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Summary:  

Glioblastoma is the most common primary brain cancer in adults and is notoriously difficult to treat due to its 

diffuse nature. We performed single-cell RNAseq on 3589 cells in a cohort of four patients. We obtained cells 

from the tumor core as well as surrounding peripheral tissue. Our analysis revealed cellular variation in the 

tumor’s genome and transcriptome, We were able to identify infiltrating neoplastic cells in regions peripheral to 

the core lesions. Despite the existence of significant heterogeneity among neoplastic cells, we found that 

infiltrating GBM cells share a consistent gene signature between patients, suggesting a common mechanism of 

infiltration. Additionally, in investigating the immunological response to the tumors, we found transcriptionally 
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distinct myeloid cell populations residing in the tumor core and the surrounding peritumoral space.  Our data 

provide a detailed dissection of GBM cell types, revealing an abundance of novel information about tumor 

formation and migration. 
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Introduction  

Glioblastoma (GBM) is the most common malignant primary brain cancer in adults (Bush et al., 2016). GBMs 

are incurable tumors; despite aggressive treatment including surgical resection, chemotherapy and radiotherapy, 

the median overall survival remains only 12-18 months (Wen and Kesari, 2008). Unlike brain metastases, for 

which local control rates following surgery and radiation can reach 80%, GBMs are diffusely infiltrating (Claes 

et al., 2007) and invariably recur, even in distant regions of the brain.  The diffuse nature of GBMs renders local 

therapies ineffective as migrating cells outside of the tumor core are generally unaffected by local treatments 

and are responsible for the universal recurrence of GBMs in patients. 

The development of novel treatment strategies is predicated upon a better understanding of the molecular 

features of these tumors, with a particular focus on the ability to capture and identify the infiltrating cells 

responsible for recurrence. Although bulk tumor sequencing approaches have been useful in generating 

classification schemas of GBM subtypes (Cancer Genome Atlas Research Network, 2008; Verhaak et al., 2010),  

they provide limited insight to the true heterogeneity of GBM tumors. Inter-patient variation and molecular 

diversity of neoplastic cells within individual GBMs has been previously described (Patel et al., 2014), but 

studies thus far have been limited in scope to the molecular complexity of cells from the tumor core; existing 

studies at single-cell resolution have been unable to address the nature of infiltrating GBM cells or the 

unexplored variety of other neuronal, glial, immune, and vascular cell types that reside within and around 

GBMs. The interplay between each of these cell types within the tumor microenvironment likely contributes 

significantly to tumor progression and resistance to therapy. 

To capture and characterize infiltrating tumor cells, and to define the cellular diversity within both the tumor 

core and surrounding brain, we performed high depth single-cell RNAseq on a cohort of four primary GBM 

patients (IDH1 negative, Grade IV GBMs confirmed via pathological examination). From each patient, we 

collected samples from two separate locations: the first residing within the tumor core and the second from 

peritumoral brain (Fig. 1A and Fig. S15). Additionally, from each location we collected both unpurified cell 

populations, as well as populations enriched for each of the major CNS cell types (neurons, astrocytes, myeloid 

cells, endothelia) that are often overwhelmed in number by the abundance of tumor cells. This strategy allowed 

us to capture tumor cells that had migrated away from the primary tumor lesion into the peritumoral tissue, and 
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to specifically compare transcriptome-level effects of the tumor microenvironment on each of the various brain 

and immune cell types.  

In total, we sequenced 3589 cells from both the tumor core and the peritumoral brain, comprising neoplastic 

cells and representatives from each of the major CNS cell types (vascular, immune, neuronal, glial). Together, 

our data provide a large-scale dissection of GBM cell types and their respective gene expression profiles, 

revealing an abundance of information about tumor formation and effects of the interaction between tumor cells 

and the immune system.  Specifically, we managed for the first time in primary tumors to capture and 

characterize infiltrating neoplastic cells along the migrating front of the GBM. Additionally, we investigated the 

heterogeneity of GBM tumors between and within patients, and characterized the effect of the tumor 

environment on populations of non-neoplastic cells with particular emphasis on immune cell populations. 

 

Results and Discussion  

Initial clustering and identification of cell types  

At the onset of our efforts to sort single cells from the tumor core, we discovered that the vast majority of the 

cells we captured from dissociated tumor belonged to the neoplastic population, with little contribution from 

other glial, neuronal, vascular, or immune subtypes. Thus, to increase the relative percentage of non-neoplastic 

cells in our analysis, we adapted well-validated protocols for immunopanning human tissue with cell-type 

specific markers (Zhang et al., 2016) with the ultimate goal of encompassing the entirety of the tumor and 

peritumor cellular landscape that is often blurred in bulk sequencing studies or insufficiently sampled in prior 

single cell studies. After dissociation and immunopanning, individual cells were sorted into 96-well plates; non-

immunopanned cells were also sorted to ensure that no major subpopulation of cells was excluded. The details 

of this process is described in detail in the Materials and Methods and graphically summarized in Fig. 1B.  

To visualize the transcriptomic landscape across all sequenced single cells, we used dimensional reduction to 

generate a two dimensional map of all 3589 single cells that passed QC (Fig. S1 and Table 1), performing an 

analysis similar to Darmanis et al (Darmanis et al., 2015). Briefly, we selected genes with the highest over-

dispersion (n=500) and used them to construct a cell-to-cell dissimilarity matrix. We then performed t-

Distributed Stochastic Neighbor Embedding (tSNE) on the resulting distance matrix to create a two-dimensional 

map of all cells. Finally, we used k-means clustering on the 2D tSNE map, resulting in the identification of 12 

distinct cell types within separate clusters (Fig. 2A). 
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We inferred the cellular identities of the resulting clusters from the tSNE analysis by identifying significantly 

overexpressed genes in each cluster. Initially, we used a Wilcoxon rank sum test to compare each gene’s 

expression in one cluster to its expression in all other cells, and we then cross-referenced these cluster-enriched 

genes (Table S1) with known cell-type specific CNS databases (Zhang et al., 2016; 2014). We then validated the 

identity of the clusters by combining our dataset with published single cell RNAseq data from healthy human 

brain samples to ensure consistent cell type classifications of each cluster (Darmanis et al., 2015). The cell type 

identity of each cell cluster along with the number of cells originating from each patient and anatomical location 

are shown in Table S2. Genes whose expression is specific to major cell types of the brain are shown in Fig. 2B. 

Using this method, we were able to classify all clusters into one of the major CNS neuronal, glial, or vascular 

subtypes found within the healthy human brain, with the exception of three clusters (1, 4 and 11). After further 

investigation, we preliminarily defined the cells within these three clusters as ‘neoplastic’ based on the 

following observations (as well as CNV analyses performed below). Foremost, ~94% of the cells (1029/1091) 

in neoplastic clusters originated from the tumor core. Additionally, these cells significantly over-expressed 

EGFR (Fig. 2B), a gene upregulated in 30-50% of all GBMs (Libermann et al., 1985a; 1985b; 1984), as well as 

SOX9, a transcription factor with an established oncogenic role in gliomas (Wang et al., 2012a). Interestingly, 

the combined expression of just these two genes, EGFR and SOX9, was capable of demarcating neoplastic cells 

with high sensitivity and specificity (Fig. S2). 

To further increase our confidence in the identity of the inferred cell types (both typical and neoplastic), we 

performed a direct comparison with single cell and bulk RNAseq data from (Darmanis et al., 2015) (Healthy 

Brain) and (Patel et al., 2014) (Bulk GBM). The Healthy Brain dataset contains single cell RNAseq data from 

332 cells originating from healthy adult human cortex and the Bulk GBM dataset contains RNAseq data from 

bulk sequencing of five primary GBMs. The resulting tSNE map of all cells and bulk samples can be seen in 

Fig. S3. Using this extended dataset we made two important observations; Bulk GBM samples cluster directly 

in the midst of our neoplastic cell clusters, while single cells from the Healthy Brain dataset, originating from 

tumor free brains, cluster together with non-neoplastic cells in each of their respective assigned cell types 

(Table S2). These observations provided further validation of our classification schema for both the identity of 

non-neoplastic cell types as well as the identification of GBM-specific neoplastic populations. 

Since the majority of cells that were classified in the neoplastic clusters originated from the tumor core and were 

selected by HepaCAM immunopanning (an astrocyte-lineage marker), we maintained some of these cells in 

culture to compare morphological and proliferative features to HepaCAM selected cells from the surrounding 
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tissue. Compared with peripheral astrocytes, HepaCAM-selected cells from the tumor core exhibited a distinct 

morphology (Fig.2C) and were highly proliferative, as determined by EdU incorporation and expression of 

MKI67 (Fig.2D), further supporting the notion that they are neoplastic in origin. 

Although the tumor core and surround samples were separated by MRI-guided surgical excision, we also looked 

for a molecular signature to help confirm the identify of the tumor core cells from the surrounding cells. We 

hypothesized that expression of hypoxic genes would correlate with the relatively oxygen-poor tumor core 

where cells are forced to adapt to the low-oxygen environment. Thus, we calculated a ‘hypoxic-score’ for each 

cell based on the combined expression of classic hypoxic genes PGK1, CA9, VEGFA, SPP1, and HIF1A (Fig. 

S4). As expected, we observed a significant increase in the expression of these hypoxic genes within the tumor 

core as compared to the surrounding regions.  

It should be noted that the tumors themselves are heterogeneous and contain both neoplastic cells and non-

neoplastic cells.  Out of 2343 tumor core-originating cells, only 1029 were members of the aforementioned 

neoplastic-cell clusters (~44%). The vast majority of the remaining cells (n=1182, ~50%) belonged to immune 

cell clusters, with the residual cells assigned to the OPC cluster (n=50, 2.13%), one of the endothelial cell 

clusters (n=47, 2%), the oligodendrocyte cluster (n=34, ~1.5%), or the neuronal cluster (n=1, ~0.05%). 

Interestingly, the only cell population without a cell originating from the tumor tissue sample is the mature 

astrocyte cluster. 

 

Neoplastic cell characteristics  

The neoplastic cells share common characteristics that distinguish them from other cells of the brain. 

Differential expression analysis (DESeq2) between neoplastic and non-neoplastic cells revealed genes enriched 

within all neoplastic cells (Fig. S5A, also see Supplementary information). Unsurprisingly, EGFR showed the 

highest enrichment of any gene. In addition, among the highest enriched genes we found CHL1, a member of 

the L1-family of neural cell adhesion molecules that is involved in migration and positioning of neurons in the 

developing neocortex. Furthermore, we found upregulation of the transcription factors SOX2 and SOX9, which 

are also involved in brain development and lineage specification. Notably, SOX2 has been reported as a marker 

of glioma stem cells, along with genes POU3F2, OLIG2 and SALL2 (Suvà et al., 2014), while SOX9 has been 

shown to correlate with poor clinical outcome (Wang et al., 2012b). NFIB was another neoplastic-specific 

transcription factor that has been implicated in brain development (Campbell et al., 2008; Steele-Perkins et al., 
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2005) with an important role in the induction of quiescence in neural stem cells (Martynoga et al., 2013) and 

promotion of metastasis (Denny et al., 2016). We verified the upregulation of both NFIB and SOX9 using 

multiplexed in situ RNA staining, with padlock probes and rolling circle amplification (Ke et al., 2013), on 

sections of tumor core as well as peripheral tissue (Fig. 2D and Fig. S6). We also looked for gene expression 

that was specifically limited to non-neoplastic cell populations and verified their expression patterns via in situ 

RNA staining (Fig. 2D and Fig. S6). Unsurprisingly, many of these markers were genes known to define 

mature, differentiated CNS cell types: MBP and OPALIN (oligodendrocytes), GPR17 (OPCs), L1CAM 

(Neurons), as well as ALDH1L1, WIF1 and NTSR2 (Astrocytes).  

In light of recent advances in our understanding of how tumors affect immune cells within their 

microenvironment, as well as a number of clinical studies pursuing the use of immune checkpoint inhibitors for 

the treatment of GBM, we next looked at the expression of MHC I genes (Fig. S7A) and genes coding for 

ligands of PD1 (CD274 and PDCD1LG2) and CTLA4 (CD80 and CD86) on neoplastic cells (Fig. S7B). We 

found that most neoplastic cells do not express the transcripts for ligands of PD1 and CTLA4, whereas the 

opposite is true of genes of the MHC I class. Nonetheless, we did notice a high degree of heterogeneity both 

within and between patients. Specifically, fewer than 25% of neoplastic cells of BT_S1 express HLA-A, HLA-B, 

and HLA-C, while more than 75% of neoplastic cells from patients BT_S2, BT_S4 and BT_S6 express these 

genes (Table S4). We observed the same heterogeneity in the expression of ligands of PD1 and CTLA4 as well. 

Interestingly, most of the neoplastic cells do not express CD274, PDCD1LG2, CD80 or CD86 with the 

exception of a small subset cells from BT_S2 expressing both ligands of PD1 (Fig. S7C), which suggests that 

therapeutics directed against these targets (so-called checkpoint inhibitors) may have limited efficacy in this 

tumor type. We also compared the expression of immune checkpoint receptor ligands in myeloid cells from the 

tumor core and the peritumoral tissue, as discussed below. 

Within the greater neoplastic cell cluster we found a high degree of both inter- and intra-tumor variation. From 

an inter-tumor perspective, we observed that neoplastic cells largely separated based on patient of origin with 

each patient’s neoplastic cells clustering preferentially with other neoplastic cells from the same patient (Fig. 

S8A); this enabled identification of genes that differentiated between each patient’s tumor (Fig. S8B). Inter-

patient heterogeneity was even more apparent at the level of unique CNV abnormalities between patients, as 

discussed below.  From an intra-tumor perspective, we wondered whether heterogeneity within individual 

patient tumors may reflect differences in the Verhaak classification (Verhaak et al., 2010) of these tumors. 

However, like previous findings (Patel et al., 2014), we found that each patient’s tumor represents an ensemble 
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of cells belonging to each of the different Verhaak molecular subtypes (see Supplementary Information). We 

therefore quantified the degree of intra-tumor heterogeneity, and used the endogenous heterogeneity as other 

CNS cell types as a benchmark for comparison (i.e. oligodendrocytes, astrocytes, OPCs).  In Supplementary 

figure 6C, we plotted histograms of the distributions of all pairwise distances (self-to-self distances were 

removed) between neoplastic cells of each patient and cells belonging to each the non-neoplastic clusters. We 

observed a clear and statistically significant (p < 10-16) difference between the distribution of distances of 

neoplastic cells originating from each of the patients and those found within the healthy cell clusters, suggesting 

that the neoplastic cell clusters had a higher level of internal transcriptomic heterogeneity compared to non-

neoplastic CNS cell types.  

 

Neoplastic cell CNV analysis using RNAseq 

Genomic Copy Number Variants (CNVs) are known to be among the triggers of tumor formation (Shlien and 

Malkin, 2009), and tumor progression is commonly associated with further variations in copy number. Using 

the RNAseq data, we calculated CNV vectors for each individual cell and then clustered cells on the basis of 

their respective profile CNV vector (as opposed to the typical gene expression profile used for tSNE analysis). 

The resulting dendrogram was comprised of three primary branches (Fig. 3A): one (CNV 1) consisted 

exclusively of neoplastic cells, while the remaining two contain the majority of non-neoplastic cells. More 

specifically, one of the two non-neoplastic clusters contained all CD45positive antigen-presenting (AP) cells (CNV 

3), and the remaining branch consisted of all other non-neoplastic cells (CNV 2). The most likely reason for the 

separate clustering of normal and AP cells is the overexpression of the MHC class II genes, which cluster 

together on chromosome 6 (data not shown). To evaluate the degree of correlation between the CNV analysis 

and the initial tSNE clustering, we calculated the agreement between classifications in the two platforms. Of the 

cells identified as neoplastic in the initial tSNE plot, 1047/1091 were similarly identified as neoplastic in CNV1 

(4% misclassification). Additionally, 2483/2498 cells that were initially identified as non-neoplastic belonged to 

either of the non-neoplastic clusters (CNV2 or CNV3) (0.6% misclassification).  

To determine which chromosomal regions were most affected in neoplastic cells, we subtracted the median 

CNV profile of the non-neoplastic, non-myeloid populations (CNV 2) from that of the neoplastic cells (CNV 1). 

The individual median CNV profiles along with their differences (DeltaCNV) can be seen in Fig. S9A. If the 

differences between RNAseq-derived CNV profiles across different cell populations were merely a result of 
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gene-expression fluctuations with no underlying structural chromosomal variation, we would expect the 

DeltaCNV in Fig. S9A to randomly fluctuate around zero. Instead, we specifically looked for the presence of 

entire chromosomes that were over or under-represented in the neoplastic cells by counting the number of 

positive (higher in neoplastic cells) and negative (higher in non-neoplastic cells) occurrences (Fig. S9B) for 

each chromosome. The RNA-derived CNV profiles of neoplastic cells revealed two well-described 

chromosomal alterations in gliomas (Reifenberger and Collins, 2004): the amplification of chromosome 7 

(including EGFR) as well as a putative deletion of chromosome 10 (including PTEN, MGMT). In addition, we 

noticed a similar pattern for chromosome 22 as we did with chromosome 10, suggesting another GBM specific 

putative deletion. While the amplification of chr7 is observed in all four patients, inter-patient heterogeneity is 

largely reflected in the neoplastic CNV profiles for each of the patients’ tumors, as can be seen in Fig. 3B. 

To validate the utility of the RNA-derived CNV profiles, we performed DNAseq on DNA isolated from the 

tumor and the peritumoral tissue of one of the patients (BT_S4). We found that RNA-derived CNV profiles 

closely represented those derived from genomic data. As predicted, bulk DNAseq revealed a richer landscape of 

chromosomal aberrations in the tumor, not evident in single-cell-RNAseq-derived CNV profiles. Nonetheless, 

all identified chromosomal aberrations (over-representation of chromosomes 1, 7 and 21 and under-

representation of chromosomes 10 and 14) in that patient’s tumor found by RNAseq were similarly classified by 

DNAseq (Fig. S10). 

 

Single-cell genomic variant analysis using RNAseq data 

Single-cell RNAseq data also have the capacity to reveal clinically relevant tumor variants, such as SNVs as 

well small indels, in heterogeneous tumors. We called variants using the GATK pipeline (see Variant analysis 

section in Supplementary information) for single cell RNAseq data and subsequently limited the variant set to 

non-synonymous exonic variants occurring in at least 5% of a patient’s neoplastic cells. To exclude likely 

germline mutations we removed variants observed in the 1000 Genomes Project, those found in greater than 3 

non-neoplastic cells, and those where greater than 2% of non-neoplastic cells with reads covering the variant 

position expressed the variant allele. Cross-referencing the remaining putative tumor-specific variants with 

previously identified somatic tumor variants using the Catalogue of Somatic Mutations in Cancer led to the 

identification of neoplastic and patient specific subpopulations harboring both novel and well-established 

mutations on a number of tumor-related genes, absent in non-neoplastic cells (Fig. S11). Specifically, we found 
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two EGFR variants, a previously reported missense substitution (c.G865A:p.A289T, COSM21686) and a novel 

non-frameshift deletion of nucleotides 1799 to 1804 on exon 15. Interestingly, the first variant is found on a 

subset of BT_S1 neoplastic cells and the second in a subset of neoplastic cells of BT_S6 (Fig. 3C). Neoplastic 

cells of patient BT_S4 harbor a missense mutation (c.G226C:p.D76H) on MAP1B, which is involved in 

regulation of cytoskeletal changes occurring during neurogenesis. We were able to confirm this variant as 

tumor-specific using whole genome sequencing of BT_S4 tumor and peripheral bulk DNA. Of note, the same 

position of MAP1B has been previously found mutated in skin carcinomas but with a different substitution 

(c.G226A:p.D76N, COSM5908518). In a subpopulation of BT_S2 neoplastic cells we observed a potential 

cancer driver mutation in the form of a missense TP53 mutation (c.G226A:p.D76N, COSM5908518), 

previously found in multiple cancer types including gliomas as well as lung and breast carcinomas. In addition, 

a subset of cells from the same patient carry a CCNL1 frameshift mutation in exon 11 resulting in deletion of 

the stop codon as well as a missense mutation (c.C1748T:p.T583I) in BCOR, a gene which has previously been 

shown to be somatically mutated in glioblastoma (Frattini et al., 2013). Additional tumor-specific somatic tumor 

variants are illustrated in Fig. 3C, which further highlights intra-tumor heterogeneity and inter-patient 

heterogeneity. 

 

Glioblastoma infiltrating tumor cells  

We observed that although the vast majority of cells (n = 1029) within the neoplastic clusters were collected 

from the tumor core, a small number of cells with a neoplastic signature originated from the peripheral tissue 

(n=62)  (Fig. 4A). We hypothesized that these may represent neoplastic cells that migrated from the tumor core 

to the surrounding peritumoral space and hereafter refer to them as infiltrating cells. To further verify that these 

cells are neoplastic in origin, we found that 57 of 62 were found in cluster 1 (the neoplastic cluster) of the CNV 

analysis. Furthermore, the it is evident from the map of tumor-specific somatic variants in Fig. 3C that 

infiltrating cells are indeed neoplastic as they share a number of SNV variants with other core-derived 

neoplastic cells of each patient. A support vector machine (SVM) classification analysis using genomic variants, 

trained on non-infiltrating neoplastic and all non-neoplastic cells, also identified 57/62 cells as neoplastic in 

origin.  

The infiltrating cells are unlikely to represent contamination from the tumor core since the peripheral tissue was 

the first sample to be removed during the surgery under MRI guidance. Furthermore, despite the inter-patient 
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heterogeneity across neoplastic cells (each patient’s tumor cells form their own distinct clusters on the tSNE 

plot), the infiltrating cells from each patient clustered closely to each other irrespective of sample of origin. To 

better quantify the relationship between core and infiltrating cells, we used nearest-neighbor classification to 

predict the site of origin (tumor or peripheral) for each neoplastic cell based on the tissue of origin of three of its 

closest neighbors. Despite the fact that our dataset contains ~15 times more neoplastic cells from the tumor core 

compared to the periphery, we were able to correctly classify peripheral neoplastic cells for more than 85% of 

the cells. Unlike the cells residing in the tumor core, infiltrating cells seem to have down-regulated genes 

involved in adaptation to hypoxic environments as they are migrating through the (relative) oxygen-rich 

proximal brain tissue (p<10-5 lower hypoxic scores as determined by a Wilcoxon rank sum test) (Fig. S4).  

To understand the molecular features that distinguish infiltrating cells, we performed differential expression 

analyses (DESEq2) and found ~1000 and ~250 genes that were down- or up-regulated, respectively, in 

infiltrating cells compared to tumor core cells. Further selection of differentially expressed genes expressed in 

greater than 50% of infiltrating cells and less than 30% of core neoplastic cells narrowed down the list of up-

regulated genes to 22 (Fig. 4B). Among the top ten genes enriched in the infiltrating cell population we find 

genes with functions involving the invasion of the interstitial matrix. For example, size regulation may be 

achieved via the overexpression of Na+/K+-ATPases like ATP1A2 (also further regulated by FXYD1) while the 

overexpression of enzymes like PRODH involved in proline catabolism may contribute to increased ATP 

energy demands of migrating cells. We also noticed increased infiltrating cell expression of cell survival 

signaling via the FGFR3 receptor as well as LMO3 via inhibition of TP53 mediated apoptosis. FGF signaling-

mediated survival has been previously linked to chemotherapy resistance. Interestingly, FGF signaling is 

important for cell migration during embryogenesis while re-activation of the pathway has been linked with cell 

migration and invasion in prostate tumors (Turner and Grose, 2010). 

Gene Ontology analysis (Fig. S12) of genes upregulated in infiltrating cells revealed significant enrichment of 

GO categories (query space: Biological Processes) that are highly relevant to tumor cell migration (Demuth and 

Berens, 2004) such as cell-cell adhesion (ECM2, ANGPT1, TSPAN7), anion-transport (TTYH1/2, AQP1), 

nervous system development (BCAN, HES6, GLI3), as well as a number of metabolic processes. A similar 

analysis using PAGODA (Fan et al., 2016) gave consistent results (Fig. S13). 

It has remained a longstanding question whether infiltrating GBM cells actively proliferate while disseminating 

throughout the brain. When we looked specifically at the proportion of proliferating cells within the tumor core 

or infiltrating neoplastic cells we found 7.7% (80/1029) of neoplastic tumor core cells were actively 
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proliferating in comparison to only 1.6% (1/62) of infiltrating tumor cells, as determined by MKI67 expression. 

It should be also noted that within the cells included in this dataset, we noted the strong resemblance of 

neoplastic cells to OPCs (Fig. S5B) suggesting functional similarity or a possibly alternate cell-of-origin to 

astrocytes for GBM (Liu et al., 2011). Of note, we also observed a strong resemblance of neoplastic cells to fetal 

human astrocyte gene signatures from a separate dataset (Zhang et al., 2016).  

 

Analysis of immune cells  

Two of the largest tSNE clusters that we observed were comprised of immune cells, defined by the specific 

expression of numerous myeloid-specific genes including PTPRC (CD45) as well as MHC class II genes (Fig. 

2B).  Further analysis, summarized in the Supplementary Information section, demonstrated that the vast 

majority of cells within these populations could be classified as either macrophages or microglia (>95%), with 

the remaining population comprised primarily of dendritic cells (~4.5%). Of the two primary myeloid clusters, 

we noticed that each contained cells almost exclusively from either the peritumoral space or tumor core, 

respectively (Table S2 and Fig. 5A), suggesting pronounced gene expression differences between the intra- and 

extra- tumor core myeloid subpopulations.  

To better specify the identity of each myeloid cell within and surrounding the tumor core, we correlated gene 

expression of each cell with a panel of established macrophage and microglia specific genes (TMEM119, 

P2RY12, GPR34, OLFML3, SLC2A5, SALL1, ADORA3 for microglia and CRIP1, S100A8, S100A9, ANXA1, 

CD14 for macrophages) (Bennett et al., 2016) We then classified each cell as macrophage or microglia based on 

the combined expression of those genes, and found that the majority of cells within the tumor core tended to 

express genes characteristic of macrophages (nmacrophage=813, nmicroglia=365) whereas cells from the surrounding 

space expressed genes characteristic of microglia (nmacrophage=85, nmicroglia=574) (Fig. 5D). These data suggest 

that tumor-infiltrating macrophages and resident brain microglia preferentially occupy the tumor and 

peritumoral spaces, respectively.  

We then examined the differential expression of selected gene sets within and surrounding the tumor core. 

These genes included cytokines, chemokines, chemokine receptors, matrix metalloproteinases (MMPs), and 

genes involved in angiogenesis. For a broader view of the role of tumor residing myeloid cells, we examined 

any gene of our curated gene list that was significantly (padj<0.01, as determined by DESeq2) up or down-

regulated in tumor or surrounding myeloid cells in at least one of the patients.  We observed discrete gene 
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expression differences between tumor and surrounding myeloid cells, with a predilection for pro-inflammatory 

markers expressed in the tumor periphery, and more anti-inflammatory / pro-angiogenic factors expressed in the 

tumor core (Fig. 5B). We subsequently validated the tumor core-specific presence of several biologically 

relevant examples of these molecules via in situ hybridization stainings. For example, while the inflammatory 

markers IL1A/B were up-regulated in the peritumor brain, IL1RN, an inhibitor of IL1A/B, was up-regulated in 

the tumor core (Fig. 5C). IL1RN is an important anti-inflammatory regulator that acts as a dominant negative 

interactor with IL1R1 to actively suppress immune activation. Another, highly enriched gene in immune cells 

within the tumor core was TGFBI (Fig. 5C) a molecule with a yet unclear role in tumor formation (Han et al., 

2015), previously thought to be expressed by neoplastic cells. TGFBI, which is induced by TGF-beta, is part of 

the non-Smad mediated TGF-b signaling pathway. The expression of TGFBI by immune cells of the tumor 

microenvironment could be potentially beneficial for tumor growth and dissemination since TGFBI has been 

shown to inhibit cell adhesion (dissemination), promote survival of cells with DNA damage (survival/resistance 

to treatment) and is a potential angiogenic factor (growth).  Immune cells within the tumor also seem to further 

promote angiogenesis via the expression of VEGFA (Fig. 5C), a hypoxia induced (via HIF1A) angiogenic factor 

that promotes both vascular permeability and endothelial cell growth.  

We also compared the expression of immune checkpoint receptor ligands in myeloid cells from the tumor core 

versus the peritumoral tissue. We found a small but statistically significant expression difference (padj<0.01, as 

determined by DESeq2) between tumor and peritumoral myeloid cells for both ligands of the receptors PD1 

(CD274 (PDL1), PDCD1LG2 (PDL2)) and CTLA4 (CD80, CD86), as well as genes ICOSLG (ligand of ICOS 

receptor), CD276 (B7-H3), TNFRSF14 (ligand of BTLA) and LGALS9 (ligand of TIM3). All genes were found 

to be up-regulated in the peritumoral compartment, with the exception of LGALS9 and CD80 that were up-

regulated in the tumor (Fig. S14). The fraction of immune cells expressing each of the above genes is shown in 

Table S5.  

 

Conclusions 

Glioblastoma is the most frequent and deadly primary brain cancer in adults (Kleihues and Sobin, 2000). 

Current treatment strategies combining surgery with radiotherapy and chemotherapy prolong survival, but tumor 

recurrence usually occurs within two years. Recurrence stems from infiltrating neoplastic cells originating 

initially from the tumor core, spreading quickly and across long distances within the brain.  Thus, there is great 
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hope in new treatment strategies that specifically target neoplastic cells in general as well as the infiltrating 

populations of cells migrating away from the primary tumor. In addition, novel immunotherapies are also being 

developed (Binder et al., 2016)  relying on tumor vaccinations, immune checkpoint blockade, adoptive T-cell 

transfer and combinatorial immunotherapies.  

This work represents the first identification and characterization of individual infiltrating tumor cells in the 

tissue surrounding the GBM tumor core. Furthermore, our high-depth and full-length RNAseq data allowed us 

to use gene expression information to infer genomic variation on the level of large chromosomal aberrations as 

well as smaller genomic variants such as insertions/deletions and single nucleotide somatic mutations. Our 

analysis revealed a large degree of heterogeneity between and within different tumors. We found that different 

patients’ tumors harbor different chromosomal aberrations while sharing hallmark CNVs such as the 

amplification of chromosome 7. Furthermore, each patient’s neoplastic cells have a unique set of smaller-scale 

mutations that also demarcate different populations of neoplastic cells within each tumor and potentially derive 

from different intra-tumoral lineages.  

We defined infiltrating tumor cells as a population of neoplastic cells originating from the peripheral tissue 

whose transcriptional and genomic variant profiles resembled tumor core cells. Despite the heterogeneity of 

neoplastic cells originating from each of the individual patients, infiltrating cells share common characteristics 

regardless of patient of origin. The homogeneous gene signature of infiltrating GBM cells presents the potential 

of a convergent strategy for the mechanism of infiltration between highly variable tumors, which may provide 

new therapeutic avenues. When we examined the genes specifically up-regulated in infiltrating neoplastic cells, 

we found groups of genes involved in size regulation, energy production, inhibition of apoptosis, regulation of 

cell-cell adhesion as well as CNS development. In addition, infiltrating cells are likely hijacking machinery used 

during CNS development or later by cells migrating over long distances. It should be noted that the specific 

gene expression changes observed in infiltrating cells may either be intrinsic to the cell type or a result of 

migrating through a non-tumor microenvironment. 

We also characterized the effect of the tumor microenvironment on non-neoplastic cells. Among the non-

neoplastic cell populations, OPCs, neurons, mature oligodendrocytes, and vascular cells originating from both 

the tumor core and surrounding regions are essentially indistinguishable from each other In contrast, myeloid 

cells, consisting primarily of macrophages and microglia, are greatly affected by the tumor microenvironment. 

Despite belonging to the same cell class, myeloid cells within the tumor display unique gene expression 

profiles, demonstrating the direct effect of the tumor milieu on these important immune mediators. Specifically 
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we found that immune cells within the tumor mass play a crucial role in enhancing tumor growth, survival and 

dissemination via suppression of inflammation, promotion of angiogenesis and ECM remodeling.   

Additionally, a subset of the changes induced by the tumor are shared between macrophages and microglia. 

These data, in addition to the full transcriptomes of immune cells within and surrounding the tumor, may help 

refine the development of novel therapies targeting cells that enhance tumor growth but are not themselves 

neoplastic. In particular, the findings from our study have implications for therapeutic immunotherapy efforts in 

GBM. For example, while we did find robust expression of MHC class I gene expression, which would allow 

for T-cell mediated immune responses, the expression of these genes varied greatly between patients. We also 

observed similar expression patterns for the ligands of PD1, which play a role in abrogating immune responses 

in some tumors. These data suggest that targeted immune therapies may vary vastly between patients, and that 

phenotyping patient tumors either via tumor resection or using technologies that capture tumor cells non-

invasively in the CSF may be essential for screening patients who may be particular responsive to therapy. 
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Main Figure titles and legends  

Figure 1. Experimental layout. (A) Axial T1 with contrast (left side) and T2 (right side) MRI brain in a patient 

with a right temporal GBM. The tumor core was defined as contrast enhancing (red circle, arrow), and the 

peritumor brain was non-contrast enhancing, yet T2 hyperintense (blue arrow). (B) Overview of the 

experimental procedure.  

 

Figure 2.  General characteristics of neoplastic cells. (A) 2D-tSNE representation of all single cells included 

in the study (n=3589). Cell clusters are differentially colored and identified as distinct cell classes. (B) 

Expression of characteristic cell type-specific genes overlaid on the 2D-tSNE space. (C) GFAP and EdU 

staining of HEPACAM selected cells. (D) Quantification of EdU positive cells as a percentage of total DAPI 

nuclei from the tumor core and the surrounding peritumor brain in culture for 7 days. (E) in situ RNA staining 

of neoplastic and non-neoplastic specific genes in tumor tissue (right) and peritumoral brain (left). (F) 

Quantification of in situ RNA signals shown in Figure 2E. Difference between tumor and peritumoral brain is 

shown.  

 

Figure 3. (A) Hierarchical clustering of all cells on the basis of their RNA-seq derived CNV profile. 

Dendrogram branches are colored to denote different clusters of cells. Color bar demarcates neoplastic (brown) 

vs non-neoplastic (green) cells. (B) DeltaCNV profils of each patient’s neoplastic cells and non-neoplastic non-

myeloid cells. Specific chromosomes that were found to be over- or under-represented in each of the patients are 

highlighted. (C) Exonic non-synonymous variants occurring in greater than 5% of any patient’s neoplastic cells. 

Cells (columns) may either contain a variant (red), not contain the wildtype (blue), or display insufficient read 

coverage at that position to make a determination (gray). Cells are labeled by patient of origin (top color bar) 

and infiltrating status (bottom color bar; dark is infiltrating). 

 

Figure 4. Analysis of infiltrating tumor cells. (A) 2D-tSNE representation of all neoplastic cells colored by 

location (tumor vs periphery). (B) Differentially expressed genes between neoplastic cells originating from the 

tumor (Core) or the periphery (Infiltrating). The fraction of tumor core and infiltrating cells expressing any 

given gene is plotted. 

 

Figure 5. Analysis of immune cells. (A) 2D-tSNE representation of all immune cells colored by location 
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(tumor vs periphery). (B) Barplots of Log2 fold changes between immune cells from the tumor and periphery 

for a curated list of genes involved in ECM remodeling, angiogenesis and immune regulation. (C) IFC stanining 

of TGFBI, VEGFA and IL1RN in tumor (left) and peripheral tissue (right). (D) Percentage of immune cells 

from the tumor or periphery classified as macrophages or microglia.  

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2017. ; https://doi.org/10.1101/165811doi: bioRxiv preprint 

https://doi.org/10.1101/165811
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19

Main tables  

 
Pass QC  Fail QC  

Cells 3589 (89%)  456 (11%)  

Sample 

BT_S1  489  11  

BT_S2  1169  138  

BT_S4  1542  267  

BT_S6  389  40  

Location 

Tumor  2343  212  

Periphery  1246  227  

Sequencing statistics 

Reads (median)  1706000  1019000  

Uniquely mapped reads % (median)  75.81  81.93  

Multimapped reads % (median)  2.35  0.29  

Genes detected (median)  2129  33  

 

Table 1. Dataset summary. Number of cells per sample, number of cells per anatomical location and general 

sequencing statistics summarized for all sequenced cells that passed or failed QC. Only cells that passed QC 

were further analyzed. 
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Supplemental figure and table titles and legends 

 

Supplementary Figure 1. Quality control of all single cells using houskeeping genes.Cells with high 

expression of housekeeping genes (light blue colored cluster) are selected for downstream analysis.  

Supplementary Figure 2. Histograms of EGFR (A) and SOX9 (B) for regular and neoplastic cells. ROC 

performance analysis of EGFR (C) and SOX9 (D) expression as a classifier for neoplastic and regular cells and 

combined performance if both genes are used (E).  

Supplementary Figure 3. TSNE showing aggregated single cell data from three datasets (GBM, Healthy brain 

and Bulk GBM). Single cells are colored by dataset (A), neoplastic or regular (B) and by cell-type (C).  

Supplementary Figure 4. Boxplots showing values of “hypoxia-score”, ie normalized sum of expression for 

genes PGK1, CA9, VEGFA, SPP1, HIF1A for each neoplastic and regular cell, grouped by location (peripheral 

tissue or tumor core).Higher values denote cells at more hypoxic environments. Neoplastic cells from the 

periphery are the infiltrating neoplastic cells. All populations are different in a statistical significant manner 

(p<0.01, by a Wilcoxon rank sum test, with multiple testig correction) with the exception of neoplastic and 

regular cells from the periphery where p<0.05.  

Supplementary Figure 5. A. Differentially expressed genes between neoplastic and non-neoplastic cells. For 

each gene the fraction of expressing neoplastic and non-neoplastic cells is plotted. B. Fraction of non-neoplastic 

cells, separated by cell type, expressing each of the neoplastic-enriched genes in FigS4A.  

Supplementary Figure 6. in situ RNA staining for ALDH1L1 and MBP on tumor core and peripheral tissue.  

Supplementary Figure 7. Boxplots showing expression of MHC I genes (A) and genes coding for ligands of 

PD1 (CD274 and PDCD1LG2) and CTLA4 (CD80 and CD86) (B) on neoplastic cells per patient. (C) Co-

expression of CD274 and PDCD1LG2 across neoplastic cells of all patients. Units of all numerical axes are log2 

CPM.  

Supplementary Figure 8. (A) TSNE zoom in showing neoplastic cells colored by patient. (B) Heatmap 

showing expression of�differentially expressed genes in neoplastic cells from each patient. (C) Histogram 

distributions of all cell-to-cell pairwise distances for�each of the patient specific neoplastic clusters (shades of 

orange) and clusters of healthy non-neoplastic cell populations (shades of green).  

Supplementary Figure 9. RNAseq based CNV analysis of neoplastic and non-neoplastic cells. Upper 

panel,�individual median CNV profiles of neoplastic and non-neoplastic cells. Middle panel, difference in 

mean CNV profiles between neoplastic cells and non-neoplastic, non-myeloid cells. Regions of chromosome 
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that are potentially amplified are pseudocolored green. Potential deletions are pseudocolored red. Lower panel, 

counts of positive and negative occurences of the DeltaCNV profile for each chromosome  

Supplementary Figure 10. CNV analysis of DNAseq derived data for patient BT_S4. Distibution of the ratio 

of genomic reads between DNA from the tumor and from the peripheral cortex across the whole genome�with 

the exception of chromosome Y. The ratio is shown on the right y-axis while estimated ploidy on the left.  

Supplementary Figure 11. Presence of tumor specific variants shown in Figure 3C in non-neoplastic cells.  

Supplementary Figure 12. GO analysis of genes up-regulated in infiltrating neoplastic cells compared to core 

neoplastic cells.  

Supplementary Figure 13. PAGODA analysis of infiltrating (n=60) and core tumor (n=60) neoplastic cells. 

Significant aspects of heterogneity annotated by GO are shown.  

Supplementary Figure 14. Boxplots showing expression in immune cells from the tumor and periphery of 

differentially expressed genes (padj<0.01, as determined by DESeq2) involved in immune-checkpoint 

regulation.  

Supplementary Figure 15. permanent pathology H&E specimens showing representative tumor core, 

peripheral brain, and the tumors’ infiltrating margin for each patient included in the study.  

Table S1.Top20 most enriched genes in each single-cell cluster. Color and naming of each cluster is consistent 

with Figure 2A.  

Table S2. Number of cells per tSNE cluster and anatomical location along with each cluster’s cell identity.  

Table S3. Classification of cells in the Healthy brain dataset classified to major cell types of the brain using the 

GBM dataset as reference.  

Table S4. Fraction of neoplastic cells per patient expressing each of the genes shown.  

Table S5. Fraction of immune cells separated by tissue of origin expressing each of the immune checkpoint 

genes shown.  

Table S6. Classification of neoplastic cells to each of the four GBM subtypes.  

Table S7.Primary and secondary antibodies used in the study.  

Table S8.Sequences of oligonucleotides used for in situ RNA staining.  

Table S9. Clinical information of patients included in the study. WT: Wildtype, M: Methylated, NM: Not 

Methylated, NT: Not tested.  
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CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to and will be fulfilled by the 

Lead Contact, Stephen R. Quake (quake@stanford.edu) 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Clinical information for each patient included in the study can be found on Table S9. Informed consent was 

obtained from all subjects.  

 

METHOD DETAILS 

Tissue dissociation, immunopanning and single cell sorting 

The experimental layout is outlined in Fig. 1B. We analyzed samples from four patients with confirmed cases of 

primary GBM. An additional sample from each patient was sent to pathology to confirm the diagnosis of GBM 

and to identify IDH1 status (negative). From each patient we collected two separate tissue samples, one 

originating from the tumor core and another from the peritumoral space (cortex) immediately adjacent to the 

tumor core. The tumor core was demarcated on MRI as strongly enhancing (with gadolinium contrast) (Fig. 1A) 

unlike the non-contrast enhancing peritumor space. Peritumor cortex was always removed prior to resecting 

tumor core in order to prevent potential cross-contamination. For each sample, tumor and peritumor tissue were 

processed separately. 

Tissue samples were transported to the laboratory immediately from the operating room in order to begin 

dissociating samples within 1 hour of resection. The samples were processed similarly to existing protocols for 

human brain dissection9. Briefly, the tissue was first chopped into small pieces <1mm3 using a #10 scalpel blade 

and then incubated in 30 unit/ml papain at 34°C for 100 minutes. After digestion, the tissue was washed with a 

protease inhibitor stock solution. The tissue was then gently triturated in order to yield a single cell suspension. 

The single cell suspension was then added to a series of plastic petri dishes pre-coated with cell type specific 

antibodies (see below) and incubated for 10 - 30 minutes at room temperature. Unbound cells were transferred 

to the subsequent petri dish while the dish with bound cells was rinsed 8 times with PBS to wash away loosely 

bound contaminating cell types. The antibodies used include anti-CD45 to capture microglia/macrophages, anti-

O4 hybridoma to harvest oligodendrocytes lineage cells, anti-Thy1 (CD90) to harvest neurons, anti-HepaCAM 

to harvest astrocytes, and Banderiaea simplicifolia lectin 1 (BSL-1) to harvest endothelial cells. Once bound to 

the Petri dish and rinsed, adherent cells were removed by incubating in a trypsin solution at 37°C for 5-10 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2017. ; https://doi.org/10.1101/165811doi: bioRxiv preprint 

https://doi.org/10.1101/165811
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

minutes before gently squirting the cells off the plate. These single cell suspensions were then transferred to a 

FACS buffer before proceeding with single cell sorting.   

Single cell suspensions were sorted using a SONY SH800 Cell Sorter. All events were gated using four 

consecutive gates: i) FCS-A/SSC-A, ii) FCS-H/FCS-W, iii) Propidium Iodide (PI) negative and iv) Hoechst 

positive.  Single-cells were sorted in 96-well plates containing 4ul of lysis buffer (4U Recombinant RNase 

Inhibitor (TAKARA BIO), 0.05% TritonTM X-100 (Thermo Fisher), 2.5mM dNTP mix (Thermo Fisher), 2.5uM 

Oligo-dT30VN (5′–AAGCAGTGGTATCAACGCAGAGTACT30VN-3′)), spun down for 2 minutes at 1000g 

and snap frozen. Plates containing sorted cells were stored at -80oC until processed.  

cDNA synthesis and library preparation  

Reverse transcription (RT) and PCR amplification was performed using the Smart-seq2 protocol, described in 

(Picelli et al., 2014). Briefly, 96-well plates containing single-cell lysates were thawed on ice followed by 

incubation at 72 oC for 3 minutes and placed immediately on ice. Reverse transcription was carried out after 

adding 6ul of RT-mix (100U SMARTScribeTM Reverse Transcriptase (TAKARA BIO), 10U Recombinant 

RNase Inhibitor (TAKARA BIO), 1X First-Strand Buffer (TAKARA BIO), 8.5mM DTT (Invitrogen), 0.4mM 

Betaine (Sigma), 10mM MgCl2 (Sigma) and 1.6uM TSO (5′-

AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3′)), for 90 minutes at 42oC, followed by 5 minutes at 

70oC.  

RT was followed by PCR amplification. PCR was performed using 15 ul of PCR-mix (1x KAPA HiFi HotStart 

ReadyMix (Kapa Biosystems), 0.16uM ISPCR oligo (5′-AAGCAGTGGTATCAACGCAGAGT-3′) and 0.56U 

of Lambda Exonuclease (NEB) using the following thermal-cycling protocol: 1. 37oC for 30min, 2. 95oC for 

3min, 3. 21 cycles of 98oC for 20s, 67oC for 15s and 72oC for 4 min and 4. 72oC for 5 min.  

PCR was followed by bead purification using 0.7x AMPure beads (Beckman Coulter), capillary electrophoresis 

and smear analysis using a Fragment AnalyzerTM (AATI). Calculated smear concentrations within the size range 

of 500 and 5000 bp for each single cell were used to dilute samples for Nextera library preparation as described 

in (Darmanis et al., 2015). 

Sequencing and QC  

In total, we sequenced 4028 single cells using 75bp-long paired-end reads on a NextSeq instrument (Illumina) 

using High-output v2 kits (Illumina). Raw reads were preprocessed and aligned to the human genome (hg19) 

using the exact pipeline described in (Darmanis et al., 2015).  
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As a quality metric, we first performed hierarchical clustering on all cells using a list of housekeeping genes 

(Fig. S1), and removed any cells with uniformly low expression across all genes (likely a result of low quality 

RNA or cDNA synthesis). We separated the resulting dendrogram into two clusters containing cells that passed 

(n=3589) or failed (n=456) this quality control (QC). All downstream analyses were performed using only the 

cells that passed QC. A summary of the number of cells by QC cluster (pass or fail), with respect to patient and 

tissue of origin along with sequencing statistics can be found in Table 1.  

Preparation of libraries from genomic DNA 

Human genomic DNA was sheared to an average size of 500bp using a Covaris S220 following the 

manufacturer's protocol in snap cap microtubes. Sheared DNA (500ng) was ligated into indexed Illumina 

sequencing adapters (made by IDT) with the Kapa Hyper Prep Kit for Illumina.  Libraries were quantitated 

using average DNA fragment length (AATI Fragment Analyzer) and concentration determined by qPCR (Kapa 

Library Quantitifcation Kit for NGS).  Pooled libraries were sequenced as paired end 150bp reads on an 

Illumina NextSeq500.  

Antibody staining 

Tissue sections were removed from -800C and allowed to dry at RT for 30mins followed by fixation with PFA 

(4%, in PBS). Sections were washed three times using PBS (5 min washes at RT) and blocked with blocking 

buffer (1xPBS, 10% donkey serum, 0.1% Triton) for 1h at RT. After blocking sections were probed with 

primary antibodies (for antibodies used and working concentrations see Extended data Table 7) and incubated 

overnight at 40C. Sections were washed and secondary antibodies (Table SX) were added and incubated with 

the tissue for 1h at 370C followed by three 5 minute washes with PBS. Sections were stained with DAPI (1x in 

PBS) for 30min at RT, washed another two times as before, dried and mounted with SlowFade Gold antifade 

reagent (Life Technologies) prior to imaging.    

In situ RNA 

In situ RNA staining was performed on 10 µm thick fresh-frozen tissue sections using padlock probes and 

rolling-circle amplification (RCA) as described before (Ke et al., 2013). In situ reverse transcription was carried 

out with primers containing 2-O-Me modified bases. The sequence of the primers, padlock probes and 

fluorescently labeled detection oligos are listed in extended data table 8. In order to reduce the high fluorescence 

background due to the presence of lipofuscins in the biopsy from tumor periphery, the sections were incubated 

in 1% Sudan Black in 70% Ethanol for 30 minutes at RT in the dark prior fluorescence labeling of RCA 

products.  
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Multiplexed detection was achieved via combinatorial labeling of RCA products by sequential hybridization 

four distinct fluorescence detection oligos. Three cycles of hybridization, imaging and detection oligo removal 

allow identification of 64 gene-specific fluorescence barcodes (43) in principle enough to distinguish 54 probes 

used in this study. To further reduce the complexity of the barcodes and facilitate the identification of false 

positive (errors), we split the padlock probes in two distinct pools of 27 and 27 probes and performed the in situ 

RNA staining on consecutive sections. Also, to distinguish true signals from tissue auto fluorescence (as 

described below) only two colors are used to label RCA products at third cycle.  

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

All data analysis was performed using R. Specific packages and functions used are described in greater detail 

below. All code is available upon request.  

Dimensionality reduction and clustering 

Dimensionality reduction was performed in three steps. First, we calculated the overdispersion of each gene as 

described (Fan et al., 2016). We then selected the top 500 over-dispersed genes and constructed a cell-to-cell 

distance matrix (1-absolute correlation) of all cells. The distance matrix was reduced to two dimensions using 

tSNE as previously described in (Darmanis et al., 2015) and as implemented in package “tsne” for R 

(perplexity=50).  Clustering of groups of similar cells was performed on the 2-dimensional tSNE space using 

kmeans as implemented in package “stats” for R.   

CNV analysis 

We constructed CNV vectors for each single cell based on gene expression data. Given the nature of RNAseq 

data, CNV profiles cannot be calculated using the same approach as when genomic DNA data are available. 

Instead, one can use the gene expression information to infer over- or under- expression of big genomic regions 

that might correspond to chromosomal amplification or deletion events. To calculate CNV profiles for each 

single cell we used a similar approach to (Patel et al., 2014) and (Tirosh et al., 2016). Briefly, we sorted all 

genes based on their genomic location and calculated a CNV vector for every cell. The CNV vector is a moving 

average of gene expression using a window of 0.1*n genes per chromosome, where n is the total number of 

genes on that chromosome. The resulting CNV vectors of each cell were centered by subtraction of their mean 

prior to any downstream analysis.  

Differential expression analysis  
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Differential expression analysis was performed using package DESeq2 (Love et al., 2014) for R. All functions 

in the DESeq2 pipeline were used with default settings. 

Differential expression analysis between neoplastic and non-neoplastic cells 

Using DESeq2, we found a large number of genes (ntotal=5143, nupregulated=3985, ndownregulated=1158) that were 

either up- or down-regulated in neoplastic cells compared to non-neoplastic cells of the brain. To limit the list of 

differentially expressed genes to those that showed specific tumor-restricted expression we looked for genes that 

were expressed (expression was strictly defined as the presence of even a single read for each gene) in more 

than 60% of all neoplastic and in less than 20% of all non-neoplastic cells. The percentage of expressing 

neoplastic and not-neoplastic cells for each of the genes that fulfilled our criteria (n=30), along with the type of 

healthy cells expressing each gene are shown in Figure 2A. We also noted that the majority (~50% on average) 

of non-neoplastic cells expressing genes up-regulated in neoplastic cells belong to the OPC cluster (Figure 2B).  

Verhaak classification analysis of neoplastic cells   

We initially thought that the differences between patients could be attributed to the fact that each tumor belongs 

to a different GBM subtype, namely one of the Proneural (PN), Neural (NL), Mesenchymal (MES) and 

Classical (CL) subtypes (4). To test this hypothesis, we used 792 genes from the list of 800 genes that were used 

in (4) to classify different GBM samples to the four molecular subtypes.  

Using the list of 792 genes, we calculated the correlation between each of the neoplastic single cells and an 

average expression profile for each of the four GBM subtypes. We then assigned each cell to the subtype with 

the highest correlation. We found that the majority of cells within each patient were classified as CL with the 

remainder of the cells belonging to the remaining categories, as summarized in Extended data Table 6. In our 

opinion, based on the classification of each patient’s cells, different GBM subtypes do not seem to be 

responsible for the observed differences between patients. Nonetheless, neoplastic cells originating from 

different tumors are fundamentally different both in terms of their gene expression profiles, as can be seen in 

Figure S8, as well as their individual CNV profiles shown in Figure 3.  

Myeloid cell identity  

We inferred the identity of each cell in the two myeloid clusters using ImmGen’s (https://www.immgen.org/) 

microarray gene-expression data from 214 purified mouse immune cell populations belonging to 22 different 

broad classes of immune and supporting cell types. We correlated each single cell in our myeloid clusters to 

each of the 214 ImmGen samples. We then selected the top 5 correlated ImmGen samples for each single cell 

and assigned an immune-cell type to each single cell using a majority vote.  
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Genomic DNA data analysis  

Raw DNA sequences were trimmed for low quality bases and Illumina adapter sequences using Trimmomatic 

(version 0.32, default parameters). Paired end reads from fragments shorter than twice the read length were 

merged and a consensus sequence of the overlapping bases was determined using FLASH (version 1.2.11). 

Reads were then aligned to the UniVec core database ((Cancer Genome Atlas Research Network, 2008; 

Verhaak et al., 2010)) using bowtie2 (version 2.2.4, --local mode) to remove sequences derived from common 

vector/control sequences, including the bacteriophage phi X 174, a spike in control used with Illumina 

sequencers. The final set of reads was then aligned using bowtie2 to the human reference (GRCh38), with the 

results saved as a BAM file. Each sample was sequenced to an average depth of ~20X.  

Resulting BAM files were analyzed for the presence of chromosomal aberrations using the R package 

CNAnorm. No GC correction was used.  

PAGODA analysis  

We performed a similar analysis using PAGODA (Patel et al., 2014) in an attempt to group genes responsible 

for differentiating between infiltrating and core tumor cells, in groups of similar biological functions. Due to a 

very long processing time when all cells are used, we performed the analysis using all infiltrating cells and only 

an equal number of randomly selected core neoplastic cells. As a part of the analysis, we identified pre-defined 

genes sets (representing all GO terms) that exhibited statistically significant abundance of coordinated 

variability. All top aspects of heterogeneity, grouped by GO category, are shown in Fig. S13. To our 

satisfaction, we found that the genes underlying the top aspects of heterogeneity identified by PAGODA are 

very similar to the genes we identified with our prior analysis. The genes are also grouped in relevant GO 

categories such as response to external stimulus, tissue development, cell projection organization and glial cell 

proliferation. 

Image acquisition and analysis 

Stained sections were imaged on a Zeiss Axioplan epifluorescence microscope equipped with filter-cubes for 

DAPI, FITC, Cy3, TexasRed and Cy5, an Axiocam 506 mono camera (Zeiss), automated filter-cube wheel and 

a motorized stage. Z-stacks of 12 images were acquired with a 20X (0.8NA) Plan-Apochromat objective and 

maximum intensity projections (MIP) were generated with Zen 2.3 image acquisition software. Retrospective 

illumination correction was performed using CellProfiler as described in Singh et al (Singh et al., 2014). The 

generated illumination correction function was then used as reference in the shade correction module of Zen 2.3 

software. 
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Images were pre-processed using FIJI software. Briefly, MIP images were cropped and aligned based on DAPI 

nuclear staining using rigid-transformation function in the MultiStackReg plugin. Then a mask of the RNA 

staining containing all the RCA products was created by combining the two single channels images coding for 

the last staining cycle in each pool. The remaining two channels were removed from the mask in order to 

attenuate background fluorescence from lipofuscins in the brain which is visible in all the fluorescence spectra 

used. Pre-processed images were then loaded in Cellprofiler for spot detection and intensity measurements and 

nuclei counts used to normalize the in situ RNA data. Barcode identification was carried out using the same 

Matlab script described here (Ke et al., 2013). All script and images are available upon request. A quality 

threshold was applied to the barcode calling until the number of non-expected barcodes from each image was 

around 1% (max 1.3, min 0.1 for four image sets). Homo-polymer barcodes identify background fluorescence 

and were removed. After quality thresholding, genes with lower counts than the highest non-expected barcode 

were considered not detected. The counts of each detected barcode were normalized by the number of nuclei in 

the corresponding section in order to compare gene expression among the different samples.     

Variant analysis 

Single cell variants were called using the GATK pipeline for single cell RNAseq data using the suggested 

arguments. Reads were first aligned to the hg19 human reference using STAR (version 2.4.2a run in two-pass 

mode), following which we used the GATK tools MarkDuplicates, SplitNCigarReads, BaseRecalibrator, and 

HaplotypeCaller. Potential variants were then filtered using VariantFilter (-window 35 -cluster 3 -filterName FS 

-filter "FS > 30.0" -filterName QD -filter "QD < 2.0"). The SNPiR pipeline (Piskol et al., 2013) was employed 

to further exclude variants belonging to known RNA editing sites, variants in intronic positions near splice 

junctions, as well as variants in non-uniquely mapped, repetitive, and homopolymer regions. Lastly, variants 

were annotated using ANNOVAR (Wang et al., 2010) and retained only if observed in at least three cells. 

To confirm abundant RNAseq tumor variants in patient BT_S4, we used the Varscan 2 somatic tool (Koboldt et 

al., 2012) (version 2.3.9) on paired tumor-peripheral DNA whole genome sequencing data aligned to the human 

reference with BWA (version 0.7.15). To sensitively detect potentially rare variants while accounting for the 

substantial fraction of healthy cells in the tumor and the potential for infiltrating cells in the periphery, the 

following parameters were used: --min-coverage 5 --normal-purity 0.95 --tumor-purity 0.5 --min-var-freq 0.001. 

 

DATA AND SOFTWARE AVAILABILITY 
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The data reported in this paper have been deposited in the Gene Expression Omnibus (GEO) 

database, (accession no. GSE84465). 
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Pass QC Fail QC
Cells 3589 (89%) 456 (11%)

BT_S1 489 11
BT_S2 1169 138
BT_S4 1542 267
BT_S6 389 40

Tumor 2343 212
Periphery 1246 227

Reads (median) 1706000 1019000
Uniquely mapped 
reads % (median) 75.81 81.93

Multimapped reads 
% (median) 2.35 0.29

Genes detected 
(median) 2129 33

Sample

Location

Sequencing statistics
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