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DNA methylation plays an important role in the regulation of transcription. Genetic control of DNA 

methylation is a potential candidate for explaining the many identified SNP associations with disease  

that are not found in coding regions. We replicated 52,916 cis and 2,025 trans DNA methylation 

quantitative trait loci (mQTL) using methylation measured on Illumina HumanMethylation450 arrays 

in the Brisbane Systems Genetics Study (n=614 from 177 families) and the Lothian Birth Cohorts of 

1921 and 1936 (combined n = 1366). The trans mQTL SNPs were found to be over-represented in 

1Mbp subtelomeric regions, and on chromosomes 16 and 19. There was a significant increase in trans 

mQTL DNA methylation sites in upstream and 5' UTR regions. No association was observed between 

either the SNPs or DNA methylation sites of trans mQTL and telomere length. The genetic heritability 

of a number of complex traits and diseases was partitioned into components due to mQTL and the 

remainder of the genome. Significant enrichment was observed for height (p = 2.1x10-10), ulcerative 

colitis (p = 2x10-5), Crohn's disease (p = 6x10-8) and coronary artery disease (p = 5.5x10-6) when 

compared to a random sample of SNPs with matched minor allele frequency, although this enrichment 

is explained by the genomic location of the mQTL SNPs. 
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INTRODUCTION 

 

DNA methylation plays an important role in transcriptional regulation and is increasingly recognised as 

having a role in health and disease 1,2. The contribution of genetic variation to the inheritance of DNA 

methylation levels across a range of tissues has been widely demonstrated both through studies 

investigating the heritability of DNA methylation using twin pairs and families 3–6, and through the 

identification of methylation quantitative trait loci or mQTL acting in both cis and trans 7–19. 

 

As the majority of single nucleotide polymorphisms (SNPs) associated with complex traits and disease 

are found in non-coding regions 20, it is hypothesised that the SNPs act through the perturbation of the 

regulation of gene-expression. DNA methylation QTL have been associated with other genomic marks 

that affect gene regulation, including DNase I accessibility and histone modifications 16,17, as well as 

directly with gene-expression 15,16, Therefore, they are potential causal variants for disease. Indeed, the 

overlap between mQTL and disease SNPs has been investigated previously, finding inflation for the 

number of mQTL in bipolar risk SNPs 11, schizophrenia 18 and autoimmune disease 17. 

 

These published studies indicate that mQTL have an influence in disease risk, however some aspects of 

the methodological approach in determining the significance of the overlap may be sub-optimal. For 

example, most identified mQTL have been found using Illumina HumanMethylation arrays, but the 

analytical methods have not recognised that the measures of DNA methylation are distrubuted non-

randomly throughout the genome. Most of the DNA methylation probes on these arrays are located in 

genic regions, and, given that the majority of mQTL are found in cis to DNA methylation sites, the 

mQTL SNPs are also preferentially located in genic regions. Genic regions are also known to explain a 

larger proportion of the genetic variation underlying complex traits and disease 21. Therefore, any 
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analysis looking into the overlap of mQTL with SNPs identified in genome-wide association studies 

(GWAS) needs to account for the proportion of methylation sites assessed in different genomic regions. 

In addition, determining the overlap between a mQTL and disease SNP often uses criteria such as an 

arbitrary linkage disequilibrium (LD) threshold of r2 > 0.8 between the best disease GWAS SNP and 

the mQTL SNP. This implicitly assumes that a common causal variant for the mQTL and disease is 

being tagged by two different SNPs, rather than there being two different causal variants. 

 

Here we use two large genomic studies - the Brisbane Systems Genetics Study (BSGS) 6,22 and the 

Lothian Birth Cohorts of 1921 and 1936 (LBC) 23–25 - to identify >50,000 mQTL that are replicated at a 

stringent significance level. These mQTL are then used to partition the genetic variation for complex 

traits and diseases into components due to mQTL SNPs and the remainder of the genome using LD 

Score regression 26,27 on the summary statistics from large GWAS meta-analyses. This avoids selecting 

an arbitrary linkage disequilibrium threshold above which mQTL and disease SNPs are considered as 

overlapping. These analyses are compared to null distributions generated by selecting random sets of 

SNPs that have been matched by allele frequency or by both allele frequency and genomic annotation. 
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RESULTS 

 

Identification of mQTL 

Due to prior evidence showing large cis SNP effects on DNA methylation, we firstly tested for 

association in a window spanning 2Mbp either side of the target CpG site. This window is larger than 

what is usually considered for cis mQTL, but our prior observation of significant cis mQTL effects 

spanning this far in the MHC region on chromosome 6 indicated a larger window is warranted 6. This 

was further justified by noting that the number of cis mQTL rapidly drops off to a constant background 

level between 1 and 2Mbps from the target CpG site (Figure S1). 

 

A total of 62,257 and 61,180 cis mQTL were identified in the BSGS and LBC cohorts respectively at a 

significance threshold of p < 10-11. While only the most significant SNP for each DNA methylation 

probe is considered, many of the mQTL are non-independent due to both correlations between DNA 

methylation levels for probes separated by small distances and through linkage disequilibrium between 

SNPs. Of these, 52,916 (~85%) replicated in the other cohort at Bonferonni corrected significance 

threshold of p < 10-6 and also had SNP effects on DNA methylation in the same direction in the other 

cohort. The correlation of cis mQTL effect sizes between the two cohorts was 0.97. Thus we have 

stringently replicated cis mQTL for more than 13% of the methylation sites tested. 

 

Trans mQTL were defined using a more stringent significance threshold of p < 10-13 to account for the 

extra multiple testing burden from testing association with the whole genome. The number of 

significant trans mQTL found in the BSGS and LBC was 2,454 and 2,048 respectively. Of these, 2,025 

replicated in the other cohort with a Bonferonni corrected p-value of p < 10-5 and also had the same 

direction of effect.  The correlation in trans mQTL effect sizes across the two cohorts was 0.91. The 
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location of the replicated mQTL are given in Figure 1. The extremely high replication rate for both cis- 

and trans-mQTL in independent samples demonstrates the high quality of the data and reliability of the 

results. 

 

The proportion of phenotypic variation in DNA methylation levels explained by all replicated mQTL in 

the LBC cohort is given in Figure 2. As expected from QTL identified using limited sample sizes (as 

compared to contemporary GWAS for complex traits and disease), the phenotypic variation explained 

by the mQTL is very large, with 8% of cis mQTL explaining greater than 50% of phenotypic variation. 

While trans mQTL still explain a substantial proportion of the phenotypic variance, the overall 

distribution has fewer mQTL explaining very large amounts of variance. The effect of the “winner's 

curse”, where the variance explained by the top SNPs identified in a GWAS is biased upwards, is likely 

to be small in this study given the stringency of testing and the high replication rate. 

 

There is potential for SNPs located within DNA methylation probe binding regions to have an effect on 

the measurement of methylation levels, and thus potentially create false positive mQTL. To address 

this, we used the 1000Genomes (v3) European samples to identify any genetic variation within a probe 

site and identified a SNP in 27% of the probes passing QC. It is of note that many of the SNPs 

identified within probe sequences are rare and would not be in strong linkage disequilibrium with the 

common (>1% frequency) SNPs used for the GWAS. For trans mQTL, it is very unlikely that a SNP in 

the probe site was associated with the mQTL SNP, particularly given the very stringent significance 

thresholds that were used for mQTL mapping. This is reflected in 499 (25%) trans mQTL having a 

SNP in the probe site, which is the same as the null proportion of probes that do not have an associated 

mQTL that have SNPs in their binding site (85,621/342,967). SNPs were found within the probe 

binding site for 22,267 (42%) of cis mQTL. Thus, we can potentially attribute 15% (42% - 27%) of cis 
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mQTL to genetic variation within the probe location causing genotype specific measurement error. 

However, it can also be argued that the majority of cis mQTL are found within a very small distance of 

the probe location, and it would not be surprising for genetic variation very close to a CpG site to have 

a genuine effect on methylation levels. To take an extreme example, a SNP falling within a CpG site 

completely disrupts DNA methylation at this site, which occurs for 6,160 (12%) of cis mQTL. For this 

reason, we include all mQTL – regardless of the identification of SNP within the probe site – in the 

further analyses. 

 

Genomic Distribution of Trans mQTL 

From Figure 1, we have an indication that the distribution of trans mQTL SNPs is non-randomly 

located throughout the genome. This is investigated in Figure 3a, which shows there is a large number 

of trans mQTL SNP located on chromosomes 16 and 19 given their respective sizes. This may not be 

surprising under a polygenic model of inheritance given those chromosomes have a higher gene density 

than other chromosomes. However, this inflation is beyond that expected given the gene count on those 

two chromosomes (Figure 3b). The rest of the genome shows a strong correlation between number of 

genes on a chromosome and the number of trans mQTL SNPs, except for chromosome 1 which has 

fewer trans mQTL SNP than expected. Of interest, chromosome 19 contains DNMT1 (DNA 

methyltransferase 1) that has a role in the establishment and regulation of DNA methylation. 

Interestingly however, there is no clustering of trans mQTL SNPs around its location.  

 

There are clear horizontal bands of SNPs in Figure 1, located in the subtelomeric regions of the 

genome. Indeed, 17.9% of all trans mQTL SNP are located in telomeric regions covering the 1Mbp at 

the end of chromosomes, which represents 1.53% of the genome. There is also some inflation of the 

numbers of trans mQTL methylation probes found in the 1Mbp subtelomeric region (7.0%), but this is 
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primarily due to the increased number of array probes in the subtelomeric region (5.5%) and this 

inflation is reflected in the number of cis mQTL methylation probes also (7.5%). Given the association 

with trans mQTL SNP in telomeric regions, we tested whether the trans CpG probes or SNPs were 

significantly associated with telomere length in the LBC1936 cohort. This identified no inflation of test 

statistics for either the SNPs or methylation compared to the whole genome (Figure S3). 

 

Unlike trans mQTL SNPs, the CpG probe locations showed no clustering across the genome. To 

investigate a functional role of the trans mQTL methylation sites, we annotated the genomic locations 

of all the array probes tested (Table 1). As expected from the design of the array, the majority of the 

probe CpG targets were located in genic regions. While cis mQTL methylation probes showed no large 

deviation in genomic annotation from all probes, the number of trans mQTL CpGs was substantially 

inflated in both upstream and 5' UTR regions.  

 

Role of mQTL in Complex Traits and Disease 

To assess the role of mQTL in driving the phenotypic variation of complex traits and disease, we used 

LD Score regression 26,27 to partition the trait heritability into components due to mQTL and the rest of 

the genome. LD Score regression uses summary statistics from GWAS, allowing us to investigate a 

range of traits and diseases using results from large consortia (for height 28, BMI 29, schizophrenia 30, 

ulcerative colitis 31, Crohn's disease 31, coronary artery disease 32, type 2 diabetes 33, rheumatoid 

arthritis 34, and educational attainment 35).  

 

The replicated mQTL were firstly filtered to have no SNP pairs with an estimated r2 of greater than 0.8. 

This allows for straightforward generation of sets of SNPs to estimate the distribution of variance 

explained under the null hypothesis, as then the LD structure is similar to that of a random set of minor 
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allele frequency matched SNPs. Two different null hypotheses were used. The first (null #1) accounted 

for the fact that on average SNPs with a higher heterozygosity explain more variation in a trait by 

drawing random sets of SNPs with a matched minor allele frequency (in bins of 0.05 width). The 

second (null #2) in addition matched the genomic location of randomly sampled SNPs using annotation 

from ANNOVAR 36. This accounts for the observation that a large proportion of the genetic variation in 

complex traits is explained by genic regions and that the array (and thus cis mQTL locations) is very 

gene centric. 

 

Under null #1, height, ulcerative colitis, Crohn's disease and coronary artery disease all showed a 

significant inflation of the proportion of genetic variation explained by mQTL (Table 2), although none 

of these were significant after accounting for the genomic location of the mQTL SNP (null #2). 

However, sets of SNPs generated for null #2 tag many of the same regions of the genome as the mQTL 

SNP due to large number of genic mQTL identified in this study compared to genes in the genome. 

Thus it is not surprising that none of the tests under null #2 are significant, and we cannot distinguish 

between the hypotheses of close linkage and causality. It is of note that all of those tests that were 

significant under null #1 explained more than average variation under null #2. 

 

Due to the limitations of the genomic partitioning, a second approach to investigate the effect of mQTL 

on complex traits and disease was taken. If mQTL are a driving force behind phenotypic variation, then 

it would be expected that mQTL SNPs with large effects on DNA methylation would also have large 

effects on the complex trait. To test this, we estimated the correlation between the mQTL SNP effect 

size and its effect from the large GWAS studies. The absolute value of the effect (or log odds-ratio) on 

both DNA methylation and the trait was used as it is expected that there will be variation in whether 

DNA methylation is protective or not for different regions of the genome. In addition, the effect sizes 
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were corrected for the expected relationship between effect size and minor allele frequency by 

multiplying the effect size by , where f is the minor allele frequency of the SNP. After 

correcting for minor allele frequency, no significant correlation was observed between the effects sizes 

of the SNPs on the mQTL and the corresponding SNP effect sizes on any of the tested traits (Table S2). 
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DISCUSSION 

 

We have identified 52,916 cis and 2,025 trans mQTL that are replicated across two independent 

cohorts at very stringent significance levels. While the mQTL can explain a large proportion of the 

genetic variation underlying DNA methylation variation, there is still substantial genetic variation 

remaining to be explained. Using the twin family structure in the Brisbane Systems Genetics Study, we 

have previously shown that the average heritability of DNA methylation at sites measured by the 

Illumina HumanMethylation450 array is 0.187 6. The average proportion of phenotypic variation 

explained by all mQTL across all DNA methylation probes in this study (including probes that had no 

mQTL and thus explained zero variation) is 0.021. Thus, the mQTL identified here explain 

approximately 11.2% of the total genetic variation for DNA methylation. This implies there is 

substantial genetic variation for DNA methylation remaining to be discovered through additional 

variants in cis and/or many more trans variants with small effects in larger samples. 

 

By partitioning heritability into components due to mQTL SNPs and the rest of the genome, we 

established that the identified mQTL explained a significant amount of the genetic variation for a 

number of complex traits and diseases. Using a null distribution generated by randomly sampling SNPs 

from the genome with matching minor allele frequencies showed significant amounts of genetic 

variation were explained by mQTL for height, schizophrenia, ulcerative colitis, Crohn's disease, and 

coronary artery disease. This enrichment of mQTL in disease associated regions was explained by the 

genomic location of the mQTL SNP. This is due to most mQTL SNP being cis to the DNA methylation 

probes, which also tend to be found in genic regions due to the design of the array, combined with the 

observation that genic regions explain more of the heritability for many traits 21. Previous studies that 

have shown a relationship between mQTL and bipolar disorder 11 and schizophrenia 18 QTL whilst only 
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considered MAF when sampling SNPs for the null distribution, and, as demonstrated here, the results 

are likely to be driven by the common genomic function of the SNPs. Testing for a role of mQTL in 

complex traits and disease beyond that explained by genomic location is difficult due to the large 

number of mQTL replicated in this study.  This means that a large proportion of genes in the genome 

are tagged by an mQTL and any null sample of SNPs will cover many of the same genomic regions. 

This makes any test for the proportion of heritability explained by mQTL being extremely 

conservative. 

 

Determining whether associations detected in the same genetic region for DNA methylation and a 

disease are the result of (mediated) pleiotropy or just close linkage is a difficult prospect. To have 

potential for pleiotropy, the set of potential causal variants for the two associations will need to overlap. 

Fine-mapping to a set of potential causal variants can be determined by statistical prioritisation using 

only association statistics 37–39, or in combination with other genomic data 40–42. Reducing the set of 

potential causal variant(s) underlying a mQTL using these approaches is helped by the large amount of 

phenotypic variation the mQTLs explain. There is also strong potential to determine causal SNPs for 

mQTLs in cell lines using CRISPR genome editing 43 as the end phenotype is directly observable in the 

cell, unlike the case for complex traits and disease where a phenotype to investigate in cell lines is 

generally unclear. 

 

We observed a strong over-representation of trans mQTL SNP in the 1Mbp subtelomeric region of the 

genome, as had been previously noted 17. No association of the trans mQTL SNP or methylation probes 

was found with telomere length in the LBC1936 cohort. The trans mQTLs were significantly inflated 

for methylation probes found in the upstream regions of genes, indicating a potential effect on the 

regulation of gene-expression. However, there was no overlap with trans eQTLs identified in the BSGS 
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22. The mechanism and potential importance of subtelomeric regions in altering DNA methylation 

throughout the genome warrants further investigation and at this stage artefacts of the technology 

cannot be excluded. 

 

In summary, we have identified and replicated a large number of genetic loci associated with DNA 

methylation in both cis and trans. We demonstrated an overlap of mQTL and loci for complex traits 

and diseases, which was explained by the genomic location of the mQTL SNPs. 
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MATERIALS AND METHODS 

 

Brisbane Systems Genetics Study (BSGS) 

DNA methylation was measured on 614 individuals from 177 families of European descent recruited as 

part of a study on adolescent twins and selected from individuals in the Brisbane Systems Genetics 

Study 6,22. Families consist of adolescent monozygotic (MZ) and dizygotic (DZ) twins, their siblings, 

and their parents. DNA was extracted from peripheral blood lymphocytes by the salt precipitation 

method 44. The BSGS study was approved by the Queensland Institute for Medical Research Human 

Research Ethics Committee. All participants gave informed written consent. 

 

Lothian Birth Cohorts 

Methylation data were analysed from the combined data of the Lothian Birth Cohort 1921 (LBC1921) 

and the Lothian Birth Cohort 1936 (LBC1936) 23–25. The LBC1921 and LBC1936 are longitudinal 

studies of ageing, with a focus on cognition, in groups of initially healthy older people. DNA 

methylation was measured in 446 LBC1921 subjects at an average age of 79 years, and in 920 

LBC1936 subjects at an average age of 70 years 45. Following informed consent, venesected whole 

blood was collected for DNA extraction by standard methods in both LBC1921 and LBC1936. Ethics 

permission for the LBC1921 was obtained from the Lothian Research Ethics Committee (Wave 1: 

LREC/1998/4/183). Ethics permission for the LBC1936 was obtained from the Multi-Centre Research 

Ethics Committee for Scotland (Wave 1: MREC/01/0/56), the Lothian Research Ethics Committee 

(Wave 1: LREC/2003/2/29). Written informed consent was obtained from all subjects. 

 

DNA Methylation 

DNA methylation was measured using Illumina HumanMethylation450 BeadChips as described in 
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detail elsewhere 6,45. The HM 450 BeadChip-assessed methylation status was interrogated at 485,577 

CpG sites across the genome. It provides coverage of 99% of RefSeq genes. Methylation scores for 

each CpG site are obtained as a ratio of the intensities of fluorescent signals and are represented as β-

values. DNA methylation data for the BSGS is available at the Gene Expression Omnibus under 

accession code GSE56105, and the LBC data is available at the European Genome-phenome Archive 

under accession number EGAS00001000910. 

 

 

Probes on the sex chromosomes or having been annotated as binding to multiple chromosomes 46 were 

removed from the analysis, as were non CpG sites. Probes with excess missingness or high numbers of 

individuals with detection p-value less than 0.001 were also removed. After cleaning, 397,710 probes 

remained for association analysis in both cohorts. 

 

Normalisation 

Array data were background corrected, followed by individual probes being normalised using a 

generalised linear model with a logistic link function. Corrections were made for the effects of chip 

(which encompasses batch processing effects), position on the chip, sex, age, age2, sex x age and sex x 

age2. In addition, the LBC data were corrected for white blood cell counts (basophils, eosinophils, 

monocytes, lymphocytes, and neutrophils). The LBC data were normalised for the two cohorts 

individually before combining the data for further analysis. 

 

Outlying data points can result in a high number of false positive in GWAS analysis when associated 

with rare variants. To address this, the BSGS cohort removed any measurement at a probe that was 

greater than five interquartile ranges from its nearest quartile. In the LBC, probes that had such outliers 
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were restricted to testing association with SNPs having a minor allele frequency greater than 5%. 

 

Genotyping and Imputation 

Both the BSGS and LBC were genotyped on Illumina 610-Quad Beadchip arrays, with full details of 

genotyping procedures described elsewhere 47,48. After standard quality control, the BSGS and LBC 

had 528,509 and 549,692 SNPs remaining respectively. 

 

The remaining genotyped SNPs were phased using SHAPEIT 49,50 and imputed against 1000 Genomes 

Phase I Version 3 51,52 using Impute V2 53,54. Raw imputed SNPs were filtered to remove any SNPs with 

low imputation quality as defined by an r2 < 0.8. Subsequent quality control removed SNPs with MAF 

< 0.05, and those with HWE p < 1 x 10-6. The “best-guess” (highest probability) genotype was used for 

the GWAS analyses. 

 

Genome-Wide Association Analysis 

Genome-wide association (GWAS) was performed individually on the BSGS and LBC cohorts, with 

each serving as an independent discovery cohort and replication performed in the other. 

 

To reduce the massive computational burden, GWAS was performed in two stages. Firstly the cis 

region to the methylation probe – defined as a window 2Mbp each side of the target CpG site location – 

was investigated. A significance threshold of 10-11 was used, which is a stringent p=0.05 Bonferroni 

correction for the approximate number of independent SNPs in the window and number of probes 

analysed. Significant associations were replicated with a Bonferonni corrected (based on the 

approximate number of independent mQTL) p-value of 10-6 and having effect in the same direction in 

the other sample. When a single methylation probe had a replicated association from both cohorts but 
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at a different SNP, the SNP with the best combined evidence of association was selected for further 

analyses. 

 

Association with trans SNPs (defined as all SNPs outside the 4Mbp window used in the cis analysis) 

was performed in two steps. Firstly, all chromosome/probe pairs were analysed on non-imputed 

genotyped data, which reduced the number of tests performed by a factor of 10. This was particularly 

important for the BSGS cohort which had related individuals and thus was much slower to analyse. 

Any chromosome/probe pair that had an association at p<10-7 was then reanalysed using imputed SNP 

data. An experiment-wide significance of 10-13 was used for trans associations, which is the standard 

GWAS genome-wide significance threshold of 5 x 10-8 Bonferroni corrected for the number of probes 

tested. The replication threshold of 10-5 was used, again being more stringent than a 5% significance 

Bonferroni corrected for the number of associations to be replicated. 

 

Association testing was performed using MERLIN 55 using the --fastAssoc option for the BSGS cohort 

(to account for family structure) and PLINK 56 for the combined LBC cohorts. 

 

Genomic Annotation of SNP and Methylation Sites 

SNPs and the CpG targets of methylation probes were functionally annotated using ANNOVAR 36, 

using the hg19 annotation with the distance of the upstream and downstream regions of genes being 

2Mbp to align with our definition of cis loci. 

 

Telomere Measurements 

Telomere length was measured using the same blood sample as methylation in the LBC1936 cohort 

using a quantitative real-time polymerase chain reaction (PCR) assay 57. The intra-assay coefficient of 
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variation was 2.7% and the inter-assay coefficient of variation was 5.1%. Four internal control DNA 

samples were run within each plate to correct for plate-to-plate variation. These internal controls are 

cell lines of known absolute telomere length whose relative ratio values (telomere starting 

quantity/glyceraldehyde 3-phosphate dehydrogenase starting quantity) were used to generate a 

regression line by which values of relative telomere length for the actual samples were converted into 

absolute telomere lengths. Measurements were performed in quadruplicate and the mean of the 

measurements used. PCRs were performed on an Applied Biosystems (Pleasonton, CA, USA) 7900HT 

Fast Real Time PCR machine. 

 

Partitioning Heritability 

The heritability of a trait explained by all GWASed SNPs was partitioned in to a component due to all 

discovered mQTL and all remaining SNP using LD Score regression 26,27. The sum of the LD r2 values 

for between that target SNP and all other SNPs within the 1Mbp region centred on the target SNP 58, 

and was calculated using the European samples from the 1000 Genomes project 51,52 using the software 

GCTA (--ld-score option) 59. The LD score at a SNP, j, is then calculated as: 

N
nr+=Lj −∑ 21  

where n is the number of SNP in the window and N is sample size used to calculate the r2 measures. 

 

Using the summary statistics from a large GWAS for a quantitative trait or disease, the heritability of 

the trait is partitioned into components due to mQTL and the rest of the genome using a regression 

Gj,GmQTLj,mQTLj Lβ+Lβ+α=χ 2  

where is the chi-square test statistics for SNP j. The heritability attributable to mQTL is calculated as 
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GWAS

mQTLmQTL

N
Mβ ∗

 

where MmQTL is the number of mQTL SNPs and NGWAS is the sample size of the GWAS from which the 

summary statistics were obtained. The heritability attributable to the rest of the genome is calculated 

similarly. 
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FIGURE LEGENDS 

 

Figure 1:  Location of replicated mQTL across the genome.  Each point represents a replicated mQTL 

with the position of the CpG site on the X-axis and the SNP location on the Y-axis. Chromosome 

boundaries are indicated with dashed lines. The diagonal line shows an abundance of cis mQTL 

throughout the genome. Also visible are horizontal bands of trans mQTL in the telomeric regions of the 

chromosomes.  See also Figure S1. 

 

Figure 2: Proportion of phenotypic variation of DNA methylation levels explained by mQTL in the 

LBC cohort. 

 

Figure 3: Genomic location of trans mQTL. (a) a circos plot showing trans mQTL occurring 

throughout the genome.  Chromosomes 16 and 19 have a large number of trans mQTL SNPs, and this 

inflation is beyond that expected due to the increased gene density on those chromosomes (b). 
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Table 1: Genomic annotation of mQTL CpG site locations.  Only categories from ANNOVAR that 

contain greater than 1% of probes are included. A substantial inflation of “Upstream” and “UTR5” is 

found for probes with trans mQTL. 

 

Classification All Array Probes Cis mQTL Probes Trans mQTL probes 
Intronic 33.7% 36.0% 28.1% 
Intergenic 21.3% 25.8% 14.5% 
Upstream 19.2% 17.2% 29.5% 
Exonic 9.0% 6.6% 7.1% 
UTR5 6.0% 3.4% 13.2% 
UTR3 3.8% 3.6% 1.7% 
ncRNA-intronic 2.5% 2.9% 1.4% 
ncRNA-exonic 1.5% 1.4% 1.8% 
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Table 2: LDScore regression partitioning of the heritability for a variety of traits and disease. For each trait, the heritability was partitioned 

into components explained by mQTL and the rest of the genome and the proportion of the total explained heritability attributable to mQTL 

was calculated.  Several phenotypes showed a significant role of mQTL under the first null hypothesis (matched allele frequencies) but these 

did not remain significant when SNPs were matched to genomic location (Null #2). 

 
 
Trait 

 
SNP 

 
N * 

mQTL 
Proportion 

Null #1 Null #2 
Mean (S.E.) P-value Mean (S.E) P-value 

Height 2,517,431 253,288 0.330 0.083 (0.040) 2.1x10-10 0.269 (0.052) 0.12 
BMI 2,524,366 322,154 0.245 0.206 (0.084) 0.32 0.303 (0.096) 0.73 
Schizophrenia 6,101,975 82,315† 0.262 0.152 (0.046) 0.0098 0.271 (0.047) 0.57 
Ulcerative 
colitis** 

1,346,293 27,432 0.333 0.071 (0.064) 2x10-5 0.299 (0.094) 0.37 

Crohn's 
Disease** 

948,687 20,883 0.305 0.053 (0.048) 6x10-8 0.252 (0.071) 0.23 

Coronary 
Artery Disease 

2,398,186 86,995 0.292 0.038 (0.058) 5.5x10-6 0.238 (0.076) 0.24 

Type 2 
Diabetes 

2,411,307 80,788 0.297 0.172 (0.106) 0.12 0.253 (0.095) 0.32 

Rheumatoid 
Arthritis** 

8,409,120 58,284 0.136 0.087 (0.104) 0.32 0.202 (0.127) 0.70 

Educational 
Attainment 

2,291,668 126,559 0.110 0.114 (0.062) 0.52 0.227 (0.073) 0.94 

 
* N = N_cases + N_controls for case-control studies. 
** Excluding the HLA region of chromosome 6 

† Contains non-European samples 
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