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Major	depressive	disorder	(MDD)	is	a	notably	complex	illness	with	a	lifetime	prevalence	of	14%.	1	It	is	
often	 chronic	 or	 recurrent	 and	 is	 thus	 accompanied	 by	 considerable	 morbidity,	 excess	 mortality,	
substantial	costs,	and	heightened	risk	of	suicide.	2-7	MDD	is	a	major	cause	of	disability	worldwide.	8	We	
conducted	 a	 genome-wide	 association	 (GWA)	 meta-analysis	 in	 130,664	 MDD	 cases	 and	 330,470	
controls,	 and	 identified	44	 independent	 loci	 that	met	 criteria	 for	 statistical	 significance.	We	present	
extensive	analyses	of	 these	 results	which	provide	new	 insights	 into	 the	nature	of	MDD.	The	genetic	
findings	 were	 associated	 with	 clinical	 features	 of	 MDD,	 and	 implicated	 prefrontal	 and	 anterior	
cingulate	 cortex	 in	 the	pathophysiology	of	MDD	 (regions	exhibiting	anatomical	differences	between	
MDD	 cases	 and	 controls).	 Genes	 that	 are	 targets	 of	 antidepressant	 medications	 were	 strongly	
enriched	 for	 MDD	 association	 signals	 (P=8.5x10-10),	 suggesting	 the	 relevance	 of	 these	 findings	 for	
improved	pharmacotherapy	of	MDD.	Sets	of	genes	involved	in	gene	splicing	and	in	creating	isoforms	
were	also	enriched	for	smaller	MDD	GWA	P-values,	and	these	gene	sets	have	also	been	implicated	in	
schizophrenia	 and	 autism.	 Genetic	 risk	 for	 MDD	 was	 correlated	 with	 that	 for	 many	 adult	 and	
childhood	onset	psychiatric	disorders.	Our	analyses	suggested	 important	 relations	of	genetic	 risk	 for	
MDD	 with	 educational	 attainment,	 body	 mass,	 and	 schizophrenia:	 the	 genetic	 basis	 of	 lower	
educational	 attainment	 and	 higher	 body	mass	 were	 putatively	 causal	 for	MDD	whereas	MDD	 and	
schizophrenia	reflected	a	partly	shared	biological	etiology.	All	humans	carry	lesser	or	greater	numbers	
of	 genetic	 risk	 factors	 for	 MDD,	 and	 a	 continuous	 measure	 of	 risk	 underlies	 the	 observed	 clinical	
phenotype.	MDD	is	not	a	distinct	entity	that	neatly	demarcates	normalcy	from	pathology	but	rather	a	
useful	clinical	construct	associated	with	a	range	of	adverse	outcomes	and	the	end	result	of	a	complex	
process	 of	 intertwined	genetic	 and	 environmental	 effects.	 These	 findings	 help	 refine	and	define	 the	
fundamental	basis	of	MDD.		

Twin	studies	attribute	~40%	of	the	variation	in	liability	to	MDD	to	additive	genetic	effects	(heritability,	
ℎ"),	9	and	ℎ"	may	be	greater	for	recurrent,	early-onset,	and	postpartum	MDD.	10,11	GWA	studies	of	MDD	
have	 had	 notable	 difficulties	 in	 identifying	 loci.	 12	 Previous	 findings	 suggest	 that	 an	 appropriately	
designed	 study	 should	 identify	 susceptibility	 loci.	 Direct	 estimates	 of	 the	 proportion	 of	 variance	
attributable	to	genome-wide	SNPs	(SNP	heritability,	ℎ#$%" )	 indicate	that	around	a	quarter	of	the	ℎ"	 for	
MDD	 is	due	to	common	genetic	variants.	 13,14	Although	there	were	no	significant	 findings	 in	 the	 initial	
Psychiatric	 Genomics	 Consortium	 (PGC)	 MDD	mega-analysis	 (9,240	MDD	 cases)	 15	 or	 in	 the	 CHARGE	
meta-analysis	 of	 depressive	 symptoms	 (34,549	 respondents),	 16	 more	 recent	 studies	 have	 proven	
modestly	 successful.	 A	 study	 of	 Han	 Chinese	women	 (5,303	MDD	 cases)	 identified	 two	 genome-wide	
significant	 loci,	 17	 a	meta-analysis	 of	 depressive	 symptoms	 (161,460	 individuals)	 identified	 two	 loci,	 18	
and	an	analysis	of	self-reported	MDD	identified	15	loci	(75,607	cases).	19		

There	 are	many	 reasons	why	 identifying	 causal	 loci	 for	MDD	has	 proven	difficult.	 12	MDD	 is	 probably	
influenced	 by	 many	 genetic	 loci	 each	 with	 small	 effects,	 20	 as	 are	 most	 common	 complex	 human	
diseases	 21	 including	psychiatric	disorders.	 22,23	A	major	 lesson	 in	human	complex	 trait	 genetics	 is	 that	
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large	samples	are	essential,	especially	for	common	and	etiologically	heterogeneous	illnesses	like	MDD.	24	
We	sought	to	accumulate	a	large	sample	to	identify	common	genetic	variation	involved	in	the	etiology	
of	MDD.	24		

Analysis	of	MDD	anchor	with	six	expanded	cohorts	shows	polygenic	prediction	&	clinical	relevance	

We	defined	an	“anchor”	cohort	of	29	samples	that	mostly	applied	standard	methods	for	assessing	MDD	
(Table	 S1).	MDD	cases	 in	 the	anchor	 cohort	were	 traditionally	 ascertained	and	 typically	 characterized	
(i.e.,	 using	 direct	 interviews	 with	 structured	 diagnostic	 instruments).	 We	 identified	 six	 “expanded”	
cohorts	that	used	alternative	methods	to	identify	MDD	(Table	S2;	deCODE,	Generation	Scotland,	GERA,	
iPSYCH,	 UK	 Biobank,	 and	 23andMe,	 Inc.).	 All	 seven	 cohorts	 focused	 on	 clinically-significant	MDD.	We	
evaluated	 the	 comparability	 of	 these	 cohorts	 (Table	 S3)	 by	 estimating	 the	 common-variant	 genetic	
correlations	(&')	of	the	anchor	cohort	with	the	expanded	cohorts.	These	analyses	strongly	supported	the	
comparability	 of	 the	 seven	 cohorts	 (Table	 S4)	 as	 the	weighted	mean	 &'	 was	 0.76	 (SE	 0.028)	with	 no	
statistical	 evidence	 of	 heterogeneity	 in	 the	 &'	 estimates	 (P=0.13).	 As	 a	 benchmark	 for	 the	 MDD	 &'	
estimates,	the	weighted	mean	&'	between	schizophrenia	cohorts	was	0.84	(SE	0.05).	13		
We	completed	a	GWA	meta-analysis	of	9.6	million	 imputed	SNPs	 in	seven	cohorts	containing	130,664	
MDD	cases	and	330,470	controls	 (Figure	1;	 full	details	 in	Online	Methods).	 There	was	no	evidence	of	
uncontrolled	inflation	(LD	score	regression	intercept	1.018,	SE	0.009).	We	estimated	ℎ#$%" 	to	be	8.9%	(SE	
0.004,	 liability	 scale,	 assuming	 lifetime	 population	 risk	 of	 0.15),	 and	 this	 is	 around	 a	 quarter	 of	 ℎ"	
estimated	 from	 twin	 or	 family	 studies.	 9	 This	 fraction	 is	 somewhat	 lower	 than	 that	 of	 other	 complex	
traits,	21	and	is	plausibly	due	to	etiological	heterogeneity.		

We	used	 genetic	 risk	 score	 (GRS)	 analyses	 to	demonstrate	 the	 validity	 of	 our	GWA	 results	 for	 clinical	
MDD	(Figure	2).	As	expected,	the	variance	explained	in	out-of-sample	prediction	increased	with	the	size	
of	the	GWA	discovery	cohort	(Figure	2a).	Across	all	samples	in	the	anchor	cohort,	GRS	explained	1.9%	of	
variance	 in	 liability	 (Figure	S1a),	GRS	 ranked	cases	higher	 than	controls	with	probability	0.57,	and	 the	
odds	ratio	of	MDD	for	those	in	the	10th	versus	1st	GRS	decile	(OR10)	was	2.4	(Figure	2b,	Table	S5).	GRS	
were	significantly	higher	in	those	with	more	severe	MDD,	as	measured	in	different	ways	(Figure	2c).		

Implications	of	the	individual	loci	for	the	biology	of	MDD	

Our	meta-analysis	of	seven	MDD	cohorts	identified	44	independent	loci	that	were	statistically	significant	
(P<5x10-8),	 statistically	 independent	 of	 any	 other	 signal,	 25	 supported	 by	 multiple	 SNPs,	 and	 showed	
consistent	 effects	 across	 cohorts.	 This	 number	 is	 consistent	 with	 our	 prediction	 that	 MDD	 GWA	
discovery	 would	 require	 about	 five	 times	 more	 cases	 than	 for	 schizophrenia	 (lifetime	 risk	 ~1%	 and	
ℎ"~0.8)	to	achieve	approximately	similar	power.	26	Of	these	44	loci,	30	are	novel	and	14	were	significant	
in	 a	 prior	 study	 of	MDD	 or	 depressive	 symptoms	 (the	 overlap	 of	 our	 findings:	 1/1	with	 the	 CHARGE	
depressive	symptom	study,	 16	0/2	overlap	with	CONVERGE	MDD	study,	 17	1/2	overlap	with	 the	SSGAC	
depressive	symptom	study,	18	and	13/16	overlap	with	23andMe	self-report	of	MDD	19	).	There	are	few	
trans-ancestry	 comparisons	 for	MDD	 so	we	 contrasted	 these	 European	 results	 with	 the	 Han	 Chinese	
CONVERGE	study	(Online	Methods).		

Table	1	 lists	genes	 in	or	near	the	 lead	SNP	in	each	region,	regional	plots	are	 in	the	Supplemental	File,	
and	Table	 S6	 provides	extensive	 summaries	of	 available	 information	about	 the	biological	 functions	of	
the	genes	 in	each	region.	 In	nine	of	 the	44	 loci,	 the	 lead	SNP	 is	within	a	gene,	 there	 is	no	other	gene	
within	 200	 kb,	 and	 the	 gene	 is	 known	 to	 play	 a	 role	 in	 neuronal	 development,	 synaptic	 function,	
transmembrane	adhesion	complexes,	and/or	regulation	of	gene	expression	in	brain.		

The	 two	 most	 significant	 SNPs	 are	 located	 in	 or	 near	 OLFM4	 and	 NEGR1,	 which	 were	 previously	
associated	with	obesity	and	body	mass	index.	27-32	OLFM4	(olfactomedin	4)	has	diverse	functions	outside	
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the	 CNS	 including	 myeloid	 precursor	 cell	 differentiation,	 innate	 immunity,	 anti-apoptotic	 effects,	 gut	
inflammation,	and	is	over-expressed	in	diverse	common	cancers.	33	Many	olfactomedins	also	have	roles	
in	 neurodevelopment	 and	 synaptic	 function;	 34	 e.g.,	 latrophilins	 form	 trans-cellular	 complexes	 with	
neurexins	35	and	with	FLRT3	to	regulate	glutamatergic	synapse	number.	36	Olfm4	was	highly	upregulated	
after	 spinal	 transection,	 possibly	 related	 to	 inhibition	 of	 subsequent	 neurite	 outgrowth.	 37	 NEGR1	
(neuronal	growth	regulator	1)	influences	axon	extension	and	synaptic	plasticity	in	cortex,	hypothalamus,	
and	hippocampus,	38-40	and	modulates	synapse	formation	in	hippocampus	41,42	via	regulation	of	neurite	
outgrowth.	 43,44	 High	 expression,	 modulated	 by	 nutritional	 state,	 is	 seen	 in	 brain	 areas	 relevant	 to	
feeding,	 suggesting	 a	 role	 in	 control	 of	 energy	 intake.	 45	 The	 same	 SNP	 alleles	 are	 associated	 with	
increased	 risk	 of	 obesity	 and	 MDD	 (see	 also	 Mendelian	 randomization	 analyses	 below)	 and	 are	
associated	with	NEGR1	gene	expression	in	brain	(Table	S6).	The	associated	SNPs	may	tag	two	upstream	
common	deletions	(8	and	43	kb)	that	delete	transcription	factor	binding	sites,	46	although	reports	differ	
on	whether	the	signal	is	driven	by	the	shorter	27	or	the	longer	deletion.	31	Thus,	the	top	two	associations	
are	 in	 or	 near	 genes	 that	 influence	 BMI	 and	 may	 be	 involved	 in	 neurite	 outgrowth	 and	 synaptic	
plasticity.		

Novel	associations	reported	here	include	RBFOX1	and	LRFN5.	There	are	independent	associations	with	
MDD	at	 both	 the	 5’	 and	 the	 3’	 ends	of	RBFOX1	 (1.7	Mb,	 RNA	binding	protein	 fox-1	homolog	 1).	 This	
convergence	makes	 it	a	 strong	candidate	gene.	Fox-1	 regulates	 the	expression	of	 thousands	of	genes,	
many	of	which	are	expressed	at	synapses	and	enriched	for	autism-related	genes.	47	The	Fox-1	network	
regulates	neuronal	excitability	and	prevents	seizures.	48	It	directs	splicing	in	the	nucleus	and	binds	to	3ʹ	
UTRs	of	 target	mRNAs	 in	the	cytoplasm.	48,49	Of	particular	relevance	to	MDD,	Fox-1	participates	 in	the	
termination	of	the	corticotropin	releasing	hormone	response	to	stress	by	promoting	alternative	splicing	
of	 the	 PACAP	 receptor	 to	 its	 repressive	 form.	 50	 Thus,	 RBFOX1	 could	 play	 a	 role	 in	 the	 chronic	
hypothalamic-pituitary-adrenal	axis	hyperactivation	that	has	been	widely	reported	in	MDD.	51		

LRFN5	 (leucine	 rich	 repeat	 and	 fibronectin	 type	 III	 domain	 containing	 5)	 encodes	 adhesion-like	
molecules	 involved	 in	 synapse	 formation.	 Common	 SNPs	 in	 LRFN5	 were	 associated	 with	 depressive	
symptoms	 in	 older	 adults	 in	 a	 gene-based	 GWA	 analysis.	 52	 LRFN5	 induces	 excitatory	 and	 inhibitory	
presynaptic	differentiation	in	contacting	axons	and	regulates	synaptic	strength.	53,54	LRFN5	also	limits	T-
cell	 response	 and	 neuroinflammation	 (CNS	 “immune	 privilege”)	 by	 binding	 to	 herpes	 virus	 entry	
mediator;	a	LRFN5-specific	monoclonal	antibody	 increases	activation	of	microglia	and	macrophages	by	
lipopolysaccharide	 and	 exacerbates	 mouse	 experimental	 acquired	 encephalitis;	 55	 thus,	 reduced	
expression	 (the	 predicted	 effect	 of	 eQTLs	 in	 LD	 with	 the	 associated	 SNPs)	 could	 increase	
neuroinflammatory	responses.		

Gene-wise	 analyses	 identified	 153	 significant	 genes	 after	 controlling	 for	multiple	 comparisons	 (Table	
S7).	 Many	 of	 these	 genes	 were	 in	 the	 extended	 MHC	 region	 (45	 of	 153)	 and	 their	 interpretation	 is	
complicated	by	high	LD	and	gene	density.	 In	addition	to	the	genes	discussed	above,	other	notable	and	
significant	 genes	 outside	 of	 the	 MHC	 include	 multiple	 potentially	 “druggable”	 targets	 that	 suggest	
connections	of	 the	pathophysiology	of	MDD	to	neuronal	calcium	signaling	 (CACNA1E	and	CACNA2D1),	
dopaminergic	 neurotransmission	 (DRD2,	 a	 principal	 target	 of	 antipsychotics),	 glutamate	
neurotransmission	(GRIK5	and	GRM5),	and	presynaptic	vesicle	trafficking	(PCLO).		

Finally,	 comparison	of	 the	MDD	 loci	with	108	 loci	 for	 schizophrenia	 22	 identified	 six	 shared	 loci.	Many	
SNPs	 in	 the	 extended	MHC	 region	 are	 strongly	 associated	with	 schizophrenia,	 but	 implication	 of	 the	
MHC	 region	 is	 novel	 for	 MDD.	 Another	 example	 is	 TCF4	 (transcription	 factor	 4)	 which	 is	 strongly	
associated	 with	 schizophrenia	 but	 not	 previously	 with	 MDD.	 TCF4	 is	 essential	 for	 normal	 brain	
development,	and	rare	mutations	in	TCF4	cause	Pitt–Hopkins	syndrome	which	includes	autistic	features.	
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56	GRS	calculated	from	the	schizophrenia	GWA	results	explained	0.8%	of	the	variance	in	liability	of	MDD	
(Figure	2c).		

Implications	for	the	biology	of	MDD	using	functional	genomic	data	

Results	from	“-omic”	studies	of	functional	features	of	cells	and	tissues	are	necessary	to	understand	the	
biological	 implications	 of	 results	 of	 GWA	 for	 complex	 disorders	 like	MDD.	 57	 To	 further	 elucidate	 the	
biological	 relevance	 of	 the	MDD	 findings,	 we	 integrated	 the	 results	 with	 a	 wide	 range	 of	 functional	
genomic	 data.	 First,	 using	 enrichment	 analyses,	 we	 compared	 the	MDD	 GWA	 findings	 to	 bulk	 tissue	
mRNA-seq	from	GTEx.	58	Only	brain	samples	showed	significant	enrichment	(Figure	3A),	and	the	three	
tissues	with	the	most	significant	enrichments	were	all	cortical.	Prefrontal	cortex	and	anterior	cingulate	
cortex	 are	 important	 for	 higher-level	 executive	 functions	 and	 emotional	 regulation	 which	 are	 often	
impaired	 in	MDD.	Both	regions	were	 implicated	 in	a	 large	meta-analysis	of	brain	MRI	 findings	 in	adult	
MDD	 cases.	 59	 Second,	 given	 the	 predominance	 of	 neurons	 in	 cortex,	 we	 confirmed	 that	 the	 MDD	
genetic	findings	connect	to	genes	expressed	in	neurons	but	not	oligodendrocytes	or	astrocytes	(Figure	
3B).	 60	These	 results	confirm	that	MDD	 is	a	brain	disorder	and	provide	validation	 for	 the	utility	of	our	
genetic	results	for	the	etiology	of	MDD.		

Third,	we	used	partitioned	LD	score	regression	61	to	evaluate	the	enrichment	of	the	MDD	GWA	findings	
in	 over	 50	 functional	 genomic	 annotations	 (Figure	 3C	 and	 Table	 S8).	 The	 major	 finding	 was	 the	
significant	 enrichment	 of	 MDD	 ℎ#$%" 	 in	 genomic	 regions	 conserved	 across	 29	 Eutherian	 mammals	 62	
(20.9	fold	enrichment,	P=1.4x10-15).	This	annotation	was	also	the	most	enriched	for	schizophrenia.	61	We	
could	not	evaluate	regions	conserved	in	primates	or	human	“accelerated”	regions	as	there	were	too	few	
for	confident	evaluation.	62	The	other	major	enrichments	implied	regulatory	activity,	and	included	open	
chromatin	 in	 human	 brain	 and	 an	 epigenetic	 mark	 of	 active	 enhancers	 (H3K4me1).	 Notably,	 exonic	
regions	did	not	show	enrichment	suggesting	that,	as	with	schizophrenia,	20	genetic	variants	that	change	
exonic	 sequences	 may	 not	 play	 a	 large	 role	 in	 MDD.	 We	 found	 no	 evidence	 that	 Neanderthal	
introgressed	regions	were	enriched	for	MDD	GWA	findings.	63		

Fourth,	 we	 applied	 methods	 to	 integrate	 GWA	 SNP-MDD	 results	 with	 those	 from	 gene	 expression	
quantitative	trait	loci	(eQTL)	studies.	SMR	(summary	data–based	Mendelian	randomization)	64	identified	
13	MDD-associated	SNPs	with	strong	evidence	that	 they	control	 local	gene	expression	 in	one	or	more	
tissues	 (Table	 S9	 and	 Figure	 S2),	 including	 two	 loci	 not	 reaching	 GWA	 significance	 (TMEM64	 and	
ZDHHC5).	 A	 transcriptome-wide	 association	 study	 65	 applied	 to	 data	 from	 the	 dorsolateral	 prefrontal	
cortex	66	identified	17	genes	where	MDD-associated	SNPs	influenced	gene	expression	(Table	S10).	These	
genes	included	OLFM4	(discussed	above).		

Fifth,	we	added	additional	data	 types	 to	 attempt	 to	 improve	understanding	of	 individual	 loci.	 For	 the	
intergenic	 associations,	 we	 evaluated	 total-stranded	 RNA-seq	 data	 from	 human	 brain	 and	 found	 no	
evidence	for	unannotated	transcripts	in	these	regions.	A	particularly	important	data	type	is	assessment	
of	 DNA-DNA	 interactions	which	 can	 localize	 a	 GWA	 finding	 to	 a	 specific	 gene	 that	may	 be	 nearby	 or	
hundreds	 of	 kb	 away.	 67-69	We	 integrated	 the	MDD	 findings	with	 “easy	Hi-C”	 data	 from	brain	 cortical	
samples	(3	adult,	3	fetal,	more	than	1	billion	reads	each).	These	data	clarified	three	of	the	associations.		

The	 statistically	 independent	 associations	 in	 NEGR1	 (rs1432639,	 P=4.6x10-15)	 and	 over	 200	 kb	 away	
(rs12129573,	P=4.0x10-12)	both	implicate	NEGR1	(Figure	S3a),	the	former	likely	due	to	the	presence	of	a	
reportedly	functional	copy	number	polymorphism	(see	above)	and	the	presence	of	intergenic	loops.	The	
latter	 association	 has	 evidence	 of	 DNA	 looping	 interactions	 with	 NEGR1.	 The	 association	 in	 SOX5	
(rs4074723)	 and	 the	 two	 statistically	 independent	 associations	 in	RBFOX1	 (rs8063603	 and	 rs7198928,	
P=6.9x10-9	 and	 1.0x10-8)	 had	 only	 intragenic	 associations,	 suggesting	 that	 the	 genetic	 variation	 in	 the	
regions	 of	 the	 MDD	 associations	 act	 locally	 and	 can	 be	 assigned	 to	 these	 genes.	 In	 contrast,	 the	
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association	 in	 RERE	 (rs159963	 P=3.2x10-8)	 could	 not	 be	 assigned	 to	 RERE	 as	 it	 may	 contain	 super-
enhancer	elements	given	its	many	DNA-DNA	interactions	with	many	nearby	genes	(Figure	S3b).		

Implications	for	the	biology	of	MDD	based	on	the	roles	of	sets	of	genes	

A	 parsimonious	 explanation	 for	 the	 presence	 of	many	 significant	 associations	 for	 a	 complex	 trait	 like	
MDD	is	that	the	different	associations	are	part	of	a	higher	order	grouping	of	genes.	70	These	could	be	a	
biological	 pathway	 or	 a	 collection	 of	 genes	 with	 a	 functional	 connection.	 Multiple	 methods	 allow	
evaluation	of	 the	connection	of	MDD	GWA	results	 to	sets	of	genes	grouped	by	empirical	or	predicted	
function	(i.e.,	pathway	or	gene	set	analysis).		

Full	pathway	analyses	are	shown	in	Table	S11,	and	the	19	pathways	with	false	discovery	rate	q-values	<	
0.05	are	summarized	in	Figure	4.	The	major	groupings	of	significant	pathways	were:	RBFOX1,	RBFOX2,	
RBFOX3,	or	CELF4	regulatory	networks;	genes	whose	mRNAs	are	bound	by	FMRP;	synaptic	genes;	genes	
involved	 in	 neuronal	 morphogenesis;	 genes	 involved	 in	 neuron	 projection;	 genes	 associated	 with	
schizophrenia	(at	P<10-4)	22;	genes	involved	in	CNS	neuron	differentiation;	genes	encoding	voltage-gated	
calcium	channels;	 genes	 involved	 in	 cytokine	and	 immune	 response;	 and	genes	 known	 to	bind	 to	 the	
retinoid	 X	 receptor.	 Several	 of	 these	 pathways	 are	 implicated	 by	 GWA	 of	 schizophrenia	 and	 by	 rare	
exonic	 variation	 of	 schizophrenia	 and	 autism,	 71,72	 and	 immediately	 suggest	 shared	 biological	
mechanisms	across	these	disorders.		

A	 key	 issue	 for	 common	 variant	 GWA	 studies	 is	 their	 relevance	 for	 pharmacotherapy:	 do	 the	 results	
connect	 meaningfully	 to	 known	 medication	 targets	 and	 might	 they	 suggest	 new	 mechanisms	 or	
“druggable”	targets?	We	conducted	gene	set	analysis	that	compared	the	MDD	GWA	results	to	targets	of	
antidepressant	 medications	 defined	 by	 pharmacological	 studies,	 73	 and	 found	 that	 42	 sets	 of	 genes	
encoding	 proteins	 bound	 by	 antidepressant	 medications	 were	 highly	 enriched	 for	 smaller	 MDD	
association	P-values	than	expected	by	chance	(42	drugs,	rank	enrichment	test	P=8.5x10-10).	This	finding	
connects	our	MDD	genomic	findings	to	MDD	therapeutics,	and	suggests	the	salience	of	these	results	for	
novel	lead	compound	discovery	for	MDD.	74		

Implications	for	a	deeper	understanding	of	the	clinically-defined	entity	“MDD”	

Past	 epidemiological	 studies	 associated	MDD	with	many	 other	 diseases	 and	 traits.	 Due	 to	 limitations	
inherent	to	observational	studies,	understanding	whether	a	phenotypic	correlation	is	potentially	causal	
or	if	it	results	from	reverse	causation	or	confounding	is	generally	unclear.	Genetic	studies	can	now	offer	
complementary	strategies	to	assess	whether	a	phenotypic	association	between	MDD	and	a	risk	factor	or	
a	comorbidity	is	mirrored	by	a	non-zero	&'	(common	variant	genetic	correlation)	and,	for	some	of	these,	
evaluate	the	potential	causality	of	the	association	given	that	exposure	to	genetic	risk	factors	begins	at	
conception.		

We	used	 LD	 score	 regression	 to	estimate	&'	 of	MDD	with	221	psychiatric	disorders,	medical	diseases,	
and	 human	 traits.	 14,75	Table	 S12	 contains	 the	 full	 results,	 and	 Table	 2	 holds	 the	 &'	 values	with	 false	
discovery	rates	<	0.01.	First,	there	were	very	high	genetic	correlations	for	MDD	with	current	depressive	
symptoms.	Both	correlations	were	close	to	+1	(the	samples	in	one	report	overlapped	partially	with	this	
MDD	 meta-analysis	 18	 but	 the	 other	 did	 not	 16).	 The	 &'	 estimate	 in	 the	 MDD	 anchor	 samples	 with	
depressive	symptoms	was	numerically	smaller	(0.80,	SE	0.059)	but	the	confidence	intervals	overlapped	
those	 for	 the	 full	 sample.	 Thus,	 the	 common-variant	genetic	 architecture	of	 lifetime	MDD	overlapped	
strongly	with	that	of	current	depressive	symptoms	(bearing	 in	mind	that	current	symptoms	had	 lower	
estimates	of	ℎ#$%" 	compared	to	the	lifetime	measure	of	MDD).		

Second,	MDD	had	 significant	 positive	 genetic	 correlations	with	 every	 psychiatric	 disorder	 assessed	 as	
well	 as	 with	 smoking	 initiation.	 This	 is	 the	most	 comprehensive	 and	 best-powered	 evaluation	 of	 the	
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relation	 of	 MDD	 with	 other	 psychiatric	 disorders	 yet	 published,	 and	 these	 results	 indicate	 that	 the	
common	 genetic	 variants	 that	 predispose	 to	 MDD	 overlap	 substantially	 with	 those	 for	 adult	 and	
childhood	onset	psychiatric	disorders.		

Third,	 MDD	 had	 positive	 genetic	 correlations	 with	 multiple	 measures	 of	 sleep	 quality	 (daytime	
sleepiness,	insomnia,	and	tiredness).	The	first	two	of	these	correlations	were	based	on	a	specific	analysis	
of	UK	Biobank	data	 (i.e.,	 removing	people	with	MDD,	other	major	psychiatric	disorders,	 shift	workers,	
and	those	taking	hypnotics).	This	pattern	of	correlations	combined	with	the	critical	importance	of	sleep	
and	 fatigue	 in	 MDD	 (these	 are	 two	 commonly	 accepted	 criteria	 for	 MDD)	 suggests	 a	 close	 and	
potentially	profound	mechanistic	relation.	MDD	also	had	a	strong	genetic	correlation	with	neuroticism	
(a	 personality	 dimension	 assessing	 the	 degree	 of	 emotional	 instability);	 this	 is	 consistent	 with	 the	
literature	showing	a	close	interconnection	of	MDD	and	this	personality	trait.	The	strong	negative	&'	with	
subjective	well-being	underscores	the	capacity	of	MDD	to	impact	human	health.		

Finally,	MDD	had	 negative	 correlations	with	 two	 proxy	measures	 of	 intelligence,	 positive	 correlations	
with	multiple	measures	 of	 adiposity,	 relationship	 to	 female	 reproductive	 behavior	 (decreased	 age	 at	
menarche,	age	at	first	birth,	and	increased	number	of	children),	and	positive	correlations	with	coronary	
artery	disease	and	lung	cancer.		

We	used	Mendelian	randomization	(MR)	to	investigate	the	relationships	between	genetically	correlated	
traits.	 We	 conducted	 bi-directional	 MR	 analysis	 for	 four	 traits:	 years	 of	 education	 (EDY,	 a	 proxy	 for	
general	intelligence)	76,	body	mass	index	(BMI)	27,	coronary	artery	disease	(CAD)	77,	and	schizophrenia	22.	
These	traits	were	selected	because	all	of	the	following	were	true:	phenotypically	associated	with	MDD,	
significant	 &'	 with	 MDD	 with	 an	 unclear	 direction	 of	 causality,	 and	 >30	 independent	 genome-wide	
significant	associations	from	large	GWA.		

We	 report	 GSMR	 (generalized	 summary	 statistic-based	MR)	 results	 but	 obtained	 qualitatively	 similar	
results	with	 other	MR	methods	 (Table	 S13	 and	Figures	 S4A-D).	MR	 analyses	 provided	 evidence	 for	 a	
1.15-fold	 increase	 in	MDD	per	 standard	deviation	of	 BMI	 (PGSMR=2.7x10-7)	 and	 a	 0.89-fold	decrease	 in	
MDD	per	standard	deviation	of	EDY	(PGSMR=8.8x10-7).	There	was	no	evidence	of	reverse	causality	of	MDD	
for	BMI	(PGSMR=0.81)	or	EDY	(PGSMR=0.28).	For	BMI	there	was	some	evidence	of	pleiotropy,	as	eight	SNPs	
were	excluded	by	the	HEIDI-outlier	test	including	SNPs	near	OLFM4	and	NEGR1	(if	these	were	included,	
the	estimate	of	 increased	 risk	 for	MDD	was	 greater).	 Thus,	 these	 results	 are	 consistent	with	 EDY	and	
BMI	as	causal	risk	factors	or	correlated	with	causal	risk	factors	for	MDD.	For	CAD,	the	MR	analyses	were	
not	significant	when	considering	MDD	as	an	outcome	(PGSMR=0.39)	or	as	an	exposure	(PGSMR=0.13).	We	
interpret	the	&'	of	0.12	between	CAD	and	MDD	to	reflect	a	genome-wide	correlation	in	the	sign	of	effect	
sizes	but	no	correlation	in	the	effect	size	magnitudes:	this	is	consistent	with	“type	I	pleiotropy”	78,	that	
there	are	multiple	molecular	 functions	of	 these	genetic	variants	 (which	may	be	tissue-specific	 in	brain	
and	 heart).	 However,	 because	 the	MR	 regression	 coefficient	 for	MDD	 instruments	 has	 relatively	 high	
standard	 error,	 this	 analysis	 should	 be	 revisited	 when	 more	 MDD	 genome-wide	 significant	 SNP	
instruments	become	available	from	future	MDD	GWA	studies.		

We	 used	 MR	 to	 investigate	 the	 relationship	 between	 MDD	 and	 schizophrenia.	 Although	 MDD	 had	
positive	 &'	 with	 many	 psychiatric	 disorders,	 only	 schizophrenia	 has	 sufficient	 associations	 for	 MR	
analyses.	We	 found	 significant	 bi-directional	 correlations	 in	 SNP	 effect	 sizes	 for	 schizophrenia	 loci	 in	
MDD	 (PGSMR=7.7x10-46)	 and	 for	 MDD	 loci	 in	 schizophrenia	 (PGSMR=6.3x10-15).	 We	 interpret	 the	 MDD-
schizophrenia	 &'	 of	 0.34	 as	 reflecting	 type	 II	 pleiotropy	 78	 (i.e.,	 consistent	 with	 shared	 biological	
pathways	being	causal	for	both	disorders).		
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Empirically,	what	is	MDD?	

The	nature	of	severe	depression	has	been	discussed	for	millennia.	79	This	GWA	meta-analysis	is	among	
the	largest	ever	conducted	for	a	psychiatric	disorder,	and	provides	a	body	of	results	that	help	refine	and	
define	the	fundamental	basis	of	MDD.		

First,	MDD	is	a	brain	disorder.	Although	this	is	not	unexpected,	some	past	models	of	MDD	have	had	little	
or	no	place	for	heredity	or	biology.	Our	results	indicate	that	genetics	and	biology	are	definite	pieces	in	
the	puzzle	of	MDD.	The	genetic	results	best	match	gene	expression	patterns	in	prefrontal	and	anterior	
cingulate	 cortex,	 anatomical	 regions	 that	 show	 differences	 between	 MDD	 cases	 and	 controls.	 The	
genetic	 findings	 implicated	 neurons	 (not	 microglia	 or	 astrocytes),	 and	 we	 anticipate	 more	 detailed	
cellular	localization	when	sufficient	single-cell	and	single-nuclei	RNA-seq	datasets	become	available.	80		

Second,	 the	genetic	 associations	 for	MDD	 (as	with	 schizophrenia)	 61	 tend	 to	occur	 in	genomic	 regions	
conserved	 across	 a	 range	 of	 placental	 mammals.	 Conservation	 suggests	 important	 functional	 roles.	
Given	 that	 this	 analysis	 did	 not	 implicate	 exons	or	 coding	 regions,	MDD	may	not	 be	 characterized	by	
common	changes	in	the	amino	acid	content	of	proteins.		

Third,	 the	 results	 also	 implicated	 developmental	 gene	 regulatory	 processes.	 For	 instance,	 the	 genetic	
findings	pointed	at	RBFOX1	 (the	presence	of	two	independent	genetic	associations	 in	RBFOX1	strongly	
suggests	that	it	is	the	MDD-relevant	gene).	Gene	set	analyses	implicated	genes	containing	binding	sites	
to	the	protein	product	of	RBFOX1	in	MDD,	and	this	gene	set	is	also	significantly	enriched	for	rare	exonic	
variation	in	autism	and	schizophrenia.	71,72	These	analyses	highlight	the	potential	importance	of	splicing	
to	generate	alternative	isoforms;	risk	for	MDD	may	be	mediated	not	by	changes	in	isolated	amino	acids	
but	rather	by	changes	in	the	proportions	of	isoforms	coming	from	a	gene,	given	that	isoforms	often	have	
markedly	different	biological	functions.	81,82	These	convergent	results	provide	a	tantalizing	suggestion	of	
a	biological	mechanism	common	to	multiple	severe	psychiatric	disorders.		

Fourth,	 in	 the	 most	 extensive	 analysis	 of	 the	 genetic	 “connections”	 of	 MDD	 with	 a	 wide	 range	 of	
disorders,	diseases,	and	human	traits,	we	found	significant	positive	genetic	correlations	with	measures	
of	 body	mass	 and	 negative	 genetic	 correlations	 with	 years	 of	 education.	MR	 analyses	 suggested	 the	
potential	causality	of	both	correlations,	and	our	results	certainly	provide	hypotheses	for	more	detailed	
prospective	 studies.	However,	 further	 clarity	 requires	 larger	 and	more	 informative	GWA	 studies	 for	 a	
wider	 range	 of	 related	 traits	 (e.g.,	 with	 >30	 significant	 associations	 per	 trait).	 We	 strongly	 caution	
against	 interpretations	of	 these	results	 that	go	beyond	the	analyses	undertaken	(e.g.,	 these	results	do	
not	provide	evidence	that	weight	loss	would	have	an	antidepressant	effect).	The	currently	available	data	
do	 not	 provide	 further	 insight	 about	 the	 fundamental	 driver	 or	 drivers	 of	 causality.	 The	 underlying	
mechanisms	 are	 likely	more	 complex	 as	 it	 is	 difficult	 to	 envision	how	genetic	 variation	 in	 educational	
attainment	or	body	mass	alters	risk	for	MDD	without	invoking	an	additional	mechanistic	component.	For	
example,	 genetic	 variation	 underlying	 general	 intelligence	 might	 directly	 alter	 the	 development	 and	
function	 of	 discrete	 brain	 regions	 that	 alters	 intelligence	 and	which	 also	 predisposes	 to	worse	mood	
regulation.	 Alternatively,	 genetic	 variation	 underlying	 general	 intelligence	 might	 lead	 to	 poorer	
development	 of	 cognitive	 strategies	 to	 handle	 adversity	 which	 increases	 risk	 for	MDD.	 An	 additional	
possibility	 is	 that	 there	 are	 sets	 of	 correlated	 traits–e.g.,	 personality,	 intelligence,	 sleep	 patterns,	
appetitive	regulation,	or	propensity	to	exercise–and	that	these	act	in	varying	combinations	in	different	
people.	Our	 results	 are	 inconsistent	with	 a	 causal	 relation	 between	MDD	 and	 subsequent	 changes	 in	
body	mass	or	education	years.	 If	such	associations	are	observed	in	epidemiological	or	clinical	samples,	
then	it	is	likely	not	MDD	but	something	correlated	with	MDD	that	drives	the	association.		

Fifth,	we	found	significant	positive	correlations	of	MDD	with	all	psychiatric	disorders	that	we	evaluated,	
including	 disorders	 prominent	 in	 childhood.	 This	 pattern	 of	 results	 indicates	 that	 the	 current	
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classification	 scheme	 for	 major	 psychiatric	 disorders	 does	 not	 align	 well	 with	 the	 underlying	 genetic	
basis	of	these	disorders.	The	MR	results	for	MDD	and	schizophrenia	indicated	a	shared	biological	basis.		

The	dominant	psychiatric	nosological	systems	were	principally	designed	for	clinical	utility,	and	are	based	
on	data	that	emerge	during	human	interactions	(i.e.,	observable	signs	and	reported	symptoms)	and	not	
objective	 measurements	 of	 pathophysiology.	 MDD	 is	 frequently	 comorbid	 with	 other	 psychiatric	
disorders,	and	 the	phenotypic	 comorbidity	has	an	underlying	 structure	 that	 reflects	 shared	origins	 (as	
inferred	from	factor	analyses	and	twin	studies).	83-86	Our	genetic	results	add	to	this	knowledge:	MDD	is	
not	a	discrete	entity	at	any	level	of	analysis.	Rather,	our	data	strongly	suggest	the	existence	of	biological	
processes	common	to	MDD	and	schizophrenia.	It	would	be	unsurprising	if	future	work	implicated	bipolar	
disorder,	anxiety	disorders,	and	other	psychiatric	disorders	as	well.		

Finally,	as	expected,	we	found	that	MDD	had	modest	ℎ#$%" 	(8.9%)	since	MDD	is	a	complex	malady	with	
both	genetic	and	environmental	determinants.	We	found	that	MDD	has	a	very	high	genetic	correlation	
with	 proxy	 measures	 that	 can	 be	 briefly	 assessed.	 Lifetime	 major	 depressive	 disorder	 requires	 a	
constellation	 of	 signs	 and	 symptoms	 whose	 reliable	 scoring	 requires	 an	 extended	 interview	 with	 a	
trained	 clinician.	 However,	 the	 common	 variant	 genetic	 architecture	 of	 lifetime	 major	 depressive	
disorder	 in	 these	 seven	 cohorts	 (containing	 many	 subjects	 medically	 treated	 for	 MDD)	 has	 strong	
overlap	with	 that	of	 current	depressive	 symptoms	 in	 general	 community	 samples.	 Similar	 relations	of	
clinically-defined	 ADHD	 or	 autism	 with	 quantitative	 genetic	 variation	 in	 the	 population	 have	 been	
reported.	 87,88	 The	MDD	 “disorder	 versus	 symptom”	 relationship	has	been	debated	extensively,	 89	 but	
our	data	indicate	that	the	common	variant	genetic	overlap	is	very	high.	This	finding	has	two	important	
implications.		

One	implication	is	for	future	genetic	studies	of	MDD.	In	a	first	phase,	it	should	be	possible	to	elucidate	
the	 bulk	 of	 the	 common	 variant	 genetic	 architecture	 of	MDD	 using	 a	 cost-effective	 shortcut	 –	 large	
studies	of	genotyped	individuals	who	complete	brief	lifetime	MDD	screening	(a	sample	size	approaching	
1	 million	 MDD	 cases	 may	 be	 achievable	 by	 2020).	 In	 a	 second	 phase,	 with	 a	 relatively	 complete	
understanding	 of	 the	 genetic	 basis	 of	 MDD,	 one	 could	 then	 evaluate	 smaller	 samples	 of	 carefully	
phenotyped	 individuals	with	MDD	 to	understand	 the	 clinical	 importance	of	 the	 genetic	 results.	 These	
data	could	allow	more	precise	delineation	of	the	clinical	heterogeneity	of	MDD	(e.g.,	our	demonstration	
that	 individuals	with	more	 severe	or	 recurrent	MDD	have	 inherited	a	higher	genetic	 loading	 for	MDD	
than	 single-episode	MDD).	 Subsequent	 empirical	 studies	may	 show	 that	 it	 is	 possible	 to	 stratify	MDD	
cases	 at	 first	 presentation	 to	 identify	 individuals	 at	 high	 risk	 for	 recurrence,	 poor	 outcome,	 poor	
treatment	 response,	 or	 who	 might	 subsequently	 develop	 a	 psychiatric	 disorder	 requiring	 alternative	
pharmacotherapy	 (e.g.,	 schizophrenia	or	 bipolar	 disorder).	 This	 could	 form	a	 cornerstone	of	 precision	
medicine	in	psychiatry.		

The	 second	 implication	 is	 that	 people	 with	 MDD	 differ	 only	 by	 degree	 from	 those	 who	 have	 not	
experienced	MDD.	All	humans	carry	lesser	or	greater	numbers	of	genetic	risk	factors	for	MDD.	Genetic	
risk	 for	MDD	 is	 continuous	 and	normally	 distributed	with	 no	 clear	 point	 of	 demarcation.	Non-genetic	
factors	 play	 important	 protective	 and	 pre-disposing	 roles	 (e.g.,	 life	 events,	 exposure	 to	 chronic	 fear,	
substance	abuse,	and	a	wide	range	of	 life	experiences	and	choices).	The	relation	of	blood	pressure	 to	
essential	hypertension	is	a	reasonable	analogy.	All	humans	inherit	different	numbers	of	genetic	variants	
that	influence	long-term	patterns	of	blood	pressure	with	environmental	exposures	and	life	choices	also	
playing	roles.	The	medical	“disorder”	of	hypertension	is	characterized	by	blood	pressure	chronically	over	
a	 numerical	 threshold	 above	 which	 the	 risks	 for	 multiple	 preventable	 diseases	 climb.	 MDD	 is	 not	 a	
“disease”	(i.e.,	a	distinct	entity	delineable	using	an	objective	measure	of	pathophysiology)	but	indeed	a	
disorder,	a	human-defined	but	definable	syndrome	that	carries	increased	risk	of	adverse	outcomes.	The	
adverse	 outcomes	 of	 hypertension	 are	 diseases	 (e.g.,	 stroke	 or	 myocardial	 infarction).	 The	 adverse	
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outcomes	of	MDD	include	elevation	in	risk	for	a	few	diseases,	but	the	major	impacts	of	MDD	are	death	
by	suicide	and	disability.		

In	summary,	this	GWA	meta-analysis	of	130,664	MDD	cases	and	330,470	controls	identified	44	loci.	An	
extensive	set	of	companion	analyses	provide	insights	into	the	nature	of	MDD	as	well	as	its	neurobiology,	
therapeutic	 relevance,	 and	 genetic	 and	 biological	 interconnections	 to	 other	 psychiatric	 disorders.	
Comprehensive	elucidation	of	these	features	is	the	primary	goal	of	our	genetic	studies	of	MDD.		

	

Online	Methods	

Anchor	cohort.	Our	analysis	was	anchored	in	a	GWA	mega-analysis	of	29	samples	of	European-ancestry	
(16,823	 MDD	 cases	 and	 25,632	 controls).	 Table	 S1	 summarizes	 the	 source	 and	 inclusion/exclusion	
criteria	for	cases	and	controls	for	each	sample.	All	samples	in	the	initial	PGC	MDD	papers	were	included.	
13,15,90	All	 anchor	 samples	passed	a	 structured	methodological	 review	by	MDD	assessment	experts	 (DF	
Levinson	and	KS	Kendler).	Cases	were	required	to	meet	international	consensus	criteria	(DSM-IV,	ICD-9,	
or	ICD-10)	91-93	for	a	lifetime	diagnosis	of	MDD	established	using	structured	diagnostic	instruments	from	
assessments	 by	 trained	 interviewers,	 clinician-administered	 checklists,	 or	 medical	 record	 review.	 All	
cases	met	standard	criteria	for	MDD,	were	directly	interviewed	(28/29	samples)	or	had	medical	record	
review	 by	 an	 expert	 diagnostician	 (1/29	 samples),	 and	 most	 were	 ascertained	 from	 clinical	 sources	
(19/29	 samples).	 Controls	 in	 most	 samples	 were	 screened	 for	 the	 absence	 of	 lifetime	 MDD	 (22/29	
samples),	and	randomly	selected	from	the	population.	We	considered	this	the	“anchor”	cohort	given	use	
of	standard	methods	of	establishing	the	presence	or	absence	of	MDD.		

The	most	direct	and	important	way	to	evaluate	the	comparability	of	the	samples	comprising	the	anchor	
cohort	is	using	SNP	genotype	data.	14,94	The	sample	sizes	were	too	small	to	evaluate	the	common	variant	
genetic	 correlations	 (&')	 between	 all	 pairs	 of	 anchor	 cohort	 samples	 (>3,000	 subjects	 per	 sample	 are	
recommended).	As	an	alternative,	we	used	“leave	one	out”	genetic	risk	scores	(GRS,	described	below).	
We	repeated	this	procedure	by	leaving	out	each	of	the	anchor	cohort	samples	so	that	we	could	evaluate	
the	 similarity	 of	 the	 common-variant	 genetic	 architectures	 of	 each	 sample	 to	 the	 rest	 of	 the	 anchor	
cohort.	 Figure	 S1A	 shows	 that	 all	 samples	 in	 the	 anchor	 cohort	 (except	 one)	 yielded	 significant	
differences	in	case-control	distributions	of	GRS.		

Expanded	 cohorts.	 We	 critically	 evaluated	 an	 “expanded”	 set	 of	 six	 independent,	 European-ancestry	
cohorts	 (113,841	 MDD	 cases	 and	 304,838	 controls).	 Table	 S2	 summarizes	 the	 source	 and	
inclusion/exclusion	 criteria	 for	 cases	 and	 controls	 for	 each	 cohort.	 These	 cohorts	 used	 a	 range	 of	
methods	 for	assessing	MDD:	Generation	Scotland	employed	direct	 interviews;	 iPSYCH	(Denmark)	used	
national	treatment	registers;	deCODE	(Iceland)	used	national	treatment	registers	and	direct	interviews;	
GERA	 used	 Kaiser-Permanente	 treatment	 records	 (CA,	 US);	 UK	 Biobank	 combined	 self-reported	MDD	
symptoms	 and/or	 treatment	 for	 MDD	 by	 a	 medical	 professional;	 and	 23andMe	 used	 self-report	 of	
treatment	for	MDD	by	a	medical	professional.	All	controls	were	screened	for	the	absence	of	MDD.		

Cohort	comparability.	Table	S3	summarizes	the	numbers	of	cases	and	controls	in	the	anchor	cohort	and	
the	 six	 expanded	 cohorts.	 The	most	 direct	 and	 important	way	 to	 evaluate	 the	 comparability	 of	 these	
cohorts	 for	 a	 GWA	 meta-analysis	 is	 using	 SNP	 genotype	 data.	 14,94	 We	 used	 LD	 score	 regression	
(described	below)	to	estimate	ℎ#$%" 	for	each	cohort,	and	&'	for	all	pairwise	combinations	of	the	cohorts.		

We	 compared	 the	 seven	 anchor	 and	 expanded	 cohorts.	 First,	 there	 was	 no	 indication	 of	 important	
sample	overlap	as	the	LDSC	regression	intercept	between	pairs	of	cohorts	ranged	from	-0.01	to	+0.01.	
Second,	Table	S4	shows	ℎ#$%" 	on	the	liability	scale	for	each	cohort.	The	ℎ#$%" 	estimates	range	from	0.09	
to	0.23	(for	lifetime	risk	(=0.15)	but	the	confidence	intervals	largely	overlap.	Third,	Table	S4	also	shows	
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the	&'	values	for	all	pairs	of	anchor	and	expanded	cohorts.	The	median	&'	was	0.80	(interquartile	range	
0.67-0.96),	 and	 the	 upper	 95%	 confidence	 interval	 on	 &'	 included	 0.75	 for	 all	 pairwise	 comparisons.	
These	 results	 indicate	 that	 the	 common	 variant	 genetic	 architecture	 of	 the	 anchor	 and	 expanded	
cohorts	overlap	strongly,	and	provide	critical	support	for	the	full	meta-analysis	of	all	cohorts.		

Genotyping	and	quality	 control.	Genotyping	procedures	 can	be	 found	 in	 the	primary	 reports	 for	 each	
cohort	 (Tables	 S1-S2).	 Individual	 genotype	 data	 for	 all	 anchor	 cohorts,	 GERA,	 and	 iPSYCH	 were	
processed	 using	 the	 PGC	 “ricopili”	 pipeline	 (URLs)	 for	 standardized	 quality	 control,	 imputation,	 and	
analysis.	22	The	expanded	cohorts	from	deCODE,	Generation	Scotland,	UK	Biobank,	and	23andMe	were	
processed	 by	 the	 collaborating	 research	 teams	 using	 comparable	 procedures.	 SNPs	 and	 insertion-
deletion	polymorphisms	were	imputed	using	the	1000	Genomes	Project	multi-ancestry	reference	panel	
(URLs).95		

Quality	 control	 and	 imputation	 on	 the	 29	 PGC	 MDD	 anchor	 cohorts	 was	 performed	 according	 to	
standards	from	the	PGC	(Table	S3).	The	default	parameters	for	retaining	SNPs	and	subjects	were:	SNP	
missingness	 <	 0.05	 (before	 sample	 removal);	 subject	 missingness	 <	 0.02;	 autosomal	 heterozygosity	
deviation	 (|Fhet|<0.2);	 SNP	missingness	 <	 0.02	 (after	 sample	 removal);	 difference	 in	 SNP	missingness	
between	 cases	 and	 controls	 <	 0.02;	 and	 SNP	Hardy-Weinberg	 equilibrium	 (P	 >	 10−6	 in	 controls	 or	 P	 >	
10−10	 in	 cases).	 These	 default	 parameters	 sufficiently	 controlled	 l	 and	 false	 positive	 findings	 for	 16	
cohorts	 (boma,	rage,	shp0,	shpt,	edi2,	gens,	col3,	mmi2,	qi3c,	qi6c,	qio2,	 rai2,	 rau2,	 twg2,	grdg,	grnd).	
Two	cohorts	 (gep3	and	nes2)	needed	stricter	SNP	filtering	and	11	cohorts	needed	additional	ancestral	
matching	 (rot4,	 stm2,	 rde4)	 or	 ancestral	 outlier	 exclusion	 (rad2,	 i2b3,	 gsk1,	 pfm2,	 jjp2,	 cof3,	 roc3,	
mmo4).	An	additional	 cohort	of	 inpatient	MDD	cases	 from	Münster,	Germany	was	processed	 through	
the	same	pipeline.	

Genotype	 imputation	 was	 performed	 using	 the	 pre-phasing/imputation	 stepwise	 approach	
implemented	 in	 IMPUTE2	 /	 SHAPEIT	 (chunk	 size	 of	 3	 Mb	 and	 default	 parameters).	 The	 imputation	
reference	 set	 consisted	 of	 2,186	 phased	 haplotypes	 from	 the	 1000	Genomes	 Project	 dataset	 (August	
2012,	 30,069,288	 variants,	 release	 “v3.macGT1”).	After	 imputation,	we	 identified	 SNPs	with	 very	high	
imputation	quality	 (INFO	>0.8)	and	 low	missingness	 (<1%)	for	building	the	principal	components	to	be	
used	 as	 covariates	 in	 final	 association	 analysis.	 After	 linkage	 disequilibrium	 pruning	 (r2	 >	 0.02)	 and	
frequency	 filtering	 (MAF	>	0.05),	 there	were	23,807	overlapping	autosomal	 SNPs	 in	 the	data	 set.	 This	
SNP	set	was	used	for	robust	relatedness	testing	and	population	structure	analysis.	Relatedness	testing	
identified	pairs	of	 subjects	with	)	 >	0.2,	and	one	member	of	each	pair	was	 removed	at	 random	after	
preferentially	retaining	cases	over	controls.	Principal	component	estimation	used	the	same	collection	of	
autosomal	SNPs.		

Identification	of	 identical	samples	 is	easily	accomplished	given	direct	access	to	 individual	genotypes.	13	
Two	concerns	are	the	use	of	the	same	control	samples	in	multiple	studies	(e.g.,	GAIN	or	WTCCC	controls)	
96,97	 and	 inclusion	of	 closely	 related	 individuals.	 For	 cohorts	where	 the	PGC	 central	 analysis	 team	had	
access	 to	 individual	genotypes	 (all	anchor	cohorts	and	GERA),	we	used	SNPs	directly	genotyped	on	all	
platforms	 to	 compute	 empirical	 relatedness,	 and	 excluded	 one	 of	 each	 duplicated	 or	 relative	 pair	
(defined	 as	 )	 >	 0.2).	 Within	 all	 other	 cohorts	 (deCODE,	 Generation	 Scotland,	 iPSYCH,	 UK	 Biobank,	
23andMe,	 and	 CONVERGE),	 identical	 and	 relative	 pairs	 were	 identified	 and	 resolved	 using	 similar	
procedures.	 Identical	 samples	 between	 the	 anchor	 cohorts,	 iPSYCH,	 UK	 Biobank,	 and	 Generation	
Scotland	 were	 identified	 using	 genotype-based	 checksums	 (URLs),	 98	 and	 an	 individual	 on	 the	
collaborator’s	side	was	excluded.	Checksums	were	not	available	for	the	deCODE	and	23andMe	cohorts.	
Related	pairs	 are	not	detectable	by	 the	 checksum	method	but	we	did	not	 find	evidence	of	 important	
overlap	using	LD	 score	 regression	 (the	 intercept	between	pairs	of	 cohorts	 ranged	 from	 -0.01	 to	+0.01	
with	no	evidence	of	important	sample	overlap).		
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Statistical	 analysis.	 In	 each	 cohort,	 logistic	 regression	 association	 tests	 were	 conducted	 for	 imputed	
marker	dosages	with	principal	components	covariates	to	control	 for	population	stratification.	Ancestry	
was	evaluated	using	principal	components	analysis	applied	to	directly	genotyped	SNPs.	99	In	the	anchor	
cohorts	and	GERA,	we	determined	that	all	 individuals	 in	the	final	analyses	were	of	European	ancestry.	
European	ancestry	was	confirmed	 in	 the	other	expanded	cohorts	by	 the	collaborating	 research	 teams	
using	 similar	 procedures.	We	 tested	 20	 principal	 components	 for	 association	with	MDD	 and	 included	
five	principal	components	covariates	for	the	anchor	cohorts	and	GERA	(all	other	cohorts	adopted	similar	
strategies).	There	was	no	evidence	of	stratification	artifacts	or	uncontrolled	test	statistic	inflation	in	the	
results	 from	each	anchor	and	extended	cohort	 (e.g.,	lGC	was	0.995–1.043	 in	 the	anchor	 cohorts).	 The	
results	were	combined	across	samples	using	an	inverse-weighted	fixed	effects	model.100	Reported	SNPs	
have	imputation	marker	INFO	score	≥	0.6	and	allele	frequencies	≥0.01	and	≤0.99,	and	effective	sample	
size	equivalent	 to	>	100,000	cases.	For	all	 cohorts,	X-chromosome	association	 results	were	conducted	
separately	by	sex,	and	then	meta-analysed	across	sexes.	22	For	two	cohorts	(GenScot	and	UKBB),	we	first	
conducted	 association	 analysis	 for	 genotyped	 SNPs	 by	 sex,	 then	 imputed	 association	 results	 using	 LD	
from	the	1000	Genomes	reference	sample.	101		

Defining	loci.	GWA	findings	implicate	genomic	regions	containing	multiple	significant	SNPs	(“loci”).	There	
were	almost	600	SNPs	with	P	<	5x10-8	in	this	analysis.	These	are	not	independent	associations	but	result	
from	LD	between	SNPs.	We	collapsed	the	significant	SNPs	to	44	loci	via	the	following	steps.		

• All	SNPs	were	high-quality	(imputation	INFO	score	≥	0.6	and	allele	frequencies	≥0.01	and	≤0.99).		
• We	used	 “clumping”	 to	 convert	MDD-associated	SNPs	 to	associated	 regions.	We	 identified	an	

index	SNP	with	 the	smallest	P-value	 in	a	genomic	window	and	other	SNPs	 in	high	LD	with	 the	
index	SNP	using	PLINK	 (--clump-p1	1e-4	 --clump-p2	1e-4	 --clump-r2	0.1	 --clump-kb	3000).	This	
retained	SNPs	with	association	P	<	0.0001	and	r2	<	0.1	within	3	Mb	windows.	Only	one	SNP	was	
retained	from	the	extended	MHC	region	due	to	its	exceptional	LD.		

• We	used	bedtools	(URLs)	to	combine	partially	or	wholly	overlapping	clumps	within	50	kb.		
• We	 reviewed	 all	 regional	 plots,	 and	 removed	 two	 singleton	 associations	 (i.e.,	 only	 one	 SNP	

exceeding	genome-wide	significance).		
• We	reviewed	forest	plots,	and	confirmed	that	association	signals	arose	from	the	majority	of	the	

cohorts.		
• We	conducted	conditional	analyses.	To	identify	independent	associations	within	a	10	Mb	region,	

we	re-evaluated	all	SNPs	in	a	region	conditioning	on	the	most	significantly	associated	SNP	using	
summary	 statistics	 25	 (superimposing	 the	 LD	 structure	 from	 the	 Atherosclerosis	 Risk	 in	
Communities	Study	sample).		

Genetic	 risk	 score	 (GRS)	 analyses.	 To	 demonstrate	 the	 validity	 of	 our	 GWAS	 results,	 we	 conducted	 a	
series	of	GRS	prediction	 analyses.	 The	MDD	GWA	 summary	 statistics	 identified	 associated	 SNP	alleles	
and	effect	size	which	were	used	to	calculate	GRS	for	each	individual	in	a	target	sample	(i.e.,	the	sum	of	
the	count	of	risk	alleles	weighted	by	the	natural	log	of	the	odds	ratio	of	the	risk	allele).	In	some	analyses	
the	 target	 sample	 had	 been	 included	 as	 one	 of	 the	 29	 samples	 in	 the	MDD	anchor	 cohort;	 here,	 the	
discovery	samples	were	meta-analyzed	excluding	this	cohort.	As	in	the	PGC	schizophrenia	report,	22	we	
excluded	uncommon	SNPs	(MAF	<	0.1),	low-quality	variants	(imputation	INFO	<	0.9),	indels,	and	SNPs	in	
the	 extended	MHC	 region	 (chr6:25-34	Mb).	We	 then	 LD	 pruned	 and	 “clumped”	 the	 data,	 discarding	
variants	within	500	kb	of,	and	in	LD	r2	>	0.1	with	the	most	associated	SNP	in	the	region.	We	generated	
GRS	for	individuals	in	target	subgroups	for	a	range	of	P-value	thresholds	(PT:	5x10-8,	1x10-6,	1x10-4,	0.001,	
0.01,	0.05,	0.1,	0.2,	0.5,	1.0).		

For	each	GRS	analysis,	five	ways	of	evaluating	the	regression	of	phenotype	on	GRS	are	reported	(Table	
S5).	The	significance	of	the	case-control	score	difference	from	logistic	regression	including	ancestry	PCs	
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and	a	study	indicator	(if	more	than	one	target	dataset	was	analyzed)	as	covariates.	2)	The	proportion	of	
variance	explained	 (Nagelkerke’s	R2)	 computed	by	 comparison	of	 a	 full	model	 (covariates	 +	GRS)	 to	 a	
reduced	model	(covariates	only).	It	should	be	noted	that	these	estimates	of	R2	reflect	the	proportion	of	
cases	 in	 the	 case-control	 studies	 where	 this	 proportion	may	 not	 reflect	 the	 underlying	 risk	 of	 in	 the	
population.	3)	The	proportion	of	variance	on	the	 liability	scale	explained	by	the	GRS	R2	was	calculated	
from	the	difference	between	full	and	reduced	linear	models	and	was	then	converted	to	the	liability	scale	
of	 the	 population	 assuming	 lifetime	MDD	 risk	 of	 15%.	 These	 estimates	 should	 be	 comparable	 across	
target	 sample	 cohorts,	 whatever	 the	 proportion	 of	 cases	 in	 the	 sample.	 4)	 Area	 under	 the	 receiver	
operator	 characteristic	 curve	 (AUC;	 R	 library	 pROC)	 was	 estimated	 in	 a	 model	 with	 no	 covariates	 22	
where	AUC	can	be	interpreted	as	the	probability	of	a	case	being	ranked	higher	than	a	control.	5)	Odds	
ratio	for	10	GRS	decile	groups	(these	estimates	also	depend	on	both	risk	of	MDD	in	the	population	and	
proportion	of	cases	in	the	sample).	We	evaluated	the	impact	of	increasing	sample	size	of	the	discovery	
sample	GWA	 (Figure	2a)	 and	also	using	 the	 schizophrenia	GWA	study	 22	 as	 the	discovery	 sample.	We	
also	undertook	GRS	analysis	 for	a	 target	sample	of	MDD	cases	and	controls	not	 included	 in	 the	meta-
analysis	(a	clinical	inpatient	cohort	of	MDD	cases	and	screened	controls	collected	in	Münster,	Germany).		

We	 conducted	 GRS	 analyses	 based	 on	 prior	 hypotheses	 from	 epidemiology	 of	 MDD	 using	 clinical	
measures	 available	 in	 some	 cohorts	 (if	 needed,	 the	 target	 sample	 was	 removed	 from	 the	 discovery	
GWA).	We	used	GRS	constructed	from	PT=0.05,	selected	as	a	threshold	that	gave	high	variance	explained	
across	 cohorts	 (Figure	 S1a).	 First,	 we	 used	 GRS	 analyses	 to	 test	 for	 higher	 mean	 GRS	 in	 cases	 with	
younger	age	at	onset	(AAO)	of	MDD	compared	to	those	with	older	AAO	in	the	anchor	cohort	samples.	To	
combine	analyses	across	samples,	we	used	within-sample	standardized	GRS	residuals	after	correcting	for	
ancestry	principal	components.	Heterogeneity	in	AAO	in	the	anchor	samples	has	been	noted,	102	which	
may	 reflect	 study	 specific	 definitions	 of	 AAO	 (e.g.,	 age	 at	 first	 symptoms,	 first	 visit	 to	 general	
practitioner,	or	first	diagnosis).	Following	Power	et	al.,	102	we	divided	AAO	into	octiles	within	each	cohort	
and	combined	the	first	three	octiles	into	the	early	AAO	group	and	the	last	three	octiles	into	the	late	AAO	
group.	Second,	we	tested	for	higher	mean	GRS	for	cases	in	anchor	cohort	samples	with	clinically	severe	
MDD	(endorsing	≥8	of	9	DSM	MDD	criteria)	compared	to	those	with	“moderate”	MDD	(endorsing	5-7	of	
9	MDD	criteria)	following	Verduijn	et	al.	103	Sample	sizes	are	given	in	Table	S3.	Third,	using	iPSYCH	as	the	
target	sample,	we	tested	for	higher	mean	GRS	in	recurrent	MDD	cases	(ICD-10	F33,	N=5,574)	compared	
to	 those	 with	 single	 episode	 MDD	 cases	 (ICD-10	 F32,	 N=12,968)	 in	 analyses	 that	 included	 ancestry	
principal	components	and	genotyping	batch	as	covariates.	Finally,	following	Verduijn	et	al.	103	using	the	
NESDA	sample	(PGC	label	“nes1”,	an	ongoing	longitudinal	study	of	depressive	and	anxiety	disorders)	as	
the	target	sample	,	we	constructed	clinical	staging	phenotypes	in	which	cases	were	allocated	to	one	of	
three	 stages:	 Stage	2	 (n	 =	 388)	 first	 episode	MDD;	 stage	3	 (n	 =	 562)	 recurrent/relapse	episode	MDD;	
stage	 4	 (n	 =	 705)	 persistent/unremitting	 chronic	 MDD,	 with	 an	 episode	 lasting	 longer	 than	 2	 years	
before	baseline	interview	and/or	≥	80%	of	the	follow-up	time	with	depressive	symptoms.	We	tested	for	
higher	mean	GRS	in	stage	IV	cases	compared	to	stage	II	MDD	cases.		

Linkage	 disequilibrium	 (LD)	 score	 regression	 14,94	 was	 used	 to	 estimate	 ℎ#$%" 	 from	 GWA	 summary	
statistics.	Estimates	of	ℎ#$%" 	on	the	liability	scale	depend	on	the	assumed	lifetime	prevalence	of	MDD	in	
the	population	((),	and	we	assumed	(=0.15	but	also	evaluated	(=0.10	to	explore	sensitivity	(Table	S4).	
LD	score	regression	bivariate	genetic	correlations	attributable	to	genome-wide	SNPs	(&')	were	estimated	
across	MDD	cohorts	and	between	the	full	MDD	cohort	and	other	traits	and	disorders.		

LD	score	regression	was	also	used	to	partition	ℎ#$%" 	by	genomic	features.	61,94	We	tested	for	enrichment	
of	ℎ#$%" 	based	on	genomic	annotations	partitioning	ℎ#$%" 	proportional	to	bp	length	represented	by	each	
annotation.	We	used	the	“baseline	model”	which	consists	of	53	functional	categories.	The	categories	are	
fully	 described	 elsewhere,	 61	 and	 included	 conserved	 regions	 62,	 USCC	 gene	 models	 (exons,	 introns,	
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promoters,	UTRs),	and	functional	genomic	annotations	constructed	using	data	from	ENCODE	104	and	the	
Roadmap	 Epigenomics	 Consortium.	 105	 We	 complemented	 these	 annotations	 by	 adding	 introgressed	
regions	from	the	Neanderthal	genome	in	European	populations	106	and	open	chromatin	regions	from	the	
brain	 dorsolateral	 prefrontal	 cortex.	 The	 open	 chromatin	 regions	 were	 obtained	 from	 an	 ATAC-seq	
experiment	 performed	 in	 288	 samples	 (N=135	 controls,	 N=137	 schizophrenia,	 N=10	 bipolar,	 and	N=6	
affective	 disorder).	 107	 Peaks	 called	 with	 MACS	 108	 (1%	 FDR)	 were	 retained	 if	 their	 coordinates	
overlapped	in	at	least	two	samples.	The	peaks	were	re-centered	and	set	to	a	fixed	width	of	300bp	using	
the	diffbind	R	package.	109	To	prevent	upward	bias	in	heritability	enrichment	estimation,	we	added	two	
categories	created	by	expanding	both	the	Neanderthal	introgressed	regions	and	open	chromatin	regions	
by	250bp	on	each	side.		

We	used	LD	score	regression	to	estimate	&'	between	MDD	and	a	range	of	other	disorders,	diseases,	and	
human	traits.	14	The	intent	of	these	comparisons	was	to	evaluate	the	extent	of	shared	common	variant	
genetic	architectures	in	order	to	suggest	hypotheses	about	the	fundamental	genetic	basis	of	MDD	(given	
its	 extensive	 comorbidity	 with	 psychiatric	 and	 medical	 conditions	 and	 its	 association	 with	
anthropometric	and	other	risk	factors).	Subject	overlap	of	itself	does	not	bias	&'.	14	These	&'	are	mostly	
based	 on	 studies	 of	 independent	 subjects	 and	 the	 estimates	 should	 be	 unbiased	 by	 confounding	 of	
genetic	 and	non-genetic	effects	 (except	 if	 there	 is	 genotype	by	environment	 correlation).	When	GWA	
studies	include	overlapping	samples,	&'	remains	unbiased	but	the	intercept	of	the	LDSC	regression	is	an	
estimate	 of	 the	 correlation	 between	 association	 statistics	 attributable	 to	 sample	 overlap.	 These	
calculations	were	done	using	the	internal	PGC	GWA	library	and	with	LD-Hub	(URLs).	75		

Relation	 of	MDD	GWA	 findings	 to	 tissue	 and	 cellular	 gene	 expression.	We	 used	 partitioned	 LD	 score	
regression	 to	 evaluate	which	 somatic	 tissues	were	 enriched	 for	MDD	heritability.	 110	Gene	 expression	
data	 generated	 using	 mRNA-seq	 from	multiple	 human	 tissues	 were	 obtained	 from	 GTEx	 v6p	 (URLs).	
Genes	for	which	<4	samples	had	at	least	one	read	count	per	million	were	discarded,	and	samples	with	
<100	genes	with	at	least	one	read	count	per	million	were	excluded.	The	data	were	normalized,	and	a	t-
statistic	was	obtained	for	each	tissue	by	comparing	the	expression	in	each	tissue	with	the	expression	of	
all	other	 tissues	with	 the	exception	of	 tissues	 related	 to	 the	 tissue	of	 interest	 (e.g.,	brain	cortex	vs	all	
other	 tissues	 excluding	 other	 brain	 samples),	 using	 sex	 and	 age	 as	 covariates.	 A	 t-statistic	 was	 also	
obtained	for	each	tissue	among	its	related	tissue	(ex:	cortex	vs	all	other	brain	tissues)	to	test	which	brain	
region	was	 the	most	 associated	with	MDD,	 also	 using	 sex	 and	 age	 as	 covariates.	 The	 top	 10%	of	 the	
genes	with	the	most	extreme	t-statistic	were	defined	as	tissue	specific.	The	coordinates	for	these	genes	
were	extended	by	a	100kb	window	and	tested	using	LD	score	regression.	Significance	was	obtained	from	
the	coefficient	z-score,	which	corrects	for	all	other	categories	in	the	baseline	model.		

Lists	of	 genes	 specifically	expressed	 in	neurons,	 astrocytes,	 and	oligodendrocytes	were	obtained	 from	
Cahoy	 et	 al.	 60	 As	 these	 experiment	 were	 done	 in	mice,	 genes	 were	mapped	 to	 human	 orthologous	
genes	using	ENSEMBL.	The	coordinates	for	these	genes	were	extended	by	a	100kb	window	and	tested	
using	LD	score	regression	as	for	the	GTEx	tissue	specific	genes.		

We	conducted	eQTL	 look-ups	of	 the	most	associated	SNPs	 in	each	 region	and	 report	 (Table	S6)	GWA	
SNPs	in	LD	(r2	>	0.8)	with	the	top	eQTLs	in	the	following	data	sets:	eQTLGen	Consortium	(lllumina	arrays	
in	 whole	 blood	 N=14,115,	 in	 preparation),	 BIOS	 (RNA-seq	 in	 whole	 blood	 (N=2,116),	 111	 NESDA/NTR	
(Affymetrix	 arrays	 in	whole	blood,	N=4,896),	 112	GEUVADIS	 (RNA-seq	 in	 LCL	 (N=465),	 113	Rosmap	 (RNA	
seq	in	cortex,	N=	494,	submitted),	GTEx	(RNA-seq	in	44	tissues,	N>70),	58	and	Common	Mind	Consortium	
(CMC,	prefrontal	cortex,	Sage	Synapse	accession	syn5650509,	N=467).	66		

We	used	summary-data-based	Mendelian	randomization	(SMR)	64	 to	 identify	 loci	with	strong	evidence	
of	causality	via	gene	expression	(Table	S9).	SMR	analysis	is	limited	to	significant	cis	SNP-expression	(FDR	
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<	0.05)	and	SNPs	with	MAF	>	0.01	at	a	Bonferroni-corrected	pSMR.	Due	 to	 LD,	multiple	SNPs	may	be	
associated	with	 the	expression	of	a	gene,	and	some	SNPs	are	associated	with	 the	expression	of	more	
than	one	gene.	Since	the	aim	of	SMR	is	to	prioritize	variants	and	genes	for	subsequent	studies,	a	test	for	
heterogeneity	excludes	regions	that	may	harbor	multiple	causal	 loci	(pHET	<	0.05).	SMR	analyses	were	
conducted	using	eQTLGen	Consortium,	GTEx	(11	brain	tissues),	and	CMC	data.		

We	 conducted	 a	 transcriptome	 wide	 association	 study	 65	 using	 pre-computed	 expression	 reference	
weights	for	CMC	data	(5,420	genes	with	significant	cis-SNP	heritability)	provided	with	the	TWAS/FUSION	
software.	The	significance	threshold	was	0.05/5420.		

DNA	 looping	 using	 Hi-C.	 Dorsolateral	 prefrontal	 cortex	 (Brodmann	 area	 9)	 was	 dissected	 from	
postmortem	 samples	 from	 three	 adults	 of	 European	 ancestry	 (Dr	 Craig	 Stockmeier,	 University	 of	
Mississippi	 Medical	 Center).	 Cerebrum	 from	 three	 fetal	 brains	 were	 obtained	 from	 the	 NIH	
NeuroBiobank	(URLs;	gestation	age	17-19	weeks,	African	ancestry).	Samples	were	dry	homogenized	to	a	
fine	powder	using	a	liquid	nitrogen-cooled	mortar	and	pestle.		

We	used	 “easy	Hi-C”	 (in	preparation)	 to	 assess	DNA	 looping	 interactions.	 Pulverized	 tissue	 (~150	mg)	
was	 crosslinked	with	 formaldehyde	 (1%	 final	 concentration)	 and	 the	 reaction	 quenched	 using	 glycine	
(150	 mM).	 Samples	 were	 then	 lysed,	 Dounce	 homogenized,	 and	 digested	 using	 HindIII.	 This	 was	
followed	 by	 in	 situ	 ligation.	 Samples	 were	 cross-linked	 with	 proteinase	 K	 and	 purified	 using	 phenol-
chloroform.	DNA	was	then	digested	with	DpnII	followed	by	purification	using	PCRClean	DX	beads	(Aline	
Biosciences).	The	DNA	products	were	self-ligated	overnight	at	16°	using	T4	DNA	ligase.	Self-ligated	DNA	
waw	purified	with	phenol-chloroform,	digested	with	 lambda	exonuclease,	and	purified	using	PCRClean	
DX	 beads.	 For	DNA	 circle	 re-linearization,	 bead-bound	DNA	was	 eluted	 and	 digested	with	HindIII	 and	
purified	using	PCRClean.	Bead-bound	DNA	was	eluted	in	50ul	nuclease	free	water.		

Re-linearized	DNA	(~50ng)	was	used	for	 library	generation	(Illumina	TruSeq	protocol).	Briefly,	 the	DNA	
was	 end-repaired	 using	 End-it	 kit	 (Epicentre),	 A	 tailed	 with	 Klenow	 fragment	 (3ʹ–5ʹ	 exo–;	 NEB),	 and	
purified	with	PCRClean	DX	beads.	The	4ul	DNA	product	was	mixed	with	5ul	of	2X	quick	ligase	buffer,	1ul	
of	 1:10	 diluted	 annealed	 adapter	 and	 0.5ul	 of	 Quick	 DNA	 T4	 ligase	 (NEB).	 The	 ligation	 was	 done	 by	
incubating	at	room	temperature	for	15	minutes.	DNA	was	purified	using	DX	beads.	Elution	was	done	in	
14ul	 nuclease	 free	 water.	 To	 deep-sequence	 easy	 Hi-C	 libraries,	 we	 used	 custom	 TruSeq	 adapter	 in	
which	the	index	is	replaced	by	6	base	random	sequence.	Libraries	were	then	PCR	amplified	and	deeply	
sequenced	(4-5	lanes	per	sample,	around	1	billion	reads	per	sample)	using	Illumina	HiSeq4000	(2x50bp).		

Because	nearly	all	mappable	reads	start	with	the	HindIII	sequence	AGCTT,	we	trimmed	the	first	5	bases	
from	every	read	and	added	the	6-base	sequence	AAGCTT	to	the	5’	of	all	 reads.	These	read	were	then	
aligned	to	the	human	reference	genome	(hg19)	using	Bowtie.	After	mapping,	we	kept	reads	where	both	
ends	were	exactly	at	HindIII	cutting	sites.	PCR	duplicates	were	removed.	Of	these	HindIII	pairs,	we	split	
reads	into	three	classes	based	on	their	strand	orientations	(“same-strand”,	“inward”,	or	“outward”).	For	
cis-reads	the	only	type	of	invalid	cis-pairs	are	self-circles	with	two	ends	within	the	same	HindIII	fragment	
facing	 each	 other.	 We	 computed	 the	 total	 number	 of	 real	 cis-contact	 as	 twice	 the	 number	 of	 valid	
“same-strand”	pairs.	Reads	from	undigested	HindIII	 sites	are	back-to-back	read	pairs	next	to	the	same	
HindIII	sites	facing	away	from	each	other.		

Gene-wise	and	pathway	analysis.	Our	approach	was	guided	by	rigorous	method	comparisons	conducted	
by	PGC	members.	70,114	P-values	quantifying	the	degree	of	association	of	genes	and	gene	sets	with	MDD	
were	generated	using	MAGMA	(v1.06).	115	MAGMA	uses	Brown’s	method	to	combine	SNP	p-values	and	
account	for	LD.	We	used	ENSEMBL	gene	models	for	19,079	genes	giving	a	Bonferroni	corrected	P-value	
threshold	of	2.6x10-6.	Gene	set	P-values	were	obtained	using	a	competitive	analysis	that	tests	whether	
genes	 in	 a	 gene	 set	 are	more	 strongly	 associated	with	 the	phenotype	 than	other	 gene	 sets.	We	used	
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European-ancestry	 subjects	 from	 1,000	 Genomes	 Project	 (Phase	 3	 v5a,	 MAF	 ≥	 0.01)	 101	 for	 the	 LD	
reference.	 The	 gene	window	 used	was	 35	 kb	 upstream	 and	 10	 kb	 downstream	 to	 include	 regulatory	
elements.		

Gene	sets	were	from	two	main	sources.	First,	we	included	gene	sets	previously	shown	to	be	important	
for	psychiatric	disorders	(71	gene	sets;	e.g.,	FMRP	binding	partners,	de	novo	mutations,	GWAS	top	SNPs,	
ion	channels).	 72,116,117	 Second,	we	 included	gene	 sets	 from	MSigDB	 (v5.2)	 118	which	 includes	canonical	
pathways	 and	 Gene	 Ontology	 gene	 sets.	 Canonical	 pathways	 were	 curated	 from	 BioCarta,	 KEGG,	
Matrisome,	 Pathway	 Interaction	 Database,	 Reactome,	 SigmaAldrich,	 Signaling	 Gateway,	 Signal	
Transduction	KE,	and	SuperArray.	Pathways	containing	between	10-10K	genes	were	included.		

To	 evaluate	 gene	 sets	 related	 to	 antidepressants,	 gene-sets	 were	 extracted	 from	 the	 Drug-Gene	
Interaction	 database	 (DGIdb	 v.2.0)	 119	 and	 the	 Psychoactive	 Drug	 Screening	 Program	 Ki	 DB	 120	
downloaded	 in	 June	 2016.	 The	 association	 of	 3,885	 drug	 gene-sets	 with	 MDD	 was	 estimated	 using	
MAGMA	(v1.6).	The	drug	gene-sets	were	ordered	by	p-value,	and	the	Wilcoxon-Mann-Whitney	test	was	
used	 to	 assess	 whether	 the	 42	 antidepressant	 gene-sets	 in	 the	 dataset	 (ATC	 code	 N06A	 in	 the	
Anatomical	Therapeutic	Chemical	Classification	System)	had	a	higher	ranking	than	expected	by	chance.		

One	issue	is	that	some	gene	sets	contain	overlapping	genes,	and	these	may	reflect	 largely	overlapping	
results.	The	pathway	map	was	constructed	using	the	kernel	generative	topographic	mapping	algorithm	
(k-GTM)	 as	 described	 by	 Olier	 et	 al.	 GTM	 is	 a	 probabilistic	 alternative	 to	 Kohonen	maps:	 the	 kernel	
variant	is	used	when	the	input	is	a	similarity	matrix.	The	GTM	and	k-GTM	algorithms	are	implemented	in	
GTMapTool	 (URLs).	We	used	 the	 Jaccard	similarity	matrix	of	FDR-significant	pathways	as	 input	 for	 the	
algorithm,	where	each	pathway	is	encoded	by	a	vector	of	binary	values	representing	the	presence	(1)	or	
absence	(0)	of	a	gene.	Parameters	for	the	k-GTM	algorithm	are	the	square	root	of	the	number	of	grid	
points	(k),	the	square	root	of	the	number	of	RBF	functions	(m),	the	regularization	coefficient	(l),	the	RBF	
width	 factor	 (w),	 and	 the	 number	 of	 feature	 space	 dimensions	 for	 the	 kernel	 algorithm	 (b).	 We	 set	
k=square	root	of	the	number	of	pathways,	m=square	root	of	k,	 l=1	(default),	w=1	(default),	and	b=the	
number	of	principal	components	explaining	99.5%	of	the	variance	in	the	kernel	matrix.	The	output	of	the	
program	is	a	set	of	coordinates	representing	the	average	positions	of	pathways	on	a	2D	map.	The	x	and	
y	 axes	 represent	 the	 dimensions	 of	 a	 2D	 latent	 space.	 The	 pathway	 coordinates	 and	 corresponding	
MAGMA	 P-values	 were	 used	 to	 build	 the	 pathway	 activity	 landscape	 using	 the	 kriging	 interpolation	
algorithm	implemented	in	the	R	gstat	package.		

Mendelian	 randomization	 (MR).	 121	 We	 used	MR	 to	 investigate	 the	 relationships	 between	MDD	 and	
correlated	traits.	Epidemiological	studies	show	that	MDD	is	associated	with	environmental	and	life	event	
risk	factors	as	well	as	multiple	diseases,	yet	it	remains	unclear	whether	such	trait	outcomes	are	causes	
or	consequences	of	MDD	(or	prodromal	MDD).	Genetic	variants	are	present	from	birth,	and	hence	are	
far	less	likely	to	be	confounded	with	environmental	factors	than	in	epidemiological	studies.		

We	 conducted	bi-directional	MR	analysis	 for	 four	 traits:	 years	of	 education	 (EDY)	 76,	 body	mass	 index	
(BMI)	27,	coronary	artery	disease	(CAD)	77,	and	schizophrenia	(SCZ)	22.	Briefly,	we	denote	z	as	a	genetic	
variant	(i.e.,	a	SNP)	that	is	significantly	associated	with	x,	an	exposure	or	putative	causal	trait	for	y	(the	
disease/trait	outcome).	The	effect	size	of	x	on	y	can	be	estimated	using	a	two-step	least	squares	(2SLS)	
122	 approach:	*+, = *.,/*.+.,	where	*.+	 is	 the	 estimated	 effect	 size	 for	 the	 SNP-trait	 association	 the	
exposure	trait,	and	*.,	is	the	effect	size	estimated	for	the	same	SNP	in	the	GWAS	of	the	outcome	trait.		

Since	 SNP-trait	 effect	 sizes	 are	 typically	 small,	 power	 is	 increased	 by	 using	 multiple	 associated	 SNPs	
which	 allows	 simultaneous	 investigation	 of	 pleiotropy	 driving	 the	 epidemiologically	 observed	 trait	
associations.	 Causality	 of	 the	 exposure	 trait	 for	 the	 outcome	 trait	 implies	 a	 consistent	 relationship	
between	the	SNP	association	effect	sizes	of	the	exposure	associated	SNPs	in	the	outcome	trait.		
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We	used	generalized	summary	statistics-based	MR	(GSMR)	(Zhu	et	al.,	submitted)	to	estimate	*+,	and	
its	standard	error	from	multiple	SNPs	associated	with	the	exposure	trait	at	a	genome-wide	significance	
level.	 We	 conducted	 bi-directional	 GSMR	 analyses	 for	 each	 pair	 of	 traits,	 and	 report	 results	 after	
excluding	SNPs	that	fail	the	HEIDI-outlier	heterogeneity	test	(which	is	more	conservative	than	excluding	
SNPs	that	have	an	outlying	association	likely	driven	by	locus-specific	pleiotropy).	GSMR	is	more	powerful	
than	inverse-weighted	MR	(IVW-MR)	and	MR-Egger	because	it	takes	account	of	the	sampling	variation	
of	both	*.+	and	*.,.	GSMR	also	accounts	for	residual	LD	between	the	clumped	SNPs.	For	comparison,	
we	also	conducted	IVW-MR	and	MR-Egger	analyses.	123		

Trans-ancestry.	Common	genetic	risk	variants	for	complex	biomedical	conditions	are	likely	to	be	shared	
across	ancestries.	124,125	However,	lower	&'	have	been	reported	likely	reflecting	different	LD	patterns	by	
ancestry.	 For	 example,	 European-Chinese	 &'	 estimates	 were	 below	 one	 for	 ADHD	 (0.39,	 SE	 0.15),	 126	
rheumatoid	 arthritis	 (0.46,	 SE	0.06),	 127	 and	 type	2	diabetes	 (0.62,	 SE	0.09),	 127	 and	 reflect	population	
differences	in	LD	and	population-specific	causal	variants.		

The	Han	Chinese	CONVERGE	study	17	included	clinically	ascertained	females	with	severe,	recurrent	MDD,	
and	is	the	largest	non-European	MDD	GWA	to	date.	Neither	of	the	two	genome-wide	significant	loci	in	
CONVERGE	had	SNP	findings	±250	kb	with	P	<	1x10-6	in	the	full	European	results.	We	used	LDSC	with	an	
ancestry-specific	 LD	 reference	 for	 within	 ancestry	 estimation,	 and	 POPCORN	 127	 for	 trans-ancestry	
estimation.	In	the	CONVERGE	sample,	ℎ#$%" 	was	reported	as	20-29%.	128	Its	&'	with	the	seven	European	
MDD	 cohorts	 was	 0.33	 (SE	 0.03).	 129	 For	 comparison,	 &'	 for	 CONVERGE	 with	 European	 results	 for	
schizophrenia	was	0.34	(SE	0.05)	and	0.45	(SE	0.07)	for	bipolar	disorder.	The	weighted	mean	&'	between	
the	CONVERGE	cohort	with	the	seven	anchor	and	expanded	cohorts	using	was	0.31	(SE	0.03).	These	&'	
estimates	should	be	interpreted	in	light	of	the	estimates	of	&'	within	European	MDD	cohorts	which	are	
variable	(Table	S4).		

Genome	build.	All	genomic	coordinates	are	given	in	NCBI	Build	37/UCSC	hg19.		

Availability	 of	 results.	 The	 PGC’s	 policy	 is	 to	 make	 genome-wide	 summary	 results	 public.	 Summary	
statistics	 for	 a	 combined	 meta-analysis	 of	 the	 anchor	 cohort	 samples	 with	 five	 of	 the	 six	 expanded	
samples	(deCODE,	Generation	Scotland,	GERA,	 iPSYCH,	and	UK	Biobank)	are	available	on	the	PGC	web	
site	(URLs).	Results	for	10,000	SNPs	for	all	seven	cohorts	are	also	available	on	the	PGC	web	site.		

GWA	 summary	 statistics	 for	 the	 sixth	 expanded	 cohort	 (23andMe,	 Inc.)	must	 be	 obtained	 separately.	
Summary	 statistics	 for	 the	 23andMe	 dataset	 can	 be	 obtained	 by	 qualified	 researchers	 under	 an	
agreement	with	23andMe	that	protects	the	privacy	of	the	23andMe	participants.	Please	contact	David	
Hinds	(dhinds@23andme.com)	for	more	information	and	to	apply	to	access	the	data.	Researchers	who	
have	the	23andMe	summary	statistics	can	readily	recreate	our	results	by	meta-analyzing	the	six	cohort	
results	file	with	the	Hyde	et	al.	results	file	from	23andMe.	19		

Availability	of	genotype	data	for	the	anchor	cohorts	is	described	in	Table	S14.	For	the	expanded	cohorts,	
interested	users	should	contact	the	lead	PIs	of	these	cohorts	(which	are	separate	from	the	PGC).		

URLs	

1000	Genomes	Project	multi-ancestry	imputation	panel,	
https://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html	

23andMe	privacy	policy	https://www.23andme.com/en-eu/about/privacy		

Bedtools,	https://bedtools.readthedocs.io		
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Genotype-based	checksums	for	relatedness	determination,	
http://www.broadinstitute.org/~sripke/share_links/checksums_download	

GTEx,	http://www.gtexportal.org/home/datasets		

GTMapTool,	http://infochim.u-strasbg.fr/mobyle-cgi/portal.py#forms::gtmaptool		

LD-Hub,	http://ldsc.broadinstitute.org		

MDD	summary	results	are	available	on	the	PGC	website,	https://pgc.unc.edu	

NIH	NeuroBiobank,	https://neurobiobank.nih.gov			

PGC	“ricopili”	GWA	pipeline,	https://github.com/Nealelab/ricopili		

UK	Biobank,	http://www.ukbiobank.ac.uk		
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Figure	legends	

Figure	1:	Results	of	GWA	meta-analysis	of	seven	cohorts	for	MDD.	(a)	Relation	between	adding	cohorts	
and	number	of	genome-wide	significant	genomic	regions.	Beginning	with	the	 largest	cohort	 (1),	added	
the	next	largest	cohort	(2)	until	all	cohorts	were	included	(7).	The	number	next	to	each	point	shows	the	
total	effective	sample	size.	(b)	Quantile-quantile	plot	showing	a	marked	departure	from	a	null	model	of	
no	 associations	 (the	 y-axis	 is	 truncated	 at	 1e-12).	 (c)	 Manhattan	 plot	 with	 x-axis	 showing	 genomic	
position	(chr1-chr22),	and	the	y-axis	showing	statistical	significance	as	–log10(P).	The	red	line	shows	the	
genome-wide	significance	threshold	(P=5x10-8).		

Figure	 2:	 Out-of-sample	 genetic	 risk	 score	 (GRS)	 prediction	 analyses.	 (a)	 Variance	 explained	 on	 the	
liability	scale	based	on	different	discovery	samples	for	three	target	samples:	anchor	cohort	(16,823	cases,	
25,632	controls),	iPSYCH	(a	nationally	representative	sample	of	18,629	cases	and	17,841	controls)	and	a	
clinical	cohort	from	Münster	not	included	in	the	GWA	analysis	(845	MDD	inpatient	cases,	834	controls).	
The	anchor	cohort	is	included	as	both	discovery	and	target	as	we	computed	out-of-sample	GRS	for	each	
anchor	 cohort	 sample,	 combined	 the	 results,	 and	 modeled	 case-control	 status	 as	 predicted	 by	
standardized	GRS	and	cohort	(see	Online	Methods).	(b)	Odd	ratios	of	MDD	per	GRS	decile	relative	to	the	
first	 decile	 for	 iPSYCH	 and	 anchor	 cohorts.	 (c)	 MDD	 GRS	 (from	 out-of-sample	 discovery	 sets)	 were	
significantly	 higher	 in	MDD	 cases	 with:	 earlier	 age	 at	 onset;	 more	 severe	MDD	 symptoms	 (based	 on	
number	of	criteria	endorsed);	recurrent	MDD	compared	to	single	episode;	and	chronic/unremitting	MDD	
(“Stage	IV”	compared	to	“Stage	II”,	first-episode	MDD	103).	Error	bars	represent	95%	confidence	intervals.		

Figure	3:	Comparisons	of	 the	MDD	GWA	meta-analysis.	 (a)	MDD	results	and	enrichment	 in	bulk	 tissue	
mRNA-seq	 from	 GTEx.	 Only	 brain	 tissues	 showed	 enrichment,	 and	 the	 three	 tissues	 with	 the	 most	
significant	enrichments	were	all	cortical.	(b)	MDD	results	and	enrichment	in	three	major	brain	cell	types.	
The	 MDD	 genetic	 findings	 were	 enriched	 in	 neurons	 but	 not	 oligodendrocytes	 or	 astrocytes.	 (c)	
Partitioned	 LDSC	 to	 evaluate	 enrichment	 of	 the	 MDD	 GWA	 findings	 in	 over	 50	 functional	 genomic	
annotations	 (Table	 S8).	 The	 major	 finding	 was	 the	 significant	 enrichment	 of	 MDD	 ℎ#$%" 	 in	 genomic	
regions	conserved	across	29	Eutherian	mammals.	 62	Other	enrichments	 implied	regulatory	activity,	and	
included	open	chromatin	in	human	brain	and	an	epigenetic	mark	of	active	enhancers	(H3K4me1).	Exonic	
regions	 did	 not	 show	 enrichment.	We	 found	 no	 evidence	 that	 Neanderthal	 introgressed	 regions	were	
enriched	for	MDD	GWA	findings.		

Figure	4:	Generative	topographic	mapping	of	the	19	significant	pathway	results.	The	average	position	of	
each	pathway	on	the	map	is	represented	by	a	point.	The	map	is	colored	by	the	-log10(P)	obtained	using	
MAGMA.	The	X	and	Y	coordinates	result	from	a	kernel	generative	topographic	mapping	algorithm	(GTM)	
that	reduces	high	dimensional	gene	sets	to	a	two-dimensional	scatterplot	by	accounting	for	gene	overlap	
between	gene	 sets.	 Each	point	 represents	 a	 gene	 set.	Nearby	 points	 are	more	 similar	 in	 gene	overlap	
than	more	distant	points.	The	color	surrounding	each	point	(gene	set)	indicates	significance	per	the	scale	
on	the	right.	The	significant	pathways	(Table	S11)	fall	into	nine	main	clusters	as	described	in	the	text.		

Figure	S1:	 Leave-one-out	GRS	analyses	of	 the	anchor	 cohort.	 (a)	Per	 sample	R2	at	 varying	 significance	
thresholds.	A	all	samples	in	the	anchor	cohort	(except	one)	yielded	significant	differences	in	case-control	
distributions	of	GRS.	Across	all	samples	in	the	anchor	cohort,	GRS	explained	1.9%	of	variance	in	liability.	
(b)	Relation	between	the	number	of	cases	and	R2,	showing	the	expected	positive	correlation.		

Figure	S2:	Regional	association	plots	of	genomic	regions	identified	from	SMR	analysis	of	MDD	GWA	and	
eQTL	 results.	 SMR	 analysis	 helps	 to	 prioritize	 specific	 genes	 in	 a	 region	 of	 association	 for	 follow-up	
functional	studies.	Figures	appear	in	the	same	order	as	the	results	reported	in	Table	S9.	In	the	top	plot,	
grey	dots	represent	the	MDD	GWA	P-values,	diamonds	show	P-values	for	probes	from	the	SMR	test,	and	
triangles	are	probes	without	a	cis-eQTL	(at	PeQTL	<	5e-8).	Genes	that	pass	SMR	and	heterogeneity	tests	
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(designed	 to	 remove	 loci	with	more	 than	 one	 causal	 association)	 are	 highlighted	 in	 red.	 The	 eQTL	P-
values	of	SNPs	are	shown	in	the	bottom	plot.		

Figure	S3:	Circular	plots	to	illustrate	DNA-DNA	loops.	From	the	outside,	the	tracks	show	hg19	coordinates	
in	Mb,	the	positions	of	significant	MDD	associations	(-log10(P),	outward	 is	more	significant),	 the	names	
and	positons	of	GENCODE	genes,	and	the	arc	show	significant	DNA-DNA	 loops	 (q	<	1e-4)	 from	Hi-C	on	
adult	 cortex	 (green)	 and	 fetal	 frontal	 cortex	 (blue).	 (a)	 chr1:71.5-74.1	 Mb	 suggesting	 that	 the	 two	
statistically	 independent	 associations	 in	 the	 region	 both	 implicate	NEGR1.	 (b)	 The	MDD	association	 in	
RERE,	in	contrast,	coincides	with	many	DNA-DNA	loops	and	may	suggest	that	this	region	contains	super-
enhancer	elements.		

Figure	S4:	Graphs	depicting	the	SNP	instruments	used	in	Mendelian	randomization	analyses.	Table	S13	
shows	the	parameter	estimates	and	significance,	and	these	graphs	show	scatterplots	of	the	instruments	
for	MDD	and	(a)	BMI,	(b)	years	of	education,	(c)	coronary	artery	disease,	and	(d)	schizophrenia.		
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Table	1.	Genomic	regions	significantly	associated	with	MDD	

Chr	 Region	(Mb)	 SNP	 Location-bp	 P	 A1/2	 OR-A1	(SE)	 Frq	 Prev	 Gene	Context		
1	 8.390-8.895	 rs159963	 8,504,421	 3.2E-08	 A/C	 0.97	(0.0049)	 0.56	 H,S	 [RERE];	SLC45A1,100194	
1	 72.511-73.059	 rs1432639	 72,813,218	 4.6E-15	 A/C	 1.04	(0.005)	 0.63	 H	 NEGR1,-64941	
1	 73.275-74.077	 rs12129573	 73,768,366	 4.0E-12	 A/C	 1.04	(0.005)	 0.37	 H,S	 LINC01360,-3486	
1	 80.785-80.980	 rs2389016	 80,799,329	 1.0E-08	 T/C	 1.03	(0.0053)	 0.28	 	

	
1	 90.671-90.966	 rs4261101	 90,796,053	 1.0E-08	 A/G	 0.97	(0.005)	 0.37	 	

	
1	 197.343-197.864	 rs9427672	 197,754,741	 3.1E-08	 A/G	 0.97	(0.0058)	 0.24	

	
DENND1B,-10118	

2	 57.765-58.485	 rs11682175	 57,987,593	 4.7E-09	 T/C	 0.97	(0.0048)	 0.52	 H,S	 VRK2,-147192	
2	 156.978-157.464	 rs1226412	 157,111,313	 2.4E-08	 T/C	 1.03	(0.0059)	 0.79	 	 [LINC01876];	NR4A2,69630;	GPD2,-180651	
3	 44.222-44.997	 chr3_44287760_I	 44,287,760	 4.6E-08	 I/D	 1.03	(0.0051)	 0.34	 T	 [TOPAZ1];	TCAIM,-91850;	ZNF445,193501	
3	 157.616-158.354	 rs7430565	 158,107,180	 2.9E-09	 A/G	 0.97	(0.0048)	 0.58	 H	 [RSRC1];	LOC100996447,155828;	MLF1,-181772	
4	 41.880-42.189	 rs34215985	 42,047,778	 3.1E-09	 C/G	 0.96	(0.0063)	 0.24	 	 [SLC30A9];	LINC00682,-163150;	DCAF4L1,59294	
5	 87.443-88.244	 chr5_87992715_I	 87,992,715	 7.9E-11	 I/D	 0.97	(0.005)	 0.58	 H	 LINC00461,-12095;	MEF2C,21342	
5	 103.672-104.092	 chr5_103942055_D	 103,942,055	 7.5E-12	 I/D	 1.03	(0.0048)	 0.48	 C	

	
5	 124.204-124.328	 rs116755193	 124,251,883	 7.0E-09	 T/C	 0.97	(0.005)	 0.38	 	 LOC101927421,-120640	
5	 164.440-164.789	 rs11135349	 164,523,472	 1.1E-09	 A/C	 0.97	(0.0048)	 0.48	 H	

	
5	 166.977-167.056	 rs4869056	 166,992,078	 6.8E-09	 A/G	 0.97	(0.005)	 0.63	 	 [TENM2]	
6	 27.738-32.848	 rs115507122	 30,737,591	 3.3E-11	 C/G	 0.96	(0.0063)	 0.18	 S	 extended	MHC	
6	 99.335-99.662	 rs9402472	 99,566,521	 2.8E-08	 A/G	 1.03	(0.0059)	 0.24	

	
FBXL4,-170672;	C6orf168,154271	

7	 12.154-12.381	 rs10950398	 12,264,871	 2.6E-08	 A/G	 1.03	(0.0049)	 0.41	
	

[TMEM106B];	VWDE,105637	
7	 108.925-109.230	 rs12666117	 109,105,611	 1.4E-08	 A/G	 1.03	(0.0048)	 0.47	 	

	
9	 2.919-3.009	 rs1354115	 2,983,774	 2.4E-08	 A/C	 1.03	(0.0049)	 0.62	 H	 PUM3,-139644;	LINC01231,-197814	
9	 11.067-11.847	 rs10959913	 11,544,964	 5.1E-09	 T/G	 1.03	(0.0057)	 0.76	 	

	
9	 119.675-119.767	 rs7856424	 119,733,595	 8.5E-09	 T/C	 0.97	(0.0053)	 0.29	 	 [ASTN2]	
9	 126.292-126.735	 rs7029033	 126,682,068	 2.7E-08	 T/C	 1.05	(0.0093)	 0.07	

	
[DENND1A];	LHX2,-91820	

10	 106.397-106.904	 rs61867293	 106,563,924	 7.0E-10	 T/C	 0.96	(0.0061)	 0.20	 H	 [SORCS3]	
11	 31.121-31.859	 rs1806153	 31,850,105	 1.2E-09	 T/G	 1.04	(0.0059)	 0.22	

	
[DKFZp686K1684];	[PAUPAR];	ELP4,44032;	
PAX6,-10596;		12	 23.924-24.052	 rs4074723	 23,947,737	 3.1E-08	 A/C	 0.97	(0.0049)	 0.41	

	
[SOX5]	

13	 44.237-44.545	 rs4143229	 44,327,799	 2.5E-08	 A/C	 0.95	(0.0091)	 0.92	
	

[ENOX1];	LACC1,-125620;	CCDC122,82689	
13	 53.605-54.057	 rs12552	 53,625,781	 6.1E-19	 A/G	 1.04	(0.0048)	 0.44	 H	 [OLFM4];	LINC01065,80099	
14	 41.941-42.320	 rs4904738	 42,179,732	 2.6E-09	 T/C	 0.97	(0.0049)	 0.57	

	
[LRFN5]	

14	 64.613-64.878	 rs915057	 64,686,207	 7.6E-10	 A/G	 0.97	(0.0049)	 0.42	
	

[SYNE2];	MIR548H1,-124364;	ESR2,7222	
14	 75.063-75.398	 chr14_75356855_I	 75,356,855	 3.8E-09	 D/I	 1.03	(0.0049)	 0.49	 	 [DLST];	PROX2,-26318;	RPS6KL1,13801	
14	 103.828-104.174	 rs10149470	 104,017,953	 3.1E-09	 A/G	 0.97	(0.0049)	 0.49	 S	 BAG5,4927;	APOPT1,-11340	
15	 37.562-37.929	 rs8025231	 37,648,402	 2.4E-12	 A/C	 0.97	(0.0048)	 0.57	 H	

	
16	 6.288-6.347	 rs8063603	 6,310,645	 6.9E-09	 A/G	 0.97	(0.0053)	 0.65	 	 [RBFOX1]	
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16	 7.642-7.676	 rs7198928	 7,666,402	 1.0E-08	 T/C	 1.03	(0.005)	 0.62	 	 [RBFOX1]	
16	 13.022-13.119	 rs7200826	 13,066,833	 2.4E-08	 T/C	 1.03	(0.0055)	 0.25	 	 [SHISA9];	CPPED1,-169089	
16	 71.631-72.849	 rs11643192	 72,214,276	 3.4E-08	 A/C	 1.03	(0.0049)	 0.41	

	
PMFBP1,-7927;	DHX38,67465;		

17	 27.345-28.419	 rs17727765	 27,576,962	 8.5E-09	 T/C	 0.95	(0.0088)	 0.92	 	 [CRYBA1];	MYO18A,-69555;	NUFIP2,5891	
18	 36.588-36.976	 rs62099069	 36,883,737	 1.3E-08	 A/T	 0.97	(0.0049)	 0.42	 	 [MIR924HG]	
18	 50.358-50.958	 rs11663393	 50,614,732	 1.6E-08	 A/G	 1.03	(0.0049)	 0.45	 O	 [DCC];	MIR4528,-148738	
18	 51.973-52.552	 rs1833288	 52,517,906	 2.6E-08	 A/G	 1.03	(0.0054)	 0.72	

	
[RAB27B];	CCDC68,50833	

18	 52.860-53.268	 rs12958048	 53,101,598	 3.6E-11	 A/G	 1.03	(0.0051)	 0.33	 S	 [TCF4];	MIR4529,-44853	
22	 40.818-42.216	 rs5758265	 41,617,897	 7.6E-09	 A/G	 1.03	(0.0054)	 0.28	 H,S	 [L3MBTL2];	EP300-AS1,-24392;	CHADL,7616	

Shown	are	data	for	44	genomic	loci	achieving	genome-wide	significance	for	MDD.	Chr	(chromosome)	and	Region	(boundaries	in	Mb,	hg19)	are	shown,	defined	
by	locations	of	SNPs	with	P<1x10-5	and	LD	r2	>	0.1	with	the	most	associated	SNP	(lowest	P-value	in	region,	listed)	whose	location	is	given	in	bp.	In	three	regions	a	
second	SNP	fulfils	the	filtering	criteria	and	these	were	followed	up	with	conditional	analyses:	Chr1:	conditional	analysis	selects	only	rs1432639	as	significant,	with	
P=2.0x10-4	 for	 rs12134600	after	 fitting	 rs1432639;	Chr5,	 conditional	 analysis	 shows	 two	 independent	 associations	 selecting	 rs247910	and	 rs10514301	as	 the	
most	associated	SNPs;	and	Chr10	conditional	analysis	selects	only	rs61867293	with	P=8.6x10-5	for	rs1021363	after	conditioning	on	rs61867293.	For	each	of	the	
47	SNPs,	there	is	at	least	1	additional	genome-wide	significant	SNP	in	the	cluster	of	surrounding	SNPs	with	low	P-values.	Chromosome	X	was	analyzed	but	had	no	
findings	that	met	genome-wide	significance.		

Column	labels	and	abbreviations.	A1/2	=	the	two	alleles	(or	insertion-deletion);	A1	was	tested	for	association,	and	its	OR	(odds	ratio)	and	SE	(standard	error)	are	
shown.	FreqU	=	frequency	of	A1	in	controls	across	all	cohorts.	Entries	in	the	“Prev”	column	indicate	which	of	four	previous	studies	identified	genome-significant	
associations	in	a	region.	H=Hyde	et	al.,	19	23andMe	GWA	of	self-reported	clinical	depression	(discovery	sample	overlaps	with	this	paper);	O=Okbay	et	al.,	18	meta-
analysis	of	GWA	of	MDD,	depressive	symptoms,	psychological	well-being	and	neuroticism	(includes	many	anchor	cohorts	from	this	paper);	S=PGC	report	on	108	
schizophrenia-associated	loci	22;	and	C=CHARGE	consortium	meta-analysis	of	depressive	symptoms	in	primarily	older	adults.	16	Gene	context:	distances	between	
the	 Peak	 SNP	 and	 the	 closest	 genes	 are	 shown.	 Brackets	 indicate	 that	 the	 Peak	 SNP	was	within	 that	 gene.	 The	 closest	 genes	 upstream	 (taking	 strand	 into	
account,	as	a	negative	number	indicating	distance	in	bp	between	Peak	SNP	and	the	nearest	gene	boundary)	and	downstream	(positive	distance	in	bp)	are	also	
shown,	if	there	is	a	flanking	gene	within	200	kb.	The	name	of	the	closest	gene	is	bolded.	Note	that	it	is	generally	not	known	whether	the	associated	SNPs	have	
biological	effects	on	these	or	other	more	distant	genes.		
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Table	2.	Genetic	correlations	of	MDD	with	other	disorders,	diseases,	and	human	traits	

Trait	 !"	 SE	 FDR	 ℎ$%&' 	 PMID	
Depressive	symptoms,	CHARGE	 0.91	 0.123	 3.2e-12	 0.04	 23290196	
Depressive	symptoms,	SSGAC	 0.98	 0.034	 1.3e-176	 0.05	 27089181	
ADHD	(iPSYCH-PGC)	 0.42	 0.033	 6.1e-36	 0.24	 submitted	
Anorexia	nervosa	 0.13	 0.028	 7.1e-5	 0.55	 24514567	
Anxiety	disorders	 0.80	 0.140	 2.0e-7	 0.06	 26857599	
Autism	spectrum	disorders	(iPSYCH-PGC)	 0.44	 0.039	 8.4e-28	 0.20	 submitted	
Bipolar	disorder	 0.32	 0.034	 3.3e-19	 0.43	 21926972	
Schizophrenia	 0.34	 0.025	 7.7e-40	 0.46	 25056061	
Smoking,	ever	vs	never	 0.29	 0.038	 7.0e-13	 0.08	 20418890	
Daytime	sleepiness	‡	 0.19	 0.048	 5.7e-4	 0.05	 0	
Insomnia	‡	 0.38	 0.038	 4.0e-22	 0.13	 0	
Tiredness	 0.67	 0.037	 6.2E-72	 0.07	 28194004	
Subjective	well-being	 -0.65	 0.035	 7.5E-76	 0.03	 27089181	
Neuroticism	 0.70	 0.031	 2.5E-107	 0.09	 27089181	
College	completion	 -0.17	 0.034	 6.7E-6	 0.08	 23722424	
Years	of	education	 -0.13	 0.021	 1.6E-8	 0.13	 27225129	
Body	fat	 0.15	 0.038	 6.5e-4	 0.11	 26833246	
Body	mass	index	 0.09	 0.026	 3.6e-3	 0.19	 20935630	
Obesity	class	1	 0.11	 0.029	 1.6e-3	 0.22	 23563607	
Obesity	class	2	 0.12	 0.033	 3.0e-3	 0.18	 23563607	
Obesity	class	3	 0.20	 0.053	 1.6e-3	 0.12	 23563607	
Overweight	 0.13	 0.030	 1.4e-4	 0.11	 23563607	
Waist	circumference	 0.11	 0.024	 8.2e-5	 0.12	 25673412	
Waist-to-hip	ratio	 0.12	 0.030	 2.9e-4	 0.11	 25673412	
Triglycerides	 0.14	 0.028	 1.0e-5	 0.17	 20686565	
Age	at	menarche	 -0.14	 0.023	 6.3E-8	 0.20	 25231870	
Age	of	first	birth	 -0.29	 0.029	 6.1E-22	 0.06	 27798627	
Fathers	age	at	death	 -0.28	 0.058	 3.0E-5	 0.04	 27015805	
Number	of	children	ever	born	 0.13	 0.036	 2.4E-3	 0.03	 27798627	
Coronary	artery	disease	 0.12	 0.027	 8.2e-5	 0.08	 26343387	
Squamous	cell	lung	cancer	 0.26	 0.075	 3.6e-3	 0.04	 27488534	

All	 genetic	 correlations	 (!")	 estimated	using	 bivariate	 LDSC	 applied	 to	MDD	GWA	 results	 are	 in	Table	
S12.	 Shown	 above	 are	 the	 !"	 of	MDD	with	 false	 discovery	 rate	 (FDR)	 <	 0.01	 (FDR	 estimated	 for	 221	
genetic	correlations).	Thematically	related	traits	are	indicated	by	shading.	The	iPSYCH	expanded	cohort	
is	a	nationally	representative	cohort	based	on	blood	spots	collected	at	birth.	Within	iPSYCH,	the	MDD-
ADHD	!"	was	0.58	(SE	0.050)	and	the	MDD-ASD	!"	was	0.51	(SE	0.07)	–	these	are	larger	than	those	listed	
above,	and	 inconsistent	with	artefactual	correlations.	ℎ$%&' 	 is	shown	to	aid	 interpretation	as	high	!"	 in	
the	context	of	high	ℎ$%&' 	is	more	noteworthy	than	when	ℎ$%&' 	is	low.	PMID	is	PubMed	article	identifier.		

‡	Self-reported	daytime	sleepiness	and	insomnia	from	UK	Biobank	excluding	subjects	with	MDD,	other	
psychiatric	disorders	 (bipolar	disorder,	schizophrenia,	autism,	 intellectual	disability),	shift	workers,	and	
those	taking	hypnotics.		
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