

1 **Characterization of a set of abdominal neuroendocrine cells**
2 **that regulate stress physiology using colocalized diuretic**
3 **peptides in *Drosophila***

4

5 Meet Zandawala^{1,*}, Richard Marley², Shireen A. Davies² and Dick R. Nässel^{1,*}

6

7 1. Stockholm University, Department of Zoology, Stockholm, Sweden

8 2. Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and
9 Life Sciences, University of Glasgow, Glasgow, UK

10

11

12 * Correspondence to: Dr. Dick R. Nässel and Dr. Meet Zandawala

13 Tel: +46-8-164077

14

15

16 E-mail: dnassel@zoologi.su.se and meet.zandawala@zoologi.su.se

17 ORCID for D.R.N.: 0000-0002-1147-7766

18 ORCID for M.Z.: 0000-0001-6498-2208

19

20

21

22

23 **Acknowledgements**

24 The authors would like to acknowledge Dr. Yiting Liu and Dr. Olga Kubrak for very
25 helpful advice and valuable discussions. We are grateful to the Bloomington *Drosophila*
26 Stock Center, the Vienna *Drosophila* Resource Center and Drs. Jan A. Veenstra, Pilar
27 Herrero, Young Joon Kim and Michael Texada for providing flies and reagents. Stina
28 Höglund and the Imaging Facility at Stockholm University (IFSU) are acknowledged for
29 maintenance of the confocal microscopes. This work was supported by a European
30 Commission Horizon 2020, Research and Innovation Grant 634361.

31

Abstract

32 Multiple neuropeptides are known to regulate water and ion balance in *Drosophila*
33 *melanogaster*. Several of these peptides also have other functions in physiology and
34 behavior. Examples are corticotropin-releasing factor-like diuretic hormone (diuretic
35 hormone 44; DH44) and leucokinin (LK), both of which induce fluid secretion by
36 Malpighian tubules (MTs), but also regulate stress responses, feeding, circadian activity
37 and other behaviors. Here, we investigated the functional relations between the LK and
38 DH44 signaling systems. DH44 and LK peptides are only colocalized in a set of
39 abdominal neurosecretory cells (ABLks). Targeted knockdown of each of these
40 peptides in ABLks leads to increased resistance to desiccation, starvation and ionic
41 stress. Food ingestion is diminished by knockdown of DH44, but not LK, and water
42 retention is increased by LK knockdown only. Thus, the two colocalized peptides display
43 similar systemic actions, but differ with respect to regulation of feeding and body water
44 retention. We also demonstrated that DH44 and LK have additive effects on fluid
45 secretion by MTs. It is likely that the colocalized peptides are coreleased from ABLks
46 into the circulation and act on the tubules where they target different cell types and
47 signaling systems to regulate diuresis and stress tolerance. Additional targets seem to
48 be specific for each of the two peptides and subserve regulation of feeding and water
49 retention. Our data suggest that the ABLks and hormonal actions are sufficient for
50 many of the known DH44 and LK functions, and that the remaining neurons in the CNS
51 play other functional roles.

52

53 **Key words:** Diuretic hormone 44, corticotropin-releasing factor-like diuretic hormone,
54 Leucokinin, peptide hormones, stress resistance

55

56

Introduction

57 Orchestration of physiological and behavioral processes is commonly dependent on
58 neuropeptide and peptide hormone signaling [see [1,2-4](#)]. For example, feeding and
59 postprandial effects on the organism, including satiety, nutrient and energy reallocation,
60 diuresis, and activity/sleep are regulated by multiple peptides [see [5,6,1,7-9,3](#)]. Thus, in
61 *Drosophila melanogaster*, several neuropeptides such as allatostatin A, neuropeptide F,
62 short neuropeptide F (sNPF), sulfakinin, and hugin-pyrokinin are known to regulate
63 feeding, and five peptides, diuretic hormones 31 and 44, leucokinin (LK) as well as
64 CAPA-1 and 2, derived from the gene *capability*, regulate ion and water homeostasis
65 [see [10,11,12,1,7,3,13](#)]. After a meal other hormones, like insulin-like peptides (ILPs)
66 and adipokinetic hormone (AKH) ensure energy mobilization and storage, or signal
67 satiety/hunger and affect organismal activity, vigor and stress tolerance [[14-16,7](#)].

68 The neuroendocrine cells producing the peptides mentioned above display
69 varying degrees of diversity, from a single small set of identical cells producing AKH or
70 ILPs to very large populations of diverse neurons expressing sNPF [[17-19](#)]. Thus, the
71 question is whether peptidergic neurons of a large diverse population are functionally
72 coupled and play a concerted physiological role, or if they are parts of distributed
73 networks where the specific neuropeptide therefore serve diverse functions. To address
74 this question we have selected a set of neuroendocrine cells producing the
75 neuropeptide LK that consists of four morphological types of cells [[20,21](#)], and is
76 proposed to serve multiple functions in flies [[22-26,6](#)]. This set of neurons was dissected
77 by genetic tools to enable us to isolate the functional role of a major subset, which
78 consists of prominent neurosecretory cells in the abdominal ganglia. We show that this
79 subset of the LK neurons, designated ABLKs, additionally produce corticotrophin-
80 releasing factor-like diuretic hormone, also known as diuretic hormone 44 (DH44).
81 These ABLKs are especially intriguing since they seem to be under tight neuronal and
82 hormonal control. Receptors for several neurotransmitters and peptides have been
83 identified on these cells in larvae [[27,28,24,29-32](#)] and adults [[24](#)]. Of these receptors,
84 only the action of the 5-HT1B receptor on ABLK function was probed in adults [[24](#)]. We
85 ask what function these specific neuroendocrine cells and their colocalized peptide
86 hormones have in physiology and behavior.

87

88 Both DH44 and LK are primarily known for their roles as diuretic hormones in
89 various insects, including *Drosophila*, by regulating secretion by Malpighian (renal)
90 tubules (MTs) [33,12,3,34]. However, several additional functions have been assigned
91 to these peptides from genetic experiments. LK neurons regulate food intake, play a
92 role in desiccation stress resistance, modulate chemosensory responses, decrease
93 postprandial sleep, and are required for starvation-induced sleep suppression [22-26,6].
94 DH44, which is produced by a diverse set of neurons and neurosecretory cells [33,35],
95 plays roles in osmotic and metabolic stresses. Knockdown of DH44 in the CNS or its
96 receptor (DH44-R2) in the MTs results in a significant increase in desiccation tolerance
97 [23]. Genetic ablation of DH44 neurons also results in increased starvation tolerance,
98 however, knockdown of the DH44 receptor, DH44-R2, in the MTs impairs starvation
99 tolerance [23]. Furthermore, DH44 producing median neurosecretory cells in the brain
100 regulate rhythmic locomotor activity with influence from clock cells [36], sense and
101 regulate intake of nutritive carbohydrates [37], and regulate sperm retention in the
102 uterus of females [35].

103 The postulated functions of LK and DH44 are, with a few exceptions, not
104 assigned to specific neurons. Using the GAL4-UAS system [38] we interfered with LK
105 and DH44 expression in the ABLKs and analyzed *in vivo* effects on tolerance to various
106 stressors, as well as feeding and water retention. We also employed an assay to
107 monitor the combined activity of DH44 and LK on secretion in MTs. These peptides act
108 on different cell types of the *Drosophila* MTs and activate different signaling pathways
109 [33,34], yet we show that they display an additive stimulatory effect on secretion. Thus
110 we can show that the ABLKs, and therefore, the hormonal actions of the two peptides,
111 are sufficient for regulating water and ion homeostasis and associated stress functions,
112 but can also affect food intake, perhaps by an indirect action caused by diuretic activity.
113 This suggests that the LK and DH44 neurons in the brain are important for the
114 additional functional roles listed above, and it remains to be determined whether these
115 functions are in any way linked to those of the ABLKs.

116

117

Experimental procedures

118

Fly lines and husbandry

119

All fly strains used in this study (**Table 1**) were reared and maintained at 25°C on a standard yeast, corn meal, agar medium (see http://flystocks.bio.indiana.edu/Fly_Work/media-recipes/bloomfood.htm) supplemented with 1.5 g/L nipagin and 3 mL/L propionic acid. Experimental flies were reared under uncrowded conditions and normal photoperiod (12 hours light: 12 hours dark).

124

125 **Table 1:** Fly strains used in this study

Fly strain	Inserted on chromosome	Source / reference	Stock number
<i>w</i> ¹¹¹⁸	-	BDSC	-
<i>w</i> ¹¹¹⁸ ; <i>Lk-GAL4</i>	II	[21], Pilar Herrera, Madrid, Spain	-
<i>w</i> ¹¹¹⁸ ; <i>Lk-GAL4</i>	II	[39]	BDSC 51993
<i>w</i> ¹¹¹⁸ ; <i>Lk-GAL4</i>	III	Young Joon Kim, Gwangju, Korea	-
<i>w</i> ¹¹¹⁸ ; <i>DH44-GAL4</i>	III	[40], Fly Light	BDSC 39347
<i>w</i> ¹¹¹⁸ ; <i>DH44-GAL4</i>	III	[39]	BDSC 51987
<i>y¹w[*]</i> ; <i>Actin5c-GAL4/CyO</i>	II	-	BDSC 4414
<i>w</i> ¹¹¹⁸ ; <i>UAS-Lk RNAi</i>	III	[41]	VDRC 14091/GD
<i>yw;UAS-DH44 RNAi</i>	II	-	VDRC 108473/KK
<i>yw; Sco/Cyo; UAS-mcd8-GFP</i>	III	BDSC	-
<i>JFRC29-10xUAS-IVS-myR::GFP-p10</i>	-	[42], Washington, USA	-

126

Immunohistochemistry and imaging

127

128 Immunohistochemistry for *Drosophila* larval and adult CNS was performed as described
129 earlier [43]. Briefly, CNS from third instar larvae or adult male flies were dissected in
130 phosphate buffered saline (PBS). Larval samples were fixed for 2 hours in 5% ice-cold
131 paraformaldehyde and adult samples were fixed on ice for 3.5 – 4 hours. Samples were
132 then washed in PBS and incubated for 48 hours at 4°C in primary antibodies diluted in
133 PBS with 0.5% Triton X (PBST) (**Table 2**). Following this incubation, samples were

134 washed with PBST and incubated for 48 hours at 4°C in secondary antibodies diluted in
135 PBST (**Table 2**). Next, all samples were thoroughly washed with PBST, and following a
136 final wash in PBS, samples were mounted in 80% glycerol. For anti-DH44 staining,
137 tissues were blocked with 5% normal goat serum (NGS) in PBST post-fixation and 5%
138 NGS was also included in the primary antibody solution.

139

140 **Table 2:** Antibodies used for immunohistochemistry

Antibody	Immunogen	Source / reference	Dilution
Primary antibody			
Rabbit anti-LK	<i>Leucophaea maderae</i> kinin I	[44]	1:2000
Rabbit anti-DH44	<i>Drosophila melanogaster</i> DH44	[33] Jan Veenstra, Bordeaux, France	1:1000
Mouse anti-GFP	Jelly fish GFP	Invitrogen	1: 1000
Secondary antibody			
Goat anti-mouse Alexa 488	-	Invitrogen	1:1000
Goat anti-rabbit Alexa 546	-	Invitrogen	1:1000

141

142 All samples were imaged with a Zeiss LSM 780 confocal microscope (Jena,
143 Germany) using 10X, 20X or 40X oil immersion objectives. Confocal images were
144 processed with Zeiss LSM software and Fiji [45] for projection of z-stacks, contrast and
145 brightness, and calculation of immunofluorescence levels. Cell fluorescence was
146 measured as described previously [43]. Briefly, the cells of interest were selected and
147 their area, integrated density and mean gray values measured. Background values for
148 these parameters were also recorded by selecting a region that has no fluorescence
149 near the cells of interest. Corrected total cell fluorescence (CTCF) was then calculated
150 using the equation: CTCF = Integrated Density – (Area of selected cell X Mean
151 fluorescence of background readings).

152

153 **Stress resistance assays**

154 We used 5-6 days old male flies to assay for survival under various stresses and
155 recovery from chill coma (see [43] for details of stress assays). For each technical
156 replicate, 15 flies were kept in a vial and their survival recorded every 3 hours (for
157 desiccation) or 6 hours (for starvation and ionic stress) until all the flies were dead. For

158 desiccation, flies were kept in empty vials. For starvation, flies were kept in vials
159 containing 5 ml of 0.5% aqueous agarose (A2929, Sigma-Aldrich). For ionic stress, flies
160 were kept in vials containing 5 ml enriched medium (100 g/L sucrose, 50 g/L yeast, 12
161 g/L agar, 3 ml/L propionic acid and 3 g/L nipagin) supplemented with 4% NaCl. All vials
162 were kept at 25°C under normal photoperiod conditions for the entire duration of the
163 experiment. For chill coma recovery experiments, flies were transferred to empty vials,
164 which were then placed on ice to induce a chill coma. The vials were incubated on ice
165 (0°C) for 4 hours and afterwards transferred to 25°C to induce recovery. The number of
166 flies recovered was assessed every 2 min. At least 3 biological replicates and 3
167 technical replicates for each biological replicate were performed for each experiment.

168

169 Capillary feeding assay

170 Capillary feeding (CAFE) assay to measure food intake for individual flies was
171 performed according to the method described earlier [24]. Food consumption was
172 measured daily and the cumulative food intake over 4 days was calculated. The
173 experiment consisted of 3 biological replicates and 8–10 flies per replicate for each
174 genotype.

175

176 Water content measurement

177 For measurement of water content, 10-15 flies were frozen on dry ice and their weight
178 (wet weight) recorded using a Mettler Toledo MT5 microbalance (Columbus, USA). The
179 flies were then dried for 1 day at 60°C and their weight (dry weight) recorded again. The
180 water content of the flies was determined by subtracting dry weight from wet weight
181 (see [46]).

182

183 Malpighian tubule secretion assay

184 *Drosophila* MT fluid secretion assays were performed as described previously [47].
185 Briefly, MTs from six day old *Drosophila* were dissected in Schneider's medium and
186 transferred to 9 µl of 50% Schneider's medium and 50% *Drosophila* saline [33]. Tubules
187 were left to secret for 30 minutes and non-secreting tubules were replaced to form a
188 data set of 10-15 secreting tubules. Basal secretion was measured for 30 min at 10 min
189 intervals. Following this initial incubation, 1 µl of *Drosophila* DH44 (final concentration
190 10^{-7} M or 10^{-9} M), LK (final concentration 10^{-9} M or 10^{-10} M) or both (Genosphere

191 Biotechnologies, Paris, France) were added to the incubation medium. Stimulated
192 secretion was measured for 30 min at 10 min intervals. Data are presented as the
193 secretion rate at every time point, the percentage change in secretion rate following
194 peptide application, and total fluid secreted over 60 min.

195

196 **Statistical analyses**

197 The experimental data are presented as means \pm s.e.m. Unless stated otherwise, one-
198 way analysis of variance (ANOVA) followed by Tukey's multiple comparisons test was
199 used for comparisons between three genotypes and an unpaired t-test was used for
200 comparisons between two genotypes. For fluid secretion assays, a Mann-Whitney U
201 test was used as some data were non-normally distributed. Stress curves were
202 compared using Mantel-Cox log-rank test. All statistical analyses were performed using
203 GraphPad Prism with a 95% confidence limit ($p < 0.05$).

204

205 **Results**

206 **LK expression in *Drosophila* CNS**

207 Several studies have previously examined the distribution of LK in *Drosophila* CNS and
208 peripheral tissues [20,21,24,48,23]. Here, we verified the expression of *Lk-GAL4* driven
209 GFP in both larval (Figure S1A-E) and adult *Drosophila* (Figure 1), using a GAL4 line
210 from [De Haro et al. \[21\]](#). In the larval CNS, *Lk-GAL4* drives expression in five pairs of
211 neurons in the brain (Figure S1A, E), three pairs of neurons in the SOG (Figure S1C, E)
212 and seven pairs of neurons in the VNC (Figure S1D, E). However, four out of the five
213 pairs in the brain do not display any LK-immunoreactivity, but in fact react with an
214 antiserum to ion transport peptide (ITP) (Figure S1B). These lateral neurosecretory cells
215 are found both in larval and adult brains and are known as ipc-1 neurons [49]. Similar to
216 the larval CNS, *Lk-GAL4* drives GFP expression in four distinct neuronal populations in
217 the adult CNS (Figure 1). Hence, GFP expression was detected in one pair of neurons
218 in the lateral horn and one pair in the SOG (Figure 1A, D), another four pairs in the
219 brain, which display ITP-immunoreactivity (Figure 1B, D and S2) and eleven pairs in the
220 VNC (Figure 1C, D). In adult flies, *Lk-GAL4* driven GFP expression in the ITP-producing
221 cells is weak and variable (Figure S2). Interestingly, seven pairs of neurons in the VNC
222 start expressing LK in the embryonic stage, whereas the additional four pairs (this
223 number varies between individuals) begin to express LK during pupal development [48].

224 Moreover, *Lk-GAL4* also drives ectopic expression in salivary glands (Figure 1E).
225 Although we tested two additional *Lk-GAL4* driver lines (Table 1), we utilized this *Lk-*
226 *GAL4* for subsequent knockdown experiments because its expression is stronger than,
227 or more specific than the other *Lk-GAL4* lines (Table 1; data not shown).

228

229 ***DH44 is expressed in the Drosophila brain and ventral nerve cord***

230 DH44 expression in *Drosophila* has also been examined and mapped previously
231 [[33,35](#)]. However, different GAL4 lines result in differing expression patterns. Thus, we
232 validated the expression of two previously generated *DH44-GAL4* lines [[39,40](#)]. One of
233 these GAL4 lines has a minimal expression pattern and drives GFP expression in only
234 the six MNCs in the brain (data not shown) [[39](#)]. The other *DH44-GAL4* line, which was
235 obtained from the FlyLight collection [[40](#)], resulted in a good overlap between
236 *DH44>GFP* and DH44-immunoreactivity. This *DH44-GAL4* drives GFP expression
237 broadly in larval (Figure S1F, G) and adult CNS (Figure 2). In larvae, predominant
238 expression was detected in the six MNCs in the brain (Figure S1F) and seven pairs of
239 neurosecretory cells in the VNC (Figure S1G); however, some of these cells in the VNC
240 were not visible in both hemiganglia. In adults, expression was again detected in the six
241 MNCs (Figure 2A) and at least four cells dorsally (Figure 2B) and at least six cells
242 ventrally in the posterior VNC (Figure 2C). Since there was a good overlap in GFP
243 expression and DH44-immunoreactivity, we utilized this *DH44-GAL4* for subsequent
244 knockdown manipulations.

245

246 ***LK and DH44 are co-expressed in larval and adult ABLK neurons***

247 The functional overlap between LK and DH44 signaling systems mentioned earlier,
248 coupled with the expression of both LK and DH44 in the VNC neurons, prompted us to
249 examine if these two neuropeptides are co-expressed in subsets of neurons. Our
250 expression data show that there is no overlap in LK and DH44 expression in the brain of
251 larvae (Figure S3A, C and Figure 4A) or adults (Figure 3A, C and Figure 4B), but these
252 neuropeptides are co-expressed in the larval (Figure S3B, D and Figure 4A) and several
253 adult ABLKs (Figure 3B, D and Figure 4B). Interestingly, all the larval ABLKs co-express
254 DH44, but in adults only four to eight ABLKs express DH44 (Figure 4). Furthermore, the
255 majority of these DH44 expressing ABLKs in the adults appear to be the ones that are

256 generated during postembryonic neurogenesis. However, we cannot rule out the
257 possibility that DH44 is present with a very low expression in other ABLKs.

258

259 ***Knockdown of Lk with Lk-GAL4 impacts stress response and water content***

260 Having shown that LK and DH44 are co-expressed in ABLKs, it now becomes apparent
261 that the previous studies employing genetic ablation, and activation or inactivation of LK
262 neurons could be confounded by effects of diminishing signaling with two colocalized
263 peptides [25,24,23]. Thus, it is not only timely to dissect the behavioral phenotypes from
264 these previous studies using RNAi-based knockdown, but we can also study the
265 specific functions of ABLKs using intersectional crosses. Consequently, we utilized *Lk-*
266 *GAL4* and *DH44-GAL4* to knock down both *Lk* and *DH44* and assayed for effects on
267 stress tolerance, feeding and water content. As controls in all experiments we used the
268 parental GAL4 and UAS lines (in *w¹¹¹⁸* background) crossed to *w¹¹¹⁸* flies.

269 *Lk-GAL4* driven *Lk-RNAi* results in a significant decrease in LK-immunoreactivity
270 in both the brain (Figure 5A, C) and VNC (Figure 5B). These flies with *Lk* knockdown
271 display increased survival under desiccation (Figure 6A), starvation (Figure 6B), and
272 ionic stress (Figure 6C), but there is no difference in chill coma recovery between
273 experimental and control flies (Figure 6D). Moreover, food intake in CAFE assay is not
274 affected by *Lk* knockdown (Figure 6E) (see also [22]), but these flies retain more water
275 (Figure 6F) as demonstrated earlier [50,24]. Previous work had shown that inactivation
276 of LK neurons resulted in increased survival under desiccation, but had no impact on
277 starvation resistance [24]. Furthermore, in that study, both the activation and
278 inactivation of LK neurons caused the flies to feed less in CAFE assay. This was in
279 contrast to another study employing LK and LKR mutants, which did not find altered
280 overall food intake, but rather an increase in meal size [22]. Hence, our data on
281 desiccation are in agreement with previous findings and clarifies the discrepancies in
282 previous results on food intake as possibly caused by the presence of another
283 neuroactive compound in the LK neurons that affects feeding. Data are summarized in
284 Table 3.

285

286 ***Knockdown of DH44 with Lk-GAL4 impacts stress response and feeding***

287 We verified the efficiency of *DH44* knockdown using a ubiquitous driver (*Actin 5c-GAL4*)
288 and a specific driver (*DH44-GAL4*). Knockdown of DH44 with both these drivers results

289 in a significant decrease in DH44-immunoreactivity (Figure 5F, G and S4). We then
290 utilized *Lk-GAL4* to knock down *DH44* specifically in ABLKs, which resulted in increased
291 survival under desiccation (Figure 7A), starvation (Figure 7B), ionic stress (Figure 7C),
292 and these flies display delayed recovery from chill coma compared to control flies
293 (Figure 7D). Interestingly, *DH44* knockdown flies feed less in the CAFE assay (Figure
294 7E), but display no difference in water content compared to controls (Figure 7F). Hence,
295 it appears that the effect of decreased feeding following LK neuron inactivation can be
296 attributed to the presence of DH44 in ABLKs. Furthermore, LK but not DH44 has an
297 effect on water content. Perhaps this could be due to the fact that LK is a more potent
298 diuretic than DH44 in *Drosophila* and hence DH44 cannot fully compensate for the lack
299 of LK [33,34]. Alternatively, LK could also impact water retention via actions on the
300 hindgut [51,52]. Data are summarized in Table 3.

301

302 ***Knockdown of Lk with DH44-GAL4 impacts stress response and water content***

303 Next, we wanted to determine the effects of knocking down *Lk* in adult-specific ABLKs.
304 We first confirmed that *DH44-GAL4* driven *Lk-RNAi* results in an efficient knockdown in
305 adult-specific ABLKs by counting the number of cells positive for LK-immunoreactivity
306 (Figure 5D and S5). The average number of cells stained for LK-immunoreactivity in the
307 control flies was 21, whereas the knockdown flies only had an average of 16 cells.
308 Moreover, the larger adult-specific ABLKs are not labeled in the knockdown flies
309 validating that the knockdown is efficient. Knockdown of *Lk* with *DH44-GAL4* results in
310 increased survival during desiccation (Figure 8A), starvation (Figure 8B), ionic stress
311 (Figure 8C), as well as a significant delay in recovery from chill coma (Figure 8D).
312 Similar to the global *Lk* knockdown with *Lk-GAL4*, *Lk* knockdown in ABLKs has no effect
313 on feeding (Figure 8E) but results in a significant increase in the water content of the
314 flies (Figure 8F). This suggests that the effects of LK on stress response and water
315 content could be attributed to ABLKs, and perhaps the LHLKs and SELKs of the brain
316 play little to no part in these processes. Data are summarized in Table 3.

317

318 ***Knockdown of DH44 with DH44-GAL4 impacts stress response and feeding***

319 Knockdown of DH44 with *DH44-GAL4* results in an efficient knockdown in the brain
320 (Figure 5F) and VNC (Figure 5G). Staining is abolished in MNCs but not in the other
321 cells in the brain suggesting that staining in those cells is not specific for DH44 (Figure

322 5F). In order to determine if there is any interaction between LK and DH44 signaling, we
323 measured LK peptide levels in ABLKs of *DH44* knockdown flies. Interestingly, flies with
324 *DH44* knockdown have higher LK levels suggesting that the flies may compensate for
325 the lack of DH44 with increased LK expression (Figure 5D, E). Moreover, flies with
326 global *DH44* knockdown display no effects on survival during desiccation (Figure S6A),
327 but show increased resistance to starvation (Figure S6B), ionic stress (Figure S6C), and
328 a small but significant delay in their recovery from chill coma (Figure S6D). Furthermore,
329 flies with *DH44* knockdown display no difference in feeding (Figure S6E) and water
330 content (Figure S6F) compared to control flies. Data are summarized in Table 3.

331
332 **Table 3.** Summary of the phenotypes obtained following different manipulations to LK and DH44
333 signaling. Data are compiled from Figures 6-8 and Figure S6. Notes: ↑ increase, ↓ decrease, * p
334 < 0.05, ** p < 0.01, **** p < 0.0001.

Assay	LK > LK Ri	DH44 > LK Ri	DH44 > DH44 Ri	LK > DH44 Ri
Effect of manipulation	Global LK knockdown	LK knockdown in ABLKs	Global DH44 knockdown	DH44 knockdown in ABLKs
Desiccation survival	↑****	↑****	No effect	↑****
Starvation survival	↑****	↑****	↑****	↑****
Ionic stress survival	↑****	↑****	↑****	↑****
Chill coma recovery	No effect	↑*	↑*	↑*
Feeding	No effect	No effect	No effect	↓****
Water content	↑**	↑****	No effect	No effect

335
336 ***LK and DH44 act additively on Malpighian tubules to stimulate fluid secretion***
337 Since LK and DH44 are coexpressed in ABLKs, they could potentially be coreleased
338 into the hemolymph and result in functional interaction at the target tissue. One such
339 site of interactions is the MTs, since both these peptides stimulate MT secretion albeit
340 by action on different cell types and via different receptors, second messengers and
341 ultimate targets (Cl⁻ channels for LK and V-ATPase for DH44) [33,34,53]. Hence, we
342 were interested in examining the secretion rates by MTs and the volume of secreted
343 fluid in the presence of either peptide alone or in the presence of both (Figure 9). Our
344 results show that the addition of both LK and DH44 (DH44 at two concentrations)

345 results in a secretion rate that is approximately the sum of the secretion rates obtained
346 following the addition of each of those peptides separately (Figure 9A-D, Table 4). This
347 additive effect is more prominent when using a higher dose of DH44 (10^{-7} M instead of
348 10^{-9} M) (Figure 9C, D). The amount of fluid secreted with peptide stimulation is also a
349 reflection of these increased secretion rates (Figure 9E, F). Hence, 10^{-7} M DH44 and
350 10^{-10} M LK result in almost identical volumes of fluid secreted (Figure 9E), whereas a
351 combination of both those peptides doubles the volume of fluid secreted indicating an
352 additive response.

353

354 **Table 4:** Comparison of secretion rates between various treatments and time points presented
355 in Figure 9A and B. (NS = not significant, * $p < 0.05$, ** $p < 0.01$, **** $p < 0.0001$; Mann-Whitney
356 U test).

Treatments compared	Time (min)		
	40	50	60
10^{-7} M DH44 vs 10^{-7} M DH44 + 10^{-10} M LK	****	****	****
10^{-10} M LK vs 10^{-7} M DH44 + 10^{-10} M LK	****	****	****
10^{-9} M DH44 vs 10^{-9} M DH44 + 10^{-10} M LK	NS	**	NS
10^{-10} M LK vs 10^{-9} M DH44 + 10^{-10} M LK	*	*	NS

357

358

359 ***Knockdown of Lk in ABLKs does not influence LK stimulated Malpighian tubule
360 secretion***

361 Previous studies have shown that knockdown of peptides could influence the
362 expression of their receptors and vice versa (see [43]). We wanted to determine
363 whether knockdown of *Lk* in ABLKs, the only source of hormonal LK, affects the
364 expression of LKR in MTs, thus influencing LK-stimulated secretion by MTs. Our results
365 indicate that there is no significant difference in LK-stimulated (10^{-9} M and 10^{-10} M)
366 secretion rates of MTs isolated from *DH44 > Lk RNAi* and control flies (Figure S7). This
367 is similar to previous work where DH44 (10^{-7} M) secretion rates were similar in tubules
368 isolated from *DH44 > DH44 RNAi* and control flies [23]. These results are in agreement
369 with the *in vivo* experiments where flies with *Lk* knockdown display increased survival
370 under desiccation.

371 Discussion

372 Our study reveals that a portion of the LK expressing neurosecretory cells (ABLks) in
373 abdominal ganglia coexpress DH44, similar to earlier findings in the moth *Manduca*
374 *sexta* [54], the locust *Locusta migratoria* [55] and blood sucking bug *Rhodnius prolixus*
375 [56]. Colocalization of these peptides in multiple insect orders, including basal orders,
376 suggests that this colocalization and the subsequent functional interaction between
377 these signaling systems evolved early on during insect evolution. Since ABLks are the
378 sole neurons producing both peptides in *Drosophila* we were able to use GAL4 lines to
379 knock down each of the two peptides in these cells only and thereby isolate the
380 contribution of the ABLks to physiology. This enabled us to establish that these
381 neuroendocrine cells are sufficient for many of the functions assigned to DH44 and LK
382 and therefore these functions are hormonally mediated. In contrast, earlier studies were
383 based upon altering peptide levels or activity in entire populations of DH44 and LK
384 neurons [22-26,6]. Also, we showed here that the *LK-GAL4* driver includes salivary
385 glands and a set of ectopic brain cells (ipc-1) that do not express LK, but another
386 peptide ITP. The ipc-1 neurons produce sNPF and tachykinin in addition to ITP and
387 have been found to regulate stress responses [46]. This means that in earlier studies,
388 where the *LK-GAL4* line was used to inactivate or activate neurons (see e.g. [24,25]),
389 additional phenotypes are likely to have arisen. Using our approach, where we target
390 only ABLK neurons, we find that both *DH44-RNAi* and *Lk-RNAi* in these cells increases
391 resistance to desiccation, starvation and ionic stress. This suggests that diminishing the
392 release of these two peptides from ABLks is sufficient for this phenotype to occur.
393 However, food intake is not affected by LK-knockdown in ABLks, whereas DH44
394 knockdown diminishes feeding, and conversely knockdown of LK in ABLks result in
395 increased body water content, that is not seen after *DH44-RNAi*. Thus, the two
396 colocalized peptides appear to display similar systemic actions, but differ with respect to
397 feeding and water retention. When knocking down LK in all LK neurons we obtained a
398 very similar set of effects as when we targeted only the ABLks, indicating that in the
399 assays we performed in our study, the other two sets of LK neurons (LHLK and SELK)
400 played a minimal role.

401 Interestingly, knockdown of DH44 in ABLks increases resistance to desiccation
402 and decreases feeding, but we failed to see these effects when we diminish DH44 in all
403 DH44 neurons. This is consistent with previous work where inactivation or activation of

404 DH44 neurons had no effect on food intake [37]. Perhaps, the effects seen following
405 ABLK manipulations could be compensated by action of the six DH44-expressing MNCs
406 in the brain. Similarly, reduction of LK in ABLKs causes a slight increase in time of
407 recovery from chill-coma, but this is not noted after global knockdown of LK. This minor
408 difference could possibly be attributed to the strength of the two GAL4 driver lines used
409 and, thus, the efficiency of LK knockdown in ABLKs.

410 We also demonstrated that DH44 and LK have additive effects on fluid secretion
411 in MTs. It is likely that these two colocalized peptides are released together and act on
412 the MTs where they target different cell types, receptors, signaling systems and
413 effectors in order to regulate fluid secretion [33,34]. The action of these peptides on the
414 MTs may also in part be responsible for the regulation of stress responses seen in our
415 assays, as shown earlier for CAPA peptide and DH44 [57,23]. It is, however, not clear
416 whether the altered food intake and water retention after DH44 and LK knockdown,
417 respectively, are direct actions on target tissues or indirect effects caused by altered
418 water and ion regulation in the fly.

419 Not only do the ABLKs produce two diuretic hormones, they also seem to be
420 under tight neuronal and hormonal control. Receptors for several neurotransmitters and
421 peptides have been identified on these cells in adults: the serotonin receptor 5-HT1B,
422 LK receptor (LkR) and the insulin receptor, dlnR [24,29]. Knockdown of the 5-HT1B
423 receptor in ABLK neurons diminished LK expression, increased desiccation resistance,
424 and diminished food intake, but manipulations of dlnR expression in these cells
425 generated no changes in physiology in the tests performed [24]. In larvae, all ABLKs
426 colocalize LK and DH44, and several receptors have been detected in addition to 5-
427 HT1B [24,30] and dlnR [29], namely RYamide receptor [32], SIFamide receptor [31],
428 and the ecdysis-triggering hormone (ETH) receptor, ETHR-A [28]. However, the
429 expression of these receptors on adult ABLKs has so far not been investigated.
430 Interestingly the functions of ABLKs in larvae, studied so far, seem to be primarily
431 related to regulating muscle activity and ecdysis motor patterns. The 5-HT-1B receptor
432 on ABLKs was shown to modulate locomotor turning behavior [30], whereas ETH
433 mediated activation of ETHR-A on ABLKs initiates the pre-ecdysis motor activity [27,28].
434 In this context it is worth noting that during metamorphosis 6-8 novel ABLKs
435 differentiate anteriorly in the abdominal ganglia [48,29], and these are the ones that
436 display the strongest expression of DH44. In adult flies the ABLKs are neurosecretory

437 cells with restricted arborizations in the CNS, but widespread axon terminations along
438 the abdominal body wall and in the lateral heart nerves, whereas in larvae the same
439 cells send axons that terminate on segmental abdominal muscles, muscle 8 [20]. It is
440 not yet known whether larval ABLKs are involved in the regulation of diuresis and other
441 related physiological functions *in vivo*, but certainly larval functions in locomotion and
442 ecdysis behavior are specific to that developmental stage. Thus, it seems that there is a
443 developmental switch of function in this set of peptidergic neuroendocrine cells.

444 In summary, we show that a set of abdominal neuroendocrine cells, ABLKs,
445 coexpressing DH44 and LK are sufficient for regulation of resistance to desiccation,
446 starvation and ionic stress, as well as modulating feeding and water content in the body.
447 These ABLKs represent a subset of neurons that express DH44 and LK, and the
448 functions of the remaining neurons have yet to be determined.

449

450 **Conflict of Interest Statement**

451 The authors declare that they have no conflict of interest.

452

453 **Author contributions**

454 M.Z., S.A.D. and D.R.N.: designed the research; M.Z. and R.M.: performed experiments
455 and analyzed data; M.Z. and D.R.N.: wrote the manuscript with input from the other
456 authors; D.R.N. and S.A.D.: obtained funding; D.R.N.: supervised the study.

457

458

459

References

460

- 461 1. Nässel DR, Winther AM (2010) *Drosophila* neuropeptides in regulation of physiology and
462 behavior. *Prog Neurobiol* 92 (1):42-104. doi:10.1016/j.pneurobio.2010.04.010
- 463 2. Schoofs L, De Loof A, Van Hiel MB (2017) Neuropeptides as Regulators of Behavior in
464 Insects. *Annual Review of Entomology*, Vol 62 62:35-52. doi:10.1146/annurev-ento-031616-
465 035500
- 466 3. Schooley DA, Horodyski FM, Coast GM (2012) Hormones Controlling Homeostasis in Insects
467 In: Gilbert LI (ed) *Insect Endocrinology*. Academic Press, San Diego, pp 366-429.
468 doi:<http://dx.doi.org/10.1016/B978-0-12-384749-2.10009-3>
- 469 4. Taghert PH, Nitabach MN (2012) Peptide neuromodulation in invertebrate model systems.
470 *Neuron* 76 (1):82-97. doi:10.1016/j.neuron.2012.08.035
- 471 5. Itskov PM, Ribeiro C (2013) The dilemmas of the gourmet fly: the molecular and neuronal
472 mechanisms of feeding and nutrient decision making in *Drosophila*. *Front Neurosci* 7:12.
473 doi:10.3389/fnins.2013.00012
- 474 6. Murphy KR, Deshpande SA, Yurgel ME, Quinn JP, Weissbach JL, Keene AC, Dawson-Scully
475 K, Huber R, Tomchik SM, Ja WW (2016) Postprandial sleep mechanics in *Drosophila*. *eLife*
476 5. doi:10.7554/eLife.19334
- 477 7. Pool AH, Scott K (2014) Feeding regulation in *Drosophila*. *Curr Opin Neurobiol* 29:57-63.
478 doi:10.1016/j.conb.2014.05.008
- 479 8. Saper CB, Chou TC, Elmquist JK (2002) The need to feed: homeostatic and hedonic control
480 of eating. *Neuron* 36 (2):199-211
- 481 9. Zeltser LM, Seeley RJ, Tschoop MH (2012) Synaptic plasticity in neuronal circuits regulating
482 energy balance. *Nat Neurosci* 15 (10):1336-1342. doi:10.1038/nn.3219
- 483 10. Chen J, Reiher W, Hermann-Luibl C, Sellami A, Cognigni P, Kondo S, Helfrich-Forster C,
484 Veenstra JA, Wegener C (2016) Correction: Allatostatin A Signalling in *Drosophila* Regulates
485 Feeding and Sleep and Is Modulated by PDF. *PLoS Genet* 12 (12):e1006492.
486 doi:10.1371/journal.pgen.1006492
- 487 11. Dow JA (2009) Insights into the Malpighian tubule from functional genomics. *J Exp Biol* 212
488 (Pt 3):435-445. doi:10.1242/jeb.024224
- 489 12. Halberg KA, Terhzaz S, Cabrero P, Davies SA, Dow JA (2015) Tracing the evolutionary
490 origins of insect renal function. *Nat Commun* 6:6800. doi:10.1038/ncomms7800
- 491 13. Kean L, Cazenave W, Costes L, Broderick KE, Graham S, Pollock VP, Davies SA, Veenstra
492 JA, Dow JA (2002) Two nitridergic peptides are encoded by the gene *capability* in *Drosophila*
493 *melanogaster*. *Am J Physiol Regul Integr Comp Physiol* 282 (5):R1297-1307.
494 doi:10.1152/ajpregu.00584.2001
- 495 14. Alfa RW, Kim SK (2016) Using *Drosophila* to discover mechanisms underlying type 2
496 diabetes. *Dis Model Mech* 9 (4):365-376. doi:10.1242/dmm.023887
- 497 15. Owusu-Ansah E, Perrimon N (2014) Modeling metabolic homeostasis and nutrient sensing
498 in *Drosophila*: implications for aging and metabolic diseases. *Dis Model Mech* 7 (3):343-350.
499 doi:10.1242/dmm.012989
- 500 16. Padmanabha D, Baker KD (2014) *Drosophila* gains traction as a repurposed tool to
501 investigate metabolism. *Trends Endocrinol Metab* 25 (10):518-527.
502 doi:10.1016/j.tem.2014.03.011
- 503 17. Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E (2001) An evolutionarily
504 conserved function of the *Drosophila* insulin receptor and insulin-like peptides in growth
505 control. *Curr Biol* 11 (4):213-221
- 506 18. Kim SK, Rulifson EJ (2004) Conserved mechanisms of glucose sensing and regulation by
507 *Drosophila* corpora cardiaca cells. *Nature* 431 (7006):316-320. doi:10.1038/nature02897
- 508 19. Nässel DR, Enell LE, Santos JG, Wegener C, Johard HA (2008) A large population of
509 diverse neurons in the *Drosophila* central nervous system expresses short neuropeptide F,
510 suggesting multiple distributed peptide functions. *BMC Neurosci* 9:90. doi:10.1186/1471-
511 2202-9-90

512 20. Cantera R, Nässel DR (1992) Segmental peptidergic innervation of abdominal targets in
513 larval and adult dipteran insects revealed with an antiserum against leucokinin I. *Cell Tissue*
514 *Res* 269 (3):459-471

515 21. De Haro M, Al-Ramahi I, Benito-Sipos J, Lopez-Arias B, Dorado B, Veenstra JA, Herrero P
516 (2010) Detailed analysis of leucokinin-expressing neurons and their candidate functions in
517 the *Drosophila* nervous system. *Cell Tissue Res* 339 (2):321-336. doi:10.1007/s00441-009-
518 0890-y

519 22. Al-Anzi B, Armand E, Nagamei P, Olszewski M, Sapin V, Waters C, Zinn K, Wyman RJ,
520 Benzer S (2010) The leucokinin pathway and its neurons regulate meal size in *Drosophila*.
521 *Curr Biol* 20 (11):969-978. doi:10.1016/j.cub.2010.04.039

522 23. Cannell E, Dornan AJ, Halberg KA, Terhzaz S, Dow JA, Davies SA (2016) The corticotropin-
523 releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate
524 desiccation and starvation tolerance in *Drosophila melanogaster*. *Peptides* 80:96-107.
525 doi:10.1016/j.peptides.2016.02.004

526 24. Liu Y, Luo J, Carlsson MA, Nässel DR (2015) Serotonin and insulin-like peptides modulate
527 leucokinin-producing neurons that affect feeding and water homeostasis in *Drosophila*. *J*
528 *Comp Neurol* 523 (12):1840-1863. doi:10.1002/cne.23768

529 25. Lopez-Arias B, Dorado B, Herrero P (2011) Blockade of the release of the neuropeptide
530 leucokinin to determine its possible functions in fly behavior: chemoreception assays.
531 *Peptides* 32 (3):545-552. doi:10.1016/j.peptides.2010.07.002

532 26. Murakami K, Yurgel ME, Stahl BA, Masek P, Mehta A, Heidker R, Bollinger W, Gingras RM,
533 Kim YJ, Ja WW, Suter B, DiAngelo JR, Keene AC (2016) translin Is Required for Metabolic
534 Regulation of Sleep. *Curr Biol* 26 (7):972-980. doi:10.1016/j.cub.2016.02.013

535 27. Kim DH, Han MR, Lee G, Lee SS, Kim YJ, Adams ME (2015) Rescheduling Behavioral
536 Subunits of a Fixed Action Pattern by Genetic Manipulation of Peptidergic Signaling. *PLoS*
537 *Genet* 11 (9):e1005513. doi:10.1371/journal.pgen.1005513

538 28. Kim YJ, Zitnan D, Galizia CG, Cho KH, Adams ME (2006) A command chemical triggers an
539 innate behavior by sequential activation of multiple peptidergic ensembles. *Curr Biol* 16
540 (14):1395-1407. doi:10.1016/j.cub.2006.06.027

541 29. Luo J, Liu Y, Nässel DR (2013) Insulin/IGF-regulated size scaling of neuroendocrine cells
542 expressing the bHLH transcription factor Dimmed in *Drosophila*. *PLoS Genet* 9
543 (12):e1004052. doi:10.1371/journal.pgen.1004052

544 30. Okusawa S, Kohsaka H, Nose A (2014) Serotonin and downstream leucokinin neurons
545 modulate larval turning behavior in *Drosophila*. *J Neurosci* 34 (7):2544-2558.
546 doi:10.1523/JNEUROSCI.3500-13.2014

547 31. Sellami A, Veenstra JA (2015) SIFamide acts on fruitless neurons to modulate sexual
548 behavior in *Drosophila melanogaster*. *Peptides* 74:50-56. doi:10.1016/j.peptides.2015.10.003

549 32. Veenstra JA, Khammassi H (2017) Rudimentary expression of RYamide in *Drosophila*
550 *melanogaster* relative to other *Drosophila* species points to a functional decline of this
551 neuropeptide gene. *Insect Biochem Mol Biol* 83:68-79. doi:10.1016/j.ibmb.2017.03.001

552 33. Cabrero P, Radford JC, Broderick KE, Costes L, Veenstra JA, Spana EP, Davies SA, Dow
553 JA (2002) The *Dh* gene of *Drosophila melanogaster* encodes a diuretic peptide that acts
554 through cyclic AMP. *J Exp Biol* 205 (Pt 24):3799-3807

555 34. Terhzaz S, O'Connell FC, Pollock VP, Kean L, Davies SA, Veenstra JA, Dow JA (1999)
556 Isolation and characterization of a leucokinin-like peptide of *Drosophila melanogaster*. *J Exp*
557 *Biol* 202 (Pt 24):3667-3676

558 35. Lee KM, Daubnerova I, Isaac RE, Zhang C, Choi S, Chung J, Kim YJ (2015) A neuronal
559 pathway that controls sperm ejection and storage in female *Drosophila*. *Curr Biol* 25 (6):790-
560 797. doi:10.1016/j.cub.2015.01.050

561 36. Cavanaugh DJ, Geratowski JD, Woolerton JR, Spaethling JM, Hector CE, Zheng X,
562 Johnson EC, Eberwine JH, Sehgal A (2014) Identification of a circadian output circuit for
563 rest:activity rhythms in *Drosophila*. *Cell* 157 (3):689-701. doi:10.1016/j.cell.2014.02.024

564 37. Dus M, Lai JS, Gunapala KM, Min S, Tayler TD, Hergarden AC, Geraud E, Joseph CM, Suh
565 GS (2015) Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in *Drosophila*.
566 *Neuron* 87 (1):139-151. doi:10.1016/j.neuron.2015.05.032

567 38. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates
568 and generating dominant phenotypes. *Development* 118 (2):401-415

569 39. Asahina K, Watanabe K, Duistermars BJ, Hoopfer E, Gonzalez CR, Eyjolfsdottir EA, Perona
570 P, Anderson DJ (2014) Tachykinin-expressing neurons control male-specific aggressive
571 arousal in *Drosophila*. *Cell* 156 (1-2):221-235. doi:10.1016/j.cell.2013.11.045

572 40. Jenett A, Rubin GM, Ngo TT, Shepherd D, Murphy C, Dionne H, Pfeiffer BD, Cavallaro A,
573 Hall D, Jeter J, Iyer N, Fetter D, Hausenfluck JH, Peng H, Trautman ET, Svirskas RR, Myers
574 EW, Iwinski ZR, Aso Y, DePasquale GM, Enos A, Hulamm P, Lam SC, Li HH, Laverty TR,
575 Long F, Qu L, Murphy SD, Rokicki K, Safford T, Shaw K, Simpson JH, Sowell A, Tae S, Yu
576 Y, Zugates CT (2012) A GAL4-driver line resource for *Drosophila* neurobiology. *Cell Rep* 2
577 (4):991-1001. doi:10.1016/j.celrep.2012.09.011

578 41. Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S,
579 Scheiblauer S, Couto A, Marra V, Keleman K, Dickson BJ (2007) A genome-wide transgenic
580 RNAi library for conditional gene inactivation in *Drosophila*. *Nature* 448 (7150):151-156.
581 doi:10.1038/nature05954

582 42. Pfeiffer BD, Truman JW, Rubin GM (2012) Using translational enhancers to increase
583 transgene expression in *Drosophila*. *Proc Natl Acad Sci U S A* 109 (17):6626-6631.
584 doi:10.1073/pnas.1204520109

585 43. Kubrak OI, Lushchak OV, Zandawala M, Nässel DR (2016) Systemic corazonin signalling
586 modulates stress responses and metabolism in *Drosophila*. *Open Biol* 6 (11).
587 doi:10.1098/rsob.160152

588 44. Nässel DR, Cantera R, Karlsson A (1992) Neurons in the cockroach nervous system
589 reacting with antisera to the neuropeptide leucokinin I. *J Comp Neurol* 322 (1):45-67.
590 doi:10.1002/cne.903220105

591 45. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S,
592 Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak
593 P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. *Nat Methods*
594 9 (7):676-682. doi:10.1038/nmeth.2019

595 46. Kahsai L, Kapan N, Dirksen H, Winther AM, Nässel DR (2010) Metabolic stress responses
596 in *Drosophila* are modulated by brain neurosecretory cells that produce multiple
597 neuropeptides. *PLoS One* 5 (7):e11480. doi:10.1371/journal.pone.0011480

598 47. Dow JA, Maddrell SH, Gortz A, Skaer NJ, Brogan S, Kaiser K (1994) The Malpighian
599 tubules of *Drosophila melanogaster*: a novel phenotype for studies of fluid secretion and its
600 control. *J Exp Biol* 197:421-428

601 48. Alvarez-Rivero J, Moris-Sanz M, Estacio-Gomez A, Montoliu-Nerin M, Diaz-Benjumea FJ,
602 Herrero P (2017) Variability in the number of abdominal leucokinergic neurons in adult
603 *Drosophila melanogaster*. *J Comp Neurol* 525 (3):639-660. doi:10.1002/cne.24093

604 49. Dirksen H, Tesfai LK, Albus C, Nässel DR (2008) Ion transport peptide splice forms in
605 central and peripheral neurons throughout postembryogenesis of *Drosophila melanogaster*. *J*
606 *Comp Neurol* 509 (1):23-41. doi:10.1002/cne.21715

607 50. Cognigni P, Bailey AP, Miguel-Aliaga I (2011) Enteric neurons and systemic signals couple
608 nutritional and reproductive status with intestinal homeostasis. *Cell Metab* 13 (1):92-104.
609 doi:10.1016/j.cmet.2010.12.010

610 51. Chintapalli VR, Wang J, Dow JA (2007) Using FlyAtlas to identify better *Drosophila*
611 *melanogaster* models of human disease. *Nat Genet* 39 (6):715-720. doi:10.1038/ng2049

612 52. Bhatt G, da Silva R, Nachman RJ, Orchard I (2014) The molecular characterization of the
613 kinin transcript and the physiological effects of kinins in the blood-gorging insect, *Rhodnius*
614 *prolixus*. *Peptides* 53:148-158. doi:10.1016/j.peptides.2013.04.009

615 53. Cabrero P, Terhzaz S, Romero MF, Davies SA, Blumenthal EM, Dow JA (2014) Chloride
616 channels in stellate cells are essential for uniquely high secretion rates in neuropeptide-

617 stimulated *Drosophila* diuresis. Proc Natl Acad Sci U S A 111 (39):14301-14306.
618 doi:10.1073/pnas.1412706111

619 54. Chen Y, Veenstra JA, Hagedorn H, Davis NT (1994) Leucokinin and diuretic hormone
620 immunoreactivity of neurons in the tobacco hornworm, *Manduca sexta*, and co-localization of
621 this immunoreactivity in lateral neurosecretory cells of abdominal ganglia. Cell Tissue Res
622 278 (3):493-507

623 55. Thompson KS, Rayne RC, Gibbon CR, May ST, Patel M, Coast GM, Bacon JP (1995)
624 Cellular colocalization of diuretic peptides in locusts: a potent control mechanism. Peptides
625 16 (1):95-104

626 56. Te Brugge VA, Nässel DR, Coast GM, Schooley DA, Orchard I (2001) The distribution of a
627 kinin-like peptide and its co-localization with a CRF-like peptide in the blood-feeding bug,
628 *Rhodnius prolixus*. Peptides 22 (2):161-173

629 57. Terhzaz S, Teets NM, Cabrero P, Henderson L, Ritchie MG, Nachman RJ, Dow JA,
630 Denlinger DL, Davies SA (2015) Insect capa neuropeptides impact desiccation and cold
631 tolerance. Proc Natl Acad Sci U S A 112 (9):2882-2887. doi:10.1073/pnas.1501518112

632

633 Figure captions

634

635 **Figure 1: The *Lk-GAL4* drives GFP expression in four distinct neuronal**
636 **populations in the adult *Drosophila* CNS. (A)** One pair of neurons in the lateral horn
637 (lateral horn LK neurons; LHLKs) and another pair of neurons in the subesophageal
638 ganglion (subesophageal ganglion LK neurons; SELKs) express LK in adult brain of
639 *Drosophila*. *Lk-GAL4* also drives weak and variable expression in four pairs of neurons
640 in the brain (approximate location of these cells is indicated by the white box; see figure
641 S2 for an alternate preparation where these cells are weakly stained). **(B)** These four
642 pairs of neurons do not display any LK-immunoreactivity but are positive for ITP-
643 immunoreactivity [21]. **(C)** In the ventral nerve cord (VNC), LK is expressed in eleven
644 pairs of neurons (abdominal LK neurons; ABLKs). Seven pairs of smaller neurons in the
645 posterior region (p) persist from the larval stages and the other four pairs (the number of
646 pairs can vary between individuals) of larger neurons in the anterior region (a) are adult-
647 specific [48]. **(D)** A schematic depiction of LK-expressing neurons in the brain and VNC
648 of adult *Drosophila*. T1 – T3, thoracic neuromeres. **(E)** *Lk-GAL4* also drives ectopic
649 expression in the salivary glands of adult *Drosophila*. **Note:** JFRC29-10xUAS-IVS-
650 *myr::GFP-p10* was utilized in **A, C** and **E** whereas *UAS-mcd8-GFP* was utilized in **B**.

651

652 **Figure 2: DH44 expression in the adult *Drosophila* CNS. (A)** DH44 is expressed in
653 three pairs of median neurosecretory cells (MNCs) in pars intercerebralis of adult
654 *Drosophila*. Antiserum to *Drosophila* DH44 labels the same neurons identified by *DH44*-

655 **GAL4**-driven GFP. **(B)** In the dorsal region of the ventral nerve cord (VNC), DH44 is
656 expressed in two pairs of neurons. **(C)** In the ventral region of the VNC, DH44 is
657 expressed in at least three pairs of neurons. In both B and C, there are some neurons
658 that display DH44-immunoreactivity but do not express GFP.

659

660 **Figure 3: LK and DH44 are coexpressed in the ventral nerve cord, but not in the**
661 **brain of adult *Drosophila*.** **(A)** DH44-GAL4 driven GFP is not colocalized with LK-
662 immunoreactivity in the adult brain. **(B)** DH44-GAL4 driven GFP is colocalized with LK-
663 immunoreactivity in a subset of the abdominal LK neurons (ABLks) in the ventral nerve
664 cord (VNC) **(C)** Lk-GAL4 driven GFP is not colocalized with DH44-immunoreactivity in
665 the adult brain. **(D)** Lk-GAL4 driven GFP is colocalized with DH44-immunoreactivity in a
666 subset of ABLks in the adult VNC.

667

668 **Figure 4: Schematics of LK- and DH44-expressing neurons in the larval and adult**
669 **CNS of *Drosophila*.** **(A)** A schematic of the larval CNS showing the location of neurons
670 expressing LK, DH44 or both LK and DH44. **(B)** A schematic of the adult CNS showing
671 the location of neurons expressing LK, DH44 or both LK and DH44. LHLK, lateral horn
672 LK neuron; SELK, subesophageal ganglion LK neuron; ABLK, abdominal LK neuron, T1
673 – T3, thoracic neuromeres.

674

675 **Figure 5: Lk- and DH44-RNAi knockdown efficiency was tested using**
676 **immunolabelling.** **(A, B)** Knock down of Lk with Lk-GAL4 driven Lk-RNAi causes a
677 significant decrease in LK-immunoreactivity in the adult brain and ventral nerve cord
678 (VNC). **(C)** Fluorescence intensity measurement of lateral horn LK neurons shows a
679 significant decrease in LK-immunoreactivity in Lk knock down flies compared to control
680 flies. (*p < 0.0001, as assessed by unpaired t test). CTCF, corrected total cell
681 fluorescence. **(D)** DH44-GAL4 driven Lk-RNAi causes a significant decrease in LK-
682 immunoreactivity in the adult VNC as determined by the number of immunoreactive
683 neurons (the average number of neurons is indicated in each panel; see figure S6) that
684 could be detected. Whereas, DH44-GAL4 driven DH44-RNAi causes a significant
685 increase in LK-immunoreactivity in adult ABLks. (*p < 0.001, as assessed by unpaired t
686 test). **(E)** and a complete abolishment of DH44-immunoreactivity in the adult brain **(F)**
687 and VNC **(G)**.

688

689 **Figure 6: Knockdown of *Lk* using *Lk-GAL4* impacts stress resistance and water**
690 **content of *Drosophila*.** *Lk-GAL4* driven *Lk* knock down results in a significant increase
691 in survival compared to control flies under **(A)** desiccation, **(B)** starvation and **(C)** ionic
692 stress (artificial food supplemented with 4% NaCl). Data are presented in survival
693 curves and the error bars represent standard error (**** p < 0.0001, as assessed by
694 Log-rank (Mantel-Cox) test) **(D)** *Lk* knock down has no impact on chill coma recovery.
695 **(E)** There is no significant difference (One-way ANOVA) in feeding as measured by
696 capillary feeding (CAFE) assay between *Lk* knock down and control flies. Results are
697 presented as cumulative food intake over four days. **(F)** Flies with *Lk* knock down have
698 a higher wet weight and dry weight and retain more water (wet weight minus dry weight)
699 compared to control flies. (* p < 0.05, ** p < 0.01, *** p < 0.001, as assessed by One-
700 way ANOVA). Legend for B-F is the same as the one in A.

701

702 **Figure 7: Knockdown of *DH44* using *Lk-GAL4* impacts stress resistance and**
703 **feeding in *Drosophila*.** *Lk-GAL4* driven *DH44* knock down results in a significant
704 increase in survival compared to control flies under **(A)** desiccation, **(B)** starvation and
705 **(C)** ionic stress (artificial food supplemented with 4% NaCl). Data are presented in
706 survival curves and the error bars represent standard error (**** p < 0.0001, as
707 assessed by Log-rank (Mantel-Cox) test) **(D)** *DH44* knock down causes a small delay in
708 chill coma recovery. (* p < 0.05, as assessed by Log-rank (Mantel-Cox) test) **(E)** Flies
709 with *DH44* knockdown feed less compared to control flies in capillary feeding (CAFE)
710 assay. Results are presented as cumulative food intake over four days. (*** p < 0.001,
711 **** p < 0.0001, as assessed by One-way ANOVA). **(F)** There is no significant difference
712 in wet weight, dry weight and water content of *DH44*-knockdown and control flies.
713 Legend for B-F is the same as the one in A.

714

715 **Figure 8: Knockdown of *Lk* using *DH44-GAL4* impacts stress resistance and**
716 **water content of *Drosophila*.** *DH44-GAL4* driven *Lk* knock down results in a significant
717 increase in survival compared to control flies under **(A)** desiccation, **(B)** starvation and
718 **(C)** ionic stress (artificial food supplemented with 4% NaCl). Data are presented in
719 survival curves and the error bars represent standard error (**** p < 0.0001, as
720 assessed by Log-rank (Mantel-Cox) test) **(D)** *Lk* knock down results in a delayed

721 recovery from chill coma. (* p < 0.05, as assessed by Log-rank (Mantel-Cox) test) **(E)**
722 There is no significant difference (One-way ANOVA) in feeding as measured by
723 capillary feeding (CAFE) assay between *Lk* knock down and control flies. Results are
724 presented as cumulative food intake over four days. **(F)** Flies with *Lk* knock down in
725 ABLKs have a higher wet weight, dry weight and retain more water (wet weight minus
726 dry weight) compared to control flies. (** p < 0.01, *** p < 0.001, **** p < 0.0001, as
727 assessed by One-way ANOVA). Legend for B-F is the same as the one in A.

728
729 **Figure 9: LK and DH44 peptide application results in an additive response on fluid
730 secretion by Malpighian tubules (MTs) ex vivo. (A)** Secretion rates of MTs incubated
731 with 10^{-7} M DH44 ($n = 28$), 10^{-10} M LK ($n = 25$), a combination of both 10^{-7} M DH44 and
732 10^{-10} M LK ($n = 23$), or no treatment/basal ($n = 14$). **(B)** Secretion rates of MTs
733 incubated with 10^{-9} M DH44 ($n = 14$), 10^{-10} M LK ($n = 25$), a combination of both 10^{-9} M
734 DH44 and 10^{-10} M LK ($n = 31$), or no treatment/basal ($n = 13$). For both A and B,
735 secretion rates were measured at 10 min intervals for 30 min before and after the
736 addition of peptide (indicated with an arrow). Asterisk indicates significantly different
737 secretion rate compared to basal secretion rate (secretion rate prior to the addition of
738 peptide. For further statistics see Table 4. **(C, D)** Change (%) in secretion determined by
739 comparing the secretion rate over the first 30 min to the maximum secretion rate
740 following peptide application. The legend and sample size for C and D are the same as
741 the one in A and B, respectively. **(E, F)** Total fluid secreted for 30 min following peptide
742 application or no treatment (basal). Note that the amount of total fluid secreted following
743 the addition of both LK (10^{-10} M) and DH44 (10^{-7} M) is a sum of the total fluid secreted
744 following the addition of each of those peptides separately. (* p < 0.05, ** p < 0.01, *** p
745 < 0.001, **** p < 0.0001; Mann-Whitney U test).

746
747
748
749

750 **Supplementary files**

751
752 **Figure S1: LK and DH44 expression in the larval *Drosophila* CNS. (A)** *Lk-GAL4*
753 drives expression in five pairs of neurons in the brain; however, four of these pairs do

754 not display any LK-immunoreactivity [21]. **(B)** These four pairs of neurons display ITP-
755 immunoreactivity. **(C)** Three pairs of neurons in the subesophageal ganglion express *Lk*
756 in larval *Drosophila*. **(D)** Seven pairs of neurons in the larval ventral nerve cord (VNC)
757 express *Lk*. **(E)** A schematic of LK-expressing neurons in the larval brain and VNC of
758 *Drosophila*. Neurons displaying LK-immunoreactivity are labeled in red and neurons
759 displaying ITP-immunoreactivity are labeled in black. **(F)** *DH44-GAL4* driven GFP and
760 DH44-immunoreactivity is present in three pairs of median neurosecretory cells in the
761 larval brain. **(G)** DH44 is expressed in several neurons, with strong expression seen in
762 seven pairs of neurosecretory cells in the larval VNC. In both F and G, there are some
763 neurons that contain GFP but do not contain DH44-immunoreactivity.

764

765 **Figure S2: LK expression in adult *Drosophila* brain.** *Lk-GAL4* drives weak GFP
766 expression in four pairs on neurons in the adult brain. The location of these cells is
767 indicated by white boxes.

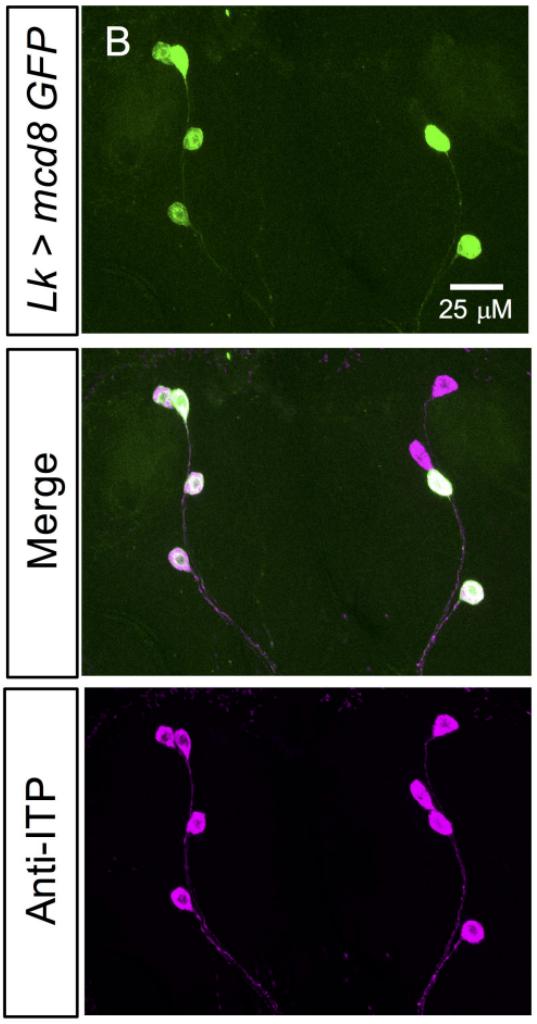
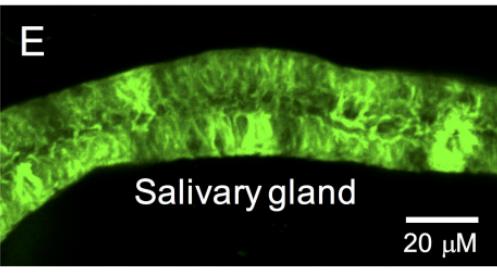
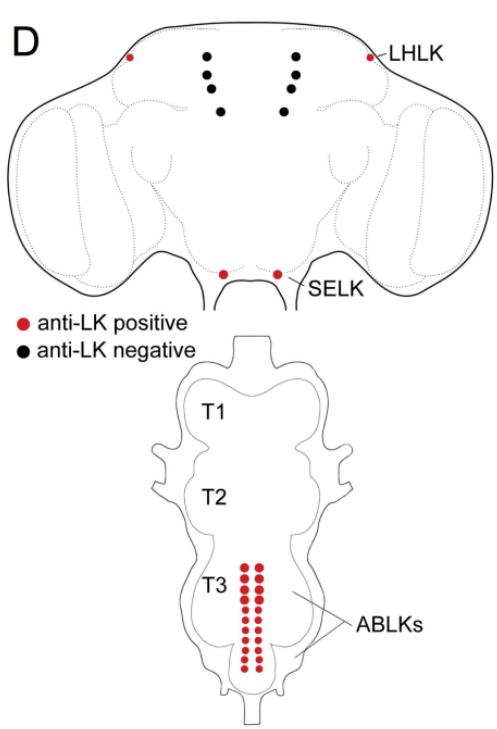
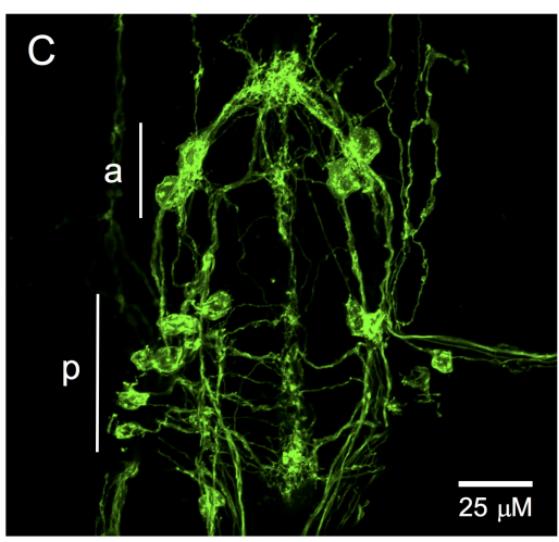
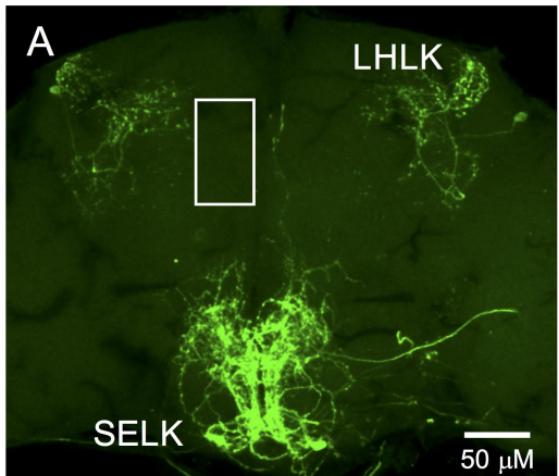
768

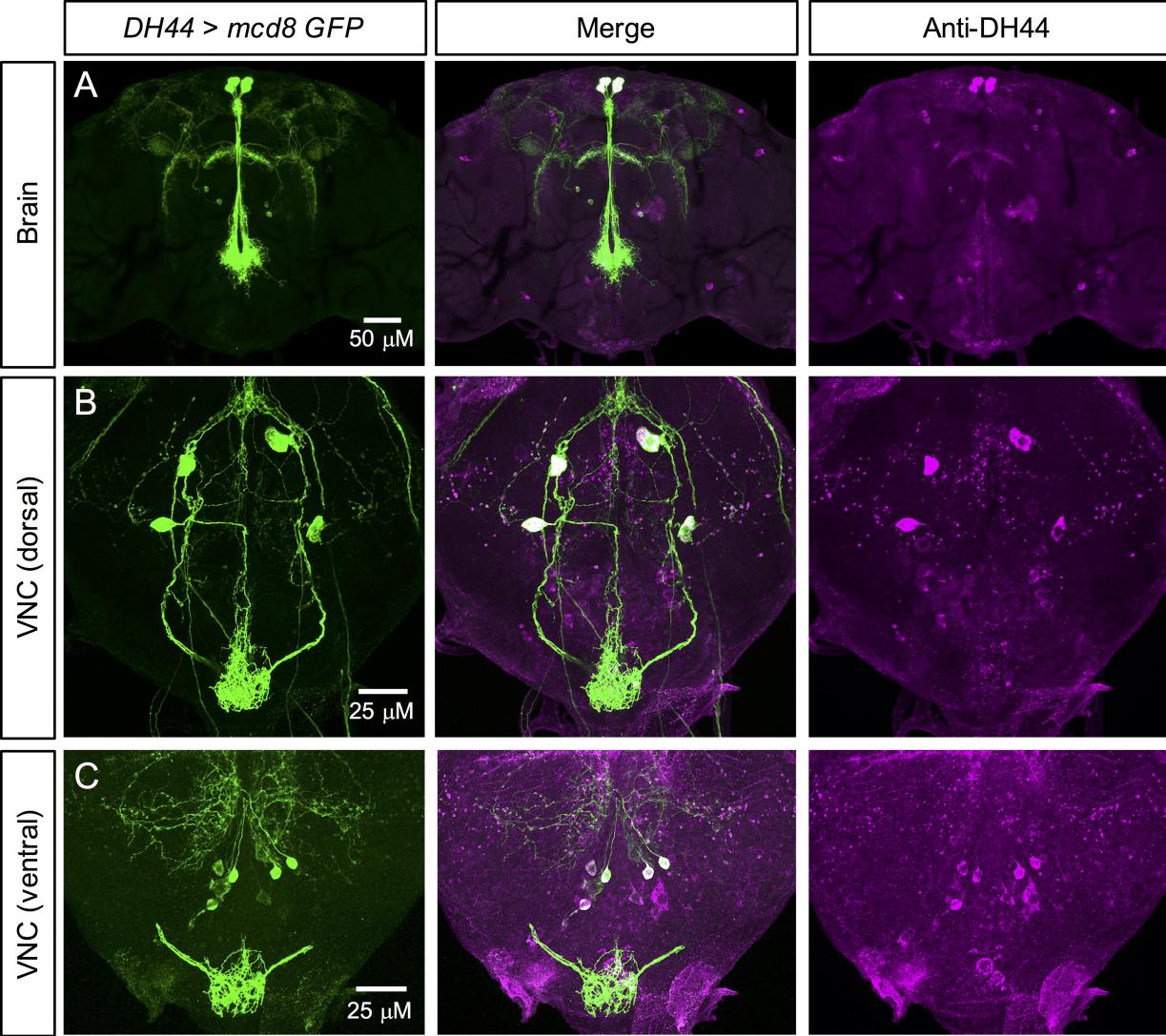
769 **Figure S3: LK and DH44 are coexpressed in neurons of the ventral nerve cord**
770 **but not in the brain of larval *Drosophila*.** **(A)** *DH44-GAL4* driven GFP is not
771 colocalized with LK-immunoreactivity in the larval brain. **(B)** *DH44-GAL4* driven GFP is
772 colocalized with LK-immunoreactivity in all seven pairs of abdominal LK neurons
773 (ABLKs) in the ventral nerve cord (VNC) **(C)** *Lk-GAL4* driven GFP is not colocalized with
774 DH44-immunoreactivity in the larval brain. **(D)** *Lk-GAL4* driven GFP is colocalized with
775 DH44-immunoreactivity in ABLKs in the larval VNC.

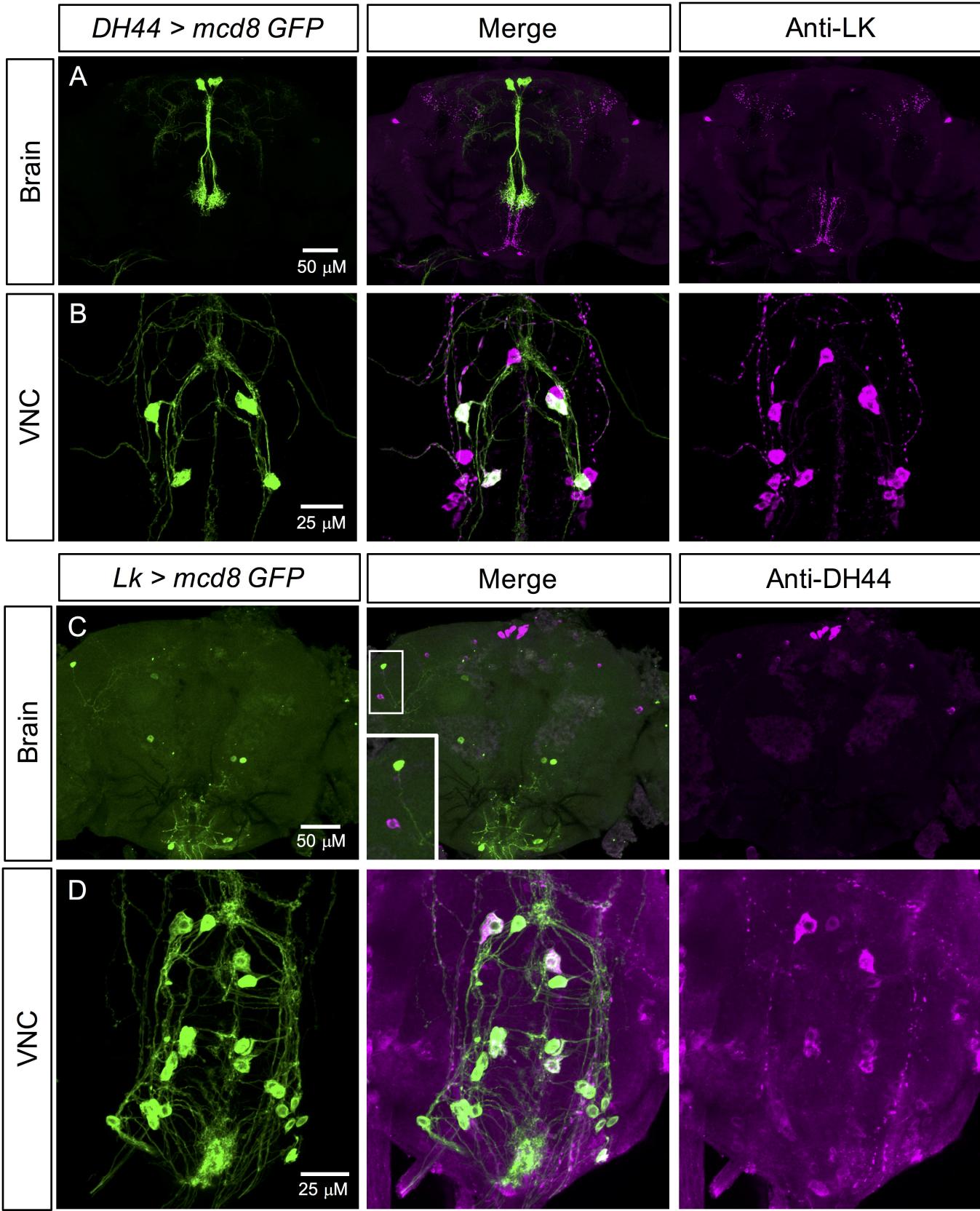
776

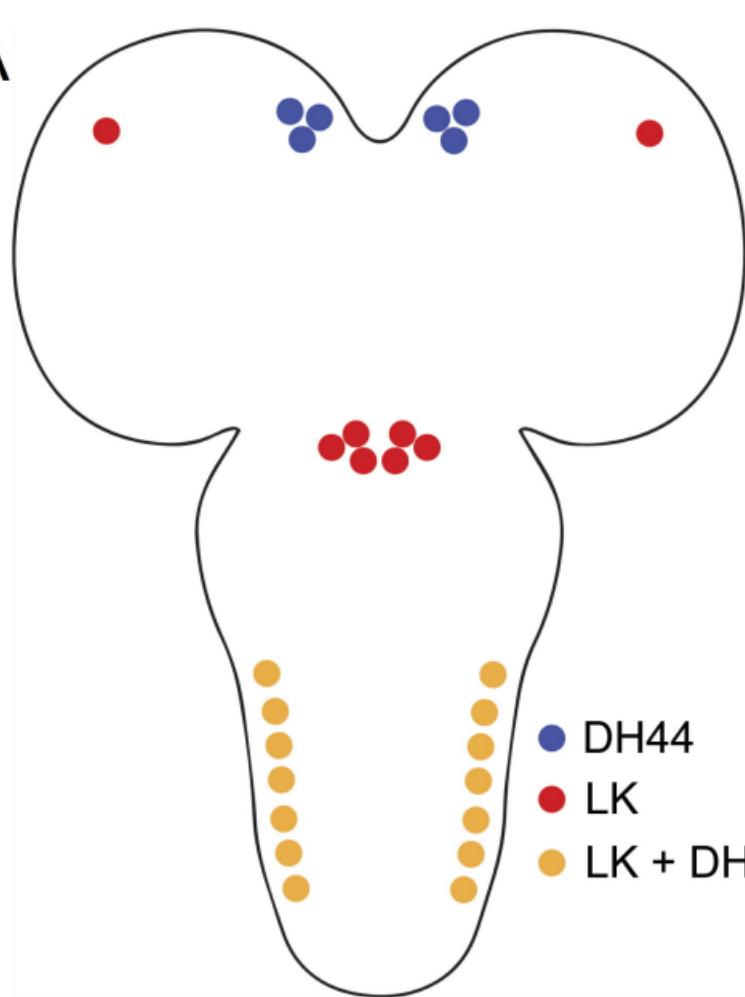
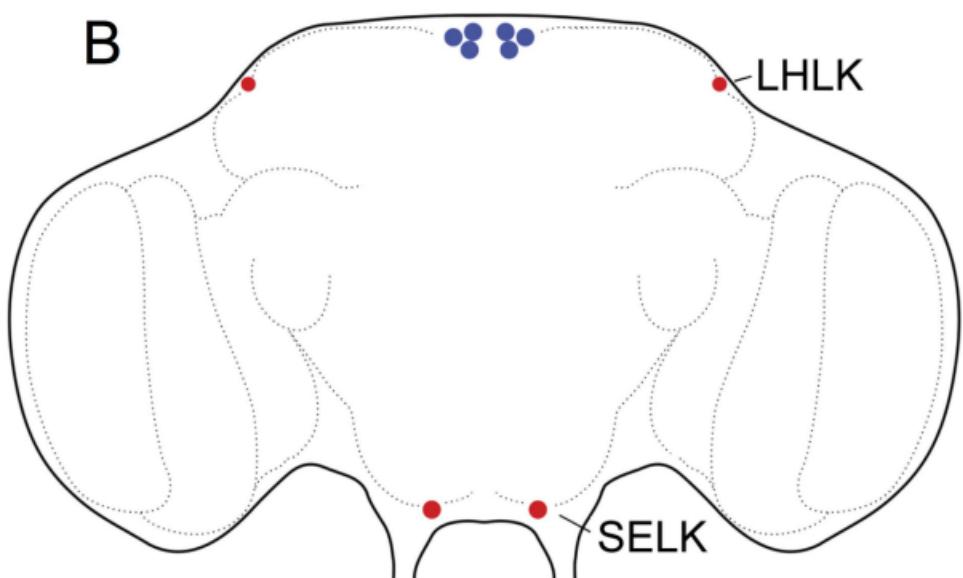
777 **Figure S4: Knockdown of DH44 using *Actin5c-GAL4*.** *Actin5c-GAL4* driven *DH44*
778 knockdown results in a complete abolishment of DH44-immunoreactivity in the six
779 neurons in pars intercerebralis of adult *Drosophila*.

780

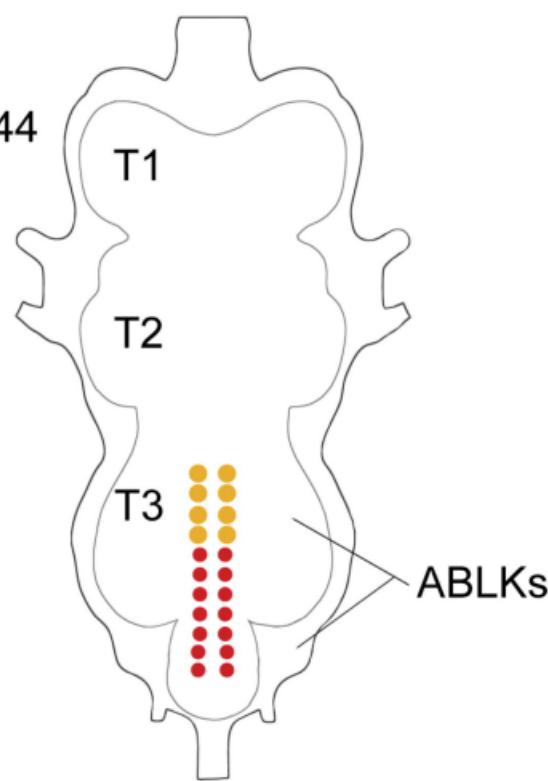





781 **Figure S5: Number of LK-immunoreactive neurons in the VNC following**
782 **knockdown of DH44 and Lk using DH44-GAL4.** *Lk* knockdown but not *DH44*
783 knockdown causes a significant decrease in the number of LK-immunoreactive neurons
784 that could be detected in the adult VNC. (**** p < 0.0001, as assessed by One-way
785 ANOVA).

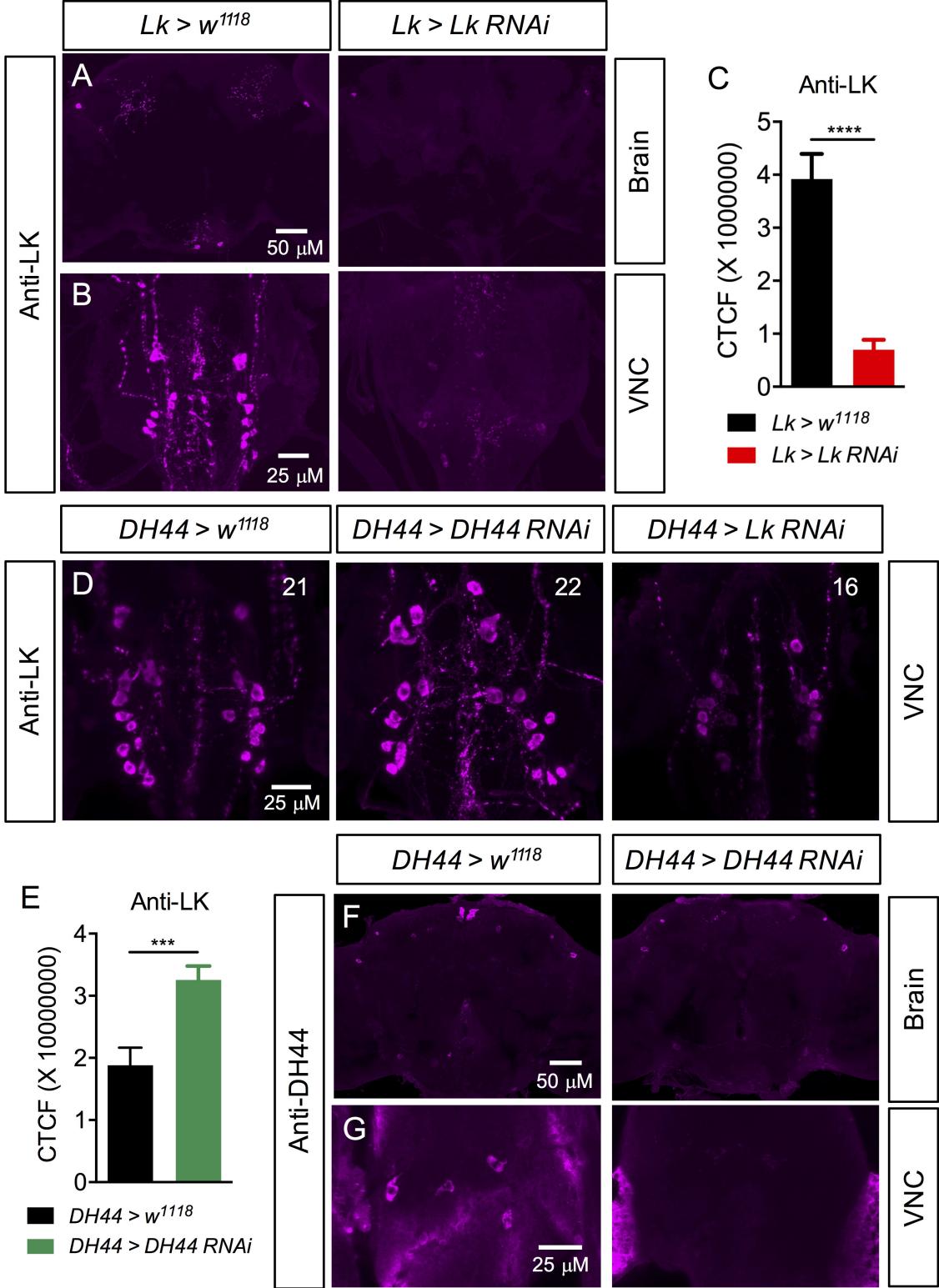

786

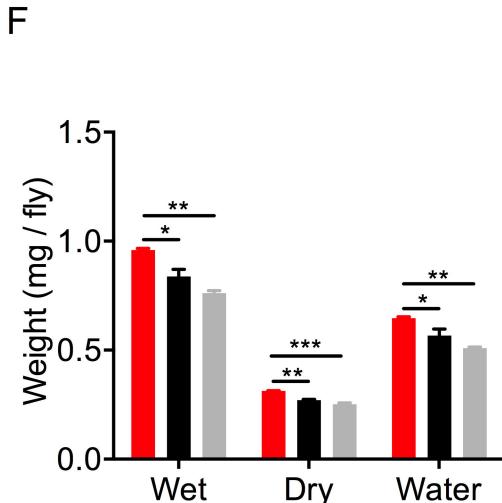
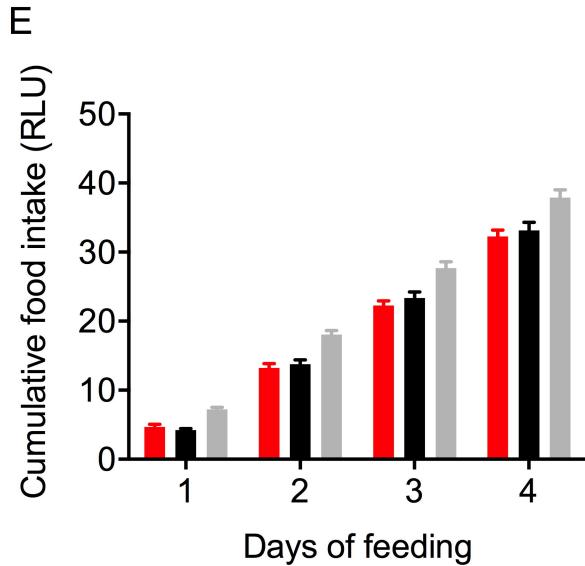
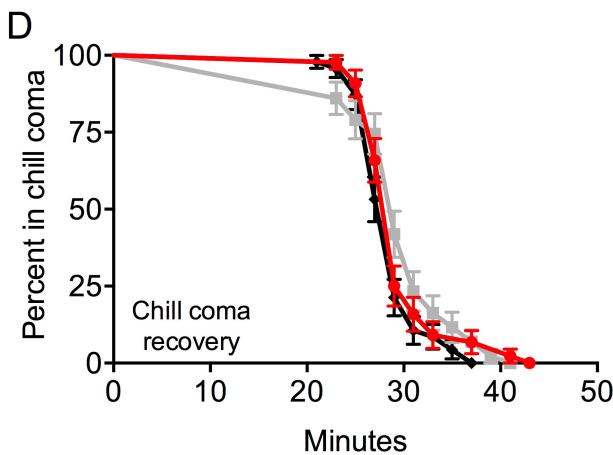
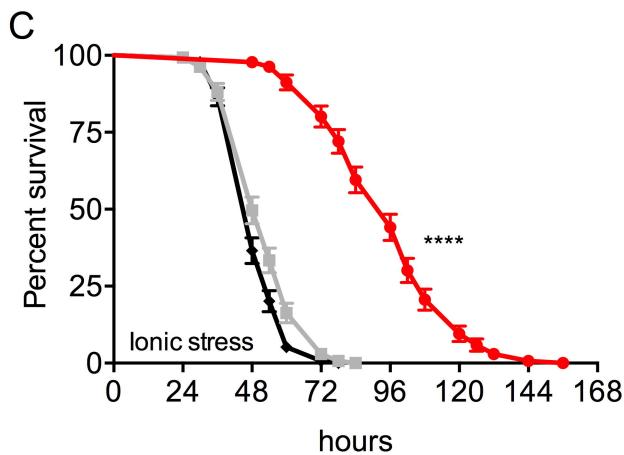
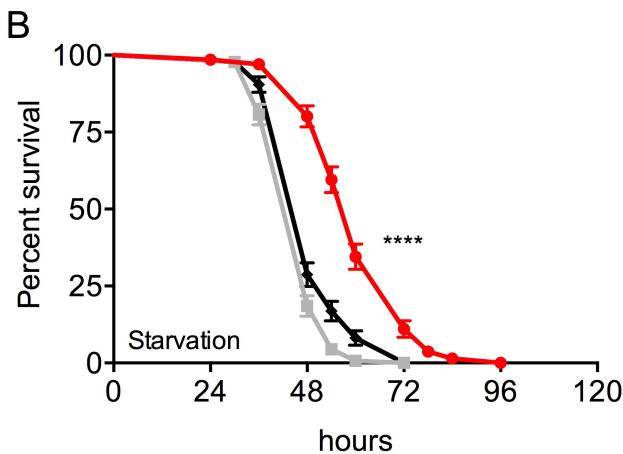
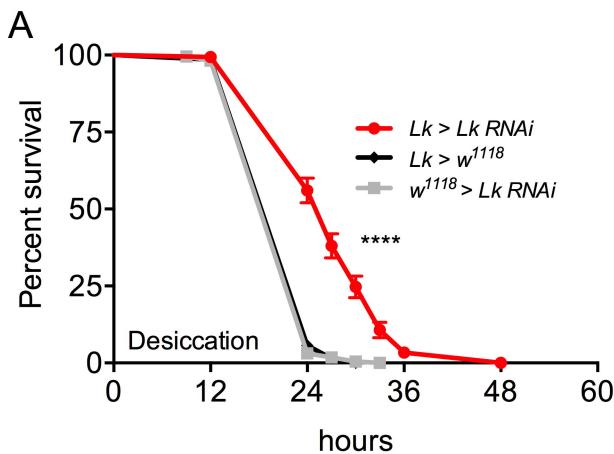

787 **Figure S6: Knockdown of *DH44* using *DH44-GAL4* impacts stress resistance and**
788 **feeding in *Drosophila*.** *DH44-GAL4* driven *DH44* knock down results in a significant
789 increase in survival compared to control flies under **(A)** desiccation (compared to the
790 *GAL4* control), **(B)** starvation and **(C)** ionic stress (artificial food supplemented with 4%
791 NaCl). Data are presented in survival curves and the error bars represent standard error
792 (**** p < 0.0001, as assessed by Log-rank (Mantel-Cox) test) **(D)** *Lk* knock down results
793 in a delayed recovery from chill coma. (* p < 0.05, as assessed by Log-rank (Mantel-
794 Cox) test) **(E)** There is a significant decrease (One-way ANOVA) in feeding as
795 measured by capillary feeding (CAFE) assay in *DH44* knock down flies (compared to
796 the *GAL4* control). Results are presented as cumulative food intake over four days. **(F)**
797 There is no significant difference in wet weight, dry weight and water content of *DH44*-
798 knockdown and control flies. Legend for B-F is the same as the one in A.
799

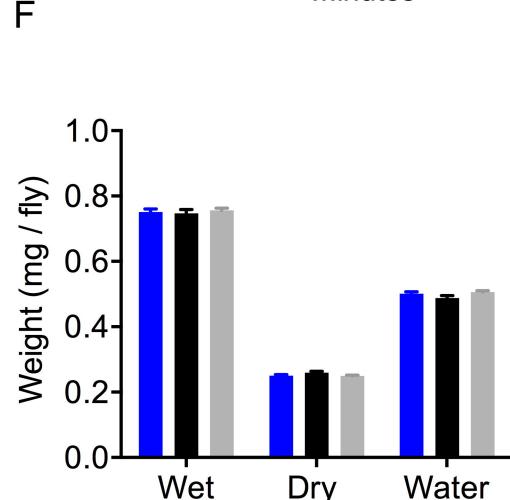
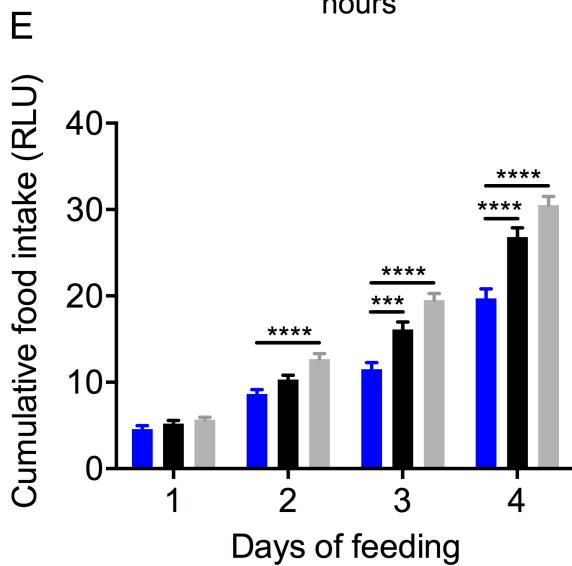
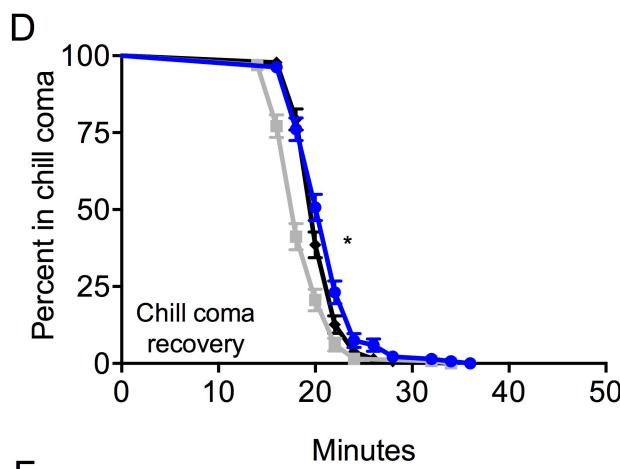
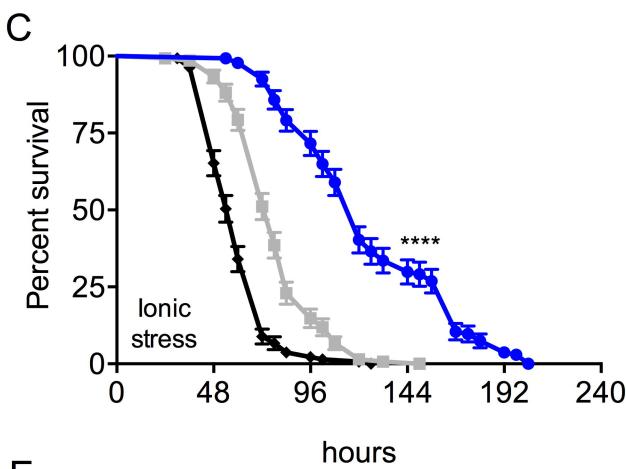
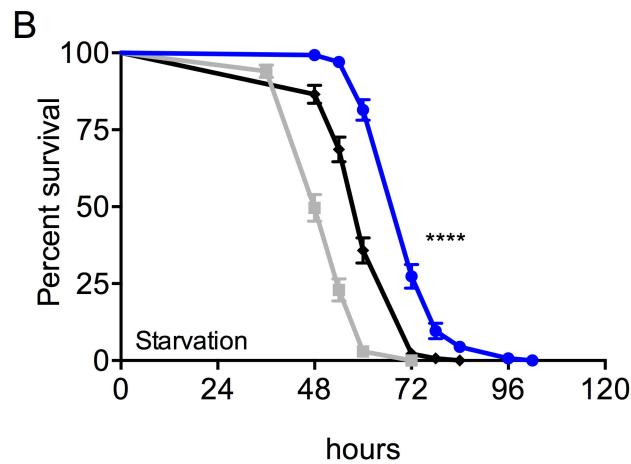
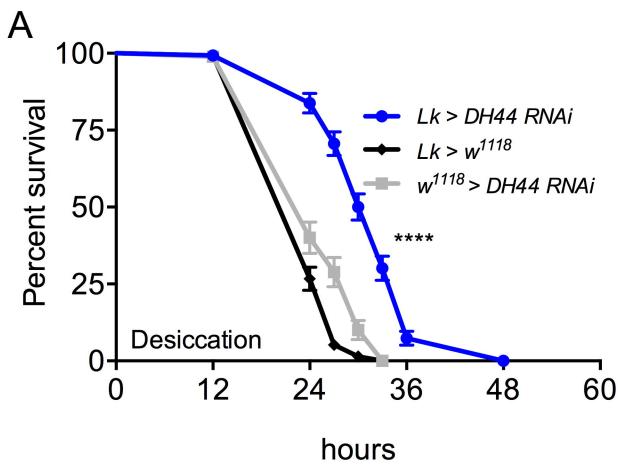


800 **Figure S7: Knockdown of *Lk* in ABLKs with *DH44-GAL4* does not influence LK-**
801 **stimulated Malpighian tubule secretion *ex vivo*.** **(A)** Secretion rates of 10^{-9} M LK
802 stimulated MTs isolated from *DH44* > *w¹¹¹⁸* (n = 14) or *DH44* > *Lk RNAi* flies (n = 25).
803 **(B)** Secretion rates of 10^{-10} M LK stimulated MTs isolated from *DH44* > *w¹¹¹⁸* (n = 10) or
804 *DH44* > *Lk RNAi* flies (n = 12). For both A and B, secretion rates were measured at 10
805 min intervals for 30 min before and after the addition of peptide (indicated with an
806 arrow). **(C, D)** Change (%) in secretion determined by comparing the secretion rate over
807 the first 30 min to the maximum secretion rate following peptide application. The legend
808 and sample size for C and D are the same as the one in A and B, respectively. Asterisk
809 indicates significantly different secretion rate compared to basal secretion rate
810 (secretion rate prior to the addition of peptide). (NS = not significant, * p < 0.05, ** p <
811 0.01, *** p < 0.001; Mann-Whitney U test)

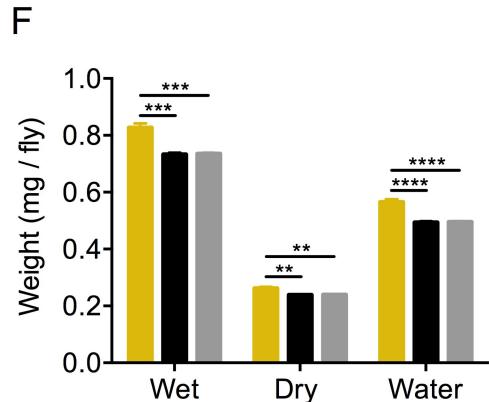
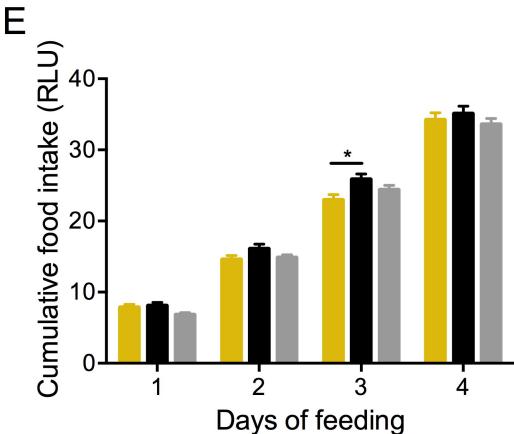
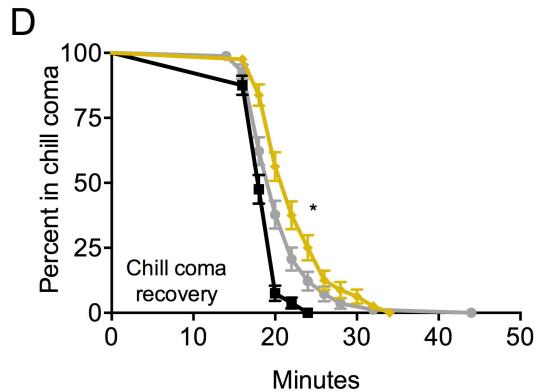
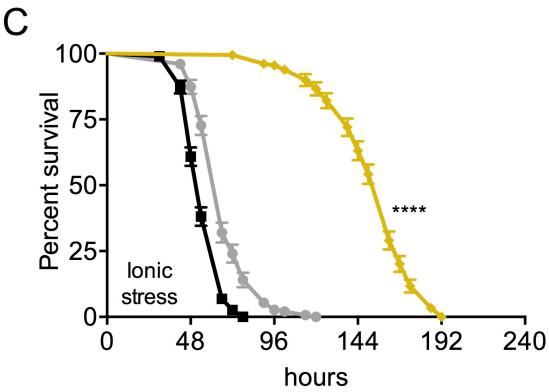
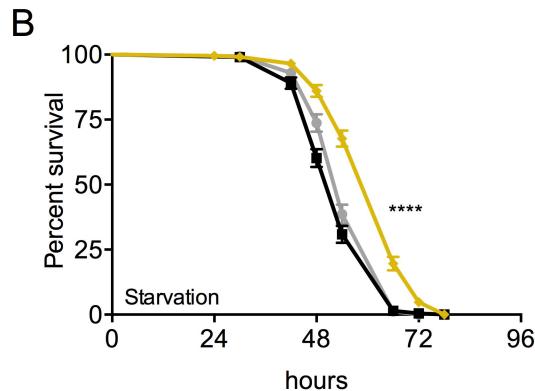
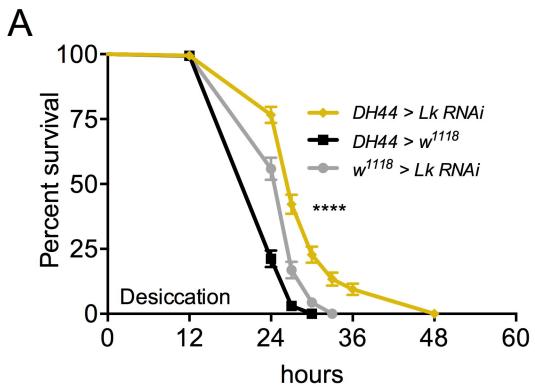
812




A**B**







● DH44







● LK







● LK + DH44

