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Meta-analysis of exome array data identifies six novel
genetic loci for lung function
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Abstract

Over 90 regions of the genome have been associated with lung function to date, many of which have
also been implicated in chronic obstructive pulmonary disease (COPD). We carried out meta-
analyses of exome array data and three lung function measures: forced expiratory volume in one
second (FEV,), forced vital capacity (FVC) and the ratio of FEV; to FVC (FEV1/FVC). These analyses by
the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23
studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-
up in up to 111,556 independent individuals. We identified significant (P<2-8x107) associations with
six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs
(SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. eQTL analyses found
evidence for regulation of gene expression at three signals and implicated several genes including
TYRO3 and PLAU. Further interrogation of these loci could provide greater understanding of the

determinants of lung function and pulmonary disease.
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Introduction

Lung function measures are important predictors of mortality and morbidity and form the basis for
the diagnosis of chronic obstructive pulmonary disease (COPD), a leading cause of death globally.?
Lung function is largely affected by environmental factors such as smoking and exposure to air
pollution; however there is also a genetic component, with heritability estimates ranging between
39-66%.2° A number of large-scale genome-wide association studies (GWAS) of lung function have
successfully identified single nucleotide polymorphisms (SNPs) influencing lung function at over 90
independent loci.®™ Associations have also been identified in GWAS of COPD;**® however the
identification of disease associated SNPs has been restricted by limited sample sizes. Many signals
first identified in powerful studies of quantitative lung function traits, have been found to be
associated with risk of COPD, highlighting the potential clinical usefulness of comprehensive

identification of lung function associated SNPs.*3

Low frequency (minor allele frequency (MAF) 1-5%) and rare (MAF<1%) variants, have been largely
underexplored by GWAS to date. Exome arrays have been designed to facilitate the investigation of
these low frequency and rare variants, predominately within coding regions, in large sample sizes.
Alongside a core content of rare coding SNPs, the exome array additionally includes common
variation including tags for previously identified GWAS hits, ancestry informative SNPs, a grid of

markers for estimating identity by descent and a random selection of synonymous SNPs.®

Results

We carried out a meta-analysis of exome array data and three lung function measures: forced
expiratory volume in one second (FEV,), forced vital capacity (FVC) and the ratio of FEV; to FVC
(FEV1/FVC). These analyses included 68,470 individuals from the SpiroMeta and CHARGE consortia in

a discovery analysis, with follow-up in an independent sample of up to 111,556 individuals. All
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studies are listed with their study-specific sample characteristics in Table 1, with full study
descriptions, including details of spirometry and other measurements described in the
Supplementary Note. The genotype calling procedures implemented by each study (Supplementary
Table 1) and quality control of genotype data are described in the Supplementary Methods. We have
undertaken both single variant analyses, and gene-based associations, which test for the joint effect

of several rare variants in a gene (see methods for details).

Meta-analyses of single variant associations

We first evaluated single variant associations between FEV;, FVC and FEV1/FVC and the 179,215
SNPs which passed study level quality control and were polymorphic in both consortia. These
analyses identified 34 SNPs in regions not previously associated with lung function, showing
association with at least one trait at overall P<107®, and showing association with consistent direction
and P<0-05 in both consortia (full results in Supplementary Table 2, quantile-quantile and Manhattan
plots shown in Supplementary Figure 1). We followed up these SNP associations in a replication
analysis comprising 3 studies with 111,556 individuals. Combining the results from the discovery and
replication stages in a meta-analysis identified six SNPs in total that were independent to known
signals and met the pre-defined significance threshold (P<2-8x107) overall in, or near to FGF10, LY86,
SEC24C, RPAP1, CASC17 and UQCC1 (Table 2, Supplementary Figure 2). A SNP near to the CASC17
signal (rs11654749, r?=0-3 with rs1859962) has previously been associated with FEV; in a genome-
wide analysis of gene-smoking interactions, although this association was not replicated at the
time;° the present analysis provides the first evidence for independent replication of this signal. A
seventh signal was also identified in LCT (Table 2, Supplementary Figure 2); whilst this locus has not
previously been implicated in lung function, this SNP is known to vary in frequency across European

1 and we cannot rule out that this association is not an artefact of population

populations,?
structure. Our discovery analysis furthermore identified associations (P<107®) in 25 regions previously

associated with one or more of FEV;, FVC and FEV:/FVC (Supplementary Table 3).
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Generally, the observed effect of the SNPs at the novel signals were similar in ever and never
smokers; the exception was rs1448044 near FGF10, which showed a significant association with FVC
only in ever smokers in our discovery analysis (ever smokers P=1-49x10®; never smokers P=0-695,
Supplementary Table 4 and Supplementary Figure 3). In the replication analysis, however, this
association was observed in both ever and never smokers (ever smokers P=3-14x107; never smokers
P=1-40x10*, Supplementary Table 5). For rs1200345 (RPAP1) and rs1859962 (CASC17)), associations
were most statistically significant in the analyses restricted to individuals of European Ancestry
(Supplementary Table 4 and Supplementary Figure 3), as was the association with rs2322659 (LCT),

giving further support that this association may be due to population stratification.

Meta-Analyses of gene-based associations

We undertook Weighted Sum Tests (WST)?? and Sequence Kernel Association tests (SKAT)® to assess
the joint effects of multiple low frequency variants within genes on lung function traits. In our
discovery analyses of all 68,470 individuals, we tested up to 14,380 genes that had at least two
variants with MAF<5% and met the inclusion criteria (exonic or loss of function [LOF], see methods
for definitions) in both consortia. The SKAT analyses identified 16 genes associated (P<0-05 in both
consortia and overall P<10™) with FEV3, FVC or FEV1/FVC (Supplementary Table 6), whilst the WST
analyses identified 12 genes (Supplementary Table 7). There was one gene (LY6G6D) that was
identified in both analyses. These genes were followed up in UK Biobank, with two genes, GPR126
and LTBP4, showing evidence of replication in the exonic SKAT analysis (P<3-5x10°); however
conditional analyses in UK Biobank showed that both these associations were driven by single SNPs,
that were identified in the single variant association analyses and have been previously reported in

GWAS of these traits (Tables E6 & E7).

Functional characterization of novel loci

In order to gain further insight into the six loci identified in our analyses of single variant associations

(excluding LCT), we employed functional annotation and assessed whether identified SNPs in these

4
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regions were associated with gene expression levels. One of the identified novel SNPs was
nonsynonymous, three intronic and two were intergenic. We found evidence that three of the SNPs
may be involved in cis-acting regulation of the expression of several genes in multiple tissues

(Supplementary Table 8).

SNP rs1200345 in RPAP1 is a nonysynomous variant, predicted to be deleterious by both SIFT
(deleterious) and Polyphen (possibly damaging) (Supplementary Table 9); RPAP1 is ubiquitously
expressed, with high levels of protein detected in the lung (Supplementary Table 10). SNP rs1200345
or proxies (r>>0-8) were also found to be amongst the most strongly associated SNPs with expression
levels of RPAP1 in several tissues including lung, and with a further six genes in lung tissue
(Supplementary Table 8) including TYRO3, one of the TAM family of receptor tyrosine kinases. TYRO3
regulates several processes including cell survival, migration and differentiation and is highly
expressed in lung macrophages (Supplementary Table 10). Evidence for associations with gene
expression was found at two more of the novel signals (sentinel SNPs rs3849969 and rs6088813),
implicating a further 16 genes. Of note, in blood eQTL databases, a proxy of a SNP in complete
linkage disequilibrium (r?=1) with rs3849969 (rs3812637) was an eQTL for plasminogen activator,

urokinase (PLAU).

Discussion

We undertook an analysis of 68,470 individuals from 23 studies with data from the exome array and
three lung function traits, following up the most significant single SNP and gene-based associations
in an independent sample of up to 111,556 individuals. The combined analyses of our discovery and
replication single variant associations identified six SNPs meeting the pre-defined significance
threshold (P<2:8x107). The replication stage results for these six SNPs also meet Bonferroni

corrected significance for independent replication (P<1-47x1073, corrected for 34 SNPs being tested).

5
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One of these SNPs is in a region that has previously been implicated in lung function (near
KCIN2/50X9),%° whilst the remaining five SNPs, although all common, have not previously been
identified in other GWAS of lung function. In a recent 1000 Genomes imputed analysis of lung
function (which includes some of the studies contributing to the present discovery analysis), all of
these SNPs showed at least suggestive association (2:97x103>P>1-28x107°) with one or more lung
function trait, but none reached the required threshold (P<5x107°) to be taken forward for

replication in that analysis.'?

We further identified a seventh association (P<2-8x107) with rs2322659 in LCT. Given SNPs in this
region are known to vary in frequency across European populations, we cannot dismiss the
possibility that this association may be confounded by population stratification; hence we do not
report this signal as a novel lung function locus. We undertook a look-up of associations in our
discovery meta-analyses of 7 loci (including LCT) that were identified as showing differences in allele
frequency between individuals from different regions in the UK,?* and subsequently across European
populations.?® Aside from the association between the LCT locus and FVC, no significant associations
were observed between SNPs at these loci and any lung function trait, in either the analyses
restricted to EA individuals, or in the analysis of EA and AA individuals combined (Supplementary

Table 11); this suggests population structure was generally accounted for adequately in our analyses.

One of the novel signals was with a nonsynonymous SNPs: rs1200345 in RPAP1, which is predicted
to be deleterious. This SNP and proxies with r>>0-8 were also associated with expression in lung
tissue of seven genes, including RPAP1 and the TAM receptor TYRO3. TAM receptors play a role in
the inhibition of Toll-like receptors (TLRs)-mediated innate immune response by initiating the
transcription of cytokine signalling genes (SOCS-1 and 3) which limit cytokine overproduction and
inflammation.?®?’ It has been shown that influenza viruses H5N1 and H7N9 can cause

downregulation of Tyro3, resulting in an increased inflammatory cytokine response.?’
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Three further signals were with intronic SNPs in SEC24C, CASC17, and UQCCI1. Two of these intronic
SNPs have previously been implicated in GWAS of other traits: rs1859962 in CASC17 with prostate
cancer® and rs6088813 in UQCC1 with height.?° The CASC17 locus, near KCNJ2/SOX9 has also
previously been implicated in lung function, showing significant association with FEV; in a genome-
wide analysis of gene-smoking interactions, however this association was not formally replicated.?
Whilst the individuals utilised in the discovery stage of this analysis overlap with those included in
this previous interaction analysis, the replication stage of the present study provides the first
evidence of replication for this signal in independent cohorts. In the present analysis, there was no

evidence that the results differed by smoking status.

SNPs rs6088813 in UQCC1 and rs3849969 in SEC24C were identified as eQTLs for multiple genes.
Notably, a SNP in complete linkage disequilibrium with rs3849969 (rs3812637, r>=1) is associated
with expression of PLAU in blood. The plasminogen activator, urokinase (PLAU) plays a role in
fibrinolysis and immunity, and with its receptor (PLAUR) is involved in degradation of the extra
cellular matrix, cell migration, cell adhesion and cell proliferation.?® A study of preterm infants with
respiratory distress syndrome, a condition characterised by intra-alveolar fibrin deposition, found
PLAU and its inhibitor SERPINE1 to be expressed in the alveolar epithelium, and an increased ratio of
SERPINE1 to PLAU was associated with severity of disease.?! Studies in mice have also shown that
increased expression of PLAU may be protective against lung injury, by reducing fibrosis.3? PLAU has
also been found to be upregulated in lung epithelial cells subjected to cyclic strain and in patients
with COPD and lung cancer, PLAU was found to be expressed in alveolar macrophages and epithelial

cells.®

The final two signals were with common intergenic SNPs close to LY86 and FGF10. LY86 (lymphocyte
antigen 86) interacts with the Toll-like receptor signalling pathway, when bound with RP105 to form
a heterodimer. ** The sentinel SNP rs1294421 has previously been associated with waist-hip ratio,*

and an intronic SNP within LY86 (rs7440529, LD with rs1294421: r?=0-005) has previously been

implicated in asthma in two studies of individuals of Han Chinese ancestry. 33 FGF10 is a member
7
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of the fibroblast growth factor family of proteins, involved in a number of biological processes,
including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and
invasion. Specifically, the FGF10 signalling pathway plays an essential role in lung development and

|38

lung epithelial renewal.*® A study in mice demonstrated that a deficiency in FGF10 resulted in a fatal

disruption of branching morphogenesis during lung development.*

Our discovery analyses included individuals of both European and African ancestry. Two of the
identified six novel signals showed inconsistent effects in the African and European ancestry
individuals. For these SNPs, the associations in African Ancestry individuals were not statistically
significant, and we report associations from the analysis restricted to European ancestry individuals
only. For the remaining four SNPs similar effects were observed in both the European and African
ancestry individuals (Supplementary Figure 3). We also examined the effects of the novel SNPs in
ever smokers and never smokers separately and found these to be broadly similar, with the
exception of rs1448044 in FGF10, which in the discovery analysis showed significant association with
FVC in ever smokers, whilst showing no association in never smokers (P=0-695). In our replication
stage analyses, similar effects were seen in both ever and never smokers for this SNP however, and
the combined analysis of discovery and replication stages for this SNP, including both ever and never
smokers, met the exome chip-wide significance level overall (P=4-22x10°). We also considered
whether this signal could be driven by smoking behaviour in our discovery stage as our primary
analyses in SpiroMeta did not adjust for smoking quantity. We undertook a look-up of this SNP in the
publicly available results of a GWAS of several smoking behaviour traits;* there was only weak
evidence that this SNP was associated with ever versus never smoking (P=0:039), and no evidence

for association with amount smoked (cigarettes per day, P=0-10).

Through the use of the exome array, we aimed to identify associations with low frequency and rare
functional variants, thereby potentially uncovering some of the missing heritability of lung function.
However, whilst our discovery analyses identified single SNP associations with 23 low frequency

variants (Supplementary Table 2), we did not replicate any of these findings. Eleven of these 23 SNPs
8
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we were unable to follow-up in our replication studies, due to them either being not genotyped, or
monomorphic. Overall, our lack of convincing associations with rare variants is likely due to limited
statistical power for identifying single variant associations, particularly if those variants exhibit only
modest effects.*! We additionally employed SKAT and WST gene-based tests to investigate the joint
effects of low frequency and rare variants within genes, on lung function traits. These analyses
identified associations with a number of genes that did not appear to be driven by single SNPs.
Replication of these signals proved difficult however, as again many SNPs included within the
discovery stage of these analyses were not genotyped, or were monomorphic in the replication
studies. This often meant a disparity in the gene unit being tested in our discovery and replication
samples; hence the interpretation of these results was not straightforward. In the end, we were able
to replicate only findings with common SNPs. This finding is in line with several other studies of
complex traits and exome array data that have been unable to report robust associations with low
frequency variants**™** and it is clear that future studies, will require increasingly larger sample sizes
in order to fully evaluate the effect of variants across the allele frequency spectrum. The
identification of common SNPs remains important however, as such findings have the potential to

highlight drug targets,* and these variants collectively could have utility in risk prediction.

This study has identified six common SNPs, independent to signals previously implicated in lung
function. Further interrogation of these loci could lead to greater understanding of lung function and

lung disease, and could provide novel targets for therapeutic interventions.
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Methods

Study Design, cohorts and genotyping

The SpiroMeta analysis included 23,751 individuals of European ancestry (EA) from 11 studies, and
the CHARGE analysis comprised 36,998 EA individuals and a further 7,721 individuals of African
ancestry (AA) from 12 studies. Follow-up analyses were conducted in an independent sample of up
to 111,556 individuals from UK Biobank, the UK Household Longitudinal Study (UKHLS) and the
Netherlands Epidemiology of Obesity (NEO) Study (Figure 1). All studies (excluding UK Biobank) were
genotyped using either the [llumina Human Exome BeadChip vlor the lllumina Infinium
HumanCoreExome-12 v1-0 BeadChip. UK Biobank samples were genotyped using the Affymetrix

Axiom UK BiLEVE or UK Biobank arrays.

Statistical analyses

Consortium level analyses: Within the SpiroMeta Consortium, each study contributing to the
discovery analyses calculated single-variant score statistics, along with covariance matrices
describing correlations between variants, using RAREMETALWORKER*® or rvtests.*’ For each trait,
these summary statistics were generated separately in ever and never smokers, with adjustment for
sex, age, age? and height, and with each trait being inverse normally transformed prior to association
testing. For studies with unrelated individuals, further adjustments were made for the first 10
ancestry principal components, whilst studies with related individuals utilised linear mixed models to

account for familial relationships and underlying population structure.

Within the CHARGE Consortium, each study generated equivalent summary statistics using the R
package SeqMeta.*® For each trait, summary statistics were generated in ever and never smokers
separately, and in all individuals combined. The untransformed traits were used for all analyses,
adjusted for smoking status and pack-years, age, age?, sex, height, height?, centre/cohort. Models

for FVC were additionally adjusted for weight. Linear regression models, with adjustment for
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principal components of ancestry were used for studies with unrelated individuals, and linear mixed

models were used for family-based studies.

Within each consortium we used the score statistics and variance-covariance matrices generated by
each study to construct both single variant and gene-based tests using either RAREMETAL*
(SpiroMeta) or SeqMeta*® (CHARGE). For single variant associations, score statistics were combined
in fixed effects meta-analyses. Two gene-based tests were constructed: first, the Weighted Sum Test
(WST) using Madsen Browning weightings,?? and secondly, the Sequence Kernel Association Test
(SKAT).2 We performed the SKAT and WST tests using two subsets of SNPs: 1) including all SNPs with
an overall consortium-wide MAF<5% that were annotated as splicing, stopgain, stoploss, or
frameshift (loss of function [LOF] analysis), and 2) including all SNPs meeting the LOF analysis criteria

in addition to all other nonsynonymous variants with consortium wide MAF<5% (exonic analysis).

Variants were annotated to genes using dbNSFP v2-6%° on the basis of the GRCh37/hg19 database.

For both single variant and gene-based associations, consortium-level results were generated for
ever smokers and never smokers separately, and in all individuals combined. Within the CHARGE
Consortium, results were combined separately for the EA and AA studies and also in a trans-ethnic

analysis of both ancestries.

Combined Meta-Analysis: The single variant association results from the SpiroMeta and CHARGE
consortia were combined as follows: The genomic inflation statistic (A) was calculated for SNPs with
consortium-wide MAF>1%; where A had a value greater than one, genomic control adjustment was
applied to the consortium level P-values. The consortium-level results were then combined using
sample size weighted z-score meta-analysis. The A was again calculated for the meta-analysis results
and genomic control applied, as appropriate. Since we were interested in identifying low frequency
and rare variants, we applied no MAF or minor allele count (MAC) filter. We identified SNPs of
interest as those with an overall P<10” and a consistent direction of effect and P<0-05 observed in

both consortia. Where we identified a SNP within 1Mb of a previously identified lung function SNP,
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we deemed the SNP to represent an independent signal if it had r’<0-2 with the known SNP, and if it
retained a P <10, when conditional analyses were carried out with the known SNP, or a genotyped
proxy, using data from the SpiroMeta Consortium, or UK Biobank. Our primary meta-analysis
included all individuals; we additionally carried out analyses in smoking subgroups (ever and never

smokers), and in the subgroup of individuals of European ancestry only.

For genes which contained at least 2 polymorphic SNPs in both consortia, we combined the results
of the consortium level gene based tests using either z-score meta-analysis (WST) or Fisher’s Method
for combining P-values (SKAT). We identified genes of interest as those with P<0-05 observed in both
consortia and an overall P<10™. As in the analyses of single variant associations, our primary meta-
analyses included all individuals, with secondary analyses undertaken in smoking and ancestry

specific subgroups.

Replication Analyses: All SNP and gene-based associations were followed up for the trait with which
they showed the most statistically significant association only. For associations identified through
the smoking subgroup analyses, we followed up associations in the appropriate smoking strata;
however no ancestry stratified follow-up was undertaken as replication studies included only a

sufficient number of individuals of European Ancestry.

Single variant associations in UK Biobank were tested in ever smokers and never smokers separately
using the score test as implemented in SNPTEST v2-5b4.%° Traits were adjusted for age, age?, height,
sex, ten principal components and pack-years (ever smokers only), and inverse normally
transformed. For UKHLS, analyses were undertaken analogously to the SpiroMeta discovery studies
using RAREMETALWORKER, while for NEO, analyses were undertaken in the same way as was done
in the CHARGE discovery studies using SeqMeta. The single variant results from all replication
studies were combined using sample size weighted Z-score meta-analysis. Subsequently we

combined the results from the discovery and replication stage analyses and we report SNPs with
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overall exome-wide significance of P<2-8x107 (Bonferroni corrected for the original 179,215 SNPs

tested).

We followed up genes of interest (P<10) using data from UK Biobank only. Summary statistics for
UK Biobank were generated using RAREMETALWORKER, with gene-based tests then constructed
using RAREMETAL. Finally, we combined the results from the discovery analysis with the replication
results in an overall combined meta-analysis using either z-score meta-analysis (WST) or Fisher’s
Method (SKAT). We declared genes with overall P<3-5x10°® (Bonferroni corrected for 14,380 genes
tested) in our combined meta-analysis to be statistically significant. For these statistically significant
genes, we carried out additional analyses using the UK Biobank data in which we conditioned on the
most significantly associated individual SNP within that gene, to determine whether this was a true
gene-based signal, or whether the association could be ascribed to the single SNP (if the conditional

P<0-01, then association was deemed to not be driven by the single SNP).

Characterization of findings

In order to gain further insight into the loci identified in our analyses of single variant associations,
we assessed whether these regions were associated with gene expression levels in various tissues
(FDR of 5%, or g-value<0-05), by querying a publically available blood eQTL database > and the GTEx
project 2 for the sentinel SNPs, or any proxy (r>>0-8). We further assessed SNPs of interest (and
proxies) within a lung eQTL resource based on non-tumour lung tissues of 1,111 individuals.>3™>®
Descriptions of these resources and further details of the look-ups are provided in the
Supplementary Methods. Moreover, all sentinel SNPs and proxies with r2>0.8 were annotated using
ENSEMBL’s Variant Effect Predictor (VEP);*® potentially deleterious coding variants were identified as
those annotated as ‘deleterious’ by SIFT*” or ‘probably damaging’ or ‘possibly damaging’ by
PolyPhen-2.%8 For all genes implicated through the expression data or functional annotation, we

searched for evidence of protein expression in the respiratory system by querying the Human

Protein Atlas.>®
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Table 1: Sample characteristics of 11 SpiroMeta and 12 CHARGE studies contributing to the discovery analyses and 3 studies contributing to the replication analyses.

Discovery Studies

SpiroMeta Studies Total Sample n (%) Male Ever Smokers, n (%) Age, mean (SD) FEV4, litres. mean (SD) | FVC, litres. mean (SD) FEV1/FVC, mean (SD)
1958 British Birth Cohort (B58C) 5270 2961 (56-2%) 2866 (53-3%) 44-00 (0-00) 3-35(0-79) 4-29 (1-03) 0-788 (0-09)
Generation Scotland (GS:SFHS) 8164 3413 (41-8%) 3806 (46-6%) 5159 (13-33) 2-78 (0-87) 3.91(1-01) 0-710 (0-12)
Cooperative Health Research in the Region of Augsburg (KORA F4) 1447 701 (48-5%) 900 (62-2%) 54-82 (9:66) 3-24 (0-85) 4-20 (1-04) 0-771 (0-07)
CROATIA-Korcula cohort (KORCULA) 791 296 (36-8%) 418 (52-0%) 55-56 (13-69) 2-72(0-83) 3:29 (0-95) 0-829 (0-10)
Lothian Birth Cohort 1936 (LBC1936) 974 501 (50-6%) 554 (55-9%) 69-55 (0-84) 2-:38 (0:67) 3.04 (0-87) 0-787 (0-10)
Study of Health in Pomerania (SHIP) 1681 831 (49-4%) 955 (56-8%) 52:25 (13-43) 3-29 (0-88) 3.88(1-03) 0-848 (0-07)
Northern Swedish Population Health Study (NSPHS) 880 407 (46:3%) 122 (13-9%) 49:13 (19-96) 2-93 (0-90) 3:53(1-06) 0-831 (0-09)
Prospective Investigation of the Vasculature in Uppsala Seniors 836 413 (49-4%) 426 (51-:0%) 70-20 (0-17) 2-44 (0-68) 3-20 (0-87) 0-76 (0-10)
Pivus
(SV\I/\II:S )study on Air Pollution and Lung Disease in adults (SAPALDIA) 2707 1379 (50-9%) 1399 (51-7%) 40-86 (10-92) 3-65 (0-83) 4-62 (1-04) 0-794 (0-07)
The Cardiovascular Risk in Young Finns Study (YFS) 434 198 (47-3%) 186 (44-4%) 38-88 (5-07) 3.73(0-75) 4-68 (0-99) 0-800 (0-06)
Finnish Twin Cohort (FTC) 214 0 (0%) 0 (0%) 68:73 (3-31) 2-18 (0-47) 2-79 (0-58) 0-786 (0-08)
Total 23,398
CHARGE Studies (European Ancestry) Total Sample | n (%) Male Ever Smokers, n (%) Age, mean (SD) FEV4, litres. mean (SD) | FVC, litres. mean (SD) FEV1/FVC, mean (SD)
AGES-Reykjavik study (AGES) 1566 649 (41-4%) 900 (57-5%) 761 (5-62) 2-13 (0-70) 2-87 (0-86) 0-744 (0-09)
Atherosclerosis Risk in Communities Study (ARIC) 10,680 5015 (47-0%) 631 (59-1%) 54-3 (5-70) 2-94 (0-77) 3.98 (0-98) 0-738 (0-07)
Cardiovascular Health Study (CHS) 3967 1737 (43-8%) 2089 (52:7%) 72-8 (5-55) 2-11 (0-66) 3-00 (0-86) 0-702 (0-10)
NHLBI Family Heart Study (FAMHS) 1651 718 (43-5%) 698 (42-3) 53:5(12-60) 2-91(0-853) 3-89 (1-05) 0-746 (0-08)
Framingham Heart Study (FHS) 7113 3241 (45-5%) 3780 (53-1) 50-7 (14-12) 3-10 (0-925) 4-09 (1-12) 0-755 (0-08)
Health Aging and Body Composition Study (HABC) 1457 786 (53-2%) 831 (56-5%) 73:7 (2:83) 2-31(0-66) 3-11(0-81) 0-741 (0-08)
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Health2006 Study 2714 1217 (44-8%) 1577 (58-1%) 494 (13-04) 3-13 (0-82) 3.99 (0-99) 0-784 (0-07)
Health2008 Study 687 297 (43-2%) 384 (55-9%) 467 (8-22) 3-27 (0-79) 413 (0:97) 0-791 (0-06)

Inter99 Study (without pack-years) 1115 549 (49-2%) 1115 (100%) 472 (7-76) 3-26 (0-71) 4-12 (0-92) 0-796 (0-07)

Inter99 Study (with pack-years) 4179 2027 (48-5%) 2307 (55-2%) 45-8 (7-95) 3-21(0-76) 4-10 (0:97) 0-788 (0-08)
Multi-Ethnic Study of Atherosclerosis (MESA) 1323 654 (49-4%) 751 (56-8%) 660 (9-8) 2-57 (0-76) 3-51 (0-10) 0-733 (0-08)

The Rotterdam Study (RS) 546 299 (54-8%) 382 (70:0%) 79-4 (5-00) 2-27 (0-68) 3.03 (0-86) 0-750 (0-08)

Total 36,998

CHARGE Studies (African Ancestry) Total Sample | n (%) Male Ever Smokers, n (%) Age, mean (SD) FEV4, litres. mean (SD) | FVC, litres. mean (SD) | FEV1/FVC, mean (SD)
Atherosclerosis Risk in Communities Study (ARIC) 3180 1183 (37-2%) 1680 (59-1%) 53-6 (5-83) 2-48 (0-65) 3.25(0-82) 0-765 (0-08)
Cardiovascular Health Study (CHS) 624 232 (37-2%) 340 (54-4%) 73:2 (5:49) 1.76 (0-58) 2-48 (0-80) 0-717 (0-11)

Health Aging and Body Composition Study (HABC) 943 433 (45-9%) 543 (57-6%) 73-4 (2-90) 1-96 (0-57) 2-61(0-71) 0-749 (0-09)

Jackson Heart Study (JHS) 2143 793 (36-8%) 688 (31:9%) 52:8 (12-6) 2:43 (0-72) 3.02 (0-86) 0-807 (0-09)
Multi-Ethnic Study of Atherosclerosis (MESA) 861 404 (46-9%) 467 (54-2%) 656 (9-6) 2-19 (0-66) 2-92 (0-86) 0-756 (0-09)

Total 7721

Replication Studies

Study Name Total Sample | n (%) Male Ever Smokers, n (%) Age, mean(SD) FEV4, litres. mean (SD) | FVC, litres. mean (SD) | FEV1/FVC, mean (SD)
UK Biobank 98,657 45,166 (45-8%) 56,404 (57-2%) 56-7 (7-92) 2-75 (0-80) 3-67 (0-98) 0-75 (0-07)

UK Household Longitudinal Study (UKHLS) 7443 3293 (44-2%) 4509 (60-5%) 53-10 (15-94) 2-89 (0-90) 3-83(1-08) 0-753 (0-09)
Netherlands Epidemiology of Obesity study (NEO) 5456 2672 (48-:0%) 3674 (66-:0%) 55-9 (5:9) 3:26 (0-80) 4-26 (1-02) 0-77 (0-07)

Total 111,556
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Table 2: Novel loci associated with lung function traits.

Results are shown for variant in novel loci associated (P<2:7x1077) with lung function traits in a two stage meta-analysis consisting of up to 68,470 individuals from the SpiroMeta and CHARGE Consortia
in the discovery analyses, with follow-up in up to 111,556 individuals from UK Biobank, UKHLS and NEO. For each SNP, the result for the trait-smoking-ancestry combination which resulted in the most

statistically significant association is given. The results for these SNPs and all three traits are shown in Supplementary Table 12. Beta values from SpiroMeta (Bsp) reflect effect-size estimates on an

inverse-normal transformed scale after adjustments for age, age?, sex, height and ancestry principal components, and stratified by ever smoking status (Analysis of All individuals only). Beta values from
CHARGE (Bcn) reflect effect-size estimates on an untransformed scale (litres for FEV; and FVC; ratio for FEV1/FVC). Samples sizes (N), Z-statistics (Z) and two-sided P-values (P) are given for the combined
discovery analysis and the replication analysis. Two-sided P-values are also given for the full two-stage combined analyses (discovery + replication).

Two-stage
Consortium Results Combined Discovery Meta-Analysis Replication Combined
Effect / Effect Allele
other Frequency
SNP Chr:Pos (Nearest) Gene(s) Trait Smoking  Ancestry allele (Discovery) |Bcu Bsp Naisc Lisc Paisc Nrep Ziep Prep Pmeta
All
rs2322659 2:136555659 LCT (nonsynonymous) FVC Individuals EA Only T/C 23-5% 27-34 0-032 55,591 5-597 2:18x10® 12,899 2-286 0-0223 1.70 x10°
FGF10(dist=8111), Ever
rs1448044 5:44296986 NNT(dist=591,318) FvC Smokers EA+AA A/G 35-6% 18-63 0-057 30,966 4-813 1.49 x10® 64,400 4-805 1.55 x10® 2-22 x10t
LY86(dist=87,933), All
rs1294421 6:6743149 RREBI1(dist=364,681) FEV./FVC Individuals EA+AA T/G 36-8% -0-222 -0-038 68,099 -5-479 4-27 x10°® 111,556 -8-171 3-06 x101¢ 9-74 x10%3
All
rs3849969 10: 75525999  SEC24C (intronic) FEV1 Individuals EA+AA T/C 29-4% 13-10 0-036 68,116 4-767 1.87 x10® 111,556 5-042 4-60 x107 4-99 x10?
RPAP1 All
rs1200345 15:41819716 (nonsynonymous) FEV1/FVC Individuals EA only c/T 48:8% -0-217 -0-025 60,381 -4-586 4-51 x10® 111,556 -5-725 1-03 x10® 2:33 x103
All
rs1859962 17:69108753  CASC17 (intronic) FEV1 Individuals  EA only G/T 48-2% 15-39 0-026 60,395 4-876 1-08 x106 111,554 4-612 3-99 x10°® 4-10 x101*
All
rs6088813 20:33975181 UQCCI (intronic) FvC Individuals EA+AA C/A 36:7% -16-16 -0-023 68,115 -4-634 3-58x10° 111,556 -7-688 1-50 x10**  |4-90 x10*°
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