESCs yielded more CD38+ cells (Figure 5(c)), which represent more 
mature PGCLCs (Irie et al. 2015). Of note, longer culture of hESCs with 
JAK inhibitor changed colony morphology and subsequently reduced 
competence (Figure 5(b)). These cultures could not be maintained, 
highlighting differential requirements for JAK/STAT signalling in 4i 
versus conventional hESCs (Gafni et al. 2013; Onishi and Zandstra 2015). 
It is therefore possible to speculate that the observed effect of FGFR 
inhibition could be explained by: (i) enhanced competence due to PI3K 
pathway inhibition and transient JAK/STAT inhibition; (ii) decreased 
viability and loss of pluripotency due to JAK/STAT inhibition. The 
relationship between these signalling pathways and their contribution to 
pluripotency maintenance and PGC competence acquisition warrant 
further investigation. Together, these data show that B-RGPs could predict 
the relevance of specific signalling pathways to PGC competence even in 
the absence of all relevant data points (single-cell transcriptomes of 4i 
(competent) hESCs and PGCLCs).  
 
Finally, we set out to test if in addition to promoting competence, blocking 
MEK signalling could also enhance PGCLC specification.  To this end, 
we supplemented the differentiation medium with MEK inhibitor PD03 or 
induced a genetic construct for dominant-negative ERK expression (DN-
ERK) at the onset of differentiation (Figure 6(a)). Intriguingly, both 
perturbations reduced PGCLC numbers compared to controls (Figure 6(b, 
c)).  ERK activation during PGCLC induction is likely triggered by the 
supplementation of the differentiation medium with EGF (Irie et al., 
2015), which activates similar intracellular pathways to FGF ligands 
(Schlessinger 2004). Of note, inhibition of PI3K throughout 
differentiation did not abrogate PGCLC specification, suggesting that, 
unlike MEK, PI3K signalling is dispensable for PGCLC induction 
(Supplementary Figure 15). Altogether, this shows that the timing of 
FGFR signalling is crucial for context-specific cell fate decisions and our 
methodology allows predicting relevant changes in signalling and gene 
expression in a time-resolved manner. 

Figure 5. PI3K and LIF/JAK/STAT pathways negatively regulate PGCLC competence.                       
(a) PI3K inhibition promotes PGCLC competence. Quantification of PGCLC induction 
efficiency from cells grown in indicated conditions relative to 4i hESCs. Data are shown as mean 
± SD of 10 independent experiments. * p ≤ 0.05, *** p ≤ 0.001, **** p ≤ 0.0001, ns: not 
significant (p > 0.05), Holm-Sidak t-test (on relative frequency of N3+AP+ cells). Red lines and 
asterisks refer to comparison of “4i-PD03” to other conditions. (b) Short exposure (1 passage) 
of hESCs to JAK inhibitor CAS increases PGCLC competence to form mature CD38+ PGCLCs. 
Quantification of PGCLC induction efficiency from cells grown in 4i+CAS relative to 4i hESCs. 
Longer culture with CAS changed colony morphology and decreased competence. (c) LIF 
withdrawal from 4i hESCs promoted PGCLC competence, although the magnitude of the effect 
was mild. Data are shown as mean ± SD of 10 independent experiments. * p≤ 0.05, Holm-Sidak 
t-test (on relative frequency of N3+AP+ cells).  
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3   Discussion 
Transcriptional branching and recombination are frequently encountered 
in developmental biology. Single-cell transcriptomics has emerged as tool 
for investigating the nature of these bifurcations, but requires cells first be 
computationally ordered along pseudo-developmental trajectories. 
Increasingly, scRNA-seq datasets are generated as part of more structured 
experiments, including finely resolved whole-embryo developmental time 
series (Briggs 2018). Unfortunately, most pseudotime approaches cannot, 
or do not, leverage the additional information. Here we have developed a 
probabilistic model capable of inferring a posterior distribution over 
pseudotimes, that also utilises prior information about capture. Our 
approach encodes an explicit model of a bifurcations occurring at the level 
of individual marker genes, providing a more interpretable result than 
standard dimensionality reduction. 
 
Although our model was more accurate than other approaches for time 
series data, this increased accuracy comes at a significantly increase in 
computational cost. However, concurrent with our study, Boukouvalas, 
Hensman, and Rattray (2018) have built on the earlier work of Yang et al. 
(2016) to develop Branching Gaussian processes, a probabilistic 
framework for the inference of bifurcations in single cell transcriptional 
datasets. Unlike our approach, which utilised MCMC to deal with 
unlabelled datasets, these branching GPLVM focused on efficient, 
scalable variational approximations for a two-branch system, 
implemented using GPflow (Matthews et al. 2016), and were therefore 
applicable for much larger datasets. By focusing on early branching events 
they identified key regulators of haematopoietic differentiation which, 
together with our own work, and other GPLVM approaches (Ahmed, 
Rattray, and Boukouvalas 2018), demonstrates the usefulness of 
probabilistic approaches to pseudotime. 

 
Having established the advantages of B-RGPLVMs over other approaches 
for time series scRNA-seq data, we used our approach to investigate the 
dynamics of cell fate decision of human primordial germ cells (hPGCs). 
We correctly identified key early regulators of PGC fate, most notably 
SOX17, a classic endoderm marker gene that was only recently shown to 
play a prominent role in human PGC specification (Irie et al. 2015; Tang 
et al. 2015). Furthermore, by jointly leveraging in vivo and in vitro 
datasets, we could suggest the importance of correct suppression of SOX2 
and concomitant up-regulation of SOX17 in hPGC lineage. Interestingly, 
mouse PGCs do not require Sox17 and instead express Sox2. Many more 
unexplored differences exist between mouse and human PGC 
transcriptomes (Tang et al. 2015), and an integrative analysis of mouse 
and human datasets could prove useful in identifying such divergent 
regulators. 
  
By looking at the earliest branching events, we identified putative 
regulators that may play a role prior to PGC specification, in the 
acquisition of PGC competence. Here, we identified possible roles for 
FGFR signalling and its downstream branches (MEK/ERK, PI3K/AKT 
and JAK/STAT) in conferring human PGC competence. Importantly, 
these observations were validated experimentally using an in vitro system 
for derivation of PGC-like cells (PGCLCs) from hESCs. Indeed, blocking 
FGFR or its downstream effectors (MEK, PI3K and JAK) by specific 
inhibitors enhanced the competency of hESCs to form PGCLCs.  
 
We also noted that branched genes were highly enriched for PRC1 and 
PRC2 binding.  Preliminary small molecule inhibition of the enzymatic 
components of RING1B and EZH2 resulted in reduced ability of 
competent ESCs to form PGCLCs. PRC1/2 components showed highly 
dynamic pseudotime trajectories, both around the time of specification and 
in post-migratory PGCs, suggesting that PRC1/2 components such as 
MAX may have further important roles in later hPGC development, 
consistent with studies in mouse models (Yokobayashi et al. 2013; Suzuki 
et al. 2016; Endoh et al. 2017). 
 
Whilst we could correctly identify several events in the acquisition of 
competency and specification, key intermediate cell types were absent 
from both our in vivo and in vitro datasets. Notably, single cell RNA-seq 
for competent (4i) hESCs and PGCLCs were unavailable, although bulk 
RNA-seq measurements exist (Irie et al. 2015). A key future development 
will therefore aim to combine the use of single-cell and bulk RNA-seq 
data in a principled way. Since bulk measurements represent population 
averages, B-RGPs would be ideally suited to this purpose, due to the 
ability of GPs to incorporate integral observations (Rasmussen and 
Williams 2006). Likewise, as GPs can naturally incorporate derivative 
observations, GPLVMs provide an ideal framework for leveraging other 
useful information such as RNA velocity (La Manno et al. 2018).  
 
Another informative approach would require generation of single cell 
transcriptomic profiling of intermediate cell types, providing a higher 
temporal resolution of the intermediate events that lead to the acquisition 
of competence and specification of hPGCs. The emergence of other in 
vitro models for human PGCLC derivation (Kobayashi et al. 2017), as 

Figure 6. MEK-ERK inhibition during PGCLC induction interferes with PGCLC 
specification.     (a) Workflow of the experiments and the scheme of the construct for DN-ERK 
transgene expression. Either PD03 or DMSO (vehicle) was added to the differentiation medium. 
Alternatively, to induce DN-ERK, PGCLC medium was supplemented with doxycycline (dox). 
(b) Supplementation of the differentiation medium with PD03 drastically decreases PGCLC 
specification efficiency. Data (relative frequency of live N3+AP+ cells) are shown as mean ± SD 
of 4 independent experiments. **** P ≤ 0.0001, Holm-Sidak t-test. (c) DN-ERK expression 
during PGCLC differentiation reduces the efficiency of PGCLC specification. Data (relative 
frequency of live N3+AP+ cells) are shown as mean ± SD of 3 independent experiments using 
2 DN-ERK-expressing clones. ** p ≤ 0.01, Holm-Sidak t-test. 
 

PGCLC	
induc+on�

BMP2,		
LIF,	SCF,	EGF	

Flow		
cytometry	

+PD03/DMSO	
+dox	(DN-ERK)		

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/167684doi: bioRxiv preprint 

https://doi.org/10.1101/167684
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pseudotime ordering identifies regulators of early germ cell development  

well as in vitro models of embryogenesis (Harrison et al. 2017; Sozen et 
al. 2018; Beccari et al. 2018; Deglincerti et al. 2016; Martyn et al. 2018), 
provides further opportunities for dissecting these causal regulations; by 
identifying differences and similarities in the dynamics of branching 
between different in vitro models, we could separate out the underlying 
biological mechanisms from culture-induced adaptations.  
 
Finally, the transition from pluripotency to PGC competence and 
ultimately to PGCs can be reversed later in development upon germ cell 
tumour formation, exemplifying a recombination event. Seminoma and 
embryonal carcinoma are two types of germ cell tumours that share 
similarities with PGCs and ESC, respectively (Surani 2015), which can be 
distinguished using the markers identified from in vitro human PGCLC 
specification; seminomas and PGCs express CD38 and SOX17, while 
embryonal carcinomas and hESCs express SOX2 and CD30 (Irie et al. 
2015). This underscores the importance of interrogating the transcriptional 
and epigenetic control of human germ cell fate and its specification from 
pluripotent progenitors. Ultimately, the use of B-RGPLVMs on 
transcriptomics data from tumour cells could shed light on the sequence 
of events that lead to their formation, identify cancer markers, and guide 
therapeutic interventions. 
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Supplementary materials to Bayesian inference of transcriptional 
branching identifies regulators of early germ cell development 
 
1 Branch-recombinant Gaussian process latent variable models (B-RGPLVMs) 

The ability to leverage capture time and other important prior information into pseudotime algorithms, as well as the ability 
to quantify uncertainty in the pseudotemporal ordering, is particularly desirable given the inherent limitations of pseudotime 
approaches (see discussion in Campbell and Yau (2015); Weinreb et al. (2017)). Unfortunately, most approaches for 
pseudotime ordering fail to incorporate such information, a significant omission given the trend towards increasingly 
structured (finely resolved time-series) scRNA-seq datasets. 
 
Bayesian approaches represent an ideal framework for leveraging prior information, and previous studies by Reid and 
Wernisch (2016) have demonstrated how capture time can be incorporated into pseudotime algorithms using Bayesian 
approaches based on Gaussian process latent variable models (GPLVMs; Lawrence (2003, 2005)). Within these models, it 
is assumed that there are 𝑀 cells measured at one of 𝑇 < 𝑀 distinct known capture times, 𝒕% = (𝑡), … , 𝑡,), and the aim is 
to infer a corresponding set of pseudotimes, 𝒕. = (𝜏), … , 𝜏,), such that the gene expression profiles vary smoothly over 
pseudotime in a way that reflects the general developmental trajectory. The pseudotimes, 𝐭𝐩, are assigned a prior 
distribution that is Gaussian distributed conditional on the capture time, 𝐭%, 𝐭.|𝐭% ∼ 𝒩(𝐭%, 𝜎6𝕀). Within the GPLVM the 
expression profile 𝑓9 of each gene 𝑖 is assigned an independent Gaussian process prior, 𝑓9 ∼ GP(𝜇9(𝑡.), 𝑘9(𝑡., 𝑡.? )), where 
𝜇9(𝑡.) denotes the mean function and 𝑘9(𝑡., 𝑡.? ) the covariance function. Different choices of covariance function encode 
different prior distributions over the expression profiles of the individual genes, and can be used to encode a vast range of 
dynamic behaviour. Reid and Wernisch (2016) assume a Matérn covariance function: 
 

𝑘9 𝑡., 𝑡.? = 𝜓9	
  (1 + 3	
  |𝑡. − 𝑡.? |/ℓ𝓁)exp( 3	
  |𝑡. − 𝑡.? |/ℓ𝓁) , 
 
where ℓ𝓁 is a global length-scale and 𝜓9 are gene-specific scaling factors. The expression data for each gene 𝑖 over the 
observed cells is modelled as a noisy version of their underlying expression profile, 𝐲9 ∼ 𝒩(𝑓9(𝐭.), 𝜔96𝕀), where 𝜔9 
represents gene-specific noise levels. As the Gaussian process prior is conjugate to this likelihood, 𝑓9 can be directly 
marginalised: 
 

𝑃 𝒚𝒊 𝒇9, 𝒕. 𝑃 𝒇9 𝒕𝒑 𝑑𝒇9 = 𝑵(𝒚𝒊|𝝁𝒕R, 𝑲𝒕R,𝒕R + 𝜔9
6𝕀), 

 
where	
  𝝁𝒕Rrepresents a vector of the mean function evaluated at the pseudotimes times 𝒕., and 𝑲𝒕R,𝒕R the covariance matrix. 
Finally, the composite likelihood for pseudotimes can be written as: 
 

ℒ 𝒕. = 𝑃 𝒕. 𝒕% 𝑃 𝒚𝒊 𝒇9, 𝒕. 𝑃 𝒇9 𝒕𝒑 𝑑𝒇9

UV

9W)

. 

 
In general, it is not computationally feasible to evaluate this product over all genes, and a representative set of genes must 
be selected instead. This might include taking known marker genes, which has previously been shown to accurately order 
cells in other approaches (Campbell and Yau 2018), or using the top most variable genes (Reid and Wernisch 2016). Until 
recently, no explicit GP treatment for branching processes existed, and these kinds of models were thus limited to single 
developmental trajectories (Reid and Wernisch 2016). However, recent studies by Yang et al. (2016) have derived explicit 
covariance functions for a two-branch process allowing pseudotime approaches for two-branch systems (Boukouvalas, 
Hensman, and Rattray 2018), and subsequent studies have demonstrated how compositions of covariance functions can be 
used to define branching processes of arbitrary complexity (Penfold et al. 2018). Within this paper, we will consider 
processes with one or two bifurcations. A two-branch system with observations at 𝒕 = (𝑡), … , 𝑡,), and branch-labels, 𝒛 =
(𝑧), … , 𝑧,), 𝑧9 ∈ [1,2], can be described by the following correlated processes: 
 

𝑓) 𝑡 	
  ~	
  𝒢𝒫 𝜇(𝑡), 𝑘) 𝑡, 𝑡? ,	
  
𝑓6 𝑡 	
  ~	
  𝒢𝒫 𝑓) 𝑡 , 𝐶𝑃cd(𝐾f, 𝑘6 𝑡, 𝑡

? ) ,	
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where 𝜇 𝑡  represents the mean function for the base process, 𝐾f = 	
  𝐾f 𝑡, 𝑡? 	
  denotes	
  a	
  zero-­‐kernel,	
  and	
  𝐶𝑃cd(𝑘), 𝑘6)	
  
denotes	
  a	
  change-­‐point	
  kernel	
  (Lloyd	
  et	
  al.	
  2014),	
  defined	
  as:	
  	
  

𝐶𝑃cd 𝑘)(𝑡, 𝑡
?), 𝑘6 𝑡, 𝑡? = 𝜎 𝑡 𝑘) 𝑡, 𝑡? 𝜎 𝑡? + 1 − 𝜎 𝑡 𝑘6 𝑡, 𝑡? 1 − 𝜎 𝑡? ,	
  

where 1 − 𝜎 𝑡 = 1 + tanh cdkc
l

/2. In this system the hyperparameter, 𝑡m, controls the time at which the second 
trajectory diverges from the basal process. A three-branch process with observations at identical times as above and branch 
labels 𝒛 = (𝑧), … , 𝑧,), 𝑧9 ∈ [1,2,3], can be defined via the following set of correlated processes: 
 

𝑓) 𝑡 	
  ~	
  𝒢𝒫 𝜇(𝑡), 𝑘) 𝑡, 𝑡? ,	
  

𝑓6 𝑡 	
  ~	
  𝒢𝒫 𝑓) 𝑡 , 𝐶𝑃cdn 𝐾f, 𝑘6 𝑡, 𝑡
? , 

𝑓o 𝑡 	
  ~	
  𝒢𝒫 𝑓) 𝑡 , 𝐶𝑃cdp(𝐾f, 𝑘o 𝑡, 𝑡
? ) .	
  

 
For this system, cells corresponding to label 1 can be interpreted as the basal developmental process, from which two 
developmental programs independently diverge at times 𝑡mn and 𝑡mp. Finally, we can consider a three-branch system, where 
cells correspond to branch 2 diverging at time 𝑡mn, and cells corresponding to branch 3 diverging at 𝑡mpand later 
reconverging at time 𝑡qn This system is described by the following coupled processes: 
 

𝑓) 𝑡 	
  ~	
  𝒢𝒫 𝜇(𝑡), 𝑘) 𝑡, 𝑡? , 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑓6 𝑡 	
  ~	
  𝒢𝒫 𝑓) 𝑡 , 𝐶𝑃qn(𝐾f, 𝐶𝑃cdp 𝐾f, 𝑘6 𝑡, 𝑡

? ) ,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑓o 𝑡 	
  ~	
  𝒢𝒫 𝑓) 𝑡 , 𝐶𝑃cdr 𝐾f, 𝑘6 𝑡, 𝑡

? . 
 
As with the standard GPLVM, each gene can be assigned an independent B-RGP prior over the pseudotimes, and the aim 
is to order cells over a smooth, bifurcating process. The composite likelihood for the B-RGPLVM is: 

ℒ 𝒕. = 𝑃 𝒕. 𝒕% 𝑃 𝒚9 𝒇9, 𝒕., 𝒛 𝑃 𝒇9 𝒕𝒑, 𝒛 𝑑𝒇9

UV

9W)

. 

where 𝒚9is the vetctor of gene expression for the 𝑖th gene. While inference of the posterior distribution over pseudotimes 
is analytically intractable, we may readily sample from it using Markov chain Monte Carlo, with pseudotimes updated via 
a Metropolis step, hyperparameters sampled via hybrid Monte Carlo and, where necessary branch labels updated via a 
Gibbs step. We can apply a perturbation to the pseudotime 𝒕.? = 𝑇 𝒕.′ 𝒕% 𝒕% which is accepted with probability 
𝑃(𝑎𝑐𝑐𝑒𝑝𝑡) = min(1, 𝐴), where: 
 

𝐴 =
{(𝒕R|𝒕R?)| 𝒕.′ 𝒕% | 𝒚9 𝒇9, 𝒕.′, 𝒛 | 𝒇9 𝒕𝒑′, 𝒛 }𝒇~

�V
~�n

{(𝒕R?|𝒕R)| 𝒕. 𝒕% | 𝒚9 𝒇9, 𝒕., 𝒛 | 𝒇9 𝒕𝒑, 𝒛 }𝒇~
�V
~�n

. 

 
Other updates can be applied, for example the swapping of two randomly selected cells, and more principled approaches 
to such permutation-based updates for pseudotime are developed by Strauss, Reid, and Wernisch (2018). Finally, if we are 
dealing with situations where cell fate is uncertain, we can Gibbs sample the branch label for cell 𝑖: 
 

𝑃(𝑧9 = 𝐼|𝒕., 𝒕%, 𝒚), … , 𝒚UV, 𝒛\𝑧9	
  ) =
| 𝒕. 𝒕% | 𝒚9 𝒇9, 𝒕., 𝒛\𝑧9, 𝑧9 = 𝐼 | 𝒇9 𝒕𝒑, 𝒛 }𝒇~

�V
~�n

| 𝒕. 𝒕% | 𝒚9 𝒇9, 𝒕., 𝒛\𝑧9, 𝑧9 = 𝑘 | 𝒇9 𝒕𝒑, 𝒛 }𝒇~
�V
~�n

�
��n

. 

where 𝐿 represents the number of cell types. 
 
1.1. Benchmarking B-RGPLVM 
 
To assess our ability to pseudo-temporally order data over a branching process using B-RGPLVMs, we first benchmark 
using existing microarray time series data measuring the Arabidopsis thaliana transcriptional response to the necrotrophic 
bacteria, Botrytis cinerea (Windram et al. (2012); GEO GSE39597). This dataset consists of two time-series: (i) a control 
time series, detailing changes in gene expression in Arabidopsis over a 48-hour period at two-hour intervals; and (ii) a time-
matched infection series, in which Arabidopsis has been inoculated with B. cinerea. The infection time series has previously 
been used to benchmark GPLVMs for pseudo-time ordering (Reid and Wernisch 2016). As outlined by Reid and Wernisch 
(2016), we first grouped the individual measurements into four groups containing six consecutive time points, artificially 
reducing the temporal resolution of each time series dataset from 24 time points to 4. We then attempted to recapture the 
correct ordering of cells using an increasing number of randomly selected genes within the B-RGPLVM. Here we selected 
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10, 20, 40, and 80 genes at random from the set of 150 previously used by Reid and Wernisch (2016). By doing so, we 
aimed to identify how the accuracy of the model changed with respect to increased number of gene observations, and thus 
empirically identify the number of genes required for accurate pseudotime ordering. We performed 5 different randomly 
initialised runs, with 10,000 samples in the MCMC chain, discarding the first 5,000 steps for burn-in. Run time was in the 
region of 10 hours, although this could be decreased using MATALBs parallel processing toolbox. Note that for each 
independently initialised run, a separate random selection of genes was chosen to gauge variability in the inferred ordering 
with respect to different genes. 
 
Since the time series were generated using bulk microarrays, with measurements based on populations of cells, we expected 
a smoothly varying process, and thus for the covariance function we used a two-component branching covariance function 
composed of squared-exponential covariance functions. 

𝐾 𝑡, 𝑡?, 𝑧, 𝑧? = 𝑘��%� 𝑡, 𝑡? + 𝐶𝑃cd,l 𝐾f, 𝑘cq��c���c(𝑡, 𝑡′) 𝛿�,6𝛿��,6 + 𝛽𝛿c,c�𝛿�,��, 
 

where 𝑘��%� 𝑡, 𝑡? = 𝑆𝐸����� 𝑡, 𝑡′ = 𝜎��%�6 exp	
  ((𝑡 − 𝑡′)/2𝑙��%�
6)	
  and 𝑘cq��c���c 𝑡, 𝑡? = 𝑆𝐸���������� 𝑡, 𝑡′ =

𝜎cq��c���c6 exp	
  ((𝑡 − 𝑡′)/2𝑙cq��c���c
6). The hyperparameters in the model therefore corresponded to the length-scale and 

process variance of the base process (the control data), the length-scale and process variance of the perturbed process (the 
infected data), and the change point time (branch time) and branch rate for the change-point kernel. Hyperparameters were 
initially fitted using maximum likelihood estimates based on the low-resolution capture times, θ ← arg� max ℒ 𝜃|𝒕. =
𝒕%	
  , 𝒚 . Length-scale, process-variance, and noise hyperparameters were then fixed for the remainder of the inference. For 
the change-point time hyperparameter, 𝑡m, we assumed a univariate smoothed box prior distribution with linear decay in 
the log domain, 𝑃 𝑡m 𝑎, 𝑏 = 𝜎(𝜂 𝑡m − 𝑎 )(1 − 𝜎 𝜂 𝑡m − 𝑏 ), where 𝜎 𝑧 = 1/(1 + exp	
  (−𝑧)	
  ), and 𝑎 = 0, 𝑏 = 33, 
and 𝜂 = 33.  

In Supplementary Figure 1, we plot the inferred pseudotime ordering for control and infection datasets versus the true 
ordering of data as the number of genes used within the GPLVM increased, with 𝑁 ∈ (10,20,40,80). We note that, in 
general, the accuracy of the models appears to increase as the number of genes increases. For the case 𝑁 = 40, 4 out of 5 
replicates were nearly perfectly ordered for both the infected and control time series, with a mean correlation of >0.97 and 
>0.98 respectively over the five runs (for N=40). No obvious improvement was seen when increasing the number of marker 
genes to 80 (Supplementary Figure 1(c)). Consequently, when pseudo-temporally ordering data, we used >40 genes.  

For comparison purposes, we also performed pseudotime using the full list of 150 marker genes previously used by Reid 
and Wernisch (2016) as taken from the main text of Windram et al. (2012). Here we used two approaches:  
 

•   Monocle2 (Qiu et al. 2017). We first ran Moncle2 using the combined control and treated datasets. Subsequently 
we ran it on the control and treated datasets separately. The later analysis showed higher correlation between 
inferred pseudotime and measurement time and are the results reported here. 

•   TSCAN (Ji and Ji 2016). We used the online TSCAN app (https://zhiji.shinyapps.io/TSCAN) on the control and 
treated datasets separately. As the data was already log normalised we applied no normalisation. We used PCA 
for dimensionality reduction, with number of components set using the ‘Automatically select optimal dimension 
for PCA’ option.  Finally the number of clusters was selected with the ‘Use optimal cluster number’ option, and 
pseudotimes exported as csv files. 

In supplementary Figure 2 we plot the measurement time versus inferred pseudotime for Moncle2 and TSCAN respectively 
for the control and infected datasets. For TSCAN we saw Pearson correlation of 0.74 and 0.81 respectively in the control 
and infected datasets, whilst for Monocle2 we found a correlation of 0.85 and 0.83 respectively. For the BRGPLVM we 
found a mean correlation of 0.97 and 0.99 respectively over five runs (for N=40).  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/167684doi: bioRxiv preprint 

https://doi.org/10.1101/167684
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Supplementary Figure 1: The pseudotemporal order (y-axis) is plotted against the true order (x-axis) for Arabidopsis thaliana transcriptional data for 
the control time-series (a) and Botrytis cinerea infected time series (b). (c) The mean correlation (over 5 random initialisations) between time and 
pseudotime as the number of marker genes increases. 
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Supplementary Figure 2: The pseudotemporal order (y-axis) is plotted against the true time (x-axis) for Arabidopsis thaliana transcriptional data using 
Monocle2 (Top) and TSCAN (Bottom) respectively.	
  

	
  
2 PSEUDOTEMPORAL ORDERING OVER DEVELOPMENTAL TRAJECTORIES  

Single cells from pre-implantation embryos, PGCs, somatic cells and ESCs (Guo et al. 2015; Yan et al. 2013) were initially 
pseudotemporally ordered over a two-component branching process using 44 marker genes. For each of the 44 genes, the 
trajectory for specification of PGCs was chosen to represent the base process, due to this class having the most data points, 
with developmental trajectories for soma representing the branch process. Pre-blastocyst stage cells were randomly 
assigned to either branch with equal probability, whilst branch labels for blastocyst stage cells and ESCs were inferred 
within the algorithm. We performed five randomly initialised runs, using 30,000 steps in the MCMC chain, in some cases 
taking >48 hours using a single CPU, although key bottlenecks are embarrassingly parallel, and runtime could be reduced 
dramatically using the MATLAB parallel computing toolbox. The order of cells at step 30,000 appeared to show good 
overall correlation across these five runs, with mean correlation coefficient, 𝑅 = 0.9768 ± 0.003.  

For comparison purposes we also pseudotemporally ordered cells using a variety of other pseudotime methods, including 
GrandPrix (Ahmed, Rattray, and Boukouvalas 2018), Monocle2 (Qiu et al. 2017), SLICER (Welch, Hartemink, and Prins 
2016), and SCUBA (Marco et al. 2014), TSCAN (Ji and Ji 2016), Wishbone (Setty et al. 2016). 

•   GrandPrix (Ahmed, Rattray, and Boukouvalas 2018). We ran GrandPrix using data from the soma and PGC 
lineages, capture times were first scaled lie in the interval [0, 1]. We used two latent dimensions, with cells 
assigned Gaussian priors based on capture time along the first latent dimension and standard deviation of 0.05. 
Ordering was chosen based on the position along latent dimension 1. 

•   Moncole2 (Qiu et al. 2017). Here we ran Monocle2 several times. Initially we included all in vivo cells and 
attempted to capture the bifurcations between soma and PGCs. Within the algorithm, we used SOX17 and WT1 
as marker genes for terminal fates of PGC and soma, respectively. In the second instance, we separated out the 
data, first combining pre-implantation data with PGCs, to infer the PGC trajectory, and then combining pre-
implantation with soma. The greatest correlation between developmental stage and pseudotime was found for the 
second run i.e., running on the two branches separately. 

•   SCUBA and SLICER algorithms were run using default settings.  
•   TSCAN (Ji and Ji 2016). To generate pseudotimes we ran TSCAN using the online app. PCA was used for 

dimensionality reduction, and clusters were selected using the optimal cluster number option. Finally, we manually 
tuned the ordering of clusters and selected the combination that gave the greatest correlation between 
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developmental stage and pseudotime. 
•   Wishbone was run using the accompanying GUI, using default settings. Due to numerical issues, we ran with a 

reduced number of genes compared to that used for Monocle2, TSCAN, SCUBA and SLICER. 

 Scripts for non-web-based pseudotime methods are available from the GitHub repository: 
https://github.com/cap76/PGCPseudotime 
 
We evaluated the accuracy of the various approaches by comparing the correlation between the inferred pseudotime order 
and developmental stage for soma and PGCs separately, and by evaluating a branch-discrepancy metric. Results 
summarised in Supplementary Figure 1 and Supplementary Table 2. All methods appeared able to broadly separate out 
the different cells types e.g., pre-implantation, PGCs and soma, but did not necessarily place cells along continuous or 
consistent trajectories. GPLVM-based approaches offered the best overall performance in terms of branch alignment, 
followed by Monocle2 and TSCAN. 
 
We also performed GPLVM using an explicit three-branch process. To test that the algorithm was ordering cells in a 
meaningful way, we checked whether the posterior distribution of pseudotime had diverged from the prior distribution 
using a Chi-squared test under the null hypothesis that pseudotime was normally distributed with variance defined by the 
prior. Here we rejected the null hypothesis with a highest p value of <1x10-23 , indicating that the posterior distribution 
had diverged from the prior distribution. 
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Supplementary Figure 3: Comparison of pseudotime ordering using MONOCLE, TSCAN, Wishbone, SCUBA and SLICER versus B-RGPLVM. Here 
we indicate the inferred pseudotime (y-axis) versus the true developmental stage. All approaches appear to be able to generally separate out pre-
implantation cells from either PGCs or soma, with B-RGPLVMs performing best. Together, these observations highlight the increased accuracy afforded 
when including prior information about capture time in B-RGPLVMs and a more realistic generative model in terms of an underlying branching process. 
Note that the distribution of cells from pre-implantation embryos will be identical when comparing within a method. 

Supplementary Table 1. Number of cells for each cell type 

Stage N  Source 

ESCs 34 Yan et al. (2013) 
Pre-implantation 90 Yan et al. (2013) 
PGCs 242 Guo et al. (2015) 
Soma 86 Guo et al. (2015) 

 

Supplementary Table 2. Benchmarking of pseudotime algorithms on the PGC data 

Stage R (PGC) R (soma) ∆b 

GPLVM (2-branch) 0.96 0.95 0.004 
GPLVM (3-branch) 0.98 0.97 0.002 

GPLVM (3-branch) 0.97 0.96 0.006 

GPLVM (3-branch) 0.99 0.99 0.003 

GrandPrix 0.84 0.87 0.02 

MONOCLE2 0.84 0.87 0.35 

SCUBA 0.85 0.85 1.1 

SLICER -0.50 -0.80 1.1 

TSCAN 0.85 0.92 0.44 

Wishbone 0.74 0.80 0.48 

 

3 COMPLEX BRANCHING DURING EARLY EMBRYO DEVELOPMENT IN HUMANS  

Once a point estimate for the pseudotemporal order of cells had been established, we looked for more complex branch-
recombinant structures on a genome scale, by fixing pseudo-times according to the order at step 30,000 in our earlier 
pseudotime analysis. As the pseudotimes are fixed, this is simply a case of fitting GP model with different branch structures 
(B-RGP regression). Here we considered the dynamics of PGCs, somatic cells, and ESCs. Each of the three groups was 
randomly assigned pre-implantation cells with equal probability, except for the ESCs, which partially overlapped with 
blastocyst stage cells; here we instead randomly assigned pre-blastocyst cells. This assignment reflects our expectation that 
divergence between PGCs and soma occurs post blastocyst. To capture the dynamics necessary to drive ESCs towards 
week 4 PGC fate, we also assigned half of the male hPGCs to the ESCs class. For model 1, we assumed: 

	
  	
  𝑓|¯° 𝑡 	
  ~	
  𝒢𝒫 𝑐, 𝑘|¯° 𝑡, 𝑡? ,	
  
𝑓l��� 𝑡 	
  ~	
  𝒢𝒫 𝑓|¯° 𝑡 , 𝐶𝑃cd 𝐾f, 𝑘|¯° 𝑡, 𝑡

? , 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑓±²° 𝑡 	
  ~	
  𝒢𝒫 𝑓|¯° 𝑡 , 𝐶𝑃c� 𝐶𝑃cd 𝐾f, 𝑘±²° 𝑡, 𝑡
? , 𝐾f , 

representing genes in which somatic cells diverged from PGCs, and where ESCs diverged from the in vivo dynamics of 
PGC specification before recombining at around week 4. For model 2, we assumed: 

𝑓|¯° 𝑡 , 𝑓±²° 𝑡 	
  ~	
  𝒢𝒫 𝑐, 𝑘|¯° 𝑡, 𝑡? ,	
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  𝑓l��� 𝑡 	
  ~	
  𝒢𝒫 𝑓|¯° 𝑡 , 𝐶𝑃cd 𝐾f, 𝑘l��� 𝑡, 𝑡
? . 

This model represents genes that showed divergence between PGCs and soma, with ESCs identically distributed to PGCs. 
Finally, for model 3 we assumed: 

𝑓|¯° 𝑡 , 𝑓l��� 𝑡 , 𝑓±²° 𝑡 	
  ~	
  𝒢𝒫 𝑐, 𝑘|¯° 𝑡, 𝑡? , 

representing genes that showed no divergence between PGCs, soma or ESCs. Because these datasets represent single-cell 
measurements that might be intrinsically less smooth than the microarray datasets, we assumed a Matérn covariance 
function throughout. As in previous analyses, we optimised hyperparameters to their MAP values and used the BIC to 
select the branching structure for each gene. The frequency of the three groups is indicated in Supplementary Figure 9(a), 
which shows that most genes were not differentially expressed i.e., non-branching. A histogram of the timing of branching 
is indicated in Supplementary Figure 9(b, c), and shows that of the genes that diverge between PGCs and soma, most do 
so between blastocyst stage and week 4, as expected.  

 
Supplementary Figure 4: (a) Frequency of the different groups. (b) Timing of branching between PGC and somatic cells. (c) Time of recombination 
between ESCs and inferred in vitro dynamics. 

Following GO analysis on the individual groups using permissive p-values (p<0.1 following multiple hypothesis test 
correction), we ordered terms by the pseudo-time at which 50% of their associated genes had branched, as previously done 
in Yang et al. (2016). In Figure 16 we indicate a heatmap representation of this ordering, where the x-axis represents the 
pseudo-time, the y-axis represents individual GO terms, and the colour indicates the fraction of genes that had branched. 
From these heatmaps we can see a continuum of responses. An associated table containing the full list of terms associated 
with the y-axis is available in Supplementary Table 4.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/167684doi: bioRxiv preprint 

https://doi.org/10.1101/167684
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Supplementary Figure 5: Individual GO terms for genes that were up-regulated in PGCs versus soma, according to the timing at which at least 50% of 
the genes associated with each term had branched. See also associated Supplementary Table 4.  

 

Supplementary Figure 6:  Pseudotime trajectories for male PGCs for (a) polycomb repressive complex 1 (PRC1) and (b) polycomb repressive 
complex 2 (PRC2) reveal highly dynamic changes during development. 
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Supplementary Figure 7: The clustering of early-branched genes by the level of RNF2 and H2AK119ub levels in H1 ESCs (over gene bodies +/- 5kb). 
Crucially these sites remain accessible during PGC development, as indicated by chromatin accessibility (NOME-seq) in week 11 male hPGCs (Guo et 
al. 2017).   
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Supplementary Figure 8:  Gene browser track for RNF2, H2AK119ub and YY1 at several PGC-related genes, SOX17, TFAP2C, PRDM1, and DPPA3. 
The H2AK119ub mark was found at SOX17 and TFAP2C in H1 ESCs, but not at PRDM1 or STELLA. YY1 has been shown to bind SOX17, TFAP2C 
and PRDM1, but not STELLA, in HEK293 cells. Crucially, several key putative targets of RNF2 and YY1 were shown to be accessible in week 11 male 
hPGCs (Guo et al. 2017) 
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Supplementary Figure 9: W15-NANOS3-tdTomato reporter line in in PGC media and following increase dose PRC1 RING1B/BMI1-dependent 
ubiquitination inhibitor PRT 4165 (12µM, 25µM, 50µM). (b) FACS quantification in two independent replicates: (middle row) control, 12µM, 25µM, 
50µm; (bottom row) control 30µM, 40µM, 50µM.  
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Supplementary Figure 10: W15-NANOS3-T2A-tdTomato reporter line in PGC media and following increase dose with small molecule inhibitor 
DETA/NONOate. (b) FACS quantification in two independent replicates: (middle row) control, 0.1mM, 0.5mM and 1mM; (bottom row) 0.25mM, 
0.5mM, 1mM. 

 

Supplementary Figure 11: W15-NANOS3-tdTomato in PGC media (left) and with EZH2-mediated histone methylation inhibitor DZNep (1µM). 
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Supplementary Figure 12: Scheme of the experimental workflow used to test the roles of individual components of the 4i hESC medium to sustain 
PGCLC competence. hESCs cultured in 4i medium were transferred to media lacking one of the kinase inhibitors for at least one passage. These cells 
were then subjected to standard PGCLC induction with BMP2 and supporting cytokines. PGCLC induction efficiency was assessed by flow cytometry 
as percentage of live cells expressing PGC markers AP, CD38 and NANOS3. Changes in PGCLC induction efficiency were thus used as proxy of changes 
in competence for PGC fate. 

4.1. ANALYSIS OF SOX17 OVEREXPRESSION LINES 

We identified differentially expressed genes in hESC lines constitutively over-expressing SOX17 (Seguin et al. (2008); 
GSE10809). Differential expression was evaluated using a Student’s t-test on log2 fluorescence versus parental lines using 
a cut-off of p<0.03 and log2 fold change >2, similar to  Seguin et al. (2008). 
 
4.2. GENE SET ENRICHMENT ANALYSIS 

Gene set based enrichment analysis was used to identify significantly enriched terms using Enrichr database. Here we 
focused on enrichment of GO 2017 and KEGG 2016 terms using permissive p-values (p<0.1 following multiple hypothesis 
testing correction). Using Enrichr we also looked for enrichment of Kinase Perturbations from GEO, Single Gene 
Perturbations from GEO, and Ligand Perturbations from GEO, using p-value cut-off of p<0.05 (following multiple 
hypothesis testing correction). 

5 EXPERIMENTAL PROCEDURES 

5.1 CELL CULTURE AND PGCLC DIFFERENTIATION 
  
hESCs (W15-NANOS3-tdTomato or WIS2-NANOS3-T2A-tdTomato (N3-tdTom, Kobayashi et al. (2017)) were cultured 
as in (Irie et al. 2015) on irradiated mouse embryonic fibroblasts (MEFs) (GlobalStem) in 4i medium (Supplementary Table 
5) or modifications therefrom (Supplementary Table 6). Media were replaced every day. hESCs were passaged by single-
cell dissociation using 0.25% Trypsin-EDTA (GIBCO). 10 μM ROCK inhibitor (Y-27632, TOCRIS) was added for 
24 hours after passaging. 

To induce PGCLCs  (Irie et al. 2015), hESCs were trypsinized, filtered and plated into ultra-low cell attachment U-bottom 
96-well plates (Corning, 7007) at 4,000 cells/well density in 100 μl PGCLC medium (Supplementary Table 7) The plate 
was centrifuged at 300g for 3 minutes and placed into a 37°C 5% CO2 incubator until embryoid body (EB) collection for 
downstream analysis. Reporter fluorescence intensities were monitored daily throughout differentiation using Olympus 
IX71 microscope. 

Supplementary files 3-7 available as separate spreadsheets. 

Supplementary Table 5. Competent (4i) medium composition.  

Component Final Concentration  Supplier 

Knockout DMEM - GIBCO 

Knockout serum replacement (KSR) 20% GIBCO 
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L-glutamine 2 mM GIBCO 

Nonessential amino acids 0.1 mM GIBCO 

2-mercaptoethanol 0.1 mM GIBCO 

Penicillin-Streptomycin 100 U/ml (Penicillin) 

0.1 mg/ml (Streptomycin) 

GIBCO 

Human LIF 20 ng/ml Stem Cell Institute (SCI) 

bFGF 8 ng/ml SCI 

TGF-β1 1 ng/ml Peprotech 

CHIR99021 (CH) 3 μM Miltenyi Biotec 

PD0325901 (PD) 1 μM Miltenyi Biotec 

SB203580 (SB) 5 μM TOCRIS bioscience 

SP600125 (SP) 5 μM TOCRIS bioscience 

 
Supplementary Table 6. Modifications of the 4i medium used in the competence screen. 

Component Final Concentration  
4i-PD03 4i as in Supp. Table 5 without PD0325901  

4i+PD17 4i as in Supp. Table 5 supplemented with indicated concentrations of PD173074 (TOCRIS bioscience) 

4i-PD03+PD17 4i-PD as above supplemented with indicated concentrations of PD173074 (TOCRIS bioscience) 

4i+LY 4i as in Supp. Table 5 supplemented with 10 μM LY294002 (Sigma) 

4i-PD+LY 4i-PD as above supplemented with 10 μM LY294002 (Sigma) 

4i+IWR  4i as in Supp. Table 5 supplemented with 2.5 μM IWR-1 (Sigma) 

4i-CH 4i as in Supp. Table 5 without CHIR99021 

4i-CH+IWR 4i as in Supp. Table 5 without CHIR99021 supplemented with   2.5 μM IWR-1 (Sigma) 

4i-SB 4i as in Supp. Table 5 without SB203580 

4i-SP 4i as in Supp. Table 5 without SP600125 

4i-LIF 4i as in Supp. Table 5 without human LIF 

4i+JAKi 4i as in Supp. Table 5 supplemented with 1μM CAS457081-03-7 

 
Supplementary Table 7. PGCLC induction medium composition  

Component Final Concentration  Supplier 
Glasgow’s MEM (GMEM) - GIBCO 

KSR 15% GIBCO 

L-glutamine 2 mM GIBCO 

Nonessential amino acids 0.1 mM GIBCO 

2-mercaptoethanol 0.1 mM GIBCO 

Penicillin-Streptomycin 100 U/ml (Penicillin) 

0.1 mg/ml (Streptomycin) 
GIBCO 

Sodium pyruvate 1 mM Sigma 

BMP2 500 ng/ml SCI 
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Human LIF 1 μg/ml SCI 

SCF 100 ng/ml R&D Systems 

EGF 50 ng/ml R&D Systems 

ROCK inhibitor (Y-27632)  10 μM TOCRIS bioscience 

 

5.2. Flow Cytometry 

D4 or D5 EBs were washed in PBS and dissociated with 0.25% Trypsin-EDTA for 15 min at 37°C. Cells were resuspended 
in FACS buffer (3% FBS in PBS) and incubated with antibodies specified in Supplementary Table 8. After washing with 
FACS buffer, the cells were recorded on BD LSR Fortessa. Data were analysed using FlowJo (Tree Star). 

Supplementary Table 8. Antibodies used for flow cytometry 

Name Dilution  Manufacturer 

Alkaline Phosphatase PerCP-Cy5.5 #561508 2.5 μl/assay BD Pharmingen 
Alkaline Phosphatase AF647 #561500 2.5 μl/assay BD Pharmingen 

CD38 PerCP-Cy5.5 #303522 2.5 μl/assay BioLegend 

CD38 AF647 #303514 2.5 μl/assay BioLegend 

Alkaline Phosphatase PerCP-Cy5.5 #561508 2.5 μl/assay BD Pharmingen 

 

5.3. Real-Time Quantitative RT-PCR 

Total RNA was extracted from unsorted hESCs using RNeasy Mini Kit (QIAGEN). cDNA was synthesized using 
QuantiTect Reverse Transcription Kit (QIAGEN). qPCR was performed on a QuantStudio 12K Flex Real-Time PCR 
machine (Applied Biosystems) using SYBR Green JumpStart Taq ReadyMix (Sigma) and human-specific primers 
(Supplementary Table 9). The ΔΔCt method was used for quantification of gene expression. Three technical replicates 
were used for each biological replicate.  

5.4. Dominant-negative ERK expression  

For inducible expression of dominant-negative ERK1 (DN-ERK), a cDNA from pFLAG-CMV-hErk1(K71R) (Addgene 
plasmid #49329) encoding human ERK1 with K71R mutation (Robbins et al. 1993) was cloned (into a doxycycline (dox)-
inducible PB-TRE-3G vector (Kobayashi et al. 2017) to yield pPB-TRE-3G-DN-ERK-IRES-EGFP. The plasmid was 
generated using In-Fusion cloning (Clontech) according to manufacturer’s recommendations.  Primers used for cloning are 
specified in Table 6. N3tdTom hESCs were co-lipofected with 2 μg PB-TRE-3G-DN-ERK-IRES-EGFP, 2.5 μg PBase and 
0.5 μg pPBTET3G-Neo (Kobayashi et al. 2017). Lipofection was performed using OptiMEM (GIBCO) and Lipofectamin 
2000 (Invitrogen) according to manufacturer’s recommendations. 

Supplementary Table 9. Oligos used in the study.  

Name Used for 5'-3' sequence  

SOX2_h_F qPCR GGGAAATGGGAGGGGTGCAAAAGAGG 

SOX2_h_R qPCR TTGCGTGAGTGTGGATGGGATTGGTG 

OCT4_h-m_F qPCR GCTGGAGCAAAACCCGGAGG 

OCT4_h-m_R qPCR TCGGCCTGTGTATATCCCAGGGTG 

CDX2_h_F qPCR TCACCATCCGGAGGAAAGCC 

CDX2_h_R qPCR CTCTCCTTTGCTCTGCGGTT 
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HAND1_h_F qPCR CGTGAGAGCAAGCGGAAAAG 

HAND1_h_R qPCR AATCCTCTTCTCGACTGGGC 

In-Fusion pPBTRE3G-
hERK1_F Cloning  ccctcgtaaagtcgaCGCCGCCACCatgGCGGCGGCGGCGGCTCAG 

In-Fusion pPBTRE3G-
EGFP_R Cloning  gggccccggtgtcgaCTTACTTGTACAGCTCGTCCATGCCG 

 
 

 
 
Supplementary Figure 13. Withdrawal of p38 inhibitor from 4i results in hESC differentiation. hESCs were cultured 
in respective media for 4 passages and collected for qPCR analysis. Data are shown as mean (of three technical replicates 
each) ± SD of 2 independent experiments. * p ≤ 0.05, ns: not significant (p > 0.05), Holm-Sidak t-test.  
 

 
Supplementary Figure 14. Withdrawal of MEK inhibitor from 4i results in changes to hESC colony morphology 
and induces expression of endoderm-related markers. (a) Representative pictures of hESCs cultured in complete 4i or 
“4i-PD03” media. (b) qPCR showing pluripotency and endoderm marker genes expression in bulk hESCs cultured in 4i 
and “4i-PD03” media. Data are shown as mean (of three technical replicates each) ± SD of 5 independent experiments. * 
p ≤ 0.05, ** p ≤ 0.01, ns: not significant (p > 0.05), Holm-Sidak t-test.  
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Supplementary Figure 15. Inhibition of PI3K during differentiation does not abrogate PGCLC specification. Data 
are shown as mean ± SD of 2 independent experiments. * p ≤ 0.05, Holm-Sidak t-test. 
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