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Abstract

Motivation: Regulatory sequences are not solely defined by their nucleic acid sequence but also by
their relative distances to genomic landmarks such as transcription start site, exon boundaries, or
polyadenylation site. Deep learning has become the approach of choice for modeling regulatory sequences
because of its strength to learn complex sequence features. However, modeling relative distances to
genomic landmarks in deep neural networks has not been addressed.

Results: Here we developed spline transformation, a neural network module based on splines to
flexibly and robustly model distances. Modeling distances to various genomic landmarks with spline
transformations significantly increased state-of-the-art prediction accuracy of in vivo RNA-binding protein
binding sites for 114 out of 123 proteins. We also developed a deep neural network for human splice
branchpoint based on spline transformations that outperformed the current best, already distance-based,
machine learning model. Compared to piecewise linear transformation, as obtained by composition of
rectified linear units, spline transformation yields higher prediction accuracy as well as faster and more
robust training. As spline transformation can be applied to further quantities beyond distances, such as
methylation or conservation, we foresee it as a versatile component in the genomics deep learning toolbox.
Availability: Spline transformation is implemented as a Keras layer in the CONCISE python package:
https://github.com/gagneurlab/concisel. Analysis code is available at goo.gl/3yMY5wl
Contact: avsec@in.tum.de;/gagneur@in.tum.de
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1 Introduction The distance to defined locations in genes such as transcription start
site (TSS), start codon, stop codon, exon junctions, or polyadenylation
(polyA) site, which we refer to collectively as genomic landmarks, plays
an important role in regulatory mechanisms. Genomic landmarks are often

In recent years, deep learning has proven to be powerful for modeling
gene regulatory sequences. Improved predictive accuracies have been

obtained for a wide variety of applications spanning the modeling of
bound by regulatory factors. For instance, RNA 5’ends are bound by

capping factors, exon junctions by the exon-junction complex, and the
polyA-tail by the polyA-binding proteins. These factors provide spatial

sequences affecting chromatin states (Zhou and Troyanskaya, 2015}
Kelley et all 2016), transcription factor binding (Alipanahi er all
2015), DNA methylation (Angermueller et al.| [2017), and RNA splicing

(Coung e alll P01 [Xiong ef al} 2015), among others. Using multiple clues for other factors to be recruited and to interact. Furthermore,

distances to genomic landmarks can be important for structural reasons.
The relatively well defined distance between the TATA-box and the
transcription start site is due to structural constraints in the RNA
polymerase complex (Sainsbury ez al.||2015). Also, the splice branchpoints
are typically localized within 18 to 44 nucleotides of the acceptor site

layers of non-linear transformations, deep learning models learn abstract
representations of the raw data and thereby reduce the need for handcrafted
features. Moreover, the deep learning community, which extends much
beyond the field of genomics and includes major web companies, is

actively developing excellent software frameworks that allow rapid model
due to specific constraints of the spliceosome (Wahl ef al.| [2009; Mercer!

et al.}|2015). Therefore splice branchpoints are not only defined by their
sequence but also by their distances to the acceptor site. This information

development, model exchange, and scale to very large datasets (Collobert
et al.l, 2002 Bastien et al.l 2012; Jia et al., 2014; |Chollet and Others)

2015t |Abadi et al.|,2016). Altogether, it is advantageous to leverage these
can be used to improve prediction of branchpoint location from sequence

(Corvelo et al.,|2010; Bitton et al.}[2014;|Signal et al.,2016).
Despite their important role in gene regulation and their successful

strengths and further develop deep learning modules specific for regulatory
genomics.

usage in computational models, distances to genomic landmarks have
not been included in deep learning models. Typical sequence-based
deep learning models take into account the effects of relative position
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Figure 1. Illustrative model architecture using spline transformation. In addition to
DNA sequence, relative distance to various genomic landmarks are used as features. Spline
transformation learns a smooth transformation of the raw distances. Transformed distances

are then merged with sequence-based activations of convolutional layers.

within each sequence (internal position), either by using strided pooling
after convolutional layers followed by fully-connected layers or by using
weighted sum pooling (Shrikumar ez al.,2017). However, modeling effects
of internal positions does not cover modeling of positions to genomic
landmarks. These are defined externally to the sequence and can lie at
very long distances, as in the case of enhancer to promoter distances.
Additionally, genomic landmarks might be difficult to discover de novo
by the model. While categorical genomic region annotation such as
promoter, UTR, intron or exon capture relevant spatial information and
help improving prediction performances (Strazar et al., |2016] [Pan and!
Shenl 2017), they are still not capturing distances to genomic landmarks
quantitatively.

Here we demonstrate the importance of using relative distances to
genomic landmarks as features in sequence-based deep learning models.
Technically, we achieve this by introducing spline transformation, a neural
network module to efficiently integrate scalar features such as distances
into neural networks. Spline transformation is based on smooth penalized
splines (P-splines; [Eilers and Marx| (1996))) and can be applied both in
the context of fully-connected layers as well as convolutional layers. We
show that deep neural networks modeling effects of distances to genomic
landmarks outperforms state-of-the art models on two important tasks.
First, we obtain consistent improvements for predicting UV crosslinking
and immunoprecipitation (CLIP) peaks across two datasets: a large
enhanced CLIP (eCLIP) ENCODE dataset containing 112 RBPs (Van
Nostrand et al.}|2016) and a well-studied CLIP benchmark dataset (Strazar
et al.L[2016; Pan and Shenl|2017) containing 19 RBPs from 31 experiments.
Second, we obtain the best model for predicting splice site branchpoint
(Mercer et al.}2015). Furthermore, we show that across our applications,
spline transformation leads to better predictive performance, trains faster
and is more robust to initialization than piecewise linear transformations,
an alternative class of functions based on the popular rectified linear units.

2 Methods
2.1 Spline transformation

2.1.1 Definition

We considered input data that not only consist of one-hot-encoded
sequence vectors but also of scalar vectors. One typical and simple case is
where each input consists of a nucleic acid sequence and a scalar vector of
the same length containing the distance of every nucleotide to a genomic
landmark of interest (Figure m) Another case is to have a single value
per input sequence, for instance encoding the distance of the sequence
midpoint to a genomic landmark. A single value per sequence may be

appropriate when positional effects vary over much longer scales than the
length of the sequence.

The positional effects are modeled with a smooth transformation
function. We used P-splines or penalized splines (Eilers and Marx||1996).
Spline transformation fg is defined as

B
fs(@) = wibk(z;p), o
k=1

where by, is the kth B-spline basis function of degree p € N (De Boor|
1978) (Figure[T) and « is a multi-dimensional array of positions. In all the
applications presented here we used cubic splines, i.e. p = 3. Spline bases
are non-negative functions with finite support. Knots of the spline basis
functions {b1,...,bp} are placed equidistantly on the range of input

values z, such that the following relation holds:

B
> bi(asp) = 1Va,p. ©)
k=1

The only trainable parameters in spline transformation are wi, ..., wp.
To favor smooth functions, a smoothness regularization is added to the

global loss function:
regularization(w) = AwTSw, 3)

where S is a symmetric positive matrix effectively encoding the squared
second order differences of the coefficients w, which approximate the
square of second order derivatives (Eilers and Marx}1996). The advantage
of this approach is that one can have finely spaced bases and use the
regularization parameter A to set the amount of smoothing.

2.1.2 Integration into neural networks

Spline transformation is applicable at the network input values. In that case,
the approximate range of values—a necessary requirement for the knot-
placement—is known. How and where the output of spline transformation is
merged into the network is highly application specific. In the case of scalar
vectors along the sequence, their spline-transformed values are typically
merged with the output of the first sequence-based convolutional layer. In
the case of single values per sequence, the transformed values are added
to the flattened output of the last convolutional layer, right before the
fully-connected layers.

2.1.3 Implementation

‘We implemented spline transformation using Keras (Chollet and Others|
2015), inspired by the MGCV R package (Wood| [2006). The
implementation consists of three essential components: i) a pre-processing
function encodeSplines which takes as input an array of values x,
uniformly places B spline bases across the range of z and computes
[bi(z),...,bp(x)] for each array element, ii) a Keras layer SplineT
effectively performing a weighted sum of the basis functions and iii)
a Keras regularizer SplineSmoother penalizing the squared mth-
order differences of weights along the last dimension (Equation E[ by
default second-order). All three components are compatible with 3 or more
dimensional input arrays x. Altogether this allows flexible usage of spline
transformations in Keras models. The code is open source and is part of the
CONCISE python package: github.com/gagneurlab/concisel

2.1.4 Alternative to spline transformation: piecewise linear (PL)
transformation

As an alternative to spline transformation, we consider a piecewise linear

(PL) transformation achieved by stacking two fully-connected layers with
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rectified linear unit (ReLLU) activation (Nair and Hinton}{2010) in-between.
Formally:

B
frr(z) = Z w](f)max(()7 w](cl)z + b(kl)) . 4)
k=1

In contrast to spline transformation, the piecewise linear transformation
is based on trainable basis functions (max(0, wlgl)a: + b,gl))) and has
hence more parameters. This can be of great advantage when the modeled
function is compositional (Montufar et al.}|2014), but can also represent a

disadvantage when the modeled function is smooth.

2.2 Hyper-parameter tuning with Bayesian optimization

In most of the trained deep neural networks, we employed Bayesian
optimization for hyper-parameter tuning using the Tree-structured Parzen
Estimator (TPE) algorithm implemented in the hyperopt python
package (Bergstra et al) [2013). For each trial, a hyper-parameter
configuration is proposed by the Bayesian optimizer. The corresponding
model is trained on the training set and evaluated on the validation set.
The evaluation metric gets reported back to the optimizer. Model yielding
the best performance on the validation set across all trials is selected
and evaluated on the test set. This allows for a fair comparison between
methods, as all the methods get equal amount of hyper-parameter tuning
trials.

2.3 eCLIP peak prediction

2.3.1 Data

RNA binding protein (RBP) occupancy peaks measured by eCLIP-seq
(Van Nostrand et al.l[2016) for human cell lines K562 and HepG2 were
obtained from ENCODE version 3 (ENCODE Project Consortium} [2004)).
There were in total 316 experiments measuring 112 proteins. Genome
assembly version GRCh38 and the corresponding GENCODE genome
annotation release 25 (Harrow et al.,|2012) were used.

For each RBP, a single set of peaks was created by greedily merging
the peaks from multiple experiments: two overlapping peaks were merged
into one, centered between the peak midpoints. Next, peak midpoints
were overlapped with protein-coding genes. Peaks that didn’t map onto
any annotated gene (10.1%) were discarded. Each gene-peak pair was
considered as a single positive class instance. 94.0% of peaks mapped to a
single gene and the average number of mapped genes per peak was 1.064.
For each RBP, the negative set was generated by uniformly sampling within
each gene 4 times as many locations as true binding sites in that gene. All
peaks (both negative and positive) were resized to the width of 101 nt
anchored at the peak center. Negative peaks that overlapped positive peaks
of the same RBP were discarded.

Finally the sequence underneath the peak was extracted, reverse-
complemented for peaks from the negative strand and one-hot encoded.
Relative distances from the peak center to the following 8 nearest genomic
landmarks on the same strand were extracted: gene TSS, transcript TSS,
start codon, exon-intron boundary, intron-exon boundary, stop codon,
transcript polyA site and gene polyA site. These features were further
transformed with fpos(z) = sign(z)log;o(1 + |z|) and min-max
scaled to fit the [0, 1] range. Data points from chromosomes 1, 3 were
used for model validation (17%) and hyper-parameter tuning, points from
chromosomes 2, 4, 6, 8, 10 (20%) for final performance assessment and
the rest for model training.

2.3.2 Models

As a baseline model we considered an elastic-net model with o = 0.5
(glmnet package, |[Friedman ef al.|(2010)) based on k-mer counts (k €
6, 7) and positional features transformed by 10 B-spline basis functions.

Smoothness regularization of B-spline features was not used. Optimal
number k and the regularization strength were determined by 10-fold
cross-validation. Models with and without the positional features were
compared.

Next, we used a deep neural network (DNN) based on two different
data modalities: i) 101 nt one-hot encoded RNA sequence beneath the peak
and ii) signed log-transformed relative distances to genomic landmarks.
DNN sequence module consisted of two 1D convolutional layers (16 filters
each, kernel sizes 11 and 1, ReLU activation after each), followed by max-
pooling (pooling size of 4). The positional features were either not used
(DNN), or were modeled using spline transformation (DNN w/ dist).
Activation arrays of the convolutional layers (RNA sequence) and spline
transformation (positional features) were concatenated and followed by
two fully-connected layers: a hidden fully-connected layer (100 units and
ReLU activation) and a final fully-connected layer with sigmoid activation.
Batch normalization was used after every layer. The model was optimized
using ADAM (Kingma and Bal[2014). Bayesian optimization (Section[2.2)
was used to determine the optimal set of hyper-parameters for each RBP
individually from 20 parameter trials, yielding the best auPR on the
validation set.

2.4 iDeep CLIP benchmark

2.4.1 Data

To compare our approach with the RBP binding site prediction model
iDeep (Pan and Shen| [2017), we used the same CLIP dataset, pre-
processing code and model code as [Pan and Shen| (2017), both provided
by the authors at https://github.com/xypanl232/1iDeepl The
CLIP dataset contains 31 CLIP experiments measuring 19 different RNA
binding proteins (RBPs) and was originally generated by |Strazar et al.
(2016) (available at https://github.com/mstrazar/iONMF/
tree/master/datasets). Unlike eCLIP (Section [Z3.1), the peaks
for each RBP from different experiments were not merged. Respectively,
the results are always reported for each experiment individually rather than
each RBP. We extended the existing set of features with relative distances
to 8 nearest genomic landmarks (gene TSS, transcript TSS, start codon,
exon-intron boundary, intron-exon boundary, stop codon, transcript polyA
site and gene polyA site), following the same procedure as for the eCLIP
data (Section |T3_T[) In contrast to the eCLIP data processing, we used
hg19-based GENCODE annotation v24.

2.4.2 Models

As the baseline model we used the provided iDeep modeﬂ with one
minor modification: we replaced the softmax activation of the last
layer with a sigmoid activation function (softmax is unnecessary for a
binary classification task). The iDeep model is based on 5 different data
modalities: i) Region type, ii) Clip-cobinding, iii) Structure, iv) Motif
and v) Sequence. The additional data modality introduced here —relative
distance to 8 genomic landmarks (Sectionm—was modeled with spline
transformation using B = 32 basis functions and 6 output units for
each features, followed by a fully-connected layer with 64 output units.
This module was integrated into the iDeep model by concatenating the
activations to the last hidden layer. Spline transformation was used without
smoothness regularization, because we restricted ourselves the same set
of hyper-parameters as the iDeep model and have not done any hyper-
parameter tuning. All models were optimized using RMSprop (Tieleman
and Hinton| [2012)), same as the original iDeep.

Uhttps://github.com/xypanl232/iDeep
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5’ intron-exon boundary. The same dataset and pre-processing procedure
was used as described in |[Signal et al.| (2016). Briefly, high-confidence
annotated branchpoints from Mercer et al.|(2015) were used to generate
the positive set. Negative set comprises of positions not annotated as
high- or low-confidence branchpoints in Mercer et al.|(2015). This yields
in total 52,800 positive and 933,739 negative examples. |Signal et al.
(2016)) designed and used the following features in the classification model
(Figure Eh): 11 nucleotide sequence window around the position encoded
as dummy variables, distances to the first 5 canonical AG dinucleotides
downstream, distance to the poly-pyrimidine tract (PPT) and its length,
distance to the associated 3’ exon and distance to the nearest 5’ exon
located on the same strand. GENCODE v12 (Harrow et al., 2012) was
used for genome annotation. Using the code provided by |Signal et al.
(2016El we were able to reproduce the results of |Signal et al.|(2016). The
only major change to the pipeline was to a priori set aside points from
chromosomes 4, 5, 6, 7, 8, and X (21% of all the data) as a test set. The
test set was only used to test the predictive performance of our models
and not to tune the hyper-parameters as done in|Signal et al.|(2016). Exact
code changes can be tracked in our forked repositoryﬂ

2.5.2 Models

All the models use the same set of features as|Signal et al.|(2016).
branchpointer - branchpoint prediction model developed by |Signal

et al.|(2016). It is a combination of two stacked models: SVM with “rbfdot”

kernel and a gradient-boosted decision trees model, both from the caret R

package (Kuhn, 2015).

glmnet - Logistic regression with elastic-net regularization using the
glmnet R package (Friedman et al.| [2010) with parameters alpha=0.5
and regularization strength determined by 5-fold cross-validation on the
training dataset.

NN - deep neural network developed here (Figure B)). For
computational efficiency, the model predicts the branchpoint class for all
27 positions in an intron simultaneously, while using the same parameters
for each position. Specifically, the models takes as input one-hot encoded
37 ntlong RNA sequence and 9 position-related features, each as an integer
array of length 27. Parameter sharing across 27 positions within an intron is
achived with 1d-convolutions using kernel size of 1. The only exception is
the first convolutaional layer processing RNA sequence where kernel size
of 11 is used. That way, the set of features for predicting the branchpoint
class at a single position is exactly the same as for branchpointer and
positions are completely independent of each other.

The 9 positional features were transformed either with: i) spline
transformation (ST) or ii) piecewise linear transformation (PLT).
Moreover, two levels of model complexity were compared: ’shallow’
and ’deep’. They differ in the number of convolutional filters, number
of hidden layers (Figure @)) and also in the weight initialization for
the first sequence-based convolutional layer: ’shallow’ models were
initialized with the position-specific scoring matrix (PSSM) of the high-
confidence branchpoints derived from the training set and "deep’ models
were initialized with the (random) glorot-uniform initialization. In total,
4 different model architectures were used. Hyper-parameters were tuned
for each of the four NN classes individually using Bayesian optimization

(Section[Z:2).

2 https://github.com/betsig/splice_branchpoints

3 https://il2g-gagneurweb.informatik.tu-muenchen.de/

gitlab/avsec/splice_branchpoints
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Figure 2. Relative distance to genomic landmarks boosts the in vivo prediction of
RBP binding sites. a) eCLIP peak distribution across all genes. Genes (y-axis) are sorted by
their length and aligned at their start site. Color intensity represents the number of peaks per
bucket (100 genes x 1000 nt) and saturates at 10 peaks per bucket. Grey lines represent gene
transcription-start-site (TSS) and polyadenylation (polyA) site. b) Area under Precision-
Recall curve (auPR) for predicting in vivo RBP binding sites measured by eCLIP for a
subset of RBPs (6/112). Methods labelled by "w/ dist" rely, in addition to RNA sequence,
on two positional features: distance to TSS and polyA site. Distribution of the auPR metric
(boxplot instead of point-estimate) is obtained by generating 200 boostrap samples of the
test-set and computing auPR for each of them. *** denotes P < 0.001 (Wilcoxon test).
c,d) Benefit of adding 8 genomic landmark features with spline transformation to the (c)
DNN model for all 112 RBPs measured by eCLIP in ENCODE and (d) iDeep model (Pan
and Shen} |2017) for 19 RBPs across 31 CLIP experiments. Black represents statistically
significant difference (P < 0.0001, Wilcoxon test on 200 bootstrap samples, Bonferroni

correction for multiple testing).

2.5.3 Position-weight matrix analysis
Weights of the convolutional filter w;; were converted to a position-weight
matrix (PWM) by

PWM,; — b; exp(w;j) 7
> bi exp(wij)

where ¢ € {A,C,G,T} is the nucleotide identity and b; is the
background probability (A: 0.21, C: 0.25, G: 0.20, and T: 0.34 in the
branchpoint dataset). Note that we are denoting T also Uracil. Branchpoint-
centered PWM was created from 11 nt long sequences centered at the
high-confidence branchpoints from [Mercer et al.|(2015).

3 Results

3.1 Relative distance to genomic landmarks improves in
vivo RBP binding prediction

‘We firstinvestigated the benefit of modeling effects of position with respect
to genomic landmarks for the task of predicting in vivo binding sites of
RNA-binding proteins (RBPs). We used a large and consistently generated
dataset of eCLIP data for 112 RBPs from the ENCODE project (Methods,
Van Nostrand er al.|(2016)).
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For a representative detailed investigation, we first focused on 6 RBPs
with more than 10,000 peaks and exhibiting various peak distributions
along genes (Figure Ph). Comparing the relative positions within genes
between the binding and non-binding sites (Figure S1), we selected 2
RBPs with highest enrichment toward the transcription start site (TSS;
DDX3X, NKREF, t-test comparing positions of binding sites versus non-
binding sites P < 107100), 2 RBPs showing highest enrichment toward
the polyA site (UPF1 and PUM2, P < 10~190) and 2 RBPs showing
the least significant positional preference (TARDBP, SUGP2, P > 0.5).
We next asked what the contribution of using a deep neural network on
the one hand and of modeling positional effects on the other hand for the
task or predicting eCLIP peaks was. To this end, we fitted four models
(Methods): i) an elastic net logistic regression based on k-mer counts
from 101 nt sequence around the candidate peak as a non-deep supervised
learning algorithm (g1lmnet), ii) an extension of the latter model that also
included relative distance to TSS and polyA site transformed by spline
transformation (glmnet w/ dist), iii) a deep neural network based
on the 101 nt sequence around the candidate peak (DNN), iv) an extension
of the latter model with spline transformation of relative distance to TSS
and polyA site (DNN w/ dist).

For each of the 6 RBPs, the deep neural networks yielded a significantly
larger area under the precision-recall curve (auPR, a metric between 0 and
1, the larger, the better) compared to their corresponding elastic-net based
models (Figure 2b). Moreover, modeling positional effects significantly
improved the performance for all four RBPs showing positional preference.
In three out of four cases (UPF1, PUM2 and DDX2X), the g1lmnet model
even outperformed the deep neural network model DNN lacking positional
features. These results show the importance of modeling positional effects
for predicting RBP binding peaks and the power of combining deep neural
networks with the modeling of position to genomic landmarks.

Next, we extended our set of positional features in DNN w/ dist to
8 genomic landmarks (nearest gene TSS, transcript TSS, start codon, exon-
intron boundary, intron-exon boundary, stop codon, transcript polyA site,
gene polyA site; Figure S2) and compared it with DNN across all the 112
RBPs. Using relative distances increased the auPR by up to 0.33 (LARP4,
from 0.37 to 0.70), on average by 0.11 (from 0.64 to 0.75, P < 10—16
paired Wilcoxon test, Figure@:). Altogether, 104 RBPs showed significant
auPR increase and none a significant decrease (P < 10—4, Wilcoxon test,
Bonferroni correction for multiple testing).

To further validate our observations from the eCLIP data, we extended
the current state-of-the-art model for RBP binding site prediction—iDeep
(Pan and Shen| 2017) with the same 8 genomic landmark features. iDeep
is a deep neural network trained and evaluated on a CLIP dataset of 19
proteins measured by 31 experiment created by [Strazar et al.| (2016). It
does not model distances to genomic landmarks quantitatively. However,
it is based on indicator features for 5 gene regions (exon, intron, 5’UTR,
3’UTR, CDS) for each nucleotide in the classified sequence. Since
iDeep was already implemented in Keras, extending it with our spline
transformation module could be done easily (Methods). When we added
the 8 positional features with spline transformation on top of iDeep, the
auPR increased by 0.036 (P = 4.7 x 10~9, paired Wilcoxon test) and
auROC by 0.021 (P = 2.3 x 10~8). The auPR improved significantly
for 25 out of 31 experiments and has not significantly decreased for any
experiment (Figure @). This shows that the quantitative distance, and
not just a binary indicator, are useful predictive features for RNA binding
sites. Moreover, this application demonstrates how spline transformation
modules can enhance existing deep learning models.

Altogether, these results demonstrate that relative distance to genomic
landmarks is an important feature for predicting in vivo RBP binding events
and show that our spline transformation module provides an effective way
to include this information in deep neural networks.

3.2 Spline transformation in a deep neural network
improves state-of-the-art branchpoint prediction

We then asked whether spline transformation in a deep neural network
could improve prediction accuracy for tasks where the effect of the distance
to genomic landmarks has already been exploited by non-deep learning
methods. To this end, we considered the prediction of splice branchpoint.
The first reaction of splicing is the attack of a 2’hydroxyl group of an intron
adenosine on the 5’ splice site phosphodiester bond (Ruskin ez al.|[1985).
This intron adenosine is located typically between 18 and 44 nucleotide
5’ to the acceptor site (Mercer et al.l|2015). It is named branch point,
because it is bound on its 2’hydroxyl group, leading to a lariat form of the
spliced-out intron. Mapping branchpoints experimentally has been difficult
because of the very short half-life of lariats. Computational predictions of
branchpoints have been also difficult because their sequence context is
degenerate (Gao et al.,|2008).

Current state-of-the art model to predict human branchpoints is
branchpointer (Signal et al.}|2016)), an ensemble model of support vector
machine (SVM) and gradient boosting machine (GBM) trained on a set of
42,095 mapped high-confidence branchpoints fromMercer et al.|(2015). In
addition to the sequence context, branchpointer uses 11 different positional
features: distances to the first 5 downstream AG dinucleotides, distance to
the poly-pyrimidine tract (PPT) and its length, distance to the associated
3’ and 5” exon (Figure Eh Methods).

Using the provided code and some minor modifications (Methods),
we were able to reproduce the results of branchpointer and obtained very
similar performance metrics as originally reported: area under Receiver
operating characteristic curve (auROC) of 0.940 (paper: 0.941) and area
under precision-recall curve (auPR) of 0.640 (paper 0.617) (Figure Ek).
Training a deep neural network with spline transformation module for
positional features (Figure Eb) significantly outperformed branchpointer
with auROC of 0.949 and auPR of 0.651 (P < 2.2 x 10716,
Wilcoxon test, Figure[3F). This result is consistent with general improved
performance of deep neural networks over alternative supervised learning
models and shows the strength of spline transformation. It also yields to
the most accurate predictor of human branchpoints to date.

3.3 Shallow architecture yields an interpretable
branchpoint model while still delivering good predictive
performance

‘When model interpretation rather than mere prediction is desired, shallow
neural networks are preferred over deep neural networks because their
coefficients can be directly interpreted. To investigate such a use case, we
trained a shallow version of our neural network (NN w/ ST shallow,
Methods) for branch point prediction. As expected, the shallow model is
not able to compete with its deeper version or branchpointer. Nevertheless,
it performs well compared to an elastic-net logistic regression (Figure@:).

Predicted positional effects in the shallow model (’Predicted’ in
Figure 34, Figure S3) closely resembled the distributions of branchpoint
distances to all genomic landmarks (’Data’ in Figure Eh, Figure S3).
In addition to the distances, the single convolutional filter in our
shallow model captured the expected sequence preference of branchpoints
(Figure B, Mercer et al| (2015)).

Altogether, these analyses of branchpoint prediction demonstrate the
versatility of the spline transformation module. The spline transformation
module can be used to increase predictive power in conjunction with deep
neural network. It can also be employed in shallow and interpretable
models.
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Figure 3. Spline transformation improves branchpoint prediction: (a) Features for branchpoint prediction designed by [Signal et al.|(2016) (adapted from |Signal et al.|(2016)). PPT

stands for poly-pyrimidine tract. (b) NN model architectures (deep and shallow) for branchpoint prediction developed here. For each predicted binary class (1=high confidence branchpoint,

NA=ignored low-confidence branchpoint, O=else), the model takes as input 11-nucleotide sequence window and 9 position-related features. (¢) auROC and auPR bootstrap distribution

(n=200) for branchpoint prediction on the test set. Our NN models are compared to the state-of-the-art model branchpointer (Signal et al.}|2016) and an elastic-net baseline using the same

features. *** denotes P < 0.001 (Wilcoxon test). (d) Fraction of branchpoints per position for the two most important features in log-odds scale (black dot, outlier shown in red) compared

to the shallow NN model fit: inferred spline transformation (orange) and predicted branchpoint log-odds (blue). (e) Information content of the shallow NN convolutional filter transformed

to the PWM and the branchpoint-centered PWM (Methods).

3.4 Spline transformation is more robust to
hyper-parameter choices, trains faster, and yields
better predictive performance than piecewise linear
transformation

The most widely used transformations in deep leaning currently are
compositions of linear transformation and rectified linear units, defined
as ReLU(x) = maxz(0,z). Those compositions lead to piecewise
linear transformations (Methods). Although piecewise linear functions can
approximate any function, this can be at the cost of much more parameters.
Also piecewise linear functions are not smooth.

To inspect the benefit of spline transformation compared to the default
modeling choice in deep learning, we replaced the spline transformation
module with piecewise linear (PL) transformation (Methods) in all three
studied tasks. As for the spline transformation, we used the same number of
single output units, equivalent number of hidden units and the same hyper-
parameter optimization strategy for each task. The observed predictive
performance of spline transformation was consistently better across all
3 tasks (Figure Eh—c): i) for eCLIP the auPR improved on average by
0.042 (P < 2.2 x 1016, paired Wilcoxon test) and auROC by 0.025
(P < 2.2 x 10~ 16); i) for the iDeep CLIP benchmark dataset, the auPR
improved on average by 0.011 (P = 1.3 x 10~3) and auROC by 0.004
(P = 5.4 x 10~%); iii) for branchpoint, the auPR improved on average
by 0.005 (P = 1.0 x 1012 and auROC by 0.002 (P < 2.2 x 10~16).

Focusing on the branchpoint prediction task, we compared the
validation accuracies of all hyper-parameter trials between spline
transformation and piecewise linear transformation (Figure Ei). Spline
transformation had fewer trials with poor performance and globally
smaller performance variation. This suggests that spline transformation
is more robust to parameter initialization and hyper-parameter choices
like the learning-rate. Moreover, we inspected the training curves of
the top 10 trials (Figure k). While the deep neural network with
spline transformation on average trained in 20 epochs, piecewise linear
transformation required more than 50 epochs. Altogether these results

o
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Figure 4.
in terms of generalization accuracy, hyper-parameter robustness and training

Spline transformation outperforms piecewise-linear transformation

efficiency. (a-c) Test-accuracy (auPR) comparing spline transformation to piecewise linear
transformation for all the tasks presented in the paper (Figure|z|:, Figure@ and Figure@:).
Black represents statistically significant difference (P < 0.0001, Wilcoxon test on 200
bootstrap samples, Bonferroni correction for multiple testing). (d,e) Training and hyper-
parameter tuning metrics for the branchpoint task. (d) Validation accuracy (area-under
precision-recall curve) of all the hyper-parameter trials. (€) Training curves (validation loss

per epoch) of 10 best hyper-parameter trials (transparent lines) and their average (solid line).

show that spline transformations generalize better, are more robust and
train in fewer steps than piecewise linear transformations in the class of
problems we investigated.

4 Discussion

Here we have introduced spline transformations, a module for neural
networks, and demonstrated that it is an effective way to model relative
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distance to genomic landmarks. Spline transformations allowed us to
improve the state-of-the-art prediction accuracy of splice branchpoint and
in vivo RBP binding affinity. On the latter task, the use of relative distance
to genomic landmarks in a neural network is novel. Moreover, we have
shown that spline transformation in a shallow network can uncover the
positional effects of cis-regulatory elements.

We provide spline transformation as an open source Keras components,
compatible with both Theano (Bastien ez al.}[2012) and TensorFlow (Abadi
et al.| |2016). We have shown how to combine it with existing models and
improve their performance. Compared to a 2-layer neural network with
ReLU activations—piecewise linear transformation, spline transformation
offers better prediction accuracy, is more robust to initialization and trains
faster. This is not surprising as the relative positional features tend to
affect the response variable in a smooth fashion, which is exactly the
class of functions spline transformation is able to represent with very few
parameters.

In addition to external positions studied here, spline transformation
can also be used to model internal positions, which are positions within
the sequence. In that case, the array index % along the spatial dimension
of the 1d convolutional layer activation a;; serves as the relative distance
feature. That way, weights in the the recently introduced weighted sum
pooling layer (Shrikumar et al| |2017) can be parametrized by spline
transformation: w;; = fg(¢). Note that this applies also to the separable
fully-connected layer (Alexandari ez al.|[2017), which can be reformulated
as 1d convolution with kernel size of 1 followed by a weighted sum pooling
layer. Altogether, using spline transformation for modeling internal
position reduces the number of parameters in the network even further.

One limitation of spline transformation is that scale of the input features
(e.g. log or linear) remains important and has to be chosen upfront, because
spline knots are placed uniformly across the whole range of feature values.
We suggest users to perform pre-processing investigations to identify the
most appropriate scales for the problem at hand. Moreover, the current
implementation of spline transformation is not able to model the interaction
between variables directly. Note that while this interaction is still captured
by the downstream fully-connected layers, a more appropriate solution
might be to use multi-dimensional B-splines. A further research direction
is the estimation of confidence bands for the inferred spline transformation
function. Confidence bands for spline estimates are available in the context
of generalized additive models (Hastie and Tibshirani} [1990). We have
recently shown how this can be used to perform differential occupancy
analysis of ChIP-seq data (Stricker ez al.;[2017). Confidence bands would
allow deriving statistically supported claims about the positional effects
of cis-regulatory elements.

We have demonstrated the power of using spline transformations for
modeling effects of distances to genomic landmarks. However, the spline
transformation module is more general. It could be used to transform any
other relevant scalar. Relevant scalars for cis-regulatory elements include
conservation scores, modifications such as methylation rates, experimental
measures such as occupancies by factors, or nucleosomes. Hence, we
foresee spline transformations as a useful generic tool for modeling of
cis-regulatory elements with neural networks.
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Figure S1. Figure 2 supplement: Relative genes positions for 112 RBPs measured by eCLIP. RBPs are sorted by the t-test statistic comparing relative genes positions of binding to
non-binding sites.
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Figure S2. Figure 2 supplement: Relative distance to all 8 considered genomic landmarks for eCLIP peaks. Only RBPs labelled in Figure 2c are shown.
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Figure S3. Figure 3 supplement: Fraction of branchpoints per position for the remaining seven features in log-odds scale (black dot, outlier shown in red) compared to the shallow NN

model fit: inferred spline transformation (orange) and predicted fraction of branchpoint per position (blue).
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