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Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of
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Major depressive disorder (MDD) is a notably complex illness with a lifetime prevalence of 14%. " It is
often chronic or recurrent and is thus accompanied by considerable morbidity, excess mortality,
substantial costs, and heightened risk of suicide. >’ MDD is a major cause of disability worldwide. * We
conducted a genome-wide association (GWA) meta-analysis in 130,664 MDD cases and 330,470
controls, and identified 44 independent loci that met criteria for statistical significance. We present
extensive analyses of these results which provide new insights into the nature of MDD. The genetic
findings were associated with clinical features of MDD, and implicated prefrontal and anterior
cingulate cortex in the pathophysiology of MDD (regions exhibiting anatomical differences between
MDD cases and controls). Genes that are targets of antidepressant medications were strongly
enriched for MDD association signals (P=8.5x10™"°), suggesting the relevance of these findings for
improved pharmacotherapy of MDD. Sets of genes involved in gene splicing and in creating isoforms
were also enriched for smaller MDD GWA P-values, and these gene sets have also been implicated in
schizophrenia and autism. Genetic risk for MDD was correlated with that for many adult and
childhood onset psychiatric disorders. Our analyses suggested important relations of genetic risk for
MDD with educational attainment, body mass, and schizophrenia: the genetic basis of lower
educational attainment and higher body mass were putatively causal for MDD whereas MDD and
schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers
of genetic risk factors for MDD, and a continuous measure of risk underlies the observed clinical
phenotype. MDD is not a distinct entity that neatly demarcates normalcy from pathology but rather a
useful clinical construct associated with a range of adverse outcomes and the end result of a complex
process of intertwined genetic and environmental effects. These findings help refine and define the
fundamental basis of MDD.

Twin studies attribute ~40% of the variation in liability to MDD to additive genetic effects (heritability,
h?), ° and h? may be greater for recurrent, early-onset, and postpartum MDD. **** GWA studies of MDD
have had notable difficulties in identifying loci. ** Previous findings suggest that an appropriately
designed study should identify susceptibility loci. Direct estimates of the proportion of variance
attributable to genome-wide SNPs (SNP heritability, hENp) indicate that around a quarter of the h? for
MDD is due to common genetic variants. **'* Although there were no significant findings in the initial
Psychiatric Genomics Consortium (PGC) MDD mega-analysis (9,240 MDD cases) * or in the CHARGE
meta-analysis of depressive symptoms (34,549 respondents), ** more recent studies have proven
modestly successful. A study of Han Chinese women (5,303 MDD cases) identified two genome-wide
significant loci, ¥’ a meta-analysis of depressive symptoms (161,460 individuals) identified two loci, *®
and an analysis of self-reported MDD identified 15 loci (75,607 cases). *°

There are many reasons why identifying causal loci for MDD has proven difficult. *> MDD is probably
influenced by many genetic loci each with small effects, ?° as are most common complex human
diseases 2! including psychiatric disorders. 2>** A major lesson in human complex trait genetics is that
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large samples are essential, especially for common and etiologically heterogeneous illnesses like MDD. **
We sought to accumulate a large sample to identify common genetic variation involved in the etiology
of MDD. **

Analysis of MDD anchor with six expanded cohorts shows polygenic prediction & clinical relevance

We defined an “anchor” cohort of 29 samples that mostly applied standard methods for assessing MDD
(Table S1). MDD cases in the anchor cohort were traditionally ascertained and typically characterized
(i.e., using direct interviews with structured diagnostic instruments). We identified six “expanded”
cohorts that used alternative methods to identify MDD (Table S2; deCODE, Generation Scotland, GERA,
iPSYCH, UK Biobank, and 23andMe, Inc.). All seven cohorts focused on clinically-significant MDD. We
evaluated the comparability of these cohorts (Table $3) by estimating the common-variant genetic
correlations (1) of the anchor cohort with the expanded cohorts. These analyses strongly supported the
comparability of the seven cohorts (Table $4) as the weighted mean r; was 0.76 (SE 0.028) with no
statistical evidence of heterogeneity in the 1, estimates (P=0.13). As a benchmark for the MDD 7,
estimates, the weighted mean r; between schizophrenia cohorts was 0.84 (SE 0.05). 13

We completed a GWA meta-analysis of 9.6 million imputed SNPs in seven cohorts containing 130,664
MDD cases and 330,470 controls (Figure 1; full details in Online Methods). There was no evidence of
uncontrolled inflation (LD score regression intercept 1.018, SE 0.009). We estimated thP to be 8.9% (SE
0.004, liability scale, assuming lifetime population risk of 0.15), and this is around a quarter of h?
estimated from twin or family studies. ° This fraction is somewhat lower than that of other complex
traits, 2! and is plausibly due to etiological heterogeneity.

We used genetic risk score (GRS) analyses to demonstrate the validity of our GWA results for clinical
MDD (Figure 2). As expected, the variance explained in out-of-sample prediction increased with the size
of the GWA discovery cohort (Figure 2a). Across all samples in the anchor cohort, GRS explained 1.9% of
variance in liability (Figure S1a), GRS ranked cases higher than controls with probability 0.57, and the
odds ratio of MDD for those in the 10" versus 1°* GRS decile (OR10) was 2.4 (Figure 2b, Table S5). GRS
were significantly higher in those with more severe MDD, as measured in different ways (Figure 2c).

Implications of the individual loci for the biology of MDD

Our meta-analysis of seven MDD cohorts identified 44 independent loci that were statistically significant
(P<5x10®), statistically independent of any other signal, ** supported by multiple SNPs, and showed
consistent effects across cohorts. This number is consistent with our prediction that MDD GWA
discovery would require about five times more cases than for schizophrenia (lifetime risk ~1% and
h?~0.8) to achieve approximately similar power. *° Of these 44 loci, 30 are novel and 14 were significant
in a prior study of MDD or depressive symptoms (the overlap of our findings: 1/1 with the CHARGE
depressive symptom study, *° 0/2 overlap with CONVERGE MDD study, *’” 1/2 overlap with the SSGAC
depressive symptom study, *® and 13/16 overlap with 23andMe self-report of MDD *° ). There are few
trans-ancestry comparisons for MDD so we contrasted these European results with the Han Chinese
CONVERGE study (Online Methods).

Table 1 lists genes in or near the lead SNP in each region, regional plots are in the Supplemental File,
and Table S6 provides extensive summaries of available information about the biological functions of
the genes in each region. In nine of the 44 loci, the lead SNP is within a gene, there is no other gene
within 200 kb, and the gene is known to play a role in neuronal development, synaptic function,
transmembrane adhesion complexes, and/or regulation of gene expression in brain.

The two most significant SNPs are located in or near OLFM4 and NEGR1, which were previously
associated with obesity and body mass index. 2> OLFM4 (olfactomedin 4) has diverse functions outside
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the CNS including myeloid precursor cell differentiation, innate immunity, anti-apoptotic effects, gut
inflammation, and is over-expressed in diverse common cancers. >> Many olfactomedins also have roles
in neurodevelopment and synaptic function; ** e.g., latrophilins form trans-cellular complexes with
neurexins *° and with FLRT3 to regulate glutamatergic synapse number. *® Olfm4 was highly upregulated
after spinal transection, possibly related to inhibition of subsequent neurite outgrowth. ** NEGR1
(neuronal growth regulator 1) influences axon extension and synaptic plasticity in cortex, hypothalamus,
and hippocampus, ***° and modulates synapse formation in hippocampus “*** via regulation of neurite
outgrowth. **** High expression, modulated by nutritional state, is seen in brain areas relevant to
feeding, suggesting a role in control of energy intake. ** The same SNP alleles are associated with
increased risk of obesity and MDD (see also Mendelian randomization analyses below) and are
associated with NEGR1 gene expression in brain (Table S6). The associated SNPs may tag two upstream
common deletions (8 and 43 kb) that delete transcription factor binding sites, *® although reports differ
on whether the signal is driven by the shorter 2 or the longer deletion. ** Thus, the top two associations
are in or near genes that influence BMI and may be involved in neurite outgrowth and synaptic
plasticity.

Novel associations reported here include RBFOX1 and LRFN5. There are independent associations with
MDD at both the 5’ and the 3’ ends of RBFOX1 (1.7 Mb, RNA binding protein fox-1 homolog 1). This
convergence makes it a strong candidate gene. Fox-1 regulates the expression of thousands of genes,
many of which are expressed at synapses and enriched for autism-related genes. *’ The Fox-1 network
regulates neuronal excitability and prevents seizures. *® It directs splicing in the nucleus and binds to 3’
UTRs of target mRNAs in the cytoplasm. ***° Of particular relevance to MDD, Fox-1 participates in the
termination of the corticotropin releasing hormone response to stress by promoting alternative splicing
of the PACAP receptor to its repressive form. *° Thus, RBFOX1 could play a role in the chronic
hypothalamic-pituitary-adrenal axis hyperactivation that has been widely reported in MDD. **

LRFN5 (leucine rich repeat and fibronectin type Ill domain containing 5) encodes adhesion-like
molecules involved in synapse formation. Common SNPs in LRFN5 were associated with depressive
symptoms in older adults in a gene-based GWA analysis. > LRFN5 induces excitatory and inhibitory
presynaptic differentiation in contacting axons and regulates synaptic strength. >>** LRFN5 also limits T-
cell response and neuroinflammation (CNS “immune privilege”) by binding to herpes virus entry
mediator; a LRFN5-specific monoclonal antibody increases activation of microglia and macrophages by
lipopolysaccharide and exacerbates mouse experimental acquired encephalitis; > thus, reduced
expression (the predicted effect of eQTLs in LD with the associated SNPs) could increase
neuroinflammatory responses.

Gene-wise analyses identified 153 significant genes after controlling for multiple comparisons (Table
S7). Many of these genes were in the extended MHC region (45 of 153) and their interpretation is
complicated by high LD and gene density. In addition to the genes discussed above, other notable and
significant genes outside of the MHC include multiple potentially “druggable” targets that suggest
connections of the pathophysiology of MDD to neuronal calcium signaling (CACNA1E and CACNA2D1),
dopaminergic neurotransmission (DRD2, a principal target of antipsychotics), glutamate
neurotransmission (GRIK5 and GRM5), and presynaptic vesicle trafficking (PCLO).

Finally, comparison of the MDD loci with 108 loci for schizophrenia ?* identified six shared loci. Many
SNPs in the extended MHC region are strongly associated with schizophrenia, but implication of the
MHC region is novel for MDD. Another example is TCF4 (transcription factor 4) which is strongly
associated with schizophrenia but not previously with MDD. TCF4 is essential for normal brain
development, and rare mutations in TCF4 cause Pitt—Hopkins syndrome which includes autistic features.
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*® GRS calculated from the schizophrenia GWA results explained 0.8% of the variance in liability of MDD
(Figure 2c).

Implications for the biology of MDD using functional genomic data

Results from “-omic” studies of functional features of cells and tissues are necessary to understand the
biological implications of results of GWA for complex disorders like MDD. >’ To further elucidate the
biological relevance of the MDD findings, we integrated the results with a wide range of functional
genomic data. First, using enrichment analyses, we compared the MDD GWA findings to bulk tissue
mRNA-seq from GTEx. *® Only brain samples showed significant enrichment (Figure 3A), and the three
tissues with the most significant enrichments were all cortical. Prefrontal cortex and anterior cingulate
cortex are important for higher-level executive functions and emotional regulation which are often
impaired in MDD. Both regions were implicated in a large meta-analysis of brain MRI findings in adult
MDD cases. >° Second, given the predominance of neurons in cortex, we confirmed that the MDD
genetic findings connect to genes expressed in neurons but not oligodendrocytes or astrocytes (Figure
3B). ® These results confirm that MDD is a brain disorder and provide validation for the utility of our
genetic results for the etiology of MDD.

Third, we used partitioned LD score regression ®* to evaluate the enrichment of the MDD GWA findings
in over 50 functional genomic annotations (Figure 3C and Table $8). The major finding was the
significant enrichment of MDD thp in genomic regions conserved across 29 Eutherian mammals ©
(20.9 fold enrichment, P=1.4x10™"). This annotation was also the most enriched for schizophrenia. ®* We
could not evaluate regions conserved in primates or human “accelerated” regions as there were too few
for confident evaluation. ® The other major enrichments implied regulatory activity, and included open
chromatin in human brain and an epigenetic mark of active enhancers (H3K4mel). Notably, exonic
regions did not show enrichment suggesting that, as with schizophrenia, %° genetic variants that change
exonic sequences may not play a large role in MDD. We found no evidence that Neanderthal
introgressed regions were enriched for MDD GWA findings. *

Fourth, we applied methods to integrate GWA SNP-MDD results with those from gene expression
quantitative trait loci (eQTL) studies. SMR (summary data—based Mendelian randomization) ** identified
13 MDD-associated SNPs with strong evidence that they control local gene expression in one or more
tissues (Table S9 and Figure S2), including two loci not reaching GWA significance (TMEM64 and
ZDHHC5). A transcriptome-wide association study ® applied to data from the dorsolateral prefrontal
cortex % identified 17 genes where MDD-associated SNPs influenced gene expression (Table $10). These
genes included OLFM4 (discussed above).

Fifth, we added additional data types to attempt to improve understanding of individual loci. For the
intergenic associations, we evaluated total-stranded RNA-seq data from human brain and found no
evidence for unannotated transcripts in these regions. A particularly important data type is assessment
of DNA-DNA interactions which can localize a GWA finding to a specific gene that may be nearby or
hundreds of kb away. ”*° We integrated the MDD findings with “easy Hi-C” data from brain cortical
samples (3 adult, 3 fetal, more than 1 billion reads each). These data clarified three of the associations.

The statistically independent associations in NEGR1 (rs1432639, P=4.6x10™") and over 200 kb away
(rs12129573, P=4.0x10"%) both implicate NEGR1 (Figure S3a), the former likely due to the presence of a
reportedly functional copy number polymorphism (see above) and the presence of intergenic loops. The
latter association has evidence of DNA looping interactions with NEGR1. The association in SOX5
(rs4074723) and the two statistically independent associations in RBFOX1 (rs8063603 and rs7198928,
P=6.9x10° and 1.0x10®) had only intragenic associations, suggesting that the genetic variation in the
regions of the MDD associations act locally and can be assigned to these genes. In contrast, the
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association in RERE (rs159963 P=3.2x10®) could not be assigned to RERE as it may contain super-
enhancer elements given its many DNA-DNA interactions with many nearby genes (Figure S3b).

Implications for the biology of MDD based on the roles of sets of genes

A parsimonious explanation for the presence of many significant associations for a complex trait like
MDD is that the different associations are part of a higher order grouping of genes. ° These could be a
biological pathway or a collection of genes with a functional connection. Multiple methods allow
evaluation of the connection of MDD GWA results to sets of genes grouped by empirical or predicted
function (i.e., pathway or gene set analysis).

Full pathway analyses are shown in Table S11, and the 19 pathways with false discovery rate g-values <
0.05 are summarized in Figure 4. The major groupings of significant pathways were: RBFOX1, RBFOX2,
RBFOX3, or CELF4 regulatory networks; genes whose mRNAs are bound by FMRP; synaptic genes; genes
involved in neuronal morphogenesis; genes involved in neuron projection; genes associated with
schizophrenia (at P<10™) %; genes involved in CNS neuron differentiation; genes encoding voltage-gated
calcium channels; genes involved in cytokine and immune response; and genes known to bind to the
retinoid X receptor. Several of these pathways are implicated by GWA of schizophrenia and by rare
exonic variation of schizophrenia and autism, "“’?> and immediately suggest shared biological
mechanisms across these disorders.

A key issue for common variant GWA studies is their relevance for pharmacotherapy: do the results
connect meaningfully to known medication targets and might they suggest new mechanisms or
“druggable” targets? We conducted gene set analysis that compared the MDD GWA results to targets of
antidepressant medications defined by pharmacological studies, "> and found that 42 sets of genes
encoding proteins bound by antidepressant medications were highly enriched for smaller MDD
association P-values than expected by chance (42 drugs, rank enrichment test P=8.5x10™"°). This finding
connects our MDD genomic findings to MDD therapeutics, and suggests the salience of these results for
novel lead compound discovery for MDD. *

Implications for a deeper understanding of the clinically-defined entity “MDD”

Past epidemiological studies associated MDD with many other diseases and traits. Due to limitations
inherent to observational studies, understanding whether a phenotypic correlation is potentially causal
or if it results from reverse causation or confounding is generally unclear. Genetic studies can now offer
complementary strategies to assess whether a phenotypic association between MDD and a risk factor or
a comorbidity is mirrored by a non-zero r; (common variant genetic correlation) and, for some of these,
evaluate the potential causality of the association given that exposure to genetic risk factors begins at
conception.

We used LD score regression to estimate r; of MDD with 221 psychiatric disorders, medical diseases,
%75 Table $12 contains the full results, and Table 2 holds the Ty values with false
discovery rates < 0.01. First, there were very high genetic correlations for MDD with current depressive
symptoms. Both correlations were close to +1 (the samples in one report overlapped partially with this
MDD meta-analysis *® but the other did not *°). The 1, estimate in the MDD anchor samples with
depressive symptoms was numerically smaller (0.80, SE 0.059) but the confidence intervals overlapped
those for the full sample. Thus, the common-variant genetic architecture of lifetime MDD overlapped
strongly with that of current depressive symptoms (bearing in mind that current symptoms had lower
estimates of hZyp compared to the lifetime measure of MDD).

and human traits.

Second, MDD had significant positive genetic correlations with every psychiatric disorder assessed as
well as with smoking initiation. This is the most comprehensive and best-powered evaluation of the
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relation of MDD with other psychiatric disorders yet published, and these results indicate that the
common genetic variants that predispose to MDD overlap substantially with those for adult and
childhood onset psychiatric disorders.

Third, MDD had positive genetic correlations with multiple measures of sleep quality (daytime
sleepiness, insomnia, and tiredness). The first two of these correlations were based on a specific analysis
of UK Biobank data (i.e., removing people with MDD, other major psychiatric disorders, shift workers,
and those taking hypnotics). This pattern of correlations combined with the critical importance of sleep
and fatigue in MDD (these are two commonly accepted criteria for MDD) suggests a close and
potentially profound mechanistic relation. MDD also had a strong genetic correlation with neuroticism
(a personality dimension assessing the degree of emotional instability); this is consistent with the
literature showing a close interconnection of MDD and this personality trait. The strong negative 7; with
subjective well-being underscores the capacity of MDD to impact human health.

Finally, MDD had negative correlations with two proxy measures of intelligence, positive correlations
with multiple measures of adiposity, relationship to female reproductive behavior (decreased age at
menarche, age at first birth, and increased number of children), and positive correlations with coronary
artery disease and lung cancer.

We used Mendelian randomization (MR) to investigate the relationships between genetically correlated
traits. We conducted bi-directional MR analysis for four traits: years of education (EDY, a proxy for
general intelligence) ’®, body mass index (BMI) ¥/, coronary artery disease (CAD) 7, and schizophrenia .
These traits were selected because all of the following were true: phenotypically associated with MDD,
significant 7, with MDD with an unclear direction of causality, and >30 independent genome-wide
significant associations from large GWA.

We report GSMR (generalized summary statistic-based MR) results but obtained qualitatively similar
results with other MR methods (Table S13 and Figures S4A-D). MR analyses provided evidence for a
1.15-fold increase in MDD per standard deviation of BMI (PGSMR=2.7X10'7) and a 0.89-fold decrease in
MDD per standard deviation of EDY (Pgsmz=8.8x10"). There was no evidence of reverse causality of MDD
for BMI (Pgsmr=0.81) or EDY (Pgsmr=0.28). For BMI there was some evidence of pleiotropy, as eight SNPs
were excluded by the HEIDI-outlier test including SNPs near OLFM4 and NEGR1 (if these were included,
the estimate of increased risk for MDD was greater). Thus, these results are consistent with EDY and
BMI as causal risk factors or correlated with causal risk factors for MDD. For CAD, the MR analyses were
not significant when considering MDD as an outcome (Pgsmr=0.39) or as an exposure (Pgsmr=0.13). We
interpret the r; of 0.12 between CAD and MDD to reflect a genome-wide correlation in the sign of effect
sizes but no correlation in the effect size magnitudes: this is consistent with “type | pleiotropy” %, that
there are multiple molecular functions of these genetic variants (which may be tissue-specific in brain
and heart). However, because the MR regression coefficient for MDD instruments has relatively high
standard error, this analysis should be revisited when more MDD genome-wide significant SNP
instruments become available from future MDD GWA studies.

We used MR to investigate the relationship between MDD and schizophrenia. Although MDD had
positive 1; with many psychiatric disorders, only schizophrenia has sufficient associations for MR
analyses. We found significant bi-directional correlations in SNP effect sizes for schizophrenia loci in
MDD (PGSMR=7.7X10'46) and for MDD loci in schizophrenia (PGSMR=6.3x10'15). We interpret the MDD-
schizophrenia 7, of 0.34 as reflecting type Il pleiotropy 78 (i.e., consistent with shared biological
pathways being causal for both disorders).
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Empirically, what is MDD?

The nature of severe depression has been discussed for millennia. ”° This GWA meta-analysis is among
the largest ever conducted for a psychiatric disorder, and provides a body of results that help refine and
define the fundamental basis of MDD.

First, MDD is a brain disorder. Although this is not unexpected, some past models of MDD have had little
or no place for heredity or biology. Our results indicate that genetics and biology are definite pieces in
the puzzle of MDD. The genetic results best match gene expression patterns in prefrontal and anterior
cingulate cortex, anatomical regions that show differences between MDD cases and controls. The
genetic findings implicated neurons (not microglia or astrocytes), and we anticipate more detailed
cellular localization when sufficient single-cell and single-nuclei RNA-seq datasets become available. ¥

Second, the genetic associations for MDD (as with schizophrenia) ®* tend to occur in genomic regions
conserved across a range of placental mammals. Conservation suggests important functional roles.
Given that this analysis did not implicate exons or coding regions, MDD may not be characterized by
common changes in the amino acid content of proteins.

Third, the results also implicated developmental gene regulatory processes. For instance, the genetic
findings pointed at RBFOX1 (the presence of two independent genetic associations in RBFOX1 strongly
suggests that it is the MDD-relevant gene). Gene set analyses implicated genes containing binding sites
to the protein product of RBFOX1 in MDD, and this gene set is also significantly enriched for rare exonic
variation in autism and schizophrenia. "’? These analyses highlight the potential importance of splicing
to generate alternative isoforms; risk for MDD may be mediated not by changes in isolated amino acids
but rather by changes in the proportions of isoforms coming from a gene, given that isoforms often have
markedly different biological functions. %2 These convergent results provide a tantalizing suggestion of
a biological mechanism common to multiple severe psychiatric disorders.

Fourth, in the most extensive analysis of the genetic “connections” of MDD with a wide range of
disorders, diseases, and human traits, we found significant positive genetic correlations with measures
of body mass and negative genetic correlations with years of education. MR analyses suggested the
potential causality of both correlations, and our results certainly provide hypotheses for more detailed
prospective studies. However, further clarity requires larger and more informative GWA studies for a
wider range of related traits (e.g., with >30 significant associations per trait). We strongly caution
against interpretations of these results that go beyond the analyses undertaken (e.g., these results do
not provide evidence that weight loss would have an antidepressant effect). The currently available data
do not provide further insight about the fundamental driver or drivers of causality. The underlying
mechanisms are likely more complex as it is difficult to envision how genetic variation in educational
attainment or body mass alters risk for MDD without invoking an additional mechanistic component. For
example, genetic variation underlying general intelligence might directly alter the development and
function of discrete brain regions that alters intelligence and which also predisposes to worse mood
regulation. Alternatively, genetic variation underlying general intelligence might lead to poorer
development of cognitive strategies to handle adversity which increases risk for MDD. An additional
possibility is that there are sets of correlated traits—e.g., personality, intelligence, sleep patterns,
appetitive regulation, or propensity to exercise—and that these act in varying combinations in different
people. Our results are inconsistent with a causal relation between MDD and subsequent changes in
body mass or education years. If such associations are observed in epidemiological or clinical samples,
then it is likely not MDD but something correlated with MDD that drives the association.

Fifth, we found significant positive correlations of MDD with all psychiatric disorders that we evaluated,
including disorders prominent in childhood. This pattern of results indicates that the current
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classification scheme for major psychiatric disorders does not align well with the underlying genetic
basis of these disorders. The MR results for MDD and schizophrenia indicated a shared biological basis.

The dominant psychiatric nosological systems were principally designed for clinical utility, and are based
on data that emerge during human interactions (i.e., observable signs and reported symptoms) and not
objective measurements of pathophysiology. MDD is frequently comorbid with other psychiatric
disorders, and the phenotypic comorbidity has an underlying structure that reflects shared origins (as
inferred from factor analyses and twin studies). ®¢ Our genetic results add to this knowledge: MDD is
not a discrete entity at any level of analysis. Rather, our data strongly suggest the existence of biological
processes common to MDD and schizophrenia. It would be unsurprising if future work implicated bipolar
disorder, anxiety disorders, and other psychiatric disorders as well.

Finally, as expected, we found that MDD had modest thp (8.9%) since MDD is a complex malady with
both genetic and environmental determinants. We found that MDD has a very high genetic correlation
with proxy measures that can be briefly assessed. Lifetime major depressive disorder requires a
constellation of signs and symptoms whose reliable scoring requires an extended interview with a
trained clinician. However, the common variant genetic architecture of lifetime major depressive
disorder in these seven cohorts (containing many subjects medically treated for MDD) has strong
overlap with that of current depressive symptoms in general community samples. Similar relations of
clinically-defined ADHD or autism with quantitative genetic variation in the population have been
reported. ¥®® The MDD “disorder versus symptom” relationship has been debated extensively, ® but
our data indicate that the common variant genetic overlap is very high. This finding has two important
implications.

One implication is for future genetic studies of MDD. In a first phase, it should be possible to elucidate
the bulk of the common variant genetic architecture of MDD using a cost-effective shortcut — large
studies of genotyped individuals who complete brief lifetime MDD screening (a sample size approaching
1 million MDD cases may be achievable by 2020). In a second phase, with a relatively complete
understanding of the genetic basis of MDD, one could then evaluate smaller samples of carefully
phenotyped individuals with MDD to understand the clinical importance of the genetic results. These
data could allow more precise delineation of the clinical heterogeneity of MDD (e.g., our demonstration
that individuals with more severe or recurrent MDD have inherited a higher genetic loading for MDD
than single-episode MDD). Subsequent empirical studies may show that it is possible to stratify MDD
cases at first presentation to identify individuals at high risk for recurrence, poor outcome, poor
treatment response, or who might subsequently develop a psychiatric disorder requiring alternative
pharmacotherapy (e.g., schizophrenia or bipolar disorder). This could form a cornerstone of precision
medicine in psychiatry.

The second implication is that people with MDD differ only by degree from those who have not
experienced MDD. All humans carry lesser or greater numbers of genetic risk factors for MDD. Genetic
risk for MDD is continuous and normally distributed with no clear point of demarcation. Non-genetic
factors play important protective and pre-disposing roles (e.g., life events, exposure to chronic fear,
substance abuse, and a wide range of life experiences and choices). The relation of blood pressure to
essential hypertension is a reasonable analogy. All humans inherit different numbers of genetic variants
that influence long-term patterns of blood pressure with environmental exposures and life choices also
playing roles. The medical “disorder” of hypertension is characterized by blood pressure chronically over
a numerical threshold above which the risks for multiple preventable diseases climb. MDD is not a
“disease” (i.e., a distinct entity delineable using an objective measure of pathophysiology) but indeed a
disorder, a human-defined but definable syndrome that carries increased risk of adverse outcomes. The
adverse outcomes of hypertension are diseases (e.g., stroke or myocardial infarction). The adverse
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outcomes of MDD include elevation in risk for a few diseases, but the major impacts of MDD are death
by suicide and disability.

In summary, this GWA meta-analysis of 130,664 MDD cases and 330,470 controls identified 44 loci. An
extensive set of companion analyses provide insights into the nature of MDD as well as its neurobiology,
therapeutic relevance, and genetic and biological interconnections to other psychiatric disorders.
Comprehensive elucidation of these features is the primary goal of our genetic studies of MDD.

Online Methods

Anchor cohort. Our analysis was anchored in a GWA mega-analysis of 29 samples of European-ancestry
(16,823 MDD cases and 25,632 controls). Table S1 summarizes the source and inclusion/exclusion
criteria for cases and controls for each sample. All samples in the initial PGC MDD papers were included.
131590 All anchor samples passed a structured methodological review by MDD assessment experts (DF
Levinson and KS Kendler). Cases were required to meet international consensus criteria (DSM-1V, ICD-9,
or ICD-10) *** for a lifetime diagnosis of MDD established using structured diagnostic instruments from
assessments by trained interviewers, clinician-administered checklists, or medical record review. All
cases met standard criteria for MDD, were directly interviewed (28/29 samples) or had medical record
review by an expert diagnostician (1/29 samples), and most were ascertained from clinical sources
(19/29 samples). Controls in most samples were screened for the absence of lifetime MDD (22/29
samples), and randomly selected from the population. We considered this the “anchor” cohort given use
of standard methods of establishing the presence or absence of MDD.

The most direct and important way to evaluate the comparability of the samples comprising the anchor
cohort is using SNP genotype data. **°* The sample sizes were too small to evaluate the common variant
genetic correlations (1) between all pairs of anchor cohort samples (>3,000 subjects per sample are
recommended). As an alternative, we used “leave one out” genetic risk scores (GRS, described below).
We repeated this procedure by leaving out each of the anchor cohort samples so that we could evaluate
the similarity of the common-variant genetic architectures of each sample to the rest of the anchor
cohort. Figure S1A shows that all samples in the anchor cohort (except one) yielded significant
differences in case-control distributions of GRS.

Expanded cohorts. We critically evaluated an “expanded” set of six independent, European-ancestry
cohorts (113,841 MDD cases and 304,838 controls). Table S2 summarizes the source and
inclusion/exclusion criteria for cases and controls for each cohort. These cohorts used a range of
methods for assessing MDD: Generation Scotland employed direct interviews; iPSYCH (Denmark) used
national treatment registers; deCODE (lceland) used national treatment registers and direct interviews;
GERA used Kaiser-Permanente treatment records (CA, US); UK Biobank combined self-reported MDD
symptoms and/or treatment for MDD by a medical professional; and 23andMe used self-report of
treatment for MDD by a medical professional. All controls were screened for the absence of MDD.

Cohort comparability. Table S3 summarizes the numbers of cases and controls in the anchor cohort and
the six expanded cohorts. The most direct and important way to evaluate the comparability of these
cohorts for a GWA meta-analysis is using SNP genotype data. **** We used LD score regression
(described below) to estimate thP for each cohort, and 7 for all pairwise combinations of the cohorts.

We compared the seven anchor and expanded cohorts. First, there was no indication of important
sample overlap as the LDSC regression intercept between pairs of cohorts ranged from -0.01 to +0.01.
Second, Table $4 shows h2yp on the liability scale for each cohort. The hZyp estimates range from 0.09
to 0.23 (for lifetime risk K=0.15) but the confidence intervals largely overlap. Third, Table $4 also shows
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the 7, values for all pairs of anchor and expanded cohorts. The median r; was 0.80 (interquartile range
0.67-0.96), and the upper 95% confidence interval on 1 included 0.75 for all pairwise comparisons.
These results indicate that the common variant genetic architecture of the anchor and expanded
cohorts overlap strongly, and provide critical support for the full meta-analysis of all cohorts.

Genotyping and quality control. Genotyping procedures can be found in the primary reports for each
cohort (Tables S1-S2). Individual genotype data for all anchor cohorts, GERA, and iPSYCH were
processed using the PGC “ricopili” pipeline (URLs) for standardized quality control, imputation, and
analysis. 2 The expanded cohorts from deCODE, Generation Scotland, UK Biobank, and 23andMe were
processed by the collaborating research teams using comparable procedures. SNPs and insertion-
deletion polymorphisms were imputed using the 1000 Genomes Project multi-ancestry reference panel
(URLs).”

Quality control and imputation on the 29 PGC MDD anchor cohorts was performed according to
standards from the PGC (Table $3). The default parameters for retaining SNPs and subjects were: SNP
missingness < 0.05 (before sample removal); subject missingness < 0.02; autosomal heterozygosity
deviation (|Fpe:|<0.2); SNP missingness < 0.02 (after sample removal); difference in SNP missingness
between cases and controls < 0.02; and SNP Hardy-Weinberg equilibrium (P > 107 in controls or P >
107 in cases). These default parameters sufficiently controlled A and false positive findings for 16
cohorts (boma, rage, shp0, shpt, edi2, gens, col3, mmi2, qi3c, gi6c, qio2, rai2, rau2, twg2, grdg, grnd).
Two cohorts (gep3 and nes2) needed stricter SNP filtering and 11 cohorts needed additional ancestral
matching (rot4, stm2, rded4) or ancestral outlier exclusion (rad2, i2b3, gskl, pfm2, jjp2, cof3, roc3,
mmo4). An additional cohort of inpatient MDD cases from Miinster, Germany was processed through
the same pipeline.

Genotype imputation was performed using the pre-phasing/imputation stepwise approach
implemented in IMPUTE2 / SHAPEIT (chunk size of 3 Mb and default parameters). The imputation
reference set consisted of 2,186 phased haplotypes from the 1000 Genomes Project dataset (August
2012, 30,069,288 variants, release “v3.macGT1"). After imputation, we identified SNPs with very high
imputation quality (INFO >0.8) and low missingness (<1%) for building the principal components to be
used as covariates in final association analysis. After linkage disequilibrium pruning (r* > 0.02) and
frequency filtering (MAF > 0.05), there were 23,807 overlapping autosomal SNPs in the data set. This
SNP set was used for robust relatedness testing and population structure analysis. Relatedness testing
identified pairs of subjects with @ > 0.2, and one member of each pair was removed at random after
preferentially retaining cases over controls. Principal component estimation used the same collection of
autosomal SNPs.

Identification of identical samples is easily accomplished given direct access to individual genotypes. **
Two concerns are the use of the same control samples in multiple studies (e.g., GAIN or WTCCC controls)
%97 and inclusion of closely related individuals. For cohorts where the PGC central analysis team had
access to individual genotypes (all anchor cohorts and GERA), we used SNPs directly genotyped on all
platforms to compute empirical relatedness, and excluded one of each duplicated or relative pair
(defined as 7 > 0.2). Within all other cohorts (deCODE, Generation Scotland, iPSYCH, UK Biobank,
23andMe, and CONVERGE), identical and relative pairs were identified and resolved using similar
procedures. ldentical samples between the anchor cohorts, iPSYCH, UK Biobank, and Generation
Scotland were identified using genotype-based checksums (URLs), ®® and an individual on the
collaborator’s side was excluded. Checksums were not available for the deCODE and 23andMe cohorts.
Related pairs are not detectable by the checksum method but we did not find evidence of important
overlap using LD score regression (the intercept between pairs of cohorts ranged from -0.01 to +0.01
with no evidence of important sample overlap).
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Statistical analysis. In each cohort, logistic regression association tests were conducted for imputed
marker dosages with principal components covariates to control for population stratification. Ancestry
was evaluated using principal components analysis applied to directly genotyped SNPs. * In the anchor
cohorts and GERA, we determined that all individuals in the final analyses were of European ancestry.
European ancestry was confirmed in the other expanded cohorts by the collaborating research teams
using similar procedures. We tested 20 principal components for association with MDD and included
five principal components covariates for the anchor cohorts and GERA (all other cohorts adopted similar
strategies). There was no evidence of stratification artifacts or uncontrolled test statistic inflation in the
results from each anchor and extended cohort (e.g., Agc was 0.995-1.043 in the anchor cohorts). The
results were combined across samples using an inverse-weighted fixed effects model.'® Reported SNPs
have imputation marker INFO score > 0.6 and allele frequencies 20.01 and <0.99, and effective sample
size equivalent to > 100,000 cases. For all cohorts, X-chromosome association results were conducted
separately by sex, and then meta-analysed across sexes. ** For two cohorts (GenScot and UKBB), we first
conducted association analysis for genotyped SNPs by sex, then imputed association results using LD
from the 1000 Genomes reference sample. '™

Defining loci. GWA findings implicate genomic regions containing multiple significant SNPs (“loci”). There
were almost 600 SNPs with P < 5x10°® in this analysis. These are not independent associations but result
from LD between SNPs. We collapsed the significant SNPs to 44 loci via the following steps.

e All SNPs were high-quality (imputation INFO score > 0.6 and allele frequencies 20.01 and <0.99).

e We used “clumping” to convert MDD-associated SNPs to associated regions. We identified an
index SNP with the smallest P-value in a genomic window and other SNPs in high LD with the
index SNP using PLINK (--clump-p1 1e-4 --clump-p2 1e-4 --clump-r2 0.1 --clump-kb 3000). This
retained SNPs with association P < 0.0001 and r® < 0.1 within 3 Mb windows. Only one SNP was
retained from the extended MHC region due to its exceptional LD.

e We used bedtools (URLs) to combine partially or wholly overlapping clumps within 50 kb.

e We reviewed all regional plots, and removed two singleton associations (i.e., only one SNP
exceeding genome-wide significance).

e We reviewed forest plots, and confirmed that association signals arose from the majority of the
cohorts.

e We conducted conditional analyses. To identify independent associations within a 10 Mb region,
we re-evaluated all SNPs in a region conditioning on the most significantly associated SNP using
summary statistics *° (superimposing the LD structure from the Atherosclerosis Risk in
Communities Study sample).

Genetic risk score (GRS) analyses. To demonstrate the validity of our GWAS results, we conducted a
series of GRS prediction analyses. The MDD GWA summary statistics identified associated SNP alleles
and effect size which were used to calculate GRS for each individual in a target sample (i.e., the sum of
the count of risk alleles weighted by the natural log of the odds ratio of the risk allele). In some analyses
the target sample had been included as one of the 29 samples in the MDD anchor cohort; here, the
discovery samples were meta-analyzed excluding this cohort. As in the PGC schizophrenia report, ** we
excluded uncommon SNPs (MAF < 0.1), low-quality variants (imputation INFO < 0.9), indels, and SNPs in
the extended MHC region (chr6:25-34 Mb). We then LD pruned and “clumped” the data, discarding
variants within 500 kb of, and in LD r® > 0.1 with the most associated SNP in the region. We generated
GRS for individuals in target subgroups for a range of P-value thresholds (Py: 5x10°%, 1x10°®, 1x10™, 0.001,
0.01, 0.05,0.1,0.2, 0.5, 1.0).

For each GRS analysis, five ways of evaluating the regression of phenotype on GRS are reported (Table
S5). The significance of the case-control score difference from logistic regression including ancestry PCs
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and a study indicator (if more than one target dataset was analyzed) as covariates. 2) The proportion of
variance explained (Nagelkerke’s R?) computed by comparison of a full model (covariates + GRS) to a
reduced model (covariates only). It should be noted that these estimates of R? reflect the proportion of
cases in the case-control studies where this proportion may not reflect the underlying risk of in the
population. 3) The proportion of variance on the liability scale explained by the GRS R? was calculated
from the difference between full and reduced linear models and was then converted to the liability scale
of the population assuming lifetime MDD risk of 15%. These estimates should be comparable across
target sample cohorts, whatever the proportion of cases in the sample. 4) Area under the receiver
operator characteristic curve (AUC; R library pROC) was estimated in a model with no covariates *
where AUC can be interpreted as the probability of a case being ranked higher than a control. 5) Odds
ratio for 10 GRS decile groups (these estimates also depend on both risk of MDD in the population and
proportion of cases in the sample). We evaluated the impact of increasing sample size of the discovery
sample GWA (Figure 2a) and also using the schizophrenia GWA study * as the discovery sample. We
also undertook GRS analysis for a target sample of MDD cases and controls not included in the meta-
analysis (a clinical inpatient cohort of MDD cases and screened controls collected in Miinster, Germany).

We conducted GRS analyses based on prior hypotheses from epidemiology of MDD using clinical
measures available in some cohorts (if needed, the target sample was removed from the discovery
GWA). We used GRS constructed from P;=0.05, selected as a threshold that gave high variance explained
across cohorts (Figure S1a). First, we used GRS analyses to test for higher mean GRS in cases with
younger age at onset (AAO) of MDD compared to those with older AAO in the anchor cohort samples. To
combine analyses across samples, we used within-sample standardized GRS residuals after correcting for
ancestry principal components. Heterogeneity in AAO in the anchor samples has been noted, ' which
may reflect study specific definitions of AAO (e.g., age at first symptoms, first visit to general
practitioner, or first diagnosis). Following Power et al., *® we divided AAO into octiles within each cohort
and combined the first three octiles into the early AAO group and the last three octiles into the late AAO
group. Second, we tested for higher mean GRS for cases in anchor cohort samples with clinically severe
MDD (endorsing 28 of 9 DSM MDD criteria) compared to those with “moderate” MDD (endorsing 5-7 of
9 MDD criteria) following Verduijn et al. > Sample sizes are given in Table S3. Third, using iPSYCH as the
target sample, we tested for higher mean GRS in recurrent MDD cases (ICD-10 F33, N=5,574) compared
to those with single episode MDD cases (ICD-10 F32, N=12,968) in analyses that included ancestry
principal components and genotyping batch as covariates. Finally, following Verduijn et al. '® using the
NESDA sample (PGC label “nes1”, an ongoing longitudinal study of depressive and anxiety disorders) as
the target sample , we constructed clinical staging phenotypes in which cases were allocated to one of
three stages: Stage 2 (n = 388) first episode MDD; stage 3 (n = 562) recurrent/relapse episode MDD;
stage 4 (n = 705) persistent/unremitting chronic MDD, with an episode lasting longer than 2 years
before baseline interview and/or > 80% of the follow-up time with depressive symptoms. We tested for
higher mean GRS in stage IV cases compared to stage Il MDD cases.

Linkage disequilibrium (LD) score regression **°* was used to estimate thp from GWA summary

statistics. Estimates of hpr on the liability scale depend on the assumed lifetime prevalence of MDD in
the population (K), and we assumed K=0.15 but also evaluated K=0.10 to explore sensitivity (Table S4).
LD score regression bivariate genetic correlations attributable to genome-wide SNPs (r;) were estimated
across MDD cohorts and between the full MDD cohort and other traits and disorders.

6194 We tested for enrichment

LD score regression was also used to partition thp by genomic features.
of hpr based on genomic annotations partitioning thP proportional to bp length represented by each
annotation. We used the “baseline model” which consists of 53 functional categories. The categories are

. 61 . . 62 H
fully described elsewhere, >~ and included conserved regions >, USCC gene models (exons, introns,
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promoters, UTRs), and functional genomic annotations constructed using data from ENCODE ' and the

Roadmap Epigenomics Consortium. ‘> We complemented these annotations by adding introgressed
regions from the Neanderthal genome in European populations ' and open chromatin regions from the
brain dorsolateral prefrontal cortex. The open chromatin regions were obtained from an ATAC-seq
experiment performed in 288 samples (N=135 controls, N=137 schizophrenia, N=10 bipolar, and N=6
affective disorder). '” Peaks called with MACS '® (1% FDR) were retained if their coordinates
overlapped in at least two samples. The peaks were re-centered and set to a fixed width of 300bp using
the diffbind R package. '®° To prevent upward bias in heritability enrichment estimation, we added two
categories created by expanding both the Neanderthal introgressed regions and open chromatin regions
by 250bp on each side.

We used LD score regression to estimate r; between MDD and a range of other disorders, diseases, and
human traits. * The intent of these comparisons was to evaluate the extent of shared common variant
genetic architectures in order to suggest hypotheses about the fundamental genetic basis of MDD (given
its extensive comorbidity with psychiatric and medical conditions and its association with
anthropometric and other risk factors). Subject overlap of itself does not bias 7.  These 1, are mostly
based on studies of independent subjects and the estimates should be unbiased by confounding of
genetic and non-genetic effects (except if there is genotype by environment correlation). When GWA
studies include overlapping samples, 1; remains unbiased but the intercept of the LDSC regression is an
estimate of the correlation between association statistics attributable to sample overlap. These
calculations were done using the internal PGC GWA library and with LD-Hub (URLs). ®

Relation of MDD GWA findings to tissue and cellular gene expression. We used partitioned LD score
regression to evaluate which somatic tissues were enriched for MDD heritability. **° Gene expression
data generated using mRNA-seq from multiple human tissues were obtained from GTEx v6p (URLs).
Genes for which <4 samples had at least one read count per million were discarded, and samples with
<100 genes with at least one read count per million were excluded. The data were normalized, and a t-
statistic was obtained for each tissue by comparing the expression in each tissue with the expression of
all other tissues with the exception of tissues related to the tissue of interest (e.g., brain cortex vs all
other tissues excluding other brain samples), using sex and age as covariates. A t-statistic was also
obtained for each tissue among its related tissue (ex: cortex vs all other brain tissues) to test which brain
region was the most associated with MDD, also using sex and age as covariates. The top 10% of the
genes with the most extreme t-statistic were defined as tissue specific. The coordinates for these genes
were extended by a 100kb window and tested using LD score regression. Significance was obtained from
the coefficient z-score, which corrects for all other categories in the baseline model.

Lists of genes specifically expressed in neurons, astrocytes, and oligodendrocytes were obtained from
Cahoy et al. ®° As these experiment were done in mice, genes were mapped to human orthologous
genes using ENSEMBL. The coordinates for these genes were extended by a 100kb window and tested
using LD score regression as for the GTEx tissue specific genes.

We conducted eQTL look-ups of the most associated SNPs in each region and report (Table S6) GWA
SNPs in LD (r* > 0.8) with the top eQTLs in the following data sets: eQTLGen Consortium (/llumina arrays
in whole blood N=14,115, in preparation), BIOS (RNA-seq in whole blood (N=2,116), ! NESDA/NTR
(Affymetrix arrays in whole blood, N=4,896), > GEUVADIS (RNA-seq in LCL (N=465), *** Rosmap (RNA
seq in cortex, N= 494, submitted), GTEx (RNA-seq in 44 tissues, N>70), *® and Common Mind Consortium
(CMC, prefrontal cortex, Sage Synapse accession syn5650509, N=467). *

We used summary-data-based Mendelian randomization (SMR) * to identify loci with strong evidence
of causality via gene expression (Table $9). SMR analysis is limited to significant cis SNP-expression (FDR
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< 0.05) and SNPs with MAF > 0.01 at a Bonferroni-corrected pSMR. Due to LD, multiple SNPs may be
associated with the expression of a gene, and some SNPs are associated with the expression of more
than one gene. Since the aim of SMR is to prioritize variants and genes for subsequent studies, a test for
heterogeneity excludes regions that may harbor multiple causal loci (pHET < 0.05). SMR analyses were
conducted using eQTLGen Consortium, GTEx (11 brain tissues), and CMC data.

We conducted a transcriptome wide association study ® using pre-computed expression reference
weights for CMC data (5,420 genes with significant cis-SNP heritability) provided with the TWAS/FUSION
software. The significance threshold was 0.05/5420.

DNA looping using Hi-C. Dorsolateral prefrontal cortex (Brodmann area 9) was dissected from
postmortem samples from three adults of European ancestry (Dr Craig Stockmeier, University of
Mississippi Medical Center). Cerebrum from three fetal brains were obtained from the NIH
NeuroBiobank (URLs; gestation age 17-19 weeks, African ancestry). Samples were dry homogenized to a
fine powder using a liquid nitrogen-cooled mortar and pestle.

We used “easy Hi-C” (in preparation) to assess DNA looping interactions. Pulverized tissue (~150 mg)
was crosslinked with formaldehyde (1% final concentration) and the reaction quenched using glycine
(150 mM). Samples were then lysed, Dounce homogenized, and digested using Hindlll. This was
followed by in situ ligation. Samples were cross-linked with proteinase K and purified using phenol-
chloroform. DNA was then digested with Dpnll followed by purification using PCRClean DX beads (Aline
Biosciences). The DNA products were self-ligated overnight at 16° using T4 DNA ligase. Self-ligated DNA
waw purified with phenol-chloroform, digested with lambda exonuclease, and purified using PCRClean
DX beads. For DNA circle re-linearization, bead-bound DNA was eluted and digested with Hindlll and
purified using PCRClean. Bead-bound DNA was eluted in 50ul nuclease free water.

Re-linearized DNA (~50ng) was used for library generation (lllumina TruSeq protocol). Briefly, the DNA
was end-repaired using End-it kit (Epicentre), A tailed with Klenow fragment (3'-5’ exo—; NEB), and
purified with PCRClean DX beads. The 4ul DNA product was mixed with 5ul of 2X quick ligase buffer, 1ul
of 1:10 diluted annealed adapter and 0.5ul of Quick DNA T4 ligase (NEB). The ligation was done by
incubating at room temperature for 15 minutes. DNA was purified using DX beads. Elution was done in
14ul nuclease free water. To deep-sequence easy Hi-C libraries, we used custom TruSeq adapter in
which the index is replaced by 6 base random sequence. Libraries were then PCR amplified and deeply
sequenced (4-5 lanes per sample, around 1 billion reads per sample) using lllumina HiSeq4000 (2x50bp).

Because nearly all mappable reads start with the Hindlll sequence AGCTT, we trimmed the first 5 bases
from every read and added the 6-base sequence AAGCTT to the 5’ of all reads. These read were then
aligned to the human reference genome (hg19) using Bowtie. After mapping, we kept reads where both
ends were exactly at Hindlll cutting sites. PCR duplicates were removed. Of these Hindlll pairs, we split
reads into three classes based on their strand orientations (“same-strand”, “inward”, or “outward”). For
cis-reads the only type of invalid cis-pairs are self-circles with two ends within the same Hindlll fragment
facing each other. We computed the total number of real cis-contact as twice the number of valid
“same-strand” pairs. Reads from undigested Hindlll sites are back-to-back read pairs next to the same
HindIll sites facing away from each other.

Gene-wise and pathway analysis. Our approach was guided by rigorous method comparisons conducted
by PGC members. ">*** p-values quantifying the degree of association of genes and gene sets with MDD
were generated using MAGMA (v1.06). '*> MAGMA uses Brown’s method to combine SNP p-values and
account for LD. We used ENSEMBL gene models for 19,079 genes giving a Bonferroni corrected P-value
threshold of 2.6x10°®. Gene set P-values were obtained using a competitive analysis that tests whether
genes in a gene set are more strongly associated with the phenotype than other gene sets. We used
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European-ancestry subjects from 1,000 Genomes Project (Phase 3 v5a, MAF > 0.01) ' for the LD
reference. The gene window used was 35 kb upstream and 10 kb downstream to include regulatory
elements.

Gene sets were from two main sources. First, we included gene sets previously shown to be important
for psychiatric disorders (71 gene sets; e.g., FMRP binding partners, de novo mutations, GWAS top SNPs,
ion channels). ">*%'” Ssecond, we included gene sets from MSigDB (v5.2) *® which includes canonical
pathways and Gene Ontology gene sets. Canonical pathways were curated from BioCarta, KEGG,
Matrisome, Pathway Interaction Database, Reactome, SigmaAldrich, Signaling Gateway, Signal
Transduction KE, and SuperArray. Pathways containing between 10-10K genes were included.

To evaluate gene sets related to antidepressants, gene-sets were extracted from the Drug-Gene
Interaction database (DGldb v.2.0) ' and the Psychoactive Drug Screening Program Ki DB %
downloaded in June 2016. The association of 3,885 drug gene-sets with MDD was estimated using
MAGMA (v1.6). The drug gene-sets were ordered by p-value, and the Wilcoxon-Mann-Whitney test was
used to assess whether the 42 antidepressant gene-sets in the dataset (ATC code NOG6A in the
Anatomical Therapeutic Chemical Classification System) had a higher ranking than expected by chance.

One issue is that some gene sets contain overlapping genes, and these may reflect largely overlapping
results. The pathway map was constructed using the kernel generative topographic mapping algorithm
(k-GTM) as described by Olier et al. GTM is a probabilistic alternative to Kohonen maps: the kernel
variant is used when the input is a similarity matrix. The GTM and k-GTM algorithms are implemented in
GTMapTool (URLs). We used the Jaccard similarity matrix of FDR-significant pathways as input for the
algorithm, where each pathway is encoded by a vector of binary values representing the presence (1) or
absence (0) of a gene. Parameters for the k-GTM algorithm are the square root of the number of grid
points (k), the square root of the number of RBF functions (m), the regularization coefficient (I), the RBF
width factor (w), and the number of feature space dimensions for the kernel algorithm (b). We set
k=square root of the number of pathways, m=square root of k, I=1 (default), w=1 (default), and b=the
number of principal components explaining 99.5% of the variance in the kernel matrix. The output of the
program is a set of coordinates representing the average positions of pathways on a 2D map. The x and
y axes represent the dimensions of a 2D latent space. The pathway coordinates and corresponding
MAGMA P-values were used to build the pathway activity landscape using the kriging interpolation
algorithm implemented in the R gstat package.

Mendelian randomization (MR). ** We used MR to investigate the relationships between MDD and

correlated traits. Epidemiological studies show that MDD is associated with environmental and life event
risk factors as well as multiple diseases, yet it remains unclear whether such trait outcomes are causes
or consequences of MDD (or prodromal MDD). Genetic variants are present from birth, and hence are
far less likely to be confounded with environmental factors than in epidemiological studies.

We conducted bi-directional MR analysis for four traits: years of education (EDY) ’®, body mass index
(BMI) %, coronary artery disease (CAD) ”7, and schizophrenia (SCZ) ?. Briefly, we denote z as a genetic
variant (i.e., a SNP) that is significantly associated with x, an exposure or putative causal trait for y (the
disease/trait outcome). The effect size of x on y can be estimated using a two-step least squares (2SLS)
22 3pproach: Bxy = Bzy/BZx., where sz is the estimated effect size for the SNP-trait association the

exposure trait, and Bzy is the effect size estimated for the same SNP in the GWAS of the outcome trait.

Since SNP-trait effect sizes are typically small, power is increased by using multiple associated SNPs
which allows simultaneous investigation of pleiotropy driving the epidemiologically observed trait
associations. Causality of the exposure trait for the outcome trait implies a consistent relationship
between the SNP association effect sizes of the exposure associated SNPs in the outcome trait.
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We used generalized summary statistics-based MR (GSMR) (Zhu et al., submitted) to estimate Exy and
its standard error from multiple SNPs associated with the exposure trait at a genome-wide significance
level. We conducted bi-directional GSMR analyses for each pair of traits, and report results after
excluding SNPs that fail the HEIDI-outlier heterogeneity test (which is more conservative than excluding
SNPs that have an outlying association likely driven by locus-specific pleiotropy). GSMR is more powerful
than inverse-weighted MR (IVW-MR) and MR-Egger because it takes account of the sampling variation
of both Bzx and Bzy. GSMR also accounts for residual LD between the clumped SNPs. For comparison,
we also conducted IVW-MR and MR-Egger analyses. **

Trans-ancestry. Common genetic risk variants for complex biomedical conditions are likely to be shared
across ancestries. ***% However, lower 1y have been reported likely reflecting different LD patterns by
ancestry. For example, European-Chinese 1, estimates were below one for ADHD (0.39, SE 0.15), 126
rheumatoid arthritis (0.46, SE 0.06), ** and type 2 diabetes (0.62, SE 0.09), ¥’ and reflect population
differences in LD and population-specific causal variants.

The Han Chinese CONVERGE study *’ included clinically ascertained females with severe, recurrent MDD,
and is the largest non-European MDD GWA to date. Neither of the two genome-wide significant loci in
CONVERGE had SNP findings +250 kb with P < 1x10°® in the full European results. We used LDSC with an
ancestry-specific LD reference for within ancestry estimation, and POPCORN ¥’ for trans-ancestry
estimation. In the CONVERGE sample, hpr was reported as 20-29%. "8 Its 1, with the seven European
MDD cohorts was 0.33 (SE 0.03). *° For comparison, r, for CONVERGE with European results for
schizophrenia was 0.34 (SE 0.05) and 0.45 (SE 0.07) for bipolar disorder. The weighted mean 7; between
the CONVERGE cohort with the seven anchor and expanded cohorts using was 0.31 (SE 0.03). These 1,
estimates should be interpreted in light of the estimates of r; within European MDD cohorts which are
variable (Table S4).

Genome build. All genomic coordinates are given in NCBI Build 37/UCSC hg19.

Availability of results. The PGC’s policy is to make genome-wide summary results public. Summary
statistics for a combined meta-analysis of the anchor cohort samples with five of the six expanded
samples (deCODE, Generation Scotland, GERA, iPSYCH, and UK Biobank) are available on the PGC web
site (URLs). Results for 10,000 SNPs for all seven cohorts are also available on the PGC web site.

GWA summary statistics for the sixth expanded cohort (23andMe, Inc.) must be obtained separately.
Summary statistics for the 23andMe dataset can be obtained by qualified researchers under an
agreement with 23andMe that protects the privacy of the 23andMe participants. Please contact David
Hinds (dhinds@23andme.com) for more information and to apply to access the data. Researchers who
have the 23andMe summary statistics can readily recreate our results by meta-analyzing the six cohort
results file with the Hyde et al. results file from 23andMe. *°

Availability of genotype data for the anchor cohorts is described in Table S14. For the expanded cohorts,
interested users should contact the lead Pls of these cohorts (which are separate from the PGC).

URLs

1000 Genomes Project multi-ancestry imputation panel,
https://mathgen.stats.ox.ac.uk/impute/data_download 1000G_phasel integrated.html

23andMe privacy policy https://www.23andme.com/en-eu/about/privacy

Bedtools, https://bedtools.readthedocs.io
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Genotype-based checksums for relatedness determination,
http://www.broadinstitute.org/~sripke/share_links/checksums_download

GTEXx, http://www.gtexportal.org/home/datasets

GTMapTool, http://infochim.u-strasbg.fr/mobyle-cgi/portal.py#forms::gtmaptool

LD-Hub, http://Idsc.broadinstitute.org

MDD summary results are available on the PGC website, https://pgc.unc.edu

NIH NeuroBiobank, https://neurobiobank.nih.gov

PGC “ricopili” GWA pipeline, https://github.com/Nealelab/ricopili

UK Biobank, http://www.ukbiobank.ac.uk
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Figure legends

Figure 1: Results of GWA meta-analysis of seven cohorts for MDD. (a) Relation between adding cohorts
and number of genome-wide significant genomic regions. Beginning with the largest cohort (1), added
the next largest cohort (2) until all cohorts were included (7). The number next to each point shows the
total effective sample size. (b) Quantile-quantile plot showing a marked departure from a null model of
no associations (the y-axis is truncated at le-12). (c) Manhattan plot with x-axis showing genomic
position (chrl-chr22), and the y-axis showing statistical significance as —log;o(P). The red line shows the
genome-wide significance threshold (P=5x10").

Figure 2: Out-of-sample genetic risk score (GRS) prediction analyses. (a) Variance explained on the
liability scale based on different discovery samples for three target samples: anchor cohort (16,823 cases,
25,632 controls), iPSYCH (a nationally representative sample of 18,629 cases and 17,841 controls) and a
clinical cohort from Miinster not included in the GWA analysis (845 MDD inpatient cases, 834 controls).
The anchor cohort is included as both discovery and target as we computed out-of-sample GRS for each
anchor cohort sample, combined the results, and modeled case-control status as predicted by
standardized GRS and cohort (see Online Methods). (b) Odd ratios of MDD per GRS decile relative to the
first decile for iPSYCH and anchor cohorts. (c) MDD GRS (from out-of-sample discovery sets) were
significantly higher in MDD cases with: earlier age at onset; more severe MDD symptoms (based on
number of criteria endorsed); recurrent MDD compared to single episode; and chronic/unremitting MDD
(“Stage IV” compared to “Stage II”, first-episode MDD ). Error bars represent 95% confidence intervals.

Figure 3: Comparisons of the MDD GWA meta-analysis. (a) MDD results and enrichment in bulk tissue
MmRNA-seq from GTEx. Only brain tissues showed enrichment, and the three tissues with the most
significant enrichments were all cortical. (b) MDD results and enrichment in three major brain cell types.
The MDD genetic findings were enriched in neurons but not oligodendrocytes or astrocytes. (c)
Partitioned LDSC to evaluate enrichment of the MDD GWA findings in over 50 functional genomic
annotations (Table S8). The major finding was the significant enrichment of MDD thp in genomic
regions conserved across 29 Eutherian mammals. > Other enrichments implied regulatory activity, and
included open chromatin in human brain and an epigenetic mark of active enhancers (H3K4mel). Exonic
regions did not show enrichment. We found no evidence that Neanderthal introgressed regions were
enriched for MDD GWA findings.

Figure 4: Generative topographic mapping of the 19 significant pathway results. The average position of
each pathway on the map is represented by a point. The map is colored by the -log;o(P) obtained using
MAGMA. The X and Y coordinates result from a kernel generative topographic mapping algorithm (GTM)
that reduces high dimensional gene sets to a two-dimensional scatterplot by accounting for gene overlap
between gene sets. Each point represents a gene set. Nearby points are more similar in gene overlap
than more distant points. The color surrounding each point (gene set) indicates significance per the scale
on the right. The significant pathways (Table S11) fall into nine main clusters as described in the text.

Figure S1: Leave-one-out GRS analyses of the anchor cohort. (a) Per sample R? at varying significance
thresholds. A all samples in the anchor cohort (except one) yielded significant differences in case-control
distributions of GRS. Across all samples in the anchor cohort, GRS explained 1.9% of variance in liability.
(b) Relation between the number of cases and R?, showing the expected positive correlation.

Figure S2: Regional association plots of genomic regions identified from SMR analysis of MDD GWA and
eQTL results. SMR analysis helps to prioritize specific genes in a region of association for follow-up
functional studies. Figures appear in the same order as the results reported in Table S9. In the top plot,
grey dots represent the MDD GWA P-values, diamonds show P-values for probes from the SMR test, and
triangles are probes without a cis-eQTL (at P.qr, < 5€-8). Genes that pass SMR and heterogeneity tests
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(designed to remove loci with more than one causal association) are highlighted in red. The eQTL P-
values of SNPs are shown in the bottom plot.

Figure S3: Circular plots to illustrate DNA-DNA loops. From the outside, the tracks show hg19 coordinates
in Mb, the positions of significant MDD associations (-logio(P), outward is more significant), the names
and positons of GENCODE genes, and the arc show significant DNA-DNA loops (q < 1e-4) from Hi-C on
adult cortex (green) and fetal frontal cortex (blue). (a) chr1:71.5-74.1 Mb suggesting that the two
statistically independent associations in the region both implicate NEGR1. (b) The MDD association in
RERE, in contrast, coincides with many DNA-DNA loops and may suggest that this region contains super-
enhancer elements.

Figure S4: Graphs depicting the SNP instruments used in Mendelian randomization analyses. Table S13
shows the parameter estimates and significance, and these graphs show scatterplots of the instruments
for MDD and (a) BMI, (b) years of education, (c) coronary artery disease, and (d) schizophrenia.
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Table 1. Genomic regions significantly associated with MDD

Chr | Region (Mb) SNP Location-bp | P A1/2 | OR-A1 (SE) Frq Prev | Gene Context
1 8.390-8.895 rs159963 8,504,421 3.2E-08 A/C 0.97 (0.0049) 0.56 H,S [RERE]; SLC45A1,100194
1 72.511-73.059 rs1432639 72,813,218 4.6E-15 A/C 1.04 (0.005) 0.63 H NEGR1,-64941
1 73.275-74.077 rs12129573 73,768,366 4.0E-12 A/C 1.04 (0.005) 0.37 H,S LINC01360,-3486
1 80.785-80.980 rs2389016 80,799,329 1.0E-08 T/C 1.03 (0.0053) 0.28
1 90.671-90.966 rs4261101 90,796,053 1.0E-08 A/G 0.97 (0.005) 0.37
1 197.343-197.864 rs9427672 197,754,741 | 3.1E-08 A/G 0.97 (0.0058) 0.24 DENND1B,-10118
2 57.765-58.485 rs11682175 57,987,593 4.7E-09 T/C 0.97 (0.0048) 0.52 H,S VRK2,-147192
2 156.978-157.464 rs1226412 157,111,313 | 2.4E-08 T/C 1.03 (0.0059) 0.79 [LINC01876]; NR4A2,69630; GPD2,-180651
3 44.222-44.997 chr3_44287760 I 44,287,760 4.6E-08 I/D 1.03 (0.0051) 0.34 T [TOPAZ1]; TCAIM,-91850; ZNF445,193501
3 157.616-158.354 rs7430565 158,107,180 | 2.9E-09 A/G 0.97 (0.0048) 0.58 H [RSRC1]; LOC100996447,155828; MLF1,-181772
4 41.880-42.189 rs34215985 42,047,778 3.1E-09 C/G 0.96 (0.0063) 0.24 [SLC30A9]; LINC00682,-163150; DCAF4L1,59294
5 87.443-88.244 chr5_87992715 | 87,992,715 7.9E-11 I/D 0.97 (0.005) 0.58 H LINC00461,-12095; MEF2C,21342
5 103.672-104.092 chr5_103942055_D | 103,942,055 | 7.5E-12 I/D 1.03 (0.0048) 0.48 C
5 124.204-124.328 rs116755193 124,251,883 | 7.0E-09 T/C 0.97 (0.005) 0.38 LOC101927421,-120640
5 164.440-164.789 rs11135349 164,523,472 1.1E-09 A/C 0.97 (0.0048) 0.48 H
5 166.977-167.056 rs4869056 166,992,078 | 6.8E-09 A/G 0.97 (0.005) 0.63 [TENM2]
6 27.738-32.848 rs115507122 30,737,591 3.3E-11 C/G 0.96 (0.0063) 0.18 S extended MHC
6 99.335-99.662 rs9402472 99,566,521 2.8E-08 A/G 1.03 (0.0059) 0.24 FBXL4,-170672; C60rf168,154271
7 12.154-12.381 rs10950398 12,264,871 2.6E-08 A/G 1.03 (0.0049) 0.41 [TMEM106B]; VWDE,105637
7 108.925-109.230 rs12666117 109,105,611 1.4E-08 A/G 1.03 (0.0048) 0.47
9 2.919-3.009 rs1354115 2,983,774 2.4E-08 A/C 1.03 (0.0049) 0.62 H PUM3,-139644; LINC01231,-197814
9 11.067-11.847 rs10959913 11,544,964 5.1E-09 T/G 1.03 (0.0057) 0.76
9 119.675-119.767 rs7856424 119,733,595 | 8.5E-09 T/C 0.97 (0.0053) 0.29 [ASTN2]
9 126.292-126.735 rs7029033 126,682,068 | 2.7E-08 T/C 1.05 (0.0093) 0.07 [DENND1A]; LHX2,-91820
10 106.397-106.904 rs61867293 106,563,924 | 7.0E-10 T/C 0.96 (0.0061) 0.20 H [SORCS3]
11 31.121-31.859 rs1806153 31,850,105 1.2E-09 T/G 1.04 (0.0059) 0.22 [DKFZp686K1684]; [PAUPAR]; ELP4,44032;
12 23.924-24.052 rs4074723 23,947,737 3.1E-08 A/C 0.97 (0.0049) 0.41 [SOX5]
13 44.237-44.545 rs4143229 44,327,799 2.5E-08 A/C 0.95 (0.0091) 0.92 [ENOX1]; LACC1,-125620; CCDC122,82689
13 53.605-54.057 rs12552 53,625,781 6.1E-19 A/G 1.04 (0.0048) 0.44 H [OLFM4]; LINC01065,80099
14 41.941-42.320 rs4904738 42,179,732 2.6E-09 T/C 0.97 (0.0049) 0.57 [LRFN5]
14 64.613-64.878 rs915057 64,686,207 7.6E-10 A/G 0.97 (0.0049) 0.42 [SYNE2]; MIR548H1,-124364; ESR2,7222
14 75.063-75.398 chrl4_75356855 | 75,356,855 3.8E-09 D/ 1.03 (0.0049) 0.49 [DLST]; PROX2,-26318; RPS6KL1,13801
14 103.828-104.174 rs10149470 104,017,953 | 3.1E-09 A/G 0.97 (0.0049) 0.49 S BAG5,4927; APOPT1,-11340
15 37.562-37.929 rs8025231 37,648,402 2.4E-12 A/C 0.97 (0.0048) 0.57
16 6.288-6.347 rs8063603 6,310,645 6.9E-09 A/G 0.97 (0.0053) 0.65 [RBFOX1]
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16 7.642-7.676 rs7198928 7,666,402 1.0E-08 T/C 1.03 (0.005) 0.62 [RBFOX1]

16 13.022-13.119 rs7200826 13,066,833 2.4E-08 T/C 1.03 (0.0055) | 0.25 [SHISA9]; CPPED1,-169089

16 71.631-72.849 rs11643192 72,214,276 3.4E-08 A/C 1.03 (0.0049) | 0.41 PMFBP1,-7927; DHX38,67465;

17 27.345-28.419 rs17727765 27,576,962 8.5E-09 T/C 0.95 (0.0088) | 0.92 [CRYBA1]; MYO18A,-69555; NUFIP2,5891
18 36.588-36.976 rs62099069 36,883,737 1.3E-08 A/T 0.97 (0.0049) | 0.42 [MIR924HG]

18 50.358-50.958 rs11663393 50,614,732 1.6E-08 A/G 1.03 (0.0049) | 0.45 0] [DCC]; MIR4528,-148738

18 51.973-52.552 rs1833288 52,517,906 2.6E-08 A/G 1.03 (0.0054) | 0.72 [RAB27B]; CCDC68,50833

18 52.860-53.268 rs12958048 53,101,598 3.6E-11 A/G 1.03 (0.0051) | 0.33 S [TCF4]; MIR4529,-44853

22 40.818-42.216 rs5758265 41,617,897 7.6E-09 A/G 1.03 (0.0054) | 0.28 H,S [L3MBTL2]; EP300-AS1,-24392; CHADL,7616

Shown are data for 44 genomic loci achieving genome-wide significance for MDD. Chr (chromosome) and Region (boundaries in Mb, hg19) are shown, defined
by locations of SNPs with P<1x10™ and LD r* > 0.1 with the most associated SNP (lowest P-value in region, listed) whose location is given in bp. In three regions a
second SNP fulfils the filtering criteria and these were followed up with conditional analyses: Chrl: conditional analysis selects only rs1432639 as significant, with
P=2.0x10" for rs12134600 after fitting rs1432639; Chr5, conditional analysis shows two independent associations selecting rs247910 and rs10514301 as the
most associated SNPs; and Chr10 conditional analysis selects only rs61867293 with P=8.6x10” for rs1021363 after conditioning on rs61867293. For each of the
47 SNPs, there is at least 1 additional genome-wide significant SNP in the cluster of surrounding SNPs with low P-values. Chromosome X was analyzed but had no
findings that met genome-wide significance.

Column labels and abbreviations. A1/2 = the two alleles (or insertion-deletion); Al was tested for association, and its OR (odds ratio) and SE (standard error) are
shown. FreqU = frequency of Al in controls across all cohorts. Entries in the “Prev” column indicate which of four previous studies identified genome-significant
associations in a region. H=Hyde et al., ** 23andMe GWA of self-reported clinical depression (discovery sample overlaps with this paper); O=Okbay et al., *® meta-
analysis of GWA of MDD, depressive symptoms, psychological well-being and neuroticism (includes many anchor cohorts from this paper); S=PGC report on 108
schizophrenia-associated loci *%; and C=CHARGE consortium meta-analysis of depressive symptoms in primarily older adults. *® Gene context: distances between
the Peak SNP and the closest genes are shown. Brackets indicate that the Peak SNP was within that gene. The closest genes upstream (taking strand into
account, as a negative number indicating distance in bp between Peak SNP and the nearest gene boundary) and downstream (positive distance in bp) are also
shown, if there is a flanking gene within 200 kb. The name of the closest gene is bolded. Note that it is generally not known whether the associated SNPs have
biological effects on these or other more distant genes.
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Table 2. Genetic correlations of MDD with other disorders, diseases, and human traits

Trait i SE FDR i PMID

Depressive symptoms, CHARGE 0.91 0.123 3.2e-12 0.04 23290196
Depressive symptoms, SSGAC 0.98 0.034 1.3e-176 0.05 27089181
ADHD (iPSYCH-PGC) 0.42 0.033 6.1e-36 0.24 submitted
Anorexia nervosa 0.13 0.028 7.1e-5 0.55 24514567
Anxiety disorders 0.80 0.140 2.0e-7 0.06 26857599
Autism spectrum disorders (iPSYCH-PGC) 0.44 0.039 8.4e-28 0.20 submitted
Bipolar disorder 0.32 0.034 3.3e-19 0.43 21926972
Schizophrenia 0.34 0.025 7.7e-40 0.46 25056061
Smoking, ever vs never 0.29 0.038 7.0e-13 0.08 20418890
Daytime sleepiness ¥ 0.19 0.048 5.7e-4 0.05 0

Insomnia ¥ 0.38 0.038 4.0e-22 0.13 0

Tiredness 0.67 0.037 6.2E-72 0.07 28194004
Subjective well-being -0.65 0.035 7.5E-76 0.03 27089181
Neuroticism 0.70 0.031 2.5E-107 0.09 27089181
College completion -0.17 0.034 6.7E-6 0.08 23722424
Years of education -0.13 0.021 1.6E-8 0.13 27225129
Body fat 0.15 0.038 6.5e-4 0.11 26833246
Body mass index 0.09 0.026 3.6e-3 0.19 20935630
Obesity class 1 0.11 0.029 1.6e-3 0.22 23563607
Obesity class 2 0.12 0.033 3.0e-3 0.18 23563607
Obesity class 3 0.20 0.053 1.6e-3 0.12 23563607
Overweight 0.13 0.030 1.4e-4 0.11 23563607
Waist circumference 0.11 0.024 8.2e-5 0.12 25673412
Waist-to-hip ratio 0.12 0.030 2.9e-4 0.11 25673412
Triglycerides 0.14 0.028 1.0e-5 0.17 20686565
Age at menarche -0.14 0.023 6.3E-8 0.20 25231870
Age of first birth -0.29 0.029 6.1E-22 0.06 27798627
Fathers age at death -0.28 0.058 3.0E-5 0.04 27015805
Number of children ever born 0.13 0.036 2.4E-3 0.03 27798627
Coronary artery disease 0.12 0.027 8.2e-5 0.08 26343387
Squamous cell lung cancer 0.26 0.075 3.6e-3 0.04 27488534

All genetic correlations (r;) estimated using bivariate LDSC applied to MDD GWA results are in Table
512. Shown above are the r; of MDD with false discovery rate (FDR) < 0.01 (FDR estimated for 221
genetic correlations). Thematically related traits are indicated by shading. The iPSYCH expanded cohort
is a nationally representative cohort based on blood spots collected at birth. Within iPSYCH, the MDD-
ADHD 1 was 0.58 (SE 0.050) and the MDD-ASD 1; was 0.51 (SE 0.07) — these are larger than those listed
above, and inconsistent with artefactual correlations. hZyp is shown to aid interpretation as high Ty in
the context of high hZyp is more noteworthy than when hZyp is low. PMID is PubMed article identifier.

t Self-reported daytime sleepiness and insomnia from UK Biobank excluding subjects with MDD, other
psychiatric disorders (bipolar disorder, schizophrenia, autism, intellectual disability), shift workers, and
those taking hypnotics.
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