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Elemental accumulation in seeds is the product of a combination of environment and a wide 
variety of genetically controlled physiological processes. We measured the kernel elemental 
composition of the Nested Association Mapping (NAM) of maize (​Zea mays ​ L.) grown in 4 
different environments. Analysis of variance revealed strong effects of genotype, environment 
and genotype by environment interactions. Using Joint-linkage mapping on a set of 7000 
markers we identified 354 quantitative trait loci (QTL) across 20 elements, four environments 
and a combination of the environments. Leveraging 20 M SNPs derived from genome 
resequencing on the parents of the population, genome-wide association mapping studies 
(GWAS) detected ​8573​ loci. While most of the GWAS SNPs were located near genes not 
previously implicated in elemental regulation, several SNPs were located next to orthologs of 
well-characterized elemental regulation genes. 
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Introduction 

Mineral elements are essential for all organisms to function, so over evolutionary time, all plants 
have developed and refined of processes to control their uptake, distribution and storage.  To 
optimize fitness, organisms need to maximize uptake of limiting essential nutrients while 
reducing the uptake or sequestering chemically similar undesirable elements. This process is 
complicated by the wide variability of elemental availability, a function of parameters such as 
concentration, soil moisture, pH, cation-exchange-capacity, organic matter, and fertilizer 
applications ​[1] ​. The processes that respond to this variation in the environment to enable 
elemental uptake are poorly understood at the physiological and genetic level. 
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From its center of origin in Mexico, maize (Zea mays L.) has successfully adapted to many 
agro-ecological and environmental conditions due to its extensive genetic diversity ​[2] ​. Maize is 
now one of the most prevalent cereal crops in the world, with global production surpassing 1 
billion tonnes in 2013 ​[3] ​. With a rich history as a genetic model, the maize community has 
created powerful genetic populations to use the genetic diversity to dissect the genetic control of 
many different traits. One such population is the maize nested association panel, derived from 
crossing 25 diverse parents to a single hub genotype  and used to map loci for diverse traits such 
as flowering time, carotenoid concentration, and heat tolerance ​[4,5] ​. 

Ionomics, high throughput elemental profiling, has been a useful approach to understand 
elemental accumulation in both wild and crop plants.  In addition to its use as a food source, the 
maize kernel is a defined step in the plants’ development and provides a highly heritable gauge 
of the genetic and environmental influences on elemental acquisition and homeostasis ​[6] ​. In this 
study, we have analyzed the elemental composition of kernels of the Maize NAM population 
grown in four diverse environments to identify the genetic loci underlying the ionome. 

 
 
Table 1. Site soil type and chemistry of NAM population planting locations in 2006 
 

Loc Climat
e pH Soil Type Substrate Agronomy Coordinates** 

FL Subtro
p 6.7 Sand-clay 

loam 
Limestone 
dolomite 

 High OM,  
fertilized 

25°30'14.87" N 
80°30'18.77" W 

PR Trop 7.5 San Anton 
clay loam 

Alluvial 
deposit 

Wet / fertile  
High CEC 

18° 0'11.17" N 
66°31'8.43" W 

NC Temp 4.5 Norfolk 
loamy sand 

Loamy 
marine dep 

Fertilized 35°40'10.05" N 
78°30'16.67" W 

NY Temp 6.7 Lima silt 
loam 

Limestone 
calcareous 

Fertilized 42°43'31.18" N 
76°39'5.10" W 

** Coordinates provided by © Google 2016 from Google Earth 
Soil data provided by Natural Resource Conservation Service ​[7] 
 

 
 
 

Methods 

The Maize Diversity project self pollinated ears of the Maize NAM in  2006 in North Carolina, 
New York, Puerto Rico and Florida as described in Buckler 2009 ​[4] ​, and Brown ​[8] ​. Individual 
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kernels from these growouts were analyzed on the ionomics pipeline as described in Ziegler et al. 
. 
 
Initially we analyzed the grow-outs in separate experimental batches containing only a single 
grow-out, but for later runs we mixed samples from separate locations, allowing us to remove 
batch effects from the analysis of environmental variation. All locations analyzed had some 
samples mixed in a batch with samples from other locations. The ratio between samples in these 
mixed runs was used to determine the true elemental ratio across locations. The elemental 
analysis encompassed over 100 runs of the ICP-MS and 50,000 total samples. Of the 18,000 
packets analyzed, over 16,000 had two or more kernels analyzed. 
  
Outlier removal 
 
Analytical outliers were removed from single-seed measurements using a method described in 
Davies and Gather ​[9] ​. Values were considered an outlier and removed from further analysis if 
the median absolute deviation (MAD) calculated based on the location and population each seed 
belongs to was greater than 10. 
 
After outlier removal, an aggregate value for each analyte was calculated by taking the median 
value of the single-seed measurements for each line. 
 
Transformation 
 
To meet the normality assumption required for further statistical analyses, the Box-Cox power 
transformation ​[10] ​ was used to determine an appropriate transformation for each phenotype. 
Only the boron, aluminum, and cobalt phenotypes required a transformation.  
 
Calculation of BLUPs 
 
Best linear unbiased predictors (BLUPs) of each ionomics compound for each line were 
predicted from a mixed model analysis across environments per Holland et al. ​[11] ​ in ASReml 
version 3.0:  
 
Y ​ijklmnop​ = μ + family​i​ + RIL(family) ​ij​ + rep​k​ + pblock(rep)​kl​ + block(rep*pblock)​klm​ + wrrun ​n​ + 
range​o​ +row ​p​ + ε​ijklmnop​,                                                                   (1) 
 
where Y ​ijklmnop​ represents the phenotypic value of the p​th​ row of the o​th​ range of the n​th​ weighing 
robot run of the m​th​ block of the i​th​ pblock of the k​th​ rep of the j​th​ RIL of the i ​th​ family, μ is the 
grand mean, family​i​ is the effect of the i ​th​ family, RIL(family) ​ij​ is the effect of the j​th​ RIL within 
the i​th​ family, repk is the effect of the kth rep, pblock(rep) ​kl​ is the effect of the l​th​ pblock within 
the k​th​ rep, block(rep*pblock)​klm​ is the effect of the mth block within the l​th​ pblock and the the k​th 
rep, wrrun ​n​ is the effect of the n​th​ weighing robot run, range​o​ is the effect of the o​th​ range, row​p​ is 
the effect of the p ​th​ row, and and ε​ijklmnop​ represents a random error term. A first-order 
autoregressive (AR1× AR1) correlation structure was used to account for spatial variation among 
the rows and ranges. All terms except for family​i​ and RIL(family) ​ij​ are random. 
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Likelihood ratio tests (testing H​0​: model term is not significant) were conducted to remove all 
terms from the model that were not significant at α = 0.05 ​[12] ​ . The final model was then used 
to estimate BLUPs for each line and to estimate variance components.  
 
Joint-Linkage Analysis 
 
 
Joint-linkage analysis was run using the StepwiseJointLinkagePlugin in TASSEL version 3.0 
[13] ​ with ~7,000 SNPs obtained by genotyping-by-sequencing from Elshire et al. 2011 ​[14] ​. To 
determine an empirical entry/exit p-value thresholds that control the type I error rate at ,.05α = 0  
1000 permutation tests were performed, in which the BLUP phenotype data were randomly 
shuffled within each NAM family before Joint Linkage analysis ​[15] ​. 
 
 

Genome-wide Association 

 
Stepwise forward regression genome-wide association was performed using the NamGwasPlugin 
in TASSEL version 4.0 ​[13] ​ and is based upon previous NAM-GWAS experiments ​[16–18] ​. 
Briefly, genome-wide association was on a chromosome-by-chromosome basis. To account for 
variance explained by QTL on other chromosomes, the phenotypes used were the residuals from 
each chromosome calculated from the joint-linkage model fit with all significant joint-linkage 
QTL except those on the given chromosome. Association analysis for each trait was performed 
100 times by randomly sampling, without replacement, 80% of the lines from each population.  
 
The input SNP dataset was 28.9 million SNPs obtained from Maize Hapmap1 ​[19] ​, Maize 
Hapmap2 ​[20] ​ and an additional ~800,000 putative copy-number variants (CNVs) from analysis 
of read depth counts in Hapmap2 ​[16,20] ​. These ~30 million markers were projected onto the 
entire 5,000 line NAM population using low-density markers obtained through 
genotyping-by-sequencing ​[14] ​. A cutoff p-value of <1e-6 was used for inclusion in the final 
model. SNP associations were considered significant if selected in more than 5 of the 100 models 
(Resample model inclusion probability (RMIP) ≥ 0.05, ​[21] ​).  
 
Data availability: All ionomic data, JL and GWAS results are available on the 
www.ionomicshub.org ​ Data exchange. (Uploaded, 3/31/2016) 

Results & Discussion 

Elemental profiling of the nested association mapping panel kernels across four locations 
We conducted an ionomics analysis of the publicly available nested association-mapping (NAM) 
panel across four locations chosen for their widely differing environments (Table 1). The NAM 
panel combines high levels of genetic diversity while providing sufficient power to detect QTL. 
NAM is composed of 25 F6 generation recombinant inbred line (RIL) families, each with ~200 
members, that all share B73 as a common parent ​[22,23] ​. A total of >50,000 kernels were 
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analyzed for aluminum (Al), arsenic (As), boron (B), calcium (Ca), cadmium (Cd), cobalt (Co), 
copper (Cu), iron (Fe), potassium (K), 
magnesium (Mg), manganese (Mn), 
molybdenum (Mo), sodium (Na), nickel 
(Ni), phosphorus (P), rubidium (Rb), sulfur 
(S), selenium (Se), strontium (Sr) and zinc 
(Zn). 
With a naive model including only location, 
and comparing >3500 packets from each 
location, all elements showed a significant 
effect ( p<0.0001) of location. The 
difference between the median 
concentrations across environments varied 
from Mg (2%) to Sr (330%) (excluding Co 
which had a large difference between 
environments which were likely due to 
analytical issues owing to its extremely low 
concentration in seeds)(Table 2 and Figure 
1). Soil properties such as underlying 
substrate and pH, as well as agronomic 
practices, are predicted to have strong 
effects on elemental accumulation. 
However, even though the NC soil is 2.2 pH 
units lower than all the other locations it 
didn’t have the highest levels of Fe or other 
acid soluble elements. This suggests that the 
simple soil parameters are not the  major 
drivers of differences in elemental 
accumulation data collected between 
locations. 
 

 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 20, 2017. ; https://doi.org/10.1101/164962doi: bioRxiv preprint 

https://doi.org/10.1101/164962
http://creativecommons.org/licenses/by/4.0/


 
Figure 1.  Concentrations of magnesium, manganese, rubidium, and molybdenum in NAM 
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RIL kernels, a subset of twenty elements analyzed, at four locations. ​Concentrations (ppm) 
magnesium, manganese, rubidium, and molybdenum in Florida (FL06; red), North Carolina 
(NC06; green), New York (NY06; blue) and Puerto Rico (PR06; purple) in 2006 from a sample 
size of approximately three maize kernels for each of ~3500 lines in each location analyzed using 
ICP-MS. The median (solid black horizontal line), 25%-75% quartile (colored boxes for 
location), higher/lower extreme concentration (solid black vertical line) and outliers (individual 
points).  

Heritability 

In order to partition the variance and estimate genotype values, we calculated BLUPs using the 
spatial checks in the field design and  analytical checks. The nested design of the NAM 
population and the replicated field design across the four environments enabled a detailed 
statistical analysis of the sources of variation underlying the elemental traits. We performed 
linear mixed modeling of each element for each RIL across environments in ASReml. 
Significant terms were nested within a model for single and multiple environments. Models were 
fit separately for RIL families across environments, and each trait across environments. The final 
model was used to estimate best linear unbiased predictors (BLUPs) for each line and to estimate 
the components of phenotypic variance. The inclusion of the RIL family term, enables a robust 
calculation of V ​GxE ​despite the single replicate plots of most lines in each location.  
 

 
Figure 2: Partitioning of variance using the BLUP model.  
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Hung ​et al​ ​[24] ​ introduced a combined model for the analysis of ​H ​2​ and variances in the NAM 
population using harmonic means across multiple locations ​[24] ​. When applied to the elemental 
dataset, four elements had a high ​H​2​ across NAM families (> 0.60; Cu, Fe, Mn and Mo), 6 
elements were moderate (≥ 0.30 - 0.59; Al, Ca, K, Mg and S), and 10 were low (≤0.29; As, B, 
Cd, Co, Na, Ni, P, Rb, Se and Sr) (Figure 2).  These results suggest that the elemental profile is 
highly heritable within environments but strongly influenced  by the environment in a genotype 
dependent manner.  The large amount of genetic by environment variation we observed is in 
sharp contrast to the amount found by Pfeiffer et al and X using similar methods to study height 
and flowering time in the same populations. However a more appropriate comparison would be 
to carry out the same analysis on the exact same plots for the different traits, allowing a side by 
side comparison.  

Joint Linkage Results 

Stepwise joint-linkage regression was used for QTL detection across all 20 elements in the NAM 
population.  QTL for each element were detected by using two methods: analyzing location data 
both individually and merged across locations using a best linear unbiased predictor (BLUP) 
model. In the four individual growouts, a total of 219 QTL were detected across 19 elements, 
with the exception of Se. Comparison of the individual location experiments revealed 
overlapping loci across multiple locations for a given element, clearly demonstrating that several 
QTL are derived from the same loci (Table 3).  
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Table 3: Summary of results for a Joint Linkage Analysis on four NAM grow-outs and a 
combined BLUP analysis. All locs QTL: Number of QTL detected from the all locations BLUP 
analysis; Total Loc specific QTL: Number of QTL detected for each element in the four 
locations; multi-loc QTL: Number of QTL whose 95% confidence interval overlaps between two 
or more locations. 
 

GWAS Results 

The Joint-Linkage QTLs were used to account for loci on other chromosome as each 
chromosome was scanned for association with the 28M SNP markers that had been imputed on 
the full population. Using a cutoff of 5 iterations (out of 100) in the resampling approach, we 
identified a total of 8573 significant GWAS associations: 2923 in the all locations analysis and 
5650 in the four locations specific datasets (Table 4).  Counting overlap only as the identical 
SNP returned for the same element, we identified 29 loci that were found in multiple locations. 
Counting SNPs in LD with each other would result in many more SNPs being found in multiple 
locations.  
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Table 4: Summary of results from GWAS analysis of four NAM grow-outs and a combined 
location BLUP analysis. All locs QTL: Number of QTL detected from the all locations BLUP 
analysis; Total Loc specific QTL: Total number of QTL detected for each element in the four 
locations; multi-loc QTL: Number of instance where the exact same QTL was returned in two or 
more locations. 

High Confidence Candidate Genes 

Visual inspection of the genes proximal to strong GWAS peaks revealed several genes whose 
orthologs are known to have roles in elemental accumulation (Table 5). These candidates suggest 
that the ionomics approach can be used with the NAM to identify maize genes important for 
elemental accumulation in the kernel.  
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Eleme
nt 

Ch
r SNP bp RMIP Score Candidate gene annotation Orthologs 

Mn 1 161430001  GRMZM2G0280
36 NRAMP 

AT1G47240.1(ATNRAMP2,NRA
MP2): NRAMP metal ion 
transporter 2 

Mn 3 181680694  GRMZM2G0144
54 MTP AT2G39450.1(ATMTP11,MTP1

1): Cation efflux family protein 

Mo 1 244936001  
GRMZM2G0831
56 Mot1 

At2g25680 MOLYBDATE 
TRANSPORTER 1 

Mo 5 174665257  
GRMZM2G1358
16 CNX2 

AT2G31955.1 (CNX2) cofactor 
of nitrate reductase and 
xanthine dehydrogenase 2 

P 9 20313894  
GRMZM2G4448
01 

sulfate 
transporter 

AT3G15990.1(SULTR3;4): 
sulfate transporter 3;4 

Rb 2 61858998  

GRMZM2G0938
26 & 
GRMZM2G3952
67 

K 
transporter 

AT4G13420.1(ATHAK5,HAK5): 
high affinity K+ transporter 5 

Table 5. High Confidence genes identified under GWAS peaks 
 
Manganese 
 
Manganese is an essential plant element that is a cofactor in many crucial metalloenzymes, 
such as those in photosystem II ​[25] ​. Various methods of manganese transport and homeostasis 
in plants have been characterized ​[26,27] ​. Exploring the GWAS results for a model that 
combined the data from the four grow-out locations reveals a strong association (RMIP=0.98) 
for a SNP on chromosome 1 (Figure 3). In three of the four grow-outs, this SNP is strongly 
associated with manganese accumulation. The gene directly under this SNP is a putative natural 
resistance-associated macrophage protein (NRAMP2) metal ion transporter (Figure 3). The 
second highest SNP for the combined location GWAS is on chromosome 3 with an RMIP of 
0.83 (Fig 3). This SNP is significant in all four of the locations and it falls directly in a gene 
annotated as manganese transporter protein 11 (MTP11) homolog. MTP11 is a member of the 
cation diffusion facilitator (CDF) family and is known to have roles in known to have roles in 
manganese tolerance and homeostasis ​[28,29] ​. 
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Molybdenum 
 
We identified 13 unique QTL for Mo in the joint linkage analysis, two of which were extremely 
strong (F-test of 32 and 18 with a experiment wide significance cutoff < 3) (Figure 4). Candidate 
genes for Mo accumulation include those from the biosynthetic pathway of the molybdopterin 
cofactor and Mo transporters with orthologs in Arabidopsis. A biosynthetic gene and the maize 
ortholog of the Arabidopsis Mot1 transporter are located under the top two joint linkage peaks 
and thus represent strong candidates for the likely quantitative trait genes (QTGs). 
 
Molybdenum Gene by Environment Interaction 
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The two top molybdenum loci showed a strong reciprocal gene by environment interaction 
(Figure 5). While both loci were significant in the joint linkage in all four environments (and the 
all locations), in FL, PR and NY, the Chr 1 loci had a substantially higher F statistic, while in NC 
the Chr. 5 loci was stronger than Chr 1. While we do not know what environmental parameters 
drove this difference, the growth environment is having a strong effect on the  genetic cause of 
the phenotype.  
 

Figure 4. Manhattan plot showing Joint Linkage and GWAS results for molybdenum in 4 
locations and 1 combined location. A. Whole genome view showing GWAS and Joint Linkage 
hits. B. Chromosome level (Top) and Gene Level (Bottom) zoom of peak over Mot1 on 
chromosome 1. C. Chromosome level (Top) and Gene Level (Bottom) zoom of peak over Mot1 
on chromosome 5. 
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Figure 5. F-value of the two strongest Molybdenum loci in the four locations and the all locations 
model. Black (all locs), Green (FL), Blue (NC), Red (NY), and Grey (PR) denote the locations.  
 
Phosphorus 
 
A phosphorus QTL on chromosome 9 was returned for 3 out of the 4 locations (NC, NY, and 
FL) (Figure 6). A likely candidate gene for this peak is ​GRMZM2G444801 which is an ortholog 
of ​low-phytic acid-1 ​( ​lpa1​) in barley. In barley, mutations in ​lpa1 ​ heavily influence seed 
phosphorus composition ​[30] ​. Interestingly, in Maize, ​lpa1 ​mutants have been characterized as 
altering the balance of phytic acid to inorganic phosphorous, but not the total phosphorus content 
[31] ​. However, from our results, it appears that diversity in ​lpa1 ​does have some phenotypic 
effect on total phosphorus content. 
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Rubidium 
 
The most significant hit across the 4 locations tested for rubidium in both the joint linkage and 
GWAS analysis was a SNP on chromosome 2. This SNP was only returned as significant in the 
New York growout. Interestingly, the New York location did not have the highest median 
accumulation of rubidium (Figure 1). This rubidium hit is very close to two orthologs of an 
Arabidopsis high-affinity potassium transporter (Figure 7). In Arabidopsis, this gene has been 
shown to play a role in potassium acquisition under low-potassium conditions ​[32]​. In 
sunflowers, it has been shown that there is a change in rubidium uptake kinetics depending on 
potassium availability ​[33]​. The unique interplay between environmental factors and genetics 
found in the New York NAM grow-out resulted in a significant difference in rubidium 
accumulation in plants. 
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Conclusion.  
Here we have analyzed the elemental composition of over 50,000 kernels of the maize Nested 
association mapping population grown in four locations. We demonstrate that the elemental 
composition is heritable with a large genetic by environment interaction. Using a two step 
genetic mapping approach, we identified >300 loci controlling 19 of the 20 elements that we 
measured. Strong signal was observed around orthologs of known elemental accumulation 
genes. This data will be a rich resource for identification of the genes driving elemental 
accumulation in maize.  
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