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Abstract: 

RNA transcripts circulating in peripheral blood represent an important source of non-invasive 

biomarkers. To accurately quantify the levels of a circulating transcript, one needs to normalize the 

data with internal control reference genes, which are detected at relatively constant levels across 

different blood samples. A few stably-expressed reference gene candidates have to be selected from 

transcriptome data before validation of their stable expression by reverse-transcription quantitative 

polymerase chain reaction. However, there is a lack of transcriptome, let alone whole-transcriptome, 

data from maternal blood. To overcome this shortfall, we performed RNA-seq on blood samples 

from women presented with preterm labor. Of 11215 exons detected in the maternal blood 

whole-transcriptome, we systematically identified a panel of 395 genes comprising exons that were 

detected at a coefficient of variation (CV) ranging from 7.75%-17.7%. Their levels were considerably 

less variable than any GAPDH exon (minimum CV, 27.3%). Upon validation, selected genes from this 

panel remained as more stably expressed than GAPDH in maternal blood. This panel is 

over-represented with genes involved with actin cytoskeleton, macromolecular complex and the 

integrin signaling pathway. This groundwork provides a starting point for systematically selecting 

reference gene candidates for normalizing the levels of circulating RNA transcripts in maternal 

blood. 

Keywords: reference target; qRT-PCR; normalization; transcriptomics; blood biomarkers; geNorm; 

NormFinder; Removal of Unwanted Variation RUVSeq; technical variation; denoise.  
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1. Introduction 

Quantitative polymerase chain reaction (qPCR) is a standard method for quantification of 

nucleic acid sequences [1,2]. Combined with a prior step of reverse transcription (RT), RT-qPCR has 

become a well-established technique to quantify the level of any mRNA transcript in a sample [3]. To 

control for experimental error between samples that can be introduced at a number of stages 

throughout the procedure, normalization of the RT-qPCR data is essential before analysis. This is 

usually achieved by the use of a reference gene as an internal control that is presumed to remain 

relatively constant across different samples. However, ideal reference genes rarely exist and finding 

suitable ones is not a trivial task. It has been demonstrated that a proper choice of reference genes is 

highly dependent on the tissues or cells under investigation [4]. Further, reference genes are highly 

specific for a particular experimental model, and validation for each situation, on an individual 

basis, is a crucial requirement [5]. 

Preterm birth (delivery before 37 weeks of gestation) is a major cause of neonatal morbidity and 

mortality [6]. Less than half of pregnant women presented with preterm labor end in spontaneous 

preterm birth (sPTB), while the remaining end in term birth (TB) on or after 37 weeks. To better 

understand sPTB, using gene expression microarrays, we systematically identified panels of RNA 

transcripts that are aberrantly expressed in the placentas [7] and maternal blood cell samples [8] 

collected from pregnancies undergoing sPTB. Since these preterm birth-associated transcripts are 

detectable in maternal whole blood, in this study, we aimed to identify reference genes suitable for 

normalizing RNA transcripts in the whole blood of women undergoing preterm labor. 

Reference genes for normalizing RNA transcripts in the human circulatory system have been 

reported on patients with tuberculosis [5], schizophrenia and bipolar disorder [9] and cohort of 

healthy male and female adults [10]. Nevertheless, there is a lack of similar data on pregnant women. 

Based on a meta-analysis of publicly available gene expression microarray datasets on 1 053 blood 

samples, Cheng and colleagues have identified a panel of candidate reference genes for normalizing 

RT-qPCR data from peripheral blood across healthy, non-pregnant, individuals and patients with 

cancer or other abnormality [11]. Yet, whether those reference genes are suitable for normalization of 

data from pregnant women is unknown. 

To address this paucity of relevant study, we embarked on a search for reference genes suitable 

for normalization of RT-qPCR data on whole blood collected from women during their presentation 

of preterm labor. Similar search for reference genes often relies on a candidate gene approach or 

gene expression microarray data, which is sometimes referred as transcriptome data. Such 

microarray-based transcriptome studies measure RNA levels based on oligonucleotide probes, 

which requires the prior knowledge of RNA transcript sequences, and thus are limited essentially to 

the more characterized genes of known sequences. To maximize the chance of finding suitable 

reference genes, in this study, we expanded this search to the whole-transcriptome dataset generated 

by RNA-sequencing (RNA-seq), which is not limited by probes of well-characterized gene 

sequences. We hypothesized that the whole-transcriptome of maternal blood harbors many RNA 

transcripts that are expressed at relatively constant levels. Based on RNA-seq dataset, we 

systematically identified 395 genes, comprising 458 exons, which were detected at a low variation 

across all tested maternal blood samples. Subsequently, using RT-qPCR, we assessed the expression 

stability of selected genes in another set of maternal blood samples. Our data suggest that the 

whole-transcriptome harbors gene candidates of higher expression stability than those commonly 

used reference genes. 

In this study, we interpreted the RNA-seq data at the finer resolution of exons, which are 

sub-regions within an expressed gene transcript. We observed that different exons of the same gene 

were detected at considerably different levels of variation. Based on the exon-level RNA-seq data, 

one could readily pinpoint on the exon with the least variation in the design of RT-qPCR assays for 

the quantification of candidate reference genes. Further, we explored on how our list of 458 stably 

detected exons could be used as a starting point for the systematic identification of reference genes in 

other blood compartments and different group of patients. Lastly, we discussed the pros and cons of 
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our exon-level RNA-seq approach and how it may be further improved for identifying reference 

genes. 

2. Results 

2.1. Whole-transcriptome profiling of maternal blood samples   

2.1.1. Overall results of the RNA-seq experiment 

We obtained the informed consent and collected peripheral whole blood samples from 

pregnant women during their presentation of preterm labor. Twenty blood samples were subjected 

to strand-specific RNA-seq (ssRNA-seq). Forty libraries (2 technical replicates per blood sample) 

were constructed for strand-specific pair-end cDNA sequencing on the HiSeq 4000 sequencer 

(Illumina). We filtered out low-quality sequences, trimmed away adapter sequences (Trimmomatic, 

v.0.33) [12] and aligned the reads to the reference human genome (GRCh38, GENCODE release 23 

primary assembly; aligner, STAR (v2.4.2) [13]). After all filtering and mapping, we rejected two 

libraries with high percentage of poor or unaligned reads and removed them from further analysis. 

The mean number of raw reads was 159 million per sample. Of the mean 93.6 million high-quality 

reads, 69.2% mapped to a unique location in the reference human genome. No remarkable difference 

was observed across the technical replicates.  

2.1.2. Identification of exons that are stably detected in maternal blood 

Each gene comprises one or more sub-regions called exons. At the above sequencing depth, 

RNA-seq allows investigators to profile RNA levels not only at gene-level but also at the higher 

resolution of exon-level. Since the higher resolution exon-level data are advantageous for developing 

RT-qPCR assays, we summarized the counts of the reads mapped to each exon in GRCh38. To 

account for technical variations including the differing sequencing depth and amount of RNA input 

for each library, we normalized the count data using the Removal of Unwanted Variation (RUV) 

method, which is based on the factor analysis of control samples, such as technical replicates [14]. 

Unless otherwise stated, all further instances of “counts” in this paper refer to normalized counts. Of 

the 11 215 exons observed in our RNA-seq data, 4 579 exons were observed with at least one count in 

all libraries and were considered as robustly detected. For each exon, its RNA levels were calculated 

by the normalized counts of reads that mapped to that particular exonic sequence. Its mean RNA 

levels and coefficient of variation (CV = standard deviation divided by the mean) across all maternal 

blood samples were calculated. Figure 1 shows the mean and CV of the robustly detected exons in the 

log10 scale. 
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Figure 1. The CV% and mean of RNA expression levels of gene exons across all maternal blood 

samples based on RNA-seq. Each datapoint represents an exon. Shown are 4 579 exons that are 

robustly detected (minimum RNA level across all samples > 0 count). RNA levels are calculated by 

normalized read counts mapping to each exon. Highlighted in orange circles are 458 exons with CV% 

in the lowest 10th percentile. Black triangle shows the data from the GAPDH transcript. 

Without presuming normal distribution of the linear-scale data on RNA levels across the 4 579 

exons, we describe the data as follows: The median (interquartile range, IQR) of the mean RNA levels 

was 5.7 counts (3.2 counts – 13 counts) and the median of the CV (IQR) of the RNA levels was 32.5% 

(24.0% to 42.0%). The 10th and 90th percentiles of the CV are 17.7% and 53.8%, respectively. The 

Spearman rank order correlation coefficient was only -0.06 (p-value, 2  10-4) between the mean and 

the CV of the RNA levels of these exons. Exons with a low CV are good candidates for reference 

genes, because they exhibit a low variation across all maternal blood samples (Figure 1). For 

example, those 458 exons (representing 395 genes) detected at a CV below the 10th percentile 

(log10(CV%) < 1.25) are viable candidates (orange circles in Figure 1; File S1). The range of the CV of 

these 458 exons is 7.75%-17.7%, which are considerably small compared with the CV of the least 

variably detected GAPDH exon (27.3%; log(CV%) = 1.4; Figure 1, black triangle). They were detected 

at various RNA levels ranging from 1 count to over 16 000 counts. We consider the genes 

represented by these exons as stably detected in maternal blood. 

2.1.3. Pathways and functional annotation terms associated with the genes that are stably detected in 

maternal blood 

To gain insights into the functions of the 359 genes with exons that are stably detected in 

maternal blood, we statistically tested whether certain pathways or gene ontology (GO) terms [15] 

that annotate their functions are over-represented using the Protein ANalysis THrough 

Evolutionary Relationships (PANTHER) classification system [16-18]. Briefly, the percentage of 

genes associated with each category of pathway or GO terms among the list of stably detected genes 

was calculated. Then, it was compared with the percentage of genes associated with the 

corresponding category among the entire list of genes in the reference human genome. The fold of 

over-representation was reported with a p-value after correction for multiple testing by the 

Bonferroni method. We observed an over-representation of nine cellular component PANTHER 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 19, 2017. ; https://doi.org/10.1101/165654doi: bioRxiv preprint 

https://doi.org/10.1101/165654
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 Page 5 of 18 

GO-Slim terms among our list of stably detected genes, as compared with the reference list of all 

genes in the human genome (Figure 2A). The 12 over-represented the PANTHER pathways [19] are 

also shown (Figure 2B). The results of these and six other analyses, including complete GO terms in 

biological process, molecular function and cellular compartments and the Reactome pathways 

[20,21] are detailed in File S2.  

Compared with the reference list of all genes in the human genome, the list of 359 genes that are 

stably detected in maternal blood is over-represented with GO terms in cellular components (Figure 

2A; File S2, PANTHER GO-Slim Cellular Component) including macromolecular complex 

(over-represented by 1.9-fold, adjusted p, 9.710-4), intracellular (1.7-fold; p, 9.2-10), cell part 

(1.7-fold; p, 2.310-9), organelle (1.6-fold; p, 2.710-4), and actin cytoskeleton (3.3-fold; p, 4.1-3). 

Overall, this is in line with the major components expected of blood cells after lysis in the RNA 

extraction step. 

 

Figure 2. Over-represented annotation terms in the list of 395 genes that are most stably detected in 

maternal blood. (A) Over-represented PANTHER GO-slim terms in cellular components. (B) 

Over-represented PANTHER pathways. The list of genes represented by exons detected across all 

samples at a CV in the lowest 10th percentile (orange circles in Figure 1) is subjected to the 

over-representation test. The percentage of genes in each category of cellular component GO-terms 

or pathway among this list of most stably detected genes in maternal blood (client input, blue or 

yellow bars) is shown. It is compared with the percentage of genes in the corresponding category 

among the entire list of genes in the human reference genome (REF, red bars). P-values are adjusted 

for multiple testing by the Bonferroni method. Blue bars, p < 0.05. Yellow bars, p < 0.001. 

Moreover, this list of 359 stably detected genes is over-represented with 12 pathways (Figure 

2B; File S2, PANTHER pathways) including B cell activation (10-fold; p, 3.010-8), T cell activation 

(6.1-fold; p, 4.710-4), inflammation mediated by chemokine and cytokine signaling pathway 

(3.9-fold; p, 1.410-4), FGF signaling pathway (5.6-fold; p, 1.610-4), EGF receptor signaling pathway 
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(5.4-fold; p, 9.710-5), Integrin signalling pathway (4.4-fold; p, 1.810-4). The former three 

pathways highlight the important roles played by immune regulation in pregnancy [22], and the 

latter three mediate growth and proliferation [23-25]. The stable expression or detection of these 

genes in maternal blood is consistent with pregnancy and a growing fetus. 

Furthermore, the list of stably detected genes in blood is over-represented with pathways in 

other curated database (File S2, Reactome pathways), including regulation of actin dynamics for 

phagocytic cup formation (6.5-fold; p, 2.910-3), Fc gamma receptor (FCGR) dependent phagocytosis 

(6.1-fold; p, 7.010-4) and clathrin-mediated endocytosis (4.8-fold; p, 1.910-2). These are consistent 

with the presence of white blood cells. 

2.1.4. Shortlisting of reference genes from our RNA-seq data and the literature 

Ideally, the RNA levels of the reference gene and our gene of interest should not differ by more 

than a few orders of magnitude. We are interested in a panel of 36 preterm birth-associated 

transcripts that are aberrantly expressed in the preterm placenta and released into maternal plasma 

[7]. Of these, 12 placental transcripts were observed at a median of 5 counts in our RNA-seq data on 

maternal whole blood (Table S1). Further, we are interested in preterm birth-associated transcripts 

that are aberrantly expressed in maternal blood cells of the women presented with preterm labor. 

The RNA levels of these blood transcripts in whole blood are expected to be higher than those of the 

placental transcripts. Thus, we shortlisted reference genes that are expressed at RNA levels of about 

5 counts to 500 counts and have a low CV across maternal blood samples. In our RNA-seq data, the 

CV of RNA levels expressed by the DDX17 (Ensembl exon ID, ENSE00001942031), EXOC8 

(ENSE00001442235) and PPP1R15B (ENSE00001443770) genes are 7.7%, 9.0% and 9.4%, respectively. 

See Table 1 for the names and symbols of the genes mentioned in this paper. Their CV ranked 1st, 4th 

and 6th among the 4 579 robustly detected exons in maternal blood. Their mean RNA levels (SD) are 

85 counts  7 counts, 34 counts  3 counts and 27 counts  3 counts, respectively. 

Table 1. Gene symbols and names mentioned in this paper. 

Gene 

symbol HGNC1 approved name 

HGNC 

ID Location 

ACTB actin beta 132 7p22.1 

DDX17 DEAD-box helicase 17 2740 22q13.1 

EXOC8 exocyst complex component 8 24659 1q42.2 

GAPDH glyceraldehyde-3-phosphate dehydrogenase 4141 12p13.31 

PPP1R15B protein phosphatase 1 regulatory subunit 15B 14951 1q32.1 

RPL37A ribosomal protein L37a 10348 2q35 

TPT1 tumor protein, translationally-controlled 1 12022 13q14.13 

HUWE1 HECT, UBA and WWE domain containing 

1, E3 ubiquitin protein ligase 

30892 Xp11.22 

1 HGNC, HUGO Gene Nomenclature Committee. HUGO, Human genome organization. 

Additionally, we shortlisted other reference genes for normalizing RT-qPCR data in human 

blood sample. Previously, other investigators also applied high-throughput data to systematically 

search for reference genes for normalizing RNA transcripts levels in blood. In a study based on 

microarray data, among several other genes, RPL37A was found to be suitable for normalizing 

RT-qPCR data in whole blood from tuberculosis patients [5]. RPL37A was also robustly detected in 

our RNA-seq experiment. In a meta-analysis of microarray data on 1 053 blood samples from healthy 

individuals and patients with cancer and other abnormalities, less than a dozen of genes were found 

to be expressed at less than a CV of 30% [11]. Of these, ACTB, HUWE1 and TPT1 showed the highest 

RNA levels. Historically, GAPDH was often used as a reference gene, despite the controversy 

whether its expression is stable enough to serve this purpose [26].  
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To investigate whether the mentioned genes are suitable for normalizing RT-qPCR data from 

maternal blood samples, we examined the data distribution of their RNA levels in our RNA-seq data 

(Figure 2). As expected, the IQR of the RNA levels of DDX17, EXOC8, PPP1R15B are small, because 

they were shortlisted based on their small CV in the same dataset. The IQR of the RNA levels of 

GAPDH is the largest among the shortlisted genes. The CV of the RNA levels for TPT1 

(ENSE00001618156), ACTB (ENSE00001902558), GAPDH (ENSE00001817977), RPL37A 

(ENSE00001900648) and HUWE1 (ENSE00000978660) are 21%, 25%, 27%, 29% and 43%, respectively. 

The highly variable expression levels of the RPL37A and the HUWE1 genes and the low RNA levels 

expressed by the HUWE1 gene make them unsuitable to serve as reference genes in maternal blood 

samples. In fact, of these 6 candidates identified from the literature, the CV of 5 genes are larger than 

the lower quartile of CV (24%) as shown by the viable reference gene candidates that may be 

identified from our RNA-seq dataset (Figure 1, orange circles). Nevertheless, it appears that these 

candidates from the literature may complement the range of RNA levels not covered by the three 

candidates shortlisted based on our RNA-seq data. Hence, we embarked on designing RT-qPCR 

assays to quantify the RNA levels of the ACTB, DDX17, EXOC8, GAPDH, PPP1R15B and TPT1 genes 

in maternal blood samples. 

Figure 3. Box plot of RNA levels of eight candidate reference genes in all maternal blood samples 

subjected to RNA-seq analysis. RNA levels are calculated by normalized read counts, which have 

taken into account of the varying RNA input, sequencing depths and other technical variations. The 

bold line inside each box is drawn to the median, the bottom and top of each box to the 25th and the 

75th percentiles, the whiskers to the 10th and 90th percentiles.  

2.1.3. Exon-level RNA-seq data in selected genes 

To observe the data distribution of RNA levels of different exons on the same gene, we plotted 

selected genes with multiple exons detected in our RNA-seq data (Figure 4 and Table 2). We 

observed much variation in the detection of exons from the same gene in maternal blood, with 

non-overlapping IQR (Figure 4) between them. This observation highlights the advantage of 

summarizing the RNA-seq data at the exon-level. In designing RT-qPCR assays to quantify the 

reference gene, it is advisable to target the exon detected at a lower CV. 
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The CV is large for exons detected at a low mean RNA levels in this RNA experiment (Table 2). 

For example, DDX17e1, DDX17e2 and TPT1e4. Sequencing deeper than 150 million reads per 

sample may result in more accurate counting of reads and lower the CV of these exons. However, 

our data suggest that their expression levels are relatively lower than other exons of the same gene. 

RT-qPCR assays targeting these exons may be less reliable. 

 

Figure 4. Box plot of RNA levels of multiple exons in selected genes across all blood samples 

subjected to RNA-seq analysis. Selected exons (e1, e2, etc.) detected in the RNA-seq dataset are 

shown. See Table 2 for their Ensembl exon ID, mean, SD and CV of RNA levels. See legend of Figure 3 

for the calculation of RNA levels, definition of the box, whiskers and dots. 
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Table 2. Details of multiple exons in selected1 genes detected in the RNA-seq dataset.  

Gene exon 

Exon ID 

(Ensembl, 

GRCh38.p10) 

Mean 

RNA  

levels 

(counts) 

SD 

(counts) CV 

DDX17e1 ENSE00001855680 1.3 0.52 40% 

DDX17e2 ENSE00001863979 1.6 0.55 34% 

DDX17e3 ENSE00001924900 66 9.4 14% 

DDX17e4 ENSE00001942031 85 6.6 8% 

PPP1R15Be1 ENSE00001443770 27 2.6 9% 

PPP1R15Be2 ENSE00001443771 43 4.2 10% 

TPT1e1 ENSE00001479630 13 3.6 28% 

TPT1e2 ENSE00001618156 63 13 21% 

TPT1e3 ENSE00001820001 272 74 27% 

TPT1e4 ENSE00001824735 0.45 0.69 153% 

1 See Figure 4 and text for further information. 

2.2. Gene expression stability analysis  

2.2.1. Comparing complementary algorithms in analyzing gene expression stability 

To validate whether the candidate reference genes are stably detected, we assessed gene 

expression by a different technology platform, namely RT-qPCR, on an independent cohort 

comprising 32 maternal blood samples which were not used in the RNA-seq experiment. To ensure 

the best experimental results, the RT-qPCR assays were designed, optimized and performed in 

compliance with the MIQE guidelines [27]. The experimental details including sequences of the 

thermal profile, the primer and hydrolysis probe are described in the Methods and File S3.  

We used two common softwares, namely geNorm [4] and NormFinder [28], to analyze 

expression stability of the six selected genes. In the geNorm software, for each candidate reference 

gene, a stability value (M), which is defined as the average pairwise variation of that particular gene 

compared with all other candidate genes, is calculated. In the NormFinder software, a stability value 

is also calculated for each gene by a model-based approach, taking into the account of its intra- and 

inter-group variations. In both softwares, the lowest stability value indicates the most stable gene. 

The usual practice is to assess the stability values in a first batch of samples and then presume 

these values are applicable in other future batches of samples. To test how far this presumption is 

valid for maternal blood samples collected from women presented with preterm labor, we 

partitioned the 32 samples into two subsets, each containing approximately equal ratio of sPTB cases 

to TB controls (Table 3). Then, we calculated the gene stability values by both softwares for the two 

subsets (Figure 5). The stability values calculated using geNorm in subsets #1 and #2 are correlated 

(Spearman correlation coefficient, r = 0.94, p = 0.005), and so are those calculated using NormFinder 

(Spearman, r = 0.89, p = 0.02). The 95% confidence interval of the best-fitting line between the two 

subsets in geNorm appears to be narrower than that in NormFinder (Figure 4, grey zone). 
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Table 3. Samples used for gene expression stability analysis1. 

  

Patients 

ending in 

sPTB1 (n) 

Patients 

ending in 

TB2 (n) 

Total 

(n) 

Subset #1 9 8 17 

Subset #2 8 7 15 

Entire set 17 15 32 

1 sPTB, spontaneous preterm birth before 37 weeks. 

 2 TB, term birth on or after 37 weeks. 

Figure 5. Correlation plots of gene expression stability values from the respective software in sample 

set #1 vs set #2. The geNorm M stability value (left) and the NormFinder stability values (right) are 

plotted. Genes with the smallest stability value have the most stable expression. Each dot represents 

a gene. The entire set of samples are divided into two subsets, sets #1 and #2, each comprising 

approximately equal portion of sPTB cases and TB controls. Spearman correlation coefficient r (rho) 

and p values are shown. Grey zone is the 95% confidence interval of the best-fitting line (blue).  

Further, we ranked the candidate reference genes in increasing order of the stability values. In 

other words, the most stable gene ranks first. The ranks for each gene in the two subsets and the 

absolute rank difference between them were tabulated (Table 4). The sum of the rank differences for 

all six tested gene is smaller for the stability values calculated by the geNorm software than those by 

the NormFinder software. Taken altogether, for the maternal blood samples and the candidate 

reference genes that we tested, geNorm gave slightly more reproducible results between the two 

subsets, compared with NormFinder. 

Table 4. Ranking of stability values calculated by the respective software in two sets of samples1. 

Gene  geNorm stability value  NormFinder stability value 

  

 

Rank 
in  

set #1 

Rank 
in  

set #2 

Absolute 
rank 

difference  

Rank 
in  

set #1 

Rank 
in  

set #2 

Absolute 
rank 

difference 

ACTB  2 1 1  3 2 1 

DDX17  5 5 0  6 5 1 

EXOC8  3 3 0  1 1 0 

GAPDH  6 6 0  5 6 1 

PPP1R15B  1 2 1  2 3 1 

TPT1  4 4 0  4 4 0 

Total  - - 2  - - 4 
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1 The entire set of samples are divided into two subsets, sets #1 and #2, each comprising 

approximately equal portion of sPTB cases and TB controls. 

2.2.2. Assessing gene expression stability in maternal blood samples 

Because the geNorm software gave the slightly more reproducible results, we proceeded to use 

it to analyze the entire set of 32 maternal blood samples. Based on stepwise exclusion of the least 

stable reference gene using the geNorm software, the stability values of the remaining control genes 

are plotted and the genes are ranked (Figure 5). The candidates in descending order of gene 

expression stability are PPP1R15B, ACTB, EXOC8, TPT1, DDX17 and GAPDH.  

 

Figure 6. Average expression stability values (M) in the entire set of maternal blood samples. M is 

calculated using geNorm of the remaining control genes during stepwise exclusion of the least stable 

control gene. Gene with the lowest M has the most stable expression. 

Normalization factor (NFn) of a certain number (n) of genes was calculated, starting with the 

most stable genes. To determine the possible need or utility of including a certain number of genes 

for normalization, the pairwise variation Vn/n+1 was calculate between NF n and NF n+1 (Figure 6). 

Based on the data in the geNorm paper, if Vn/n+1 > 0.15, the added gene has a significant effect and 

should preferably be included for calculation of a reliable NF [4]. In our gene stability analysis, the 

V2/3 was 0.15. Thus, adding the third most stable reference gene has little effect on the NF3, compared 

with NF2. Hence, the optimal number of reference genes is 2. As such, the optimal NF can be 

calculated as the geometric mean of PPP1R15B and ACTB. 

 

Figure 7. Pairwise variation analysis between normalization factors in the entire set of maternal 

blood samples. To determine the optimal number of reference genes required for accurate 

normalization, we perform the pairwise variation (Vn/n+1) analysis between the normalization factors 

NFn and NFn+1, where n is the number of reference genes. 

3. Discussion 

RNA-seq has facilitated us to search for candidate reference genes from the 

whole-transcriptome. Compared with gene expression microarray, RNA-seq is not limited by a fixed 
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number of probes and known gene sequences. Consequently, considerably more reference gene 

candidates expressed were identified in this RNA-seq study (Figure 1) than a similar microarray 

study [11]. However, because the amount of RNA that could be extracted from this preciously 

collected cohort is limited, it is impractical to systematically validate all candidates using RT-qPCR. 

Thus, we have validated candidates which are expressed at similar levels as our genes of interest. 

RNA-seq, which was performed at a reasonable sequencing depth, has enabled us to profile the 

transcriptome at higher resolution of the exon level. As illustrated by the three selected genes in 

Figure 4, the exons of the same gene are detected at considerably different levels. This implies that 

exon-level data may guide the design of RT-qPCR assays to more specifically target a sub-region that 

is advantageous for the quantification of a gene transcript. In the case of designing RT-qPCR assays 

for reference genes, the exons with the lowest CV are the preferred targets. 

We have also been able to assess the variations of candidate reference genes in terms of CV and 

IQR of the normalized read counts on the RNA-seq data. Still, there are limitations of such 

assessment. The total RNA used for constructing the sequencing library contains a considerable 

portion of ribosomal RNA (rRNA). Its presence may affect the accuracy of quantification of the 

amount of RNA input for library construction. Moreover, since the predominance of rRNA often 

masks the signals from other more informative mRNA in RNA-seq experiments, a common practice 

is to reduce rRNA before library construction. However, such practice contributes to a source of 

technical variations. Combining with the quality-filtering, mapping and normalization steps in data 

analysis, each RNA-seq dataset contains a considerable amount of noise, which should be vigorously 

controlled for reliable gene expression profiling. Therefore, it is important to validate the findings 

from RNA-seq by independent technology platform, such as RT-qPCR, and cohort. This is especially 

true for identification of reference genes, because the impact of the technical variation in RNA-seq on 

gene expression stability analysis has not been extensively studied. Further, we have supplemented 

our RNA-seq based selection of candidates with relevant studies which employed other platform for 

profiling transcriptome. 

We have used two complementary approaches for validating the expression stability of the 

selected reference genes. Both geNorm and NormFinder gave highly correlated (Spearman, r = 0.94 

and 0.89, respectively) stability values between two different subsets of samples. Thus, the data 

suggest that both softwares generate similar stability values across different batches of samples. 

Although geNorm has generated slightly more correlated stability values across the two subsets, it is 

noted that both geNorm and NormFinder have consistently ranked PPP1R15B, EXOC8 and ACTB as 

the most stably detected genes (Table 4). Similarly, in the analysis of the entire set of 32 samples, 

geNorm has also ranked the same three genes as the most stably detected genes (Figure 6). 

Apparently, for whole blood samples collected from women during the presentation of preterm 

labor, PPP1R15B, EXOC8 and ACTB are suitable to serve as reference gene for normalizing the RNA 

levels of other circulating RNA transcripts. On a related note, among the genes selected for 

expression stability analysis, GAPDH was essentially consistently ranked as the least stable by both 

softwares in both subsets (Table 4) and the entire set (Figure 6). Our data suggest that reference 

genes with lower variation than GAPDH do exist in maternal blood.  

We observed that the RNA-seq data is not always predictive of the gene expression stability 

analysis data based on the RT-qPCR. For instance, in the RNA-seq data, the RNA levels of ACTB 

were detected at a CV of 25%, which is more variable than those of DDX17 (7.7%), EXOC8 (9.0%) and 

PPP1R15B (9.4%). On the other hand, in the geNorm analysis, ACTB turned out to be one of the most 

stably detected genes. A closer examination revealed that the ACTB exons targeted by the 

commercially available RT-qPCR assay were not detected in our RNA-seq dataset. The RT-qPCR 

assay pre-designed by that company targeted an amplicon that is mapped to more than one genomic 

location. This type of exonic sequencing reads been filtered out after mapping, because they may 

interfere with the counting of transcripts in the RNA-seq experiment. This illustrates how a search 

for reference genes based on RNA-seq may benefit from the relevant studies using an alternative 

technology.  
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The major advantage of our RNA-seq approach is that reference gene candidates could be 

systematically identified from the whole-transcriptome, which is more comprehensive. Moreover, 

the exon-level data allow a more specific design of RT-qPCR assays. The downside is that certain 

short sequencing reads that are mapped to more than one unique location in the genome are missed. 

For instance, the ACTB exon targeted by the commercial RT-qPCR assay was not detected in our 

RNA-seq data. It has been estimated that the RNA levels of hundreds of genes in the human genome 

could not be quantified accurately by RNA-Seq [29]. These genes are enriched for gene families, and 

many of them have been implicated in human disease. Usually, these ambiguously-mapped reads 

are discarded to improve the accuracy of quantification the uniquely-mapped reads in RNA-seq 

analysis. Recently, methods for including these non-unique reads in RNA-seq analysis have 

emerged. For instance, it is now possible to quantify the RNA levels of a family of similar sequences 

as a group [29]. Combined with the increasingly longer read length facilitated by newer sequencing 

platforms and reagents, we expect this negative impact of ambiguous reads on RNA-seq analysis 

will be minimized. 

In this study, we provided a list of 458 exons (395 genes) that are most stably detected in 

maternal blood. Unlike many other tissues, peripheral blood is readily and non-invasively 

obtainable from a patient. Many RNA transcripts expressed in other tissues are often released into 

the blood circulation, including preterm birth-associated placental RNA and pregnancy-associated 

microRNA [7, 30]. Nevertheless, the potential use of these circulating RNA as biomarkers is 

hindered by the paucity of study on reference genes in peripheral blood. Shortlisting from the 

transcriptome data and validating them by RT-qPCR are two essential but resource-demanding 

steps in finding suitable reference genes. Although the reference genes suitable for normalizing 

blood expression data from patients presented with preterm labor may not be suitable for data from 

patients suffering from other conditions, our list of stably detected exons (Figure 1) could still be 

useful for normalization of other experimental systems.  

To find reference genes in blood samples from patients with other diseases, one may first 

shortlist about 10 stably detected exons from our RNA-seq data (File S1) with similar RNA levels to 

the gene of interest. Then, RT-qPCR assays targeting the specific exons could be designed for gene 

expression stability analysis by geNorm, NormFinder or the like. Thus, the time and resources to 

perform the whole-transcriptome experiment and bioinformatics analysis can be saved. Since blood 

cells are the predominant source of nucleic acids in cell-free plasma [31], we reason that our 

RNA-seq data on whole blood will also serve as a starting point for finding reference genes in 

plasma. 

In addition, we noted that the stably detected genes in maternal blood are over-represented 

with annotation terms in macromolecular complex and actin cytoskeleton (Figure 2A). This is not 

surprising, because they are the major structural components of any cells. Interestingly, other terms 

are associated with phagocytosis (File S2, Reactome pathways), B cell activation, T cells activation 

and inflammation (Figure 2B). This is consistent with the notions that pregnancy and preterm birth 

are associated with immune regulation and infection, respectively.  

Intriguingly, terms in FGF, EGFR signaling pathways and Integrin pathways are also 

over-represented in the stably detected genes. Members of the FGF family function in the earliest 

stages of embryonic development and during organogenesis to maintain progenitor cells and 

mediate their growth, differentiation, survival and patterning [23]. The EGFR signaling pathway is 

one of the most important pathways that regulate growth, survival, proliferation, and differentiation 

in mammalian cells [24]. Integrins contribute to cell growth by providing a physical linkage between 

cytoskeletal structures and the extracellular matrix, and also by participating in various signal 

transduction processes [25]. The stable detection of genes in these pathways and fetal growth 

warrants further investigation. Will these genes remain stably detected in maternal blood of 

pregnancy complicated by intrauterine growth restriction, macrosomia or gestational diabetes?  

Taken altogether, the maternal circulation harbors RNA transcripts that are stably detected. We 

identified a list of 395 genes that were detected at a low CV in maternal whole blood samples 

collected from women presented with preterm labor. They are good reference gene candidates for 
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normalizing expression data from these patients. Our list may also be useful as a starting point for 

finding reference genes for normalizing data from patients with other disease or from samples of 

different blood compartments. With reference genes that are more stable, it is hoped that the hurdles 

of normalization could be overcome and that more differentially expressed transcripts could be 

identified in the circulatory system. 

4. Materials and Methods 

4.1. Recruitment of study subjects 

This study was approved by the institutional review boards (CRE 2012.032 and 2013.10-85). 

Women presented with preterm labor and fulfilled the inclusion and exclusion criteria were invited 

to participate in this study. The inclusion criteria are women with (i) uterine contractions at least once 

every 10 minutes < 34 weeks, (ii) intact membrane, (iii) singleton pregnancies, and (iv) a Chinese or 

Korean ethnicity. The exclusion criteria are women with pregnancies complicated with (i) preterm 

prelabor rupture of membrane, (ii) multiple gestation, (iii) preeclampsia, (iv) fetal growth restriction, 

(v) macrosomia, (vi) fetal distress, (vii) antepartum hemorrhage, (viii) fetal chromosomal or structural 

abnormalities, (ix) history of uterine abnormality or cervical surgery, and (x) indicated preterm births 

before 37 weeks (induction of labor, elective or emergency term cesarean deliveries), where deliveries 

are iatrogenic. Gestational ages were established based on menstrual date confirmed by sonographic 

examination < 20 weeks. We followed up their delivery outcome and categorized them accordingly 

into the spontaneous preterm birth (sPTB, before 37 weeks of gestation) and the term birth (TB, on or 

after 37 weeks) groups. 

 

4.2. Blood collection and RNA extraction 

Blood sample (9 mL) was collected from the antecubital fossa in EDTA-containing tubes 

(Greiner Bio-One). To minimize RNA degradation, the blood sample was mixed with RNAlater 

(Thermo Fisher Scientific) shortly after venesection and stored at -80C until extraction. RNA was 

extracted using the RiboPure RNA Purification Kit (blood) (Thermo Fisher Scientific) and treated 

with DNase I (Thermo Fisher Scientific) to minimize contaminating genomic DNA. Quality of the 

RNA preparation was assessed by spectrophotometry and RNA Pico chip on the Bioanalyzer 

(Agilent). 

 

4.3. RNA-seq 

Forty libraries (2 technical replicates per blood sample) were constructed for strand-specific pair-end 

cDNA sequencing (TruSeq 3000 4000 SBS Kit v3) according to the TruSeq Stranded Total RNA 

Sample Prep Guide (Part # 15031048 Rev. E). To minimize the highly abundant but uninformative 

ribosomal RNA and globin mRNA transcripts from masking the signals from the more informative 

transcripts, we subjected the RNA samples to pre-treatment by Ribo-Zero Globin (Illumina). 

RNA-seq was performed on the HiSeq 4000 sequencer (HiSeq 3000 4000 System User Guide Part 

#15066496 Rev. A HCS 3.3.30) using control software HCS v3.3.20. We filtered out low-quality 

sequences, trimmed away adapter sequences (Trimmomatic, v.0.33) [12]. To remove technical 

variations, we performed normalization using the R-package RUVSeq (ver. 1.6.0) according to 

instructions in the manual compiled May 3, 2016 [14]. The RUVs method was used to estimate the 

unwanted variation using replicate samples. We calculated the mean and CV of RNA levels at the 

exon level. When multiple exons were robustly detected in the RNA-seq dataset, the data from the 

exon with the lowest CV were reported unless otherwise stated. 

 

4.3. RT-qPCR 

To leverage on the exon-level transcriptome data, we designed RT-qPCR assays to target the exon 

with the lowest CV of RNA levels for all except two genes in this study using the PrimerQuest 

software (Integrated DNA Technologies, IDT). The assays for ACTB and GAPDH genes were 
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predesigned by and purchased from Integrated DNA Technologies, Inc. To improve the accuracy of 

quantification, hydrolysis probes were used. Primers and probes were validated in silco for possible 

secondary structures and non-specific binding by Primer-BLAST [32]. The full probe and primer 

sequences, reaction conditions and PCR efficiencies are shown in File S3. To avoid contaminating 

genomic DNA, we pre-treated the extracted RNA samples with DNase I before RT-qPCR. To monitor 

for environmental contamination, no template controls were run in parallel. 

A RT-qPCR primed by random primers is linear over a narrower range than a similar reaction 

primed by target-specific primers [33]. Further, it was shown that use of random hexameric primer 

sequences for reverse transcription may overstate the actual amount of mRNA up to 19 times [34]. 

Therefore, for more accurate results, we used gene-specific primers for the reverse transcription step 

in RT-qPCR. To minimize technical variation and the risk of contamination, we performed one-step 

RT-qPCR using the RNA Master Hydrolysis Probe kit (Roche), which involves no opening of the 

reaction vessel after addition of the RNA template. For the gene expression stability analysis, 10 ng 

of DNase I-treated RNA was added to each reaction. The reactions were performed on the LC480 

platform (Roche). We performed the geNorm analysis in qBase PLUS, which is MIQE-compliant 

[35]. PCR efficiency of each assay was determined by a calibration curve constructed from standards 

of known concentrations.  

 

4.3. Other data analyses 

Unless mentioned above, data analysis including correlation tests, descriptive statistics and 

graph plotting were performed using DeduceR [36] which is a graphical user interface for R and 

Microsoft Excel. 

Supplementary Materials: 

File S1. Details of exons detected with a CV within the 10th percentile among 4 579 exons robustly 

detected in maternal blood. 

File S2. Pathways and Gene Ontology terms associated with 359 stably detected exons in 

maternal blood. 

File S3. Technical details of RT-qPCR assays used in this study. 

Table S1. RNA levels of transcripts that are aberrantly expressed in the preterm placenta and 

released into maternal circulation. 
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