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Elemental accumulation in seeds is the product of a combination of environment and a wide
variety of genetically controlled physiological processes. We measured the kernel elemental
composition of the Nested Association Mapping (NAM) of maize (Zea mays L.) grown in 4
different environments. Analysis of variance revealed strong effects of genotype, environment
and genotype by environment interactions. Using Joint-linkage mapping on a set of 7000
markers we identified 354 quantitative trait loci (QTL) across 20 elements, four environments
and a combination of the environments. Leveraging 20 M SNPs derived from genome
resequencing on the parents of the population, genome-wide association mapping studies
(GWAS) detected 8573 loci. While most of the GWAS SNPs were located near genes not
previously implicated in elemental regulation, several SNPs were located next to orthologs of
well-characterized elemental regulation genes.
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Introduction

Mineral elements are essential for all organisms to function, so over evolutionary time, all plants
have developed and refined of processes to control their uptake, distribution and storage. To
optimize fitness, organisms need to maximize uptake of limiting essential nutrients while
reducing the uptake or sequestering chemically similar undesirable elements. This process is
complicated by the wide variability of elemental availability, a function of parameters such as
concentration, soil moisture, pH, cation-exchange-capacity, organic matter, and fertilizer
applications [1]. The processes that respond to this variation in the environment to enable
elemental uptake are poorly understood at the physiological and genetic level.
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From its center of origin in Mexico, maize (Zea mays L.) has successfully adapted to many
agro-ecological and environmental conditions due to its extensive genetic diversity [2]. Maize is
now one of the most prevalent cereal crops in the world, with global production surpassing 1
billion tonnes in 2013 [3]. With a rich history as a genetic model, the maize community has
created powerful genetic populations to use the genetic diversity to dissect the genetic control of
many different traits. One such population is the maize nested association panel, derived from
crossing 25 diverse parents to a single hub genotype and used to map loci for diverse traits such
as flowering time, carotenoid concentration, and heat tolerance [4,5].

Ionomics, high throughput elemental profiling, has been a useful approach to understand
elemental accumulation in both wild and crop plants. In addition to its use as a food source, the
maize kernel is a defined step in the plants’ development and provides a highly heritable gauge
of the genetic and environmental influences on elemental acquisition and homeostasis [6]. In this
study, we have analyzed the elemental composition of kernels of the Maize NAM population
grown in four diverse environments to identify the genetic loci underlying the ionome.

Table 1. Site soil type and chemistry of NAM population planting locations in 2006

. . o
Loc ghmat pH  Soil Type Substrate Agronomy Coordinates
FL Subtro 6.7 Sand-clay = Limestone = High OM, 25°30'14.87" N
p " loam dolomite fertilized 80°30'18.77" W
PR Tro 75 San Anton  Alluvial Wet / fertile 18°0'11.17" N
P " clayloam  deposit High CEC 66°31'8.43" W
Norfolk Loamy Fertilized 35°40'10.05" N
NC - Temp 4.5 loamy sand marine dep 78°30'16.67" W
Lima silt Limestone  Fertilized 42°43'31.18" N
NY  Temp 6.7 loam calcareous 76°39'5.10" W

** Coordinates provided by © Google 2016 from Google Earth
Soil data provided by Natural Resource Conservation Service [7]

Methods

The Maize Diversity project self pollinated ears of the Maize NAM in 2006 in North Carolina,
New York, Puerto Rico and Florida as described in Buckler 2009 [4], and Brown [8]. Individual
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kernels from these growouts were analyzed on the ionomics pipeline as described in Ziegler et al.

Initially we analyzed the grow-outs in separate experimental batches containing only a single
grow-out, but for later runs we mixed samples from separate locations, allowing us to remove
batch effects from the analysis of environmental variation. All locations analyzed had some
samples mixed in a batch with samples from other locations. The ratio between samples in these
mixed runs was used to determine the true elemental ratio across locations. The elemental
analysis encompassed over 100 runs of the ICP-MS and 50,000 total samples. Of the 18,000
packets analyzed, over 16,000 had two or more kernels analyzed.

Outlier removal

Analytical outliers were removed from single-seed measurements using a method described in
Davies and Gather [9]. Values were considered an outlier and removed from further analysis if
the median absolute deviation (MAD) calculated based on the location and population each seed
belongs to was greater than 10.

After outlier removal, an aggregate value for each analyte was calculated by taking the median
value of the single-seed measurements for each line.

Transformation

To meet the normality assumption required for further statistical analyses, the Box-Cox power
transformation [ 10] was used to determine an appropriate transformation for each phenotype.
Only the boron, aluminum, and cobalt phenotypes required a transformation.

Calculation of BLUPs

Best linear unbiased predictors (BLUPs) of each ionomics compound for each line were
predicted from a mixed model analysis across environments per Holland et al. [11] in ASReml
version 3.0:

Y iiimnop = M T+ family; + RIL(family), + rep, + pblock(rep),, + block(rep*pblock),,, + wrrun, +
range, +rowy + &g (1)

where Y ;... represents the phenotypic value of the p™ row of the o™ range of the n weighing
robot run of the m™ block of the i pblock of the k™ rep of the j* RIL of the i™ family, p is the
grand mean, family, is the effect of the i family, RIL(family); is the effect of the j™ RIL within
the i family, repk is the effect of the kth rep, pblock(rep),, is the effect of the 1™ pblock within
the k™ rep, block(rep*pblock),, . is the effect of the mth block within the 1™ pblock and the the k™
rep, wrrun, is the effect of the n™ weighing robot run, range, is the effect of the o™ range, row,, is
the effect of the p” row, and and &, represents a random error term. A first-order
autoregressive (AR1x AR1) correlation structure was used to account for spatial variation among
the rows and ranges. All terms except for family, and RIL(family); are random.
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Likelihood ratio tests (testing H,: model term is not significant) were conducted to remove all
terms from the model that were not significant at a = 0.05 [12] . The final model was then used
to estimate BLUPs for each line and to estimate variance components.

Joint-Linkage Analysis

Joint-linkage analysis was run using the StepwiseJointLinkagePlugin in TASSEL version 3.0
[13] with ~7,000 SNPs obtained by genotyping-by-sequencing from Elshire et al. 2011 [14]. To
determine an empirical entry/exit p-value thresholds that control the type I error rate at o = 0.05,
1000 permutation tests were performed, in which the BLUP phenotype data were randomly
shuffled within each NAM family before Joint Linkage analysis [15].

Genome-wide Association

Stepwise forward regression genome-wide association was performed using the NamGwasPlugin
in TASSEL version 4.0 [13] and is based upon previous NAM-GWAS experiments [16—18].
Briefly, genome-wide association was on a chromosome-by-chromosome basis. To account for
variance explained by QTL on other chromosomes, the phenotypes used were the residuals from
each chromosome calculated from the joint-linkage model fit with all significant joint-linkage
QTL except those on the given chromosome. Association analysis for each trait was performed
100 times by randomly sampling, without replacement, 80% of the lines from each population.

The input SNP dataset was 28.9 million SNPs obtained from Maize Hapmapl [19], Maize
Hapmap2 [20] and an additional ~800,000 putative copy-number variants (CNVs) from analysis
of read depth counts in Hapmap2 [16,20]. These ~30 million markers were projected onto the
entire 5,000 line NAM population using low-density markers obtained through
genotyping-by-sequencing [14]. A cutoff p-value of <le-6 was used for inclusion in the final
model. SNP associations were considered significant if selected in more than 5 of the 100 models
(Resample model inclusion probability (RMIP) > 0.05, [21]).

Data availability: All ionomic data, JL and GWAS results are available on the
www.ionomicshub.org Data exchange. (Uploaded, 3/31/2016)

Results & Discussion

Elemental profiling of the nested association mapping panel kernels across four locations

We conducted an ionomics analysis of the publicly available nested association-mapping (NAM)
panel across four locations chosen for their widely differing environments (Table 1). The NAM
panel combines high levels of genetic diversity while providing sufficient power to detect QTL.
NAM is composed of 25 F6 generation recombinant inbred line (RIL) families, each with ~200
members, that all share B73 as a common parent [22,23]. A total of >50,000 kernels were
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analyzed for aluminum (Al), arsenic (As), boron (B), calcium (Ca), cadmium (Cd), cobalt (Co),

Element Difference (%)

copper (Cu), iron (Fe), potassium (K),
magnesium (Mg), manganese (Mn),
molybdenum (Mo), sodium (Na), nickel
(N1), phosphorus (P), rubidium (Rb), sulfur

Maaml_‘w t 2 (S), selenium (Se), strontium (Sr) and zinc
Potassinm 3 (Zn).

Phosphorus 6 With a naive model including only location,
Sulfur o and comparing >3500 packets from each
Boron L0 location, all elements showed a significant
Arsenic 10 effect ( p<0.0001) of location. The
Manganese 12 difference between the median

| — 18 concentrations across environments varied
Aluminmm 21 from Mg (2%) to Sr (330%) (excluding Co
Seleni 20 which had a large difference between
Selenium : . : .

. _ environments which were likely due to

‘;‘1] he . 'Iih analytical issues owing to its extremely low
Caleinm 38 concentration in seeds)(Table 2 and Figure
Copper o6 1). Soil properties such as underlying
Molybdenum aT7 substrate and pH, as well as agronomic
Sodinm 7 practices, are predicted to have strong
Cadminm 220 effects on elemental accumulation.

Nickel 255 However, even though the NC soil is 2.2 pH
Rubidium 263 units lower than all the other locations it
Strontium 330 didn’t have the highest levels of Fe or other

Table 2. Percent difference of the median
concentrations for each element between the
highest and lowest grow-out.

acid soluble elements. This suggests that the
simple soil parameters are not the major
drivers of differences in elemental
accumulation data collected between
locations.
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Figure 1. Concentrations of magnesium, manganese, rubidium, and molybdenum in NAM
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RIL kernels, a subset of twenty elements analyzed, at four locations. Concentrations (ppm)
magnesium, manganese, rubidium, and molybdenum in Florida (FL06; red), North Carolina
(NCO06; green), New York (NYO06; blue) and Puerto Rico (PR06; purple) in 2006 from a sample
size of approximately three maize kernels for each of ~3500 lines in each location analyzed using
ICP-MS. The median (solid black horizontal line), 25%-75% quartile (colored boxes for
location), higher/lower extreme concentration (solid black vertical line) and outliers (individual
points).

Heritability

In order to partition the variance and estimate genotype values, we calculated BLUPs using the
spatial checks in the field design and analytical checks. The nested design of the NAM
population and the replicated field design across the four environments enabled a detailed
statistical analysis of the sources of variation underlying the elemental traits. We performed
linear mixed modeling of each element for each RIL across environments in ASReml.
Significant terms were nested within a model for single and multiple environments. Models were
fit separately for RIL families across environments, and each trait across environments. The final
model was used to estimate best linear unbiased predictors (BLUPs) for each line and to estimate
the components of phenotypic variance. The inclusion of the RIL family term, enables a robust
calculation of V,; despite the single replicate plots of most lines in each location.

Phenotypic variation across the NAM familes

Na Mg Al K Ca Mn Fe Co Ni Cu Zn As Se Rb Sr Mo Cd

100

Genetic
GenelicxEnvironment
Environment

Error
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Figure 2: Partitioning of variance using the BLUP model.
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Hung et al [24] introduced a combined model for the analysis of A° and variances in the NAM
population using harmonic means across multiple locations [24]. When applied to the elemental
dataset, four elements had a high A” across NAM families (> 0.60; Cu, Fe, Mn and Mo), 6
elements were moderate (> 0.30 - 0.59; Al, Ca, K, Mg and S), and 10 were low (<0.29; As, B,
Cd, Co, Na, Ni, P, Rb, Se and Sr) (Figure 2). These results suggest that the elemental profile is
highly heritable within environments but strongly influenced by the environment in a genotype
dependent manner. The large amount of genetic by environment variation we observed is in
sharp contrast to the amount found by Pfeiffer et al and X using similar methods to study height
and flowering time in the same populations. However a more appropriate comparison would be
to carry out the same analysis on the exact same plots for the different traits, allowing a side by
side comparison.

Joint Linkage Results

Stepwise joint-linkage regression was used for QTL detection across all 20 elements in the NAM
population. QTL for each element were detected by using two methods: analyzing location data
both individually and merged across locations using a best linear unbiased predictor (BLUP)
model. In the four individual growouts, a total of 219 QTL were detected across 19 elements,
with the exception of Se. Comparison of the individual location experiments revealed
overlapping loci across multiple locations for a given element, clearly demonstrating that several
QTL are derived from the same loci (Table 3).
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El All Loes QTL  FLL. NC NY PR Total Loc Specific QTL  multiloc QTL
Aluminum 1 1 0 0 1 2 0
Arsenic 2 0 1 2 0 3 0
Boron 8 0 0 1 0 1 0
Calcium 11 0 0 4 3 7 il
Cadmium il 3 1 1 0 5 il
Copper 8 2 10 2 il 21 3
Iron 16 7 10 5 5 27 5
Potassium 5 0 1 2 0 =) il
Magnesium 12 4 5 6 2 17 3
Manganese 17 1l 10 9 6 36 8
Molyhdenum 12 5 T 5 7 24 5
Sodium 0 0 2 0 1 3 il
Nickel 6 0 4 3 4 11 2
Phosphorus 11 2 5) 4 3 14 2
Rubidium 4 2 3 2 1 8 il
Sulfur 0 0 10 2 2 14 ll
Selenium 1: 0 0 0 0 0 0
Strontinm 3 4 0 0 2 6 0
Zinc 9 2 T 2 1 12 il
Total 122 43 76 50 45 214 35

Table 3: Summary of results for a Joint Linkage Analysis on four NAM grow-outs and a
combined BLUP analysis. All locs QTL: Number of QTL detected from the all locations BLUP
analysis; Total Loc specific QTL: Number of QTL detected for each element in the four
locations; multi-loc QTL: Number of QTL whose 95% confidence interval overlaps between two
or more locations.

GWAS Results

The Joint-Linkage QTLs were used to account for loci on other chromosome as each
chromosome was scanned for association with the 28M SNP markers that had been imputed on
the full population. Using a cutoff of 5 iterations (out of 100) in the resampling approach, we
identified a total of 8573 significant GWAS associations: 2923 in the all locations analysis and
5650 in the four locations specific datasets (Table 4). Counting overlap only as the identical
SNP returned for the same element, we identified 29 loci that were found in multiple locations.
Counting SNPs in LD with each other would result in many more SNPs being found in multiple
locations.
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El All Loecs QTL FL NC NY PR Total Loc Specific QTL multiloc QTL
Aluminum 176 79 0 0 88 167 0
Arsenic 182 0 274 54 0 328 0
Boron 108 0 0 31 0 31 0
Calcium 105 0 0 53 55 108 0
Cadmium 630 72 115 45 0 232 1
Copper 165 143 102 39 97 431 4
Iron 171 130 112 61 83 386 4
Potassium 130 0 253 47 0 300 1
Magnesium 153 89 84 78 84 335 0
Manganese 168 115 i 94 110 430 8
Molybdenum 154 124 102 123 140 489 6
Sodium 0 0 320 0 96 416 1
Nickel 99 0 100 78 144 322 2
Phosphorus 123 84 91 73 68 316 1
Rubidium 135 118 91 7l 151 431 0
Sulfur 0 0 91 70 91 252 0
Selenium 162 0 0 0 0 0 0
Strontinum 113 91 0 0 95 186 1
Zinc 149 52 99 221 118 490 0
Total 2923 1097 1945 1188 1420 5650 29

Table 4: Summary of results from GWAS analysis of four NAM grow-outs and a combined
location BLUP analysis. All locs QTL: Number of QTL detected from the all locations BLUP
analysis; Total Loc specific QTL: Total number of QTL detected for each element in the four
locations; multi-loc QTL: Number of instance where the exact same QTL was returned in two or
more locations.

High Confidence Candidate Genes

Visual inspection of the genes proximal to strong GWAS peaks revealed several genes whose
orthologs are known to have roles in elemental accumulation (Table 5). These candidates suggest
that the ionomics approach can be used with the NAM to identify maize genes important for
elemental accumulation in the kernel.


https://doi.org/10.1101/164962
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/164962; this version posted July 20, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Eleme |Ch
nt r |SNP bp RMIP Score |Candidate gene [annotation [Orthologs
AT1G47240.1(ATNRAMP2,NRA
Mn 1] 161430001 S;MZMZGOZSO NRAMP  [MP2): NRAMP metal ion
transporter 2
Mn 3| 181680694 GRMZM2G0144 MTP AT2G§9450.1(ATMTP11,MTP1
54 1): Cation efflux family protein
GRMZM2G0831 At2g25680 MOLYBDATE
Mo 1| 244936001 56 Mot1 TRANSPORTER 1
AT2G31955.1 (CNX2) cofactor
GRMZM2G1358 of nitrate reductase and
Mo 5| 174665257 16 CNX2 xanthine dehydrogenase 2
GRMZM2G4448 |sulfate AT3G15990.1(SULTRS3;4):
P 9 20313894 01 transporter |sulfate transporter 3;4
GRMZM2G0938
26 &
GRMZM2G3952 (K AT4G13420.1(ATHAKS5,HAKS):
Rb 2 61858998 67 transporter |high affinity K+ transporter 5

Table 5. High Confidence genes identified under GWAS peaks
Manganese

Manganese is an essential plant element that is a cofactor in many crucial metalloenzymes,
such as those in photosystem II [25]. Various methods of manganese transport and homeostasis
in plants have been characterized [26,27]. Exploring the GWAS results for a model that
combined the data from the four grow-out locations reveals a strong association (RMIP=0.98)
for a SNP on chromosome 1 (Figure 3). In three of the four grow-outs, this SNP is strongly
associated with manganese accumulation. The gene directly under this SNP is a putative natural
resistance-associated macrophage protein (NRAMP2) metal ion transporter (Figure 3). The
second highest SNP for the combined location GWAS is on chromosome 3 with an RMIP of
0.83 (Fig 3). This SNP is significant in all four of the locations and it falls directly in a gene
annotated as manganese transporter protein 11 (MTP11) homolog. MTP11 is a member of the
cation diffusion facilitator (CDF) family and is known to have roles in known to have roles in
manganese tolerance and homeostasis [28,29].
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Figure 3. Multilocation hit for two candidate genes contributing to
manganese accumulation. A. Whole genome view showing GWAS
and Joint Linkage hits. B. Chromosome level (top) and Gene level
(bottom) zoom of chromosome 1 peak. C. Chromosome level (top)
and Gene level (bottom) zoom of chromosome 3 peak.

Molybdenum

We identified 13 unique QTL for Mo in the joint linkage analysis, two of which were extremely
strong (F-test of 32 and 18 with a experiment wide significance cutoff < 3) (Figure 4). Candidate
genes for Mo accumulation include those from the biosynthetic pathway of the molybdopterin
cofactor and Mo transporters with orthologs in Arabidopsis. A biosynthetic gene and the maize
ortholog of the Arabidopsis Motl transporter are located under the top two joint linkage peaks
and thus represent strong candidates for the likely quantitative trait genes (QTGs).

Molybdenum Gene by Environment Interaction
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The two top molybdenum loci showed a strong reciprocal gene by environment interaction

(Figure 5). While both loci were significant in the joint linkage in all four environments (and the
all locations), in FL, PR and NY, the Chr 1 loci had a substantially higher F statistic, while in NC
the Chr. 5 loci was stronger than Chr 1. While we do not know what environmental parameters

drove this difference, the growth environment is having a strong effect on the genetic cause of

the phenotype.
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Figure 4. Manhattan plot showing Joint Linkage and GWAS results for molybdenum in 4
locations and 1 combined location. A. Whole genome view showing GWAS and Joint Linkage
hits. B. Chromosome level (Top) and Gene Level (Bottom) zoom of peak over Mot1 on
chromosome 1. C. Chromosome level (Top) and Gene Level (Bottom) zoom of peak over Mot1
on chromosome 5.
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Figure 5. F-value of the two strongest Molybdenum loci in the four locations and the all locations
model. Black (all locs), Green (FL), Blue (NC), Red (NY), and Grey (PR) denote the locations.

Phosphorus

A phosphorus QTL on chromosome 9 was returned for 3 out of the 4 locations (NC, NY, and
FL) (Figure 6). A likely candidate gene for this peak is GRMZM2G444801 which is an ortholog
of low-phytic acid-1 (Ipal) in barley. In barley, mutations in /pal heavily influence seed
phosphorus composition [30]. Interestingly, in Maize, [pal mutants have been characterized as
altering the balance of phytic acid to inorganic phosphorous, but not the total phosphorus content
[31]. However, from our results, it appears that diversity in /pal does have some phenotypic
effect on total phosphorus content.
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Figure 6. Manhattan plot of GWAS and Joint Linkage results for phosphorus.
Displaying SNPs found in two or more locations. A. Genome-wide manhattan
plot. B. Chromosome level zoom to peak on chromosome 9. C. Gene-level
zoom to peak on chromosome 9.

Rubidium

The most significant hit across the 4 locations tested for rubidium in both the joint linkage and
GWAS analysis was a SNP on chromosome 2. This SNP was only returned as significant in the
New York growout. Interestingly, the New York location did not have the highest median
accumulation of rubidium (Figure 1). This rubidium hit is very close to two orthologs of an
Arabidopsis high-affinity potassium transporter (Figure 7). In Arabidopsis, this gene has been
shown to play a role in potassium acquisition under low-potassium conditions [32]. In
sunflowers, it has been shown that there is a change in rubidium uptake kinetics depending on
potassium availability [33]. The unique interplay between environmental factors and genetics
found in the New York NAM grow-out resulted in a significant difference in rubidium
accumulation in plants.
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Figure 7. Manhattan plot of rubidium GWAS and Joint Linkage results. A.
Whole genome manhattan plot. B. Chromosome-wide manhattan plot. C.
Single location rubidium hit on chromosome 2 next to a potassium transporter.

Conclusion.

Here we have analyzed the elemental composition of over 50,000 kernels of the maize Nested
association mapping population grown in four locations. We demonstrate that the elemental
composition is heritable with a large genetic by environment interaction. Using a two step
genetic mapping approach, we identified >300 loci controlling 19 of the 20 elements that we
measured. Strong signal was observed around orthologs of known elemental accumulation
genes. This data will be a rich resource for identification of the genes driving elemental
accumulation in maize.
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