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Abstract
In microorganisms such as bacteria or yeasts, metabolic rates are tightly coupled

to growth rate, and therefore to fitness. Although the topology of central pathways
are largely conserved across organisms, the enzyme kinetics and their parameters
generally vary. This prevents us to understand and predict (changes in) metabolic
dynamics. The analytical treatment of metabolic pathways is generally restricted to
small models, containing maybe two to four equations. Since such small core models
involve much coarse graining, their biological interpretation is often hampered. In
this paper we aim to bridge the gap between analytical, more in-depth treatment of
small core models and biologically more realistic and detailed models by developing
new methods. We illustrate these methods for a model of glycolysis in Saccharo-
myces cerevisiae yeast, arguably the best characterised metabolic pathway in the
literature. The model is more involved than in previous studies, and involves both
ATP/ADP and NADH/NAD householding.

A detailed analysis of the steady state equations sheds new light on two recently
studied biological phenomena in yeast glycolysis: whether it is to be expected that
fructose-1,6-biphosphate (FBP) parameterises all steady states, and the occurrence
of bistability between a regular steady state and imbalanced steady state in which
glycolytic intermediates keep accumulating.

This work shows that the special structure of metabolic pathways does allow
for more in-depth bifurcation analyses than is currently the norm. We especially
emphasise which of the techniques developed here scale to larger pathways, and
which do not.

1 Introduction

Metabolism is central to all life. The underlying network of enzyme-catalysed re-
actions changes with environmental conditions to sustain the living state. In mi-
croorganisms metabolic regulation is even more important, since metabolic rates
are directly coupled to cellular growth rate, and hence to fitness. Understanding
the dynamics of metabolic networks is therefore an important challenge in systems
biology.

A comforting observation is that the reaction network of central metabolism
has nearly identical topology across microorganisms. The enzyme kinetics and its
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parametrisation varies however between microorganisms, which prevents prediction
of metabolic dynamics of poorly understood given the dynamics of those we under-
stand much better. It is therefore of importance to develop methods that analyse
the dynamics of unparameterised ordinary-differential-equation models of metabolic
networks. That this is likely possible is because the mathematical functions that
describe the rate of enzymes as function of the concentration of metabolic interme-
diates (reactant and effector molecules) and kinetic parameters are strongly con-
strained by protein biochemistry. Here we undertake this challenge for glycolysis,
the most conserved metabolic pathway in biology. We focus on its implementation
in the yeast Saccharomyces cerevisiae, for which we know its dynamic behaviour
(such as oscillations, bistability and exploding states) and plenty of enzyme kinetic
information is available.

The glycolysis pathway has been the focus of research for decades. It meta-
bolises glucose into pyruvate, thereby using the free energy to generate 2-adenine
5’-triphosphate (ATP) and the freed electrons to reduce nicotinamide adenine di-
nucleotide (NAD) to NADH. Glycolysis is essential for cells: it provides much of
the ATP that drives countless biological processes, and glycolysis provides some of
the most important precursor molecules, such as pyruvate, from which amino acids,
lipids and other macromolecules are synthesised. Moreover, many branches feed
into glycolysis, so that other sugars, such as fructose, galactose, sucrose, maltose,
lactose and others, may be metabolised through this pathway as well.

When yeast is deprived of oxygen, its glycolysis converts pyruvate further into
ethanol and CO2 by oxidising NADH. This yields a very fast but inefficient energy
production, in which 2 out of the potential 12 ATP are obtained from one mo-
lecule of glucose. The yeast glycolytic pathway has been studied extensively over
the years, and two fully detailed models have been developed which include fully
parameterised reaction kinetics for all the individual enzymatic steps [20, 9]. Never-
theless, despite this wealth of detail, a number of regulatory and dynamical aspects
of yeast glycolysis remain poorly understood at present.

When the metabolite concentrations external to the cell change, for instance if
a new food source becomes abundant, the cell’s limited enzyme production needs
to be redistributed by the gene regulatory network to reach a new steady state to
maximise the flux through glycolysis. It has very recently been shown that enzyme
levels are indeed pervasively tuned to maximise growth rate [10]. The gene net-
work is responsible for tuning enzyme levels, but it needs input from the pathway it
controls to sense changes in the environment. Nutrient-specific membrane recept-
ors could provide such input, and yeast has a detailed glucose-sensing mechanism
[4]. Nevertheless, as in most bacteria [11], yeast cells also sense the flux through
glycolysis by using glycolytic intermediates binding to transcription factors. These
then influence gene expression. Experimental evidence suggests that the glycolytic
intermediate fructose-1,6-biphosphate (FBP) acts as a flux-sensor [2, 8], directly
influencing the gene network and thereby inducing changes in the glycolytic enzyme
levels, a form of adaptive control [15].

However, it less clear why FBP should play this role as sensor. For FBP to
function properly, its concentration should contain sufficient information to assess
the metabolic flux through glycolysis. The FBP concentration should therefore be
associated to a unique steady state concentration profile. This has been shown to
be true experimentally and a mechanism has been proposed [11], but it is much
less clear how this property emerges from the kinetic properties of the glycolytic
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pathway. We investigate here for a detailed core model under what parameter
assumptions FBP indeed parametrises steady states. We also ask the question
whether the steady states may actually be faithfully predicted by a flux value, for
instance one of the FBP-consuming fluxes.

Glycolysis, in yeast specifically, has held another mystery for years. Yeast can
synthesise trehalose from the glycolytic intermediate glucose 6-phosphate. This
reaction is not a step of the glycolysis pathway, so one does not expect glycolysis to
fail when this reaction is disabled by means of a gene knockout. However, many cells
of the mutant in which this particular knockout is performed, the tps1-∆ mutant,
are not able to grow on glucose [22]. In [22] it was revealed that this mutant shows a
form of bistability between a regular steady state and an imbalanced state in which
some intermediate metabolites, including FBP, accumulate in the cell, reaching toxic
levels. In fact, also wild type yeast suffers this problem, but only a small part of the
wild type population enters the imbalanced state [22]. The trehalose branch does
not completely inhibit this effect, but makes it less likely for glycolysis to fail and
more likely to grow well; in dynamical systems terms: the basin of attraction of the
imbalanced state is reduced in size, so that the regular steady state is reached from
a wider range of initial conditions. In a small core model of yeast glycolysis with
three variables [14], this bistability was studied in detail. Here we improve upon
those results by studying a more detailed core model which contains five variables
and seven reaction fluxes.

More generally, we aim to develop analytical techniques which exploit the special
structure of metabolic pathway ODEs, and which may also give general insight into
the bifurcation structure for larger pathways. Such “parameter-free analyses” are
usually performed on core models of up to three variables or so. It is currently bey-
ond our ability to prove nearly anything about fully detailed and well-characterised
pathway models such as the ones by Teusink et al. and Hynne et al. [20, 9], and in-
sight is generally only obtained by numerical simulations using measured parameter
values. In most cases, however, the situation is worse: many, if not most, kinetic
parameters are unknown, making it difficult to decide their value in simulations. We
therefore highlight in the Discussion which of the analytical techniques developed
in this paper scale to larger networks.

Introducing the glycolytic pathway

Glycolysis is split into two lumped reactions (see Fig. 1): upper glycolysis (v1),
using glucose and 2 ATP (a) to produce FBP; and lower glycolysis (v2), using FBP
(f) to produce 2 pyruvate (y), 2 NADH (n) and 4 ATP. This modelling of upper
and lower glycolysis is done to be able to focus on the imbalanced state, when the
lower part cannot keep up with the upper part and FBP accumulates. The reaction
v4 uses NADH and pyruvate to produce ethanol. This reaction, when combined
with glycolysis, makes up ethanol fermentation.

There are two side branches from the main pathway: one producing glycerol
(v3) from FBP and 2 NADH, and one producing succinate and 3 NADH (v5) from
2 pyruvate and 4 ATP. They are included to allow redox balance and also carry a
significant flux in experiments [20].

The experimental setup connected to the model is balanced growth of the pop-
ulation after starved yeast is presented with abundant glucose. The glucose will of
course eventually be depleted. However, the restricted timeframe of the experiment
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Figure 1: A graphical representation of the stoichiometry of our
model. The nodes are the different metabolites, the arrows are the
reactions. When a metabolite species is between brackets, the con-
centration is disregarded or assumed constant in the model.

is when yeast is growing exponentially. Therefore we can assume the concentra-
tion of glucose to be constant over the relevant time frame. The concentrations
of ethanol, glycerol, and succinate are disregarded with the assumption of product
insensitivity of v4, v3 and v5 respectively.

Aside from this pathway and its side branches, a general linear ATPase (v6)
is included to model the total ATP use of the cell and balance the production by
the glycolytic pathway. Inorganic phosphate, pi (p), is a substrate and product of
some of these reactions; for its stoichiometry, see Figure 1. Furthermore, the pi
concentration is dynamically buffered (v7), which corresponds to diffusion between
the cytosol and the vacuole. We assume that the concentration inside the vacuole
is not influenced on our time-scale and is constant (Π). Therefore, p will be steered
towards Π by v7, the concentration of inorganic phosphate in the vacuole.

Conservation laws dictate the concentrations of ADP and NAD. The total con-
centration of ATP and ADP is constant (aT ) and so the ADP concentration (aT −a)
is a dependent variable. Likewise the NAD concentration (nT − n) is a dependent
variable. The parameters aT and nT are determined by the initial conditions.

The reactions in the model are lumped, and therefore we cannot use the de-
tailed rate functions given in the Teusink or Hynne models [20, 9]. Instead, we have
chosen Michaelis-Menten type dynamics (see Figure 3). These have the property
to be monotone increasing in the substrate concentrations, a property that will be
greatly exploited in our analysis. The reaction v1 in our model corresponds to phos-
phofructokinase (PFK), a complex enzyme with many binding sites for allosteric
activation and inhibition. We simplify here by assuming that v1 depends only on
a [6]. Despite this simplification, PFK still catalyses the most complex reaction:
as a function of a, PFK is not always monotone. The reaction flux increases for
small a, because ATP is a substrate, but at some point decreases, because ATP also
allosterically inhibits PFK (see Figure 2 for a sketch).
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A first overview of the main techniques and results
In this section we only introduce the structure of the model, delaying a full descrip-
tion to Section 2, and give a first overview of the main techniques and results.

The independent variables of the model are the concentrations of FBP (f), pi
(p), pyruvate (y), ATP (a) and NADH (n), which are collected in the vector x, and
7 reactions v1, . . . , v7 collected in v(x).

The model is a system of differential equations,

ẋ = Nv(x),

with stoichiometric matrix N and reaction rates v(x) detailed in Section 2.

x =


f
p
y
a
n

 , N =


1 −1 −1 0 0 0 0
0 −2 2 0 4 1 1
0 2 0 −1 −2 0 0
−2 4 0 0 −4 −1 0
0 2 −2 −1 3 0 0

 , v =



v1
v2
v3
v4
v5
v6
v7


.

Each row of N denotes how many molecules of that metabolite are used as a sub-
strate (negative entries), or produced (positive entries), by the 7 reactions (compare
with Figure 1).

As explained before, we are particularly interested in the steady states. We will
classify the families of steady states in terms of a natural bifurcation parameter.

To make it easier to solve the steady state equations Nv(x) = 0, we would like
the different reactions to be isolated in these equations, i.e. have many reactions
appear in only one equation and each equation have as few reactions as possible.
Mathematically, any basis of the row space of N , RowN , yields the same null space
and therefore the same steady states. In Section 3.1 we will give a general method to
find an appropriate basis which separates the reactions in the steady state equations.
One example set of equations coming out of this procedure here is

10v1 = 28v3 + 5v6, (1)
10v2 = 18v3 + 5v6, (2)
5v4 = 14v3 + 5v6, (3)
5v5 = 2v3, (4)
v7 = 0. (5)

Note that v1, v2, v4, v5 and v7 each occur in only one equation. This system is
equivalent to Nv(x) = 0.

The bifurcation parameter should correspond to a biological quantity that can be
changed in experiments. For the experimental setup, a food source such as glucose
has to be provided, meaning that the concentration of the food source can be varied
as a parameter. Looking at our model the influence of nutrient levels corresponds
to the Vmax of v1. Choosing this as our bifurcation parameter λ, it solves the steady
state equation (1),

v1 = λh(a) so that λ =
28v3 + 5v6
10h(a)

,
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with h(a) a non-monotone function of a detailed in Section 2. So given a solution to
equations (2)–(5), in terms of x, equation (1) yields a unique λ and therefore gives
us a direct description of the bifurcation curve. In this way the challenge PFK (v1)
poses to analysis (its non-monotonic behaviour in a) is tackled. Moreover, even if v1
would have a more complicated form, e.g. if h would depend on multiple variables,
λ would still solve equation (1) as above.

The equilibrium states, where there is zero flux, are shown to be two axes of
the phase space and at the intersection of these there is a (complicated) bifurcation
of a simple eigenvalue. We provide an explicit expansion of the emergent curve of
steady states into the extended phase space (x, λ) ∈ R6

≥0 (Section 3.2). We prove
that all non-trivial solutions to the steady state equations are locally described by
a single, one-dimensional curve and that the FBP concentration parameterises this
curve under a mild parameter condition (Section 3.3). This result follows from the
Implicit Function Theorem considered for the steady state equations (2)–(4). This
means for instance that pitchfork bifurcations are excluded.

The steady state equations (2)–(4), are all nonlinear in the variables x, but they
are of course linear in v. A suitable coordinate transform in which the x variables
are replaced by v variables makes most of this linearity, and should facilitate analysis
[14]. Such a coordinate transform may be explicitly calculated in our case, together
with its inverse transform (Section 3.4). The transformation heavily relies on the
monotonic dependence of the reactions v2, v3, v4 v6 and v7 on their respective
variables. The strategy may be summarised as follows. Equations (2) and (3) allow
v2 and v4 to be expressed as linear combinations of v3 and v6. Apart from the
trivial (5), this leaves (4). We express v5 in (4) as a function of v2, v3, v4 and v6
using the coordinate transform, and then replace v2 and v4 by their respective linear
combinations of v3 and v6. The remaining problem is hence reduced to solving only
one equation, (3), in two variables, v3 and v6. The resulting solution is substituted
into (1) to produce the bifurcation curve.

Solving the last steady state equation in v3 and v6 involves some tedious work
which we manage to overcome, to conclude that for a wide range of parameters the
steady states are indeed parameterised by v3, corresponding analogous to paramet-
erisation by the FBP concentration (Section 3.5).

This method of rewriting the steady state equations into nonlinear equations
for v also allows us to study imbalanced states, in which for instance f → ∞:
then v3 is still finite, and the imbalanced states form regular steady states for the
flux variable system. (This was in fact the original motivation to introduce such
coordinate transformations [14].)

To summarise, the steady states form a single branch in the extended space with
λ and the five variables. The branch starts in a specific equilibrium state and, for
a wide range of parameters, connects to an imbalanced state with infinite FBP.
From this point at infinity, we may study the “system at infinity” to uncover other
imbalanced states at different values of λ, and hence bistability between regular
steady states and imbalanced ones (Section 3.6).

2 The mathematical model

In complete detail, the system of equations is

ẋ = Nv(x),
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where x, N , and v are

x =


f
p
y
a
n

 , N =



v1 v2 v3 v4 v5 v6 v7

f 1 −1 −1 0 0 0 0

p 0 −2 2 0 4 1 1

y 0 2 0 −1 −2 0 0

a −2 4 0 0 −4 −1 0

n 0 2 −2 −1 3 0 0

, (6)

v =



v1
v2
v3
v4
v5
v6
v7


=



V1h(a)

V2
f

k2,f+f
p

k2,p+p
aT−a

k2,a+aT−a
nT−n

k2,n+nT−n

V3
f

k3,f+f
n

k3,n+n

V4
y

k4,y+y
n

k4,n+n

V5
y

k5,y+y
a

k5,a+a
nT−n

k5,n+nT−n

V6a
V7(Π− p)


. (7)

For the variables in x, we demand

f, y, p ∈ R≥0, a ∈ [0, aT ], n ∈ [0, nT ]. (8)

In the definitions of the reaction rates, all parameters are positive and h(a) is defined
as follows (see also Figure 2 for a sketch),

h(a) =
a(d1 + a)(d21 + L(K + d3)

2)

d1(d1 + a)2 + d1L
(
K+d2a
K+a

)2
(K + d3)2

. (9)

The parameters d1, d2, d3, and d4 are also positive. This formula is based on [20],
where the concentrations of all metabolites apart from a are assumed to be constant
[6], and V1 is rescaled such that h′(0) = 1.

The bifurcation parameter is λ = V1 ≥ 0.

0 a

h(a)

Figure 2: Schematic illustration of h(a), with h′(0) = 1 i.e. v′1(0) =
V1.

3 Steady state analysis

The goal of this section is to gain insight into the steady states; steady states are
solutions x to the steady state equations, given by

Nv(x) = 0, (10)
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0 c

V c
k+c

k

1
2
V

V

Figure 3: Michaels-Menten kinetics for substrate concentration c with
parameters V and k.

with x, N , and v defined as in (6) and (7). We aim to solve these equations for x
and the bifurcation parameter λ = V1.

3.1 Suitable representations of the null space of N

The solutions for x must satisfy (10). Thus v(x) must be in the null space of N ,
NulN , which is perpendicular to RowN . In order to get alternative steady state
equations, we need a basis of RowN ; the independent rows of N can serve as such
a basis, but any independent set of five vectors in the row space will define the same
null space. Choosing a new basis intelligently will generate steady state equations
more amenable to analysis, with the same solution space as (10). We will provide a
general method to construct such bases.

For the steady states in terms of the reactions v there is a well-established
theory. The steady state flux distribution cone is the set of all possible solutions
v to equation (10). This cone can be described by the Elementary Flux Modes
(EFMs) [17, 18, 13]. This theory is largely based on linear algebra, because the
cone is contained in the null space of N , but there are also positivity constraints: if
a reaction is irreversible, it can only have positive flux.

We provide a brief summary of the theory on flux modes to keep this work self-
contained. The interested reader can find a more detailed overview in [17, 18, 13].
A flux mode is represented by some fixed, nonzero reaction vector V , which is a
solution to (10) and another vector v is part of this flux mode if and only if there
exists some positive constant δ ∈ R≥0 such that v = δV . So a flux mode has fixed
ratios between fluxes. An Elementary Flux Mode is, loosely speaking, a flux mode
with a maximal number of zero entries. The steady state flux distribution cone is
the convex set of all flux modes. There is a competing concept to describe the flux
modes by means of extremal pathways [16], which also span the cone. The smallest
set of flux modes such that every flux mode is a convex combination defines the set
of extremal pathways. Every extremal pathway is an Elementary Flux Mode, but
there are Elementary Flux Modes that are not extremal pathways. These appear if
there is some reversible reaction that has a positive entry in one extremal pathway
and a negative entry in another. The specific convex combination of those extremal
pathways, where the reversible reaction has a zero entry, yields an Elementary Flux
Mode, because it has an extra zero, but it is not an extremal pathway, because it is
a convex combination of two extremal pathways.

When considering equation (10) as a problem for v, the positivity constraints
of irreversible reactions have to be imposed, yielding the inequalities that put EFM
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theory beyond linear algebra, into linear programming. However, if x is a vector of
admissible concentrations, these constraints follow naturally, because the functions
in v(x) will satisfy them by definition (7). Therefore EFM theory is not necessarily
the primary tool when the dynamics of x are considered, but it still leads to insight:
if x is a steady state, v(x) will be in the steady state flux distribution cone as a
positive combination of the EFMs.

Besides this insight, the EFMs can be useful for the linear problem: the linear
space that is spanned by the EFMs is exactly NulN , so the space perpendicular to
all EFMs is RowN . Every EFM has the property that the number of zero entries
is maximised. This yields a constructive way of finding representative equations
that define the steady state in which fluxes appear most sparsely. It uses a simple
proposition from linear algebra.

Proposition 1. If N is an n ×m stoichiometric matrix and m1, . . . ,mk are the
Elementary Flux Modes, then for a w ∈ Rm,

∀i = 1, . . . , k : w ·mi = 0⇔ w ∈ RowN

Proof. m1, . . . ,mk are such that they span the null space of N , therefore

∀i = 1, . . . , k : w ·mi = 0⇔ w ∈ (NulN)⊥

⇔ w ∈ RowN.

We apply this proposition to our model. Calculation of EFMs for particular
pathways may be done using algorithms such as for instance efmtool [1] for MAT-
LAB.

Corollary 2. Let N be given by (6). Then RowN is the space perpendicular to the
EFMs of our model, given by

EFM1 =



1
1
0
2
0
2
0


, EFM2 =



14
9
5
14
2
0
0


. (11)

As noted in the introduction, the equations are most easily solved if some reac-
tions only appear in a single equation. We will construct a matrix which has the
same row space as N using Corollary 2.

We start by finding a diagonal submatrix in the matrix (EFM1, EFM2), e.g. find-
ing those fluxes that are only represented in one EFM and have a zero entry in the
other EFM. The only nonzero entry of EFM1 that has a zero entry in EFM2 is v6,
while EFM2 has both v3 and v5 nonzero, but they are zero in EFM1. Thus there
are two choices, v3 and v6, or v5 and v6.

Starting with a 5×5 identity matrix and inserting two columns in-between, such
that they become the columns at the fluxes we have chosen, we construct a 5 × 7
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matrix. The inserted columns are chosen such that every row is perpendicular to
both EFMs in (11):



v3 v6

1 0 −14
5 0 0 −1

2 0
0 1 −9

5 0 0 −1
2 0

0 0 −14
5 1 0 −1 0

0 0 −2
5 0 1 0 0

0 0 0 0 0 0 1

 and



v5 v6

1 0 0 0 −7 −1
2 0

0 1 0 0 −9
2 −1

2 0
0 0 1 0 −5

2 0 0
0 0 0 1 −7 −1 0
0 0 0 0 0 0 1

.
We are able to compute each entry in those two special columns individually because
of the special choice of v3 and v6 (or v5 and v6). By multiplying the rows of the
above matrices with the denominators of their entries, we get the following integer
matrices,

Ñ36 :=


10 0 −28 0 0 −5 0
0 10 −18 0 0 −5 0
0 0 −14 5 0 −5 0
0 0 −2 0 5 0 0
0 0 0 0 0 0 1

 , (12)

Ñ56 :=


2 0 0 0 −14 −1 0
0 2 0 0 −9 −1 0
0 0 2 0 −5 0 0
0 0 0 1 −7 −1 0
0 0 0 0 0 0 1

 . (13)

Understanding this construction, we see that we can be more creative. In fact, we
may now also pick and choose rows from both these matrices, in such a way that
the resulting new matrix still has rank 5. So for example, we could use Ñ36 to
choose equations for v2 and v4 (and v3 and v6), but Ñ56 to complete the system
with equations for v1 and v3 (and v5 and v6):

Ñ356 :=



v1 v2 v3 v4 v5 v6 v7

2 0 0 0 −14 −1 0
0 10 −18 0 0 −5 0
0 0 2 0 −5 0 0
0 0 −14 5 0 −5 0
0 0 0 0 0 0 1

.
The difference is in the distribution of the reaction rates across these five equations.
In Ñ36 and Ñ56, one reaction rate appears in four out of five equations, and four
reaction rates only once. In Ñ356 reaction rates appear maximally three times, but
only three reactions appear once.

The matrices N , Ñ36, Ñ56 and Ñ356 all have the same row space, since we
constructed their rows to be independent and perpendicular to (11) (Corollary 2)
and the matrices have equal rank. Thus the following problems are equivalent for
v(x),

Nv(x) = 0⇔ Ñ36v(x) = 0⇔ Ñ56v(x) = 0⇔ Ñ356v(x) = 0.

In this paper we use all three new matrices, making use of their individual properties
to answer specific questions.
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3.2 The equilibrium states
The system has trivial solutions, which we refer to in this work as equilibrium states.

Definition 3. A state x is called an equilibrium state if v(x) = 0.

These states, trivially satisfying Nv(x) = 0, are steady states. In other mod-
els, chemical equilibria are usually dynamical steady states, where the forward and
backward reactions are balanced, but in our model nearly all reactions are irrevers-
ible (the exception being v7). This modelling choice is based on the assumption
that the glycolytic flux is much greater than the reverse, therefore the backward
reactions can be disregarded. As a modelling artifact, the equilibrium states in our
model are not balanced in forward and backward reactions, but have zero forward
and zero backward reactions. As such, they cannot represent a living cell. Instead,
the interpretation should be that, if in our model the equilibrium state is stable
and the non-equilibrium state is unstable, the cell cannot use glycolysis for its ATP
needs, but must turn to other pathways. On the other hand, if in our model the
equilibrium state is unstable and there is a non-equilibrium steady state that is
stable, then the cell can use glycolysis for its ATP needs. We will show that there
is a specific value of our parameter λ, where we switch between these two situations
in a transcritical bifurcation.

Lemma 4. The equilibrium states are x =


f
p
y
a
n

 =


0
Π
y
0
n

, where yn = 0

Proof. The reaction functions (7) have a product structure where many factors can-
not be zero, including all denominators and parameters. Division by these nonzero
factors yields

v(x) = 0⇔



a
fp(aT − a)(nT − n)

fn
yn

ya(nT − n)
a

(Π− p)


= 0.

This is equivalent to

a = 0, p = Π, and

f(nT − n)fn
yn

 = 0.

It follows that fn = 0 = f(nT − n), therefore f = 0.
We conclude that

v(x) = 0⇔


f
p
a
yn

 =


0
Π
0
0

 .
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So n = 0 or y = 0 is sufficient. Thus the equilibrium states are a family of
two lines on the boundary of the metabolite space. Either (0,Π, 0, 0, n), where
n ∈ [0, nT ] or (0,Π, y, 0, 0), where y ∈ R≥0.

The intersection of these two families is the equilibrium

x0 =


0
Π
0
0
0

 .

In the rest of this section we will show that x0 is, in fact, the only relevant
equilibrium, because a transcritical bifurcation occurs at x0, giving rise to the non-
equilibrium steady states. We also show that any non-equilibrium steady state
that is near the equilibrium states is on this emergent curve. Furthermore, at this
bifurcation x0 transfers local stability to the regular non-equilibrium steady states.

The equilibrium state x0 is thus a highly degenerate point, where three families
of equilibrium states meet. The bifurcation analysis for this point is therefore quite
subtle, and is treated in detail.

Note that all equilibrium states have a = 0; reactions v5 and v6 have a factor a
in their definitions (7). A natural choice for the steady state equations is then

Ñ56v(x) = 0,

where Ñ56 is defined in (13), because it has the concentration a as a common factor
in the negative parts of the equations.

We are interested in finding a transcritical bifurcation of the equilibrium state
x0 and proving that no other steady states exist close to the equilibrium states.
Assume therefore that x is in a suitable neighbourhood around the equilibrium
states, such that aT − a > 0 and all denominators in the definition of v(x) (7)
are positive. Then we can introduce some simplifying notation. The steady state
equations are

2λh(a)− (14c5yd+ V6)a = 0, (14)
2c2fd− (9c5yd+ V6)a = 0, (15)

2c3fn− 5c5yda = 0, (16)
c4yn− (7c5yd+ V6)a = 0, (17)

V7(p−Π) = 0, (18)

where d = nT − n and

c2(x) = V2
1

k2,f + f

p

k2,p + p

aT − a
k2,a + aT − a

1

k2,n + nT − n
,

c3(x) = V3
1

k3,f + f

1

k3,n + n
,

c4(x) = V4
1

k4,y + y

1

k4,n + n
,

c5(x) = V5
1

k5,y + y

a

k5,a + a

1

k5,n + nT − n
.
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In other words, function ci(x) > 0 denotes all terms of reaction vi that are nonzero
in this neighbourhood. In this way, we can see more clearly the terms that yield
equilibrium states and dividing out those terms, we find the equation for the non-
equilibrium steady state curve. To keep the expressions transparent, we often drop
the dependence of ci on x. Moroever, any steady state will have p = Π, so we
assume this for the rest of this section.

Equations (17) and (15) can be rewritten as

a =
c4

7c5yd+ V6
yn, (19)

fd =
9c5yd+ V6

2c2
a

=
9c5yd+ V6

2c2

c4
7c5yd+ V6

yn. (20)

We multiply equation (16) with d, such that we can insert the solutions (19) and
(20) for a and fd respectively,

2c3
9c5yd+ V6

2c2

c4
7c5yd+ V6

yn2 − 5c5
c4

7c5 + V6
y2nd2 = 0,

which simplifies to
c3(9c5yd+ V6)

c2
yn2 = 5c5y

2nd2. (21)

So it follows that y = 0, n = 0 or

c3(9c5yd+ V6)

c2
n = 5c5yd

2. (22)

Together with equations (19) and (20), having y = 0 or n = 0 means that we have
an equilibrium state as f = a = yn = 0.

The term d = nT−n was not included as a factor in c2 or c5, since the equilibrium
state

xnT :=


0
Π
0
0
nT


was still part of our neighbourhood of equilbria. In other words, d = 0 is still a
possibility, but the analysis requires strict positivity of c2 and c5. Now we will show
that around this specific equilibrium state xnT , there are no other steady states
than equilibrium states. In fact, we show that if (21) holds, then (22) cannot hold
sufficiently close to xnT and that we can only have y = 0.

The equilibrium state xnT has y = 0 and d = nT − nT = 0. If we now restrict
to an even smaller neighbourhood, namely a ball around this equilibrium state, we
see that both y and d have absolute values smaller than the radius of the ball. The
concentration n however is close to nT , so the lhs of equation (22) is nonzero and
does not get smaller as we decrease the size of the ball, while the rhs decreases
with the third power of the radius of the ball. Hence if we take a small enough
ball, equation (22) cannot hold and we conclude that around xnT , if the steady
state equation (21) holds, it yields y = 0. So the only steady states in this ball are
equilibrium states.
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For equation (22) to hold, n and y must be of the same magnitude, so let us
assume for the rest of this argument that we are in a suitable neighbourhood of x0,
where y and n are small.

The term h(a) has concentration a as a factor, so we can write it as h(a) = ah̃(a),
where h̃(a) > 0 can be inferred from the definition of v1 (9). Moreover, h(a) was
defined such that h′(0) = 1, and since h′(a) = h̃(a) + ah̃′(a),

1 = h′(0) = h̃(0) + 0h̃′(0) = h̃(0).

Equation (14) can be rewritten as

a(2λh̃(a)− 14c5y − V6) = 0,

which gives us a = 0 or
2λh̃(a)− 14c5y − V6 = 0. (23)

So there are two possibilities, either yn = a = f = 0, which means we have an
equilibrium state and λ can have any value, or the equations (19), (20), (22) and
(23) hold. The equations (19), (20), (22) and (23) are the (non-trivial) steady state
equations. Equations (19), (20) are directly equivalent to the original steady state
equations (15) and (17), but in (22) and (23) the degenerate equilibria y = n = 0
in (14) and (16) have been divided out. These four equations (19), (20), (22) and
(23) can be rewritten as

K̂(x) :=


c4yn −(7c5yd+ V6)a
2c2fd −(9c5yd+ V6)a

5c2c5yd
2 −c3(9c5yd+ V6)n

2λh̃(a) −(14c5yd+ V6)

 = 0. (24)

The equilibrium state x0 is a solution for equation (24). Using h̃(0) = 1, we have

K̂(x0) =


0
0
0

2λ− V6

 .

Hence x0 is a steady state if we specify

λ =
V6
2
.

We introduce the Jacobian matrix of K̂ to its variables, evaluated at x = x0,

(
∂K̂

∂(f, y, a, n)

)∣∣∣∣∣
x=x0

=


0 0 −V6 0

2k2nT 0 −V6 0
0 5k2k5 0 −k3V6
0 −14k5 2λ 0

 ,

where

k2 = c2(x0)nT , k3 = c3(x0), k4 = c4(x0), k5 = c5(x0)nT .

We can easily see that it is invertible. Therefore, by the Implicit Function Theorem,
the solution to K̂ = 0 can be locally described as a function of λ around (x, λ) =
(x0,

V6
2 ).
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The curve can be made explicit as a power series expansion in t = λ − V6
2 ,

approximating f , y, a and n around (x0,
V6
2 ). Based on the orders of magnitude in

K̂ in (24), we expand the variables as

f = f2t
2 +f3t

3 +O(t4),
y = y1t +y2t

2 +O(t3),
a = a2t

2 +a3t
3 +O(t4),

n = n1t +n2t
2 +O(t3).

(25)

Working out the details (see Supplementary Information; SI) leads us to see the
following lowest order coefficients,

f2 =
5k4

98k3k5V6
,

y1 =
1

7k5
,

a2 =
5k2k4

49k3k5V 2
6

,

n1 =
5k2

7k3V6
.

Therefore the curve enters the domain of biologically relevant (x, λ)-space, for in-
creasing λ, because the lowest order terms of the variables are all positive.

In the SI we show that this emergent steady state is locally stable, by checking
directly the Routh-Hurwith conditions on the characteristic polynomial for this
steady state.

3.3 Parameterising steady states by metabolite concen-
trations

For the following analysis, we will use the matrix Ñ36 (13), since its Jacobian has
most entries have a clear sign.

The steady state equations are given by Ñ36v(x) = 0, which can be written out
as 

10λh(a) −28v3 −5v6
10v2 −18v3 −5v6
5v4 −14v3 −5v6
5v5 −2v3

V7(Π− p)

 = 0, (26)

with v2, . . . , v6 as defined in equation (7).
We now focus on regular steady states in which f, p, y, a, n > 0 and a < aT , n <

nT . The equations

10λh(a) = 28v3 + 5v6,

V7(Π− p) = 0,

are solved by
λ = 28v3(f,n)+5v6(a)

10h(a) ,

p = Π.
(27)
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The solution for p shows that the pathway neither produces nor consumes phosphate.
This is a well-known property and therefore in many other models its concentration
is disregarded [19, 7, e.g.]. We include p for the imbalanced state, not the steady
state, because from experiments we know it is the depletion of inorganic phosphate
(p) that will restrict the flux of lower glycolysis (v2), while upper glycolysis (v1) is
unaffected, allowing FBP to accumulate [21].

We aim to find a bifurcation curve in (x, λ), so the explicit solution for λ (27)
is already a big step. But its formula is based on a solution x, so equation (27)
without further knowledge of x has no meaning.

The remaining steady state equations (26) are K(f, y, a, n) = 0, where

K(f, y, a, n) =

 10v2(f,Π, a, n) −18v3(f, n) −5v6(a)
5v4(y, n) −14v3(f, n) −5v6(a)

5v5(y, a, n) −2v3(f, n)

 . (28)

Let dK denote the Jacobian matrix of partial derivatives of K to f , y, a and n
and note that we can factor it as follows,

dK =

10∂v2
∂f − 18∂v3

∂f 0 10∂v2
∂a − 5V6 10∂v2

∂n − 18∂v3
∂n

0 5∂v4
∂y −5V6 5∂v4

∂n − 14∂v3
∂n

−2∂v3
∂f 5∂v5

∂y 5∂v5
∂a 5∂v5

∂n − 2∂v3
∂n

 (29)

=

10 −18 0 0 −5
0 −14 5 0 −5
0 −2 0 5 0

 · (∂(v2, v3, v4, v5, v6)
∂(f, y, a, n)

)

The left matrix is a submatrix of Ñ36 (12) and we will expand upon the right matrix
to reformulate it (30).

With the exception of v1, the rate functions which make up v (defined in (7)) are
products of individual functions of one variable, in which each function is monotone
increasing in its variable (here we include the dependent variables b = aT − a and
d = nT − n for ADP and NAD respectively). Thus any partial derivative of a
reaction to a metabolite yields the same product, where the function of the specific
metabolite is replaced with its derivative (with a possible minus in front). Moreover,
this structure is independent of the specific values of parameters or variables.

We introduce some notation to capture these properties: let zi := z
ki,z+z . where

z is a metabolite concentration and i follows from which flux vi we consider. For
instance, for flux v3 we get v3 = V3f3n3, where f3 = f

k3,f+f and n3 = n
k3,n+n . In

this notation, ∂v3
∂f = V3f

′
3n3, for instance. The possible minus comes from taking a

partial derivative to a for a function bi or likewise for n and di, which yields −b′i or
−d′i respectively. Then multiplying with 1 = zi

zi
we get that the partial derivative

to z of a flux is this flux times a logarithmic derivative of its z-dependent function,

∂vi
∂z

= ±vi
z′i
zi
.

We use here that zi is nonzero for any concentration z and flux vi, which follows
from our positivity assumptions on the metabolite concentrations. In this notation,
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we can rewrite the flux definitions (7) as
v2
v3
v4
v5
v6

 =


V2f2p2b2d2
V3f3n3
V4y4n4
V5y5a5d5
V6a

 .

We take partial derivatives to f , y, a and n and rewrite to get

(
∂(v2, v3, v4, v5, v6)

∂(f, y, a, n)

)
=


v2

f ′
2

f2
0 −v2

b′2
b2
−v2

d′2
d2

v3
f ′
3

f3
0 0 v3

n′
3

n3

0 v4
y′4
y4

0 v4
n′
4

n4

0 v5
y′5
y5

v5
a′5
a5

−v5
d′5
d5

0 0 V6 0

 . (30)

Each of these logarithmic derivatives is positive and the fluxes are also positive.
Now we have dK in a form amenable to analysis with (29).

The Jacobian dK has one column more than it has rows; removing a column and
computing the determinant yields a subdeterminant. If a subdeterminant is nonzero
for a given solution of K(f, y, a, n) = 0, then the Implicit Function Theorem (IFT)
gives us that the solutions can be locally parameterised in the variable correspond-
ing to the removed column [12]. For example, proving that the subdeterminant
where the first column of dK is removed is nonzero for a solution (f, y, a, n), im-
plies that locally the steady states are on a one-dimensional manifold that can be
parameterised by the concentration f . We will prove that this is the case.

Theorem 5. The non-equilibrium steady states can be described as a one-dimensional
manifold parameterised by concentration f , given that the following parameter con-
dition holds,

k4,n ≥ k3,n. (31)

Proof. We only need to show that for any solution of equation (28), the subde-
terminant of dK, where the first column is removed, is nonzero. This implies that
the steady states are all locally on a one-dimensional manifold parameterised by f ,
but this extends to a global statement. We can start at an arbitrary solution and
follow the locally defined manifold for decreasing f . We can continue this until the
subdeterminant is zero, but the subdeterminant is nonzero for any non-equilibrium
steady state and f is decreasing, so we must encounter an equilibrium state, where
indeed the subdeterminant is zero. In Section 3.2, we showed that there is only one
emergent curve of non-equilibrium steady states from the equilibrium states, hence
all steady states are on the same curve, starting at x0 for f = 0.

So it remains to be shown that the subdeterminant of dK, where the first column
is removed is nonzero for any solution of equation (28).

Using the reformulation of the Jacobian (30), we can write the relevant subde-
terminant as ∣∣∣∣∣∣∣∣

0 −10v2
b′2
b2
− 5V6 −10v2

d′2
d2
− 18v3

n′
3

n3

5v4
y′4
y4

−5V6 5v4
n′
4

n4
− 14v3

n′
3

n3

5v5
y′5
y5

5v5
a′5
a5

−5v5
d′5
d5
− 2v3

n′
3

n3

∣∣∣∣∣∣∣∣ .
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Writing this out, we can see that it is a sum of three negative terms and

−(10v2
b′2
b2

+ 5V6)(5v5
y′5
y5

)(5v4
n′4
n4
− 14v3

n′3
n3

),

where the right factor does not have a clear sign. We see that the entire determinant
is negative if this factor is nonnegative,

5v4
n′4
n4
− 14v3

n′3
n3
≥ 0.

To show the above inequality, we use the steady state equations (26). In particular

5v4 = 14v3 + 5v6.

Substituting this equation for 5v4, we see that the subdeterminant is smaller than
zero if the following inequality (or its rewritten form below) holds,

(14v3 + 5v6)
n′4
n4
− 14v3

n′3
n3

≥ 0,

14v3

(
n′4
n4
− n′3
n3

)
+ 5v6

n′4
n4

≥ 0.

This would follow from the inequality

n′4
n4
− n′3
n3
≥ 0,

which is a consequence of our assumption k4,n ≥ k3,n as we can write out the
definitions (7),

n′4
n4
− n′3
n3

=
k4,n

(k4,n + n)2
k4,n + n

n
− k3,n

(k3,n + n)2
k3,n + n

n

=
k4,n(k3,n + n)− k3,n(k4,n + n)

(k3,n + n)(k4,n + n)n

=
k4,n − k3,n

(k3,n + n)(k4,n + n)

≥ 0.

Although the parameter condition of Theorem 5 is comprehensive and accept-
able, we can make a more general statement. We now prove that any admissible
nonzero vector (f, y, a, n) yields a Jacobian dK where any two subdeterminants are
never both zero. In this way we prove that any solution lies on a one-dimensional
curve of solutions.

Lemma 6. Given f, p, y, a, n > 0 and a < aT , n < nT , then if a 3×3 subdeterminant
of dK is 0, then the other subdeterminants are nonzero.

Proof. Assume, for the sake of contradiction, that two arbitrarily chosen subde-
terminants are zero. This yields two equations that must hold. We can rewrite
these equations as expressions for V2 and V6, because in those parameters, the
equations are polynomial. Although this is a cumbersome task, it is elementary.
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The full computations can be found in the supplementary Mathematica script. The
script uses the rewritten form of dK from equation (30). The resulting expressions
show that V2 < 0 or V6 < 0 follows from the positivity constraints on the other
paramters and variables, regardless of their specific values. The parameters V2 and
V6 are constrained to be positive themselves, so this is a contradiction. We con-
clude that if one subdeterminant is zero for an admissible solution x, the other
subdeterminants are nonzero.

An immediate consequence the Lemma 6 is the following Theorem.

Theorem 7. All steady state solutions in the interior of the extended metabolite
space, (x, λ) > 0, lie locally on a smooth one-dimensional manifold.

3.4 The (nonlinear) steady state equations in flux vari-
ables
In Section 3.3 we concluded that f parameterises all steady state solutions under a
mild parameter condition. In this section, we will extend upon this notion of f as a
flux sensor, by asking whether the steady states can be parameterised by a flux, for
instance one of the fluxes that consume f . Eventually in Theorem 10, we show that
flux variable v3 (the reaction in which FBP is converted into glycerol) can fulfill
this role. To obtain this result, we need to solve most equations explicitly. This
reduces the five steady state equations to one equations in two flux variables. The
Implicit Function Theorem is then applied on this remaining equation to complete
the result. We thus first have to eliminate the remaining flux variables, which we
manage by setting up a coordinate transform between those other flux variables and
the metabolite concentrations.

The hard part is to set up a coordinate transform between three metabolites, f ,
n and y, and three reactions, v2, v3 and v4. Matrix Ñ36 allows us to construct the
steady state equations (26) such that this transformation will reduce the remaining
steady state equations K = 0 (28) with linear solutions, as v3 is now a variable of
the system and reaction v6 = V6a is a linear transformation of a variable. Then all
that remains to be solved is one equation in two unknowns.

Consider the function,

F : R2
>0 × (0, nT ) → R3

>0

(f, y, n) 7→ (v2, v3, v4).
(32)

The function F is directly based on the reaction rate functions (7); recall their
definitions:

v2 = V2
f

k2,f + f

p

k2,p + p

aT − a
k2,a + aT − a

nT − n
k2,n + nT − n

, (33)

v3 = V3
f

k3,f + f

n

k3,n + n
, (34)

v4 = V4
y

k4,y + y

n

k4,n + n
. (35)

In this section, the variables a ∈ (0, aT ) and p > 0 are considered to be parameters
of F . The variables of F model concentrations which, in a living cell, are positive.
Therefore, to find steady states in the model that represent a functioning cell at a
non-trivial steady state, the domain of F is restricted to R2

>0 × (0, nT ).
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Lemma 8. F is smoothly invertible.

Proof. This lemma follows from the Inverse Function Theorem if the determinant
of the Jacobian is nonzero for all (f, y, n) ∈ R2

>0 × (0, nT ).
For any (f, y, n) ∈ R2

>0 × (0, nT ), each entry of the Jacobian has a fixed sign.
This follows from the monotonicity properties of v2, v3, and v4. The Jacobian

∂v2
∂f

∂v2
∂y

∂v2
∂n

∂v3
∂f

∂v3
∂y

∂v3
∂n

∂v4
∂f

∂v4
∂y

∂v4
∂n


has sign structure + 0 −

+ 0 +
0 + +


which has strictly negative determinant.

The function F is invertible, so it can be used as a coordinate transform. Fur-
thermore we extend F with the rescaling v6 = V6a and the identity on p and λ, to
get a coordinate transform C for our phase space by defining

C(f, p, y, a, n, λ) = (F (f, y, n), V6a, p, λ). (36)

The steady state equations (26) in the new variables are
10λh

(
v6
V6

)
− 28v3 −5v6

10v2 − 18v3 −5v6
5v4 − 14v3 −5v6

5v5

(
ŷ, v6V6

, n̂
)
− 2v3

V7(Π− p)

 = 0,

where the inverse coordinate transform F−1 defines ŷ and n̂ as functions of v2, v3
and v4. Then it can be easily seen that four out of five equations can be explicitly
solved,

λ =
28v3 + 5v6

10h
(

v6
V6

) , (37)

v2 =
18v3 + 5v6

10
, (38)

v4 =
14v3 + 5v6

5
, (39)

p = Π. (40)

Hence the only steady state equation that is left to solve is

5v5

(
ŷ,
v6
V6
, n̂

)
− 2v3 = 0.

Using the definition of reaction rate v5 in (7) this reads

G(v3, v6) := 5V5
ŷ

k5,y + ŷ

a

k5,a + a

nT − n̂
k5,n + nT − n̂

− 2v3 = 0, (41)
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and becomes a nonlinear function of v3 and v6 only. To explicitly formulateG(v3, v6),
we need the explicit inverse of F , which we will derive below. The exact formulas
are found in (49).

Recall the definitions of the rates v2, v3 and v4,

v2 = V2
f

k2,f + f

p

k2,p + p

aT − a
k2,a + aT − a

nT − n
k2,n + nT − n

,

v3 = V3
f

k3,f + f

n

k3,n + n
,

v4 = V4
y

k4,y + y

n

k4,n + n
.

The objective is to define f , y and n as functions of v2, v3 and v4, for fixed values
of p and a. These functions will be called f̂ , ŷ and n̂. In fact, we will write n̂ as a
function of v2 and v3, and then express f̂ and ŷ in v3, v4 and n̂. Let us focus first
on this last step, assuming we have computed n̂ from v2 and v3.

The f - and y-factors in v3 and v4 respectively, may be inverted: set

ϕ =
f̂

k3,f + f̂
, ρ =

ŷ

k4,y + ŷ
,

and invert
f̂ =

k3,fϕ

1− ϕ
, ŷ =

k4,yρ

1− ρ
.

The expressions for v3 and v4 are in this notation given by

v3 = V3ϕ
n̂

k3,n + n̂
, v4 = V4ρ

n̂

k4,n + n̂
,

so that

f̂ =
k3,fϕ

1− ϕ
=

k3,fv3(k3,n + n̂)

V3n̂− v3(k3,n + n̂)
, (42)

ŷ =
k4,yρ

1− ρ
=

k4,yv4(k4,n + n̂)

V4n̂− v4(k4,n + n̂)
. (43)

The computation of n̂ from v2 and v3 now follows by considering the definition of
v2. To keep the notation transparent, we introduce

κf =
k3,f
k2,f

, p̃ =
p

k2,p + p
,

ã =
aT − a

k2,a + aT − a
, ṽi =

vi
Vi
,

and set

ψ =
f̂

k2,f + f̂

=
κfϕ

1 + ϕ(κf − 1)

=
κf ṽ3(k3,n + n)

n+ ṽ3(k3,n + n)(κf − 1)
.
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using (42), but with n undetermined. Reaction rate v2 may now be written as

v2 = V2ψp̃ã
nT − n

k2,n + nT − n

= V2
κf ṽ3(k3,n + n)

n+ ṽ3(k3,n + n)(κf − 1)
p̃ã

nT − n
k2,n + nT − n

.

This is a quadratic equation in n, written for future reference as

an2 + bn+ c = 0, (44)

where

a = ṽ2(1 + ṽ3(κf − 1))− ṽ3κf p̃ã, (45)
b = ṽ2ṽ3k3,n(κf − 1) + ṽ3κf p̃ã(nT − k3,n),

− (ṽ2 + ṽ2ṽ3(κf − 1))(nT + k2,n) (46)
c = ṽ3κf p̃ãk3,nnT − ṽ2ṽ3k3,n(κf − 1)(nT + k2,n). (47)

In the SI we show that this equation admits a unique solution n̂ for given values v2
and v3 in the range of F , namely

n̂ =
−b−

√
b2 − 4ac
2a

. (48)

To conclude, the inverse of F is explicitly given by

F−1

v2v3
v4

 =


k3,fv3(k3,n+n̂)
V3n̂−v3(k3,n+n̂)
k4,yv4(k4,n+n̂)
V4n̂−v4(k4,n+n̂)

n̂

 . (49)

We now use this explicit coordinate transform F−1 to write the remaining steady
state equation G(v3, v6) = 0. First we define a function α of ρ and hence of ŷ in a
similar way as we defined ψ as a function of ϕ and hence of f̂ :

α =
ŷ

k5,y + ŷ

=
κyρ

1 + κy(ρ− 1)
,

which, using F−1, becomes

α =
κyṽ4(k4,n + n̂)

n̂+ ṽ4(k4,n + n̂)(κy − 1)
,

where κy =
k4,y
k5,y

. G still depends on v4 (in α) and on v2 (in n̂(v2, v3)), but using

v2 =
18v3 + 5v6

10
, and v4 =

14v3 + 5v6
5

,

we can now finally write G as one function of v3 and v6 only,

G(v3, v6) = 5V5αβγ − 2v3, (50)
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where

α =
κy(14v3 + 5v6)(k4,n + n̂)

5V4n̂+ (14v3 + 5v6)(k4,n + n̂)(κy − 1)
, (51)

β =
ṽ6

k5,a + ṽ6
, (52)

γ =
nT − n̂

k5,n + nT − n̂
and (53)

n̂ = n̂

(
18v3 + 5v6

10
, v3

)
defined in (48), (54)

a = ṽ6, and p̃ =
Π

k2,p +Π
. (55)

3.5 Parameterising the steady states by the glycerol flux

We are now in a position to study G(v3, v6) = 0, equation (50). With implicit
differentiation, we will show that the partial derivative ∂G

∂v6
is positive. This result is

valid for a broad, but restricted subset of the parameters. Therefore the IFT yields
that the solutions to (50) may be expressed as a function v6 = H(v3). Similar to
Theorem 5 we conclude that all steady states are on one curve originating at x0 for
v3 = 0 and can be followed until they connect with the boundary of the domain of
F−1. At that point we branch off to the imbalanced states, which we will explore
in the next section. (Note that at the boundary of this domain, v3 is still finite, so
the imbalanced states have also become more accessible.)

Lemma 9. If ∂n̂
∂v6
≤ 0 with n̂ from (54), then there exists a function v6 = H(v3),

describing all solutions (v3,H(v3)) to (50).

Proof. The proof uses implicit differentiation. The Implicit Function Theorem
yields that if ∂G

∂v6
̸= 0 for any (v3, v6) in the domain of G, then there exists such a

function H(v3).
Note that

∂G

∂v6
= 5V5

(
∂α

∂v6
βγ + α

∂β

∂v6
γ + αβ

∂γ

∂v6

)
.

We will show that each of the terms is positive in order to prove ∂G
∂v6
̸= 0. The

inequalities α > 0, β > 0, γ > 0 follow by definitions (51)–(53), so

∂α

∂v6
≥ 0,

∂β

∂v6
> 0,

∂γ

∂v6
≥ 0 implies

∂G

∂v6
> 0. (56)

Let

A(v3, v6) = (14v3 + 5v6)(k4,n + n̂),

so that

A′ :=
∂A

∂v6
= 5(k4,n + n̂) + (14v3 + 5v6)

∂n̂

∂v6
.

The term α as defined in (51) can be rewritten: α =
κyA

5V4n̂+Aκy−A .
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The first term in (56) is shown below.

∂α

∂v6
=

(5V4n̂+Aκy −A)κyA′ − κyA
(
5V4

∂n̂
∂v6

+A′κy −A′
)

(5V4n̂+Aκy −A)2

=
5V4n̂κyA

′(v6)− κyA(v6)V4 ∂n̂
∂v6

(5V4n̂+Aκy −A)2
.

The denominator is positive and we can divide by 5V4κy(k4,n + n̂) > 0, so the sign
of ∂α

∂v6
is equal to the sign of

n̂A′(v6)

k4,n + n̂
− A(v6)

5(k4,n + n̂)

∂n̂

∂v6
= 5n̂+ (14v3 + 5v6)

∂n̂

∂v6

(
n̂

k4,n + n̂
− 1

)
≥ 0,

because we have n̂
k4,n+n̂ < 1 and by assumption ∂n̂

∂v6
≤ 0.

The second term of (56) is a MM-type function in v6, so it is monotone increasing.

∂β

∂v6
=

1
V6
(k5,a + ṽ6)− 1

V6
ṽ6

(k5,a + ṽ6)2

=
k5,a

V6(k5,a + ṽ6)2
> 0.

The third inequality follows easily, again under the assumption ∂n̂
∂v6
≤ 0,

∂γ

∂v6
= − k5,n

(k5,n + nT − n̂)2
∂n̂

∂v6

≥ 0.

We have now checked all inequalities in (56), which concludes the proof.

Theorem 10. All solutions to (10) in (x, λ) are on a manifold described as a
function of v3, if the following condition on the parameters is satisfied:

k3,f − k2,f + 2V2k3,f
Π

k2,p +Π

nT
k2,n + nT

k2,a
V6(k2,a + aT )2

> 0. (57)

Proof. As discussed before, all steady state equations are solved, except (50). Lemma
9 shows that it is sufficient to prove ∂n̂

∂v6
≤ 0 from (54).

For all (v3, v6) such that (v2, v3, v4) ∈ D(F−1), the defining equation for n̂ from
F−1 yields an̂2 + bn̂ + c = 0. As the left hand side is a function of v3 and v6, we
know the partial derivative to v6 is also 0. Hence

∂a
∂v6

n̂2 +
∂b
∂v6

n̂+
∂c
∂v6

+ (2an̂+ b)
∂n̂

∂v6
= 0.

We substitute the solution for n̂ (48) in 2an̂+ b:

∂a
∂v6

n̂2 +
∂b
∂v6

n̂+
∂c
∂v6

+
(
−b−

√
b2 − 4ac + b

) ∂n̂

∂v6
= 0,

so that

∂a
∂v6

n̂2 +
∂b
∂v6

n̂+
∂c
∂v6

=
√

b2 − 4ac
∂n̂

∂v6
.
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Lemma 8 implies
√

b2 − 4ac > 0, hence the sign of ∂n̂
∂v6

is the same as the sign of

∂a
∂v6

n̂2 +
∂b
∂v6

n̂+
∂c
∂v6

. (58)

The equations for a, b and c, (45), (46) and (47), written in v3 and v6 (and
recalling that ṽi = vi/Vi), are

a =
18v3 + 5v6

10V2
(1 + ṽ3(κf − 1))− ṽ3κf p̃ã(ṽ6),

b =
18v3 + 5v6

10V2
ṽ3k3,n(κf − 1) + ṽ3κf p̃ã(ṽ6)nT ,

− 18v3 + 5v6
10V2

(1 + ṽ3(κf − 1))(nT + k2,n)− ṽ3κf p̃ã(ṽ6)k3,n,

c = ṽ3κf p̃ã(ṽ6)k3,nnT −
18v3 + 5v6

10V2
ṽ3k3,n(κf − 1)(nT + k2,n).

We will show that ∂a
∂v6

n̂2 + ∂b
∂v6

n̂ + ∂c
∂v6

< 0. It is sufficient to show it holds for
all n̂(v3, v6) ∈ (0, nT ). It is first shown that ∂a

∂v6
> 0 unconditionally. Then as a

quadratic function of n̂, (58) is negative for all n̂ if it is negative at the endpoints,
0 and nT . This restriction at n̂ = nT follows unconditionally and the restriction at
n̂ = 0, i.e. ∂c

∂v6
< 0, follows precisely from (57), which is why that is a prequisite for

this theorem.
The function ã(ṽ6) := aT−ṽ6

k2,a+aT−ṽ6
satisfies

∂ã

∂v6
=
− 1

V6
(k2,a + aT − ṽ6)− 1

V6
(aT − ṽ6)

(k2,a + aT − ṽ6)2

= − k2,a

V6

(
k2,a + aT − v6

V6

)2 =: D(v6).

Therefore,

D(v6) > D(0) =
k2,a

V6(k2,a + aT )2
. (59)

In this notation,

∂a
∂v6

=
1

2V2
(1 + ṽ3(κf − 1)) + ṽ3κf p̃D

=
1

2V2
(1− ṽ3) + κf ṽ3

(
1

2V2
+ p̃D

)
.

As ṽ3 < 1 in the domain of F−1, it follows that ∂a
∂v6

> 0.
At n̂ = 0, (58) becomes

∂c
∂v6

= −ṽ3κf p̃D(v6)k3,nnT −
1

2V2
ṽ3k3,n(κf − 1)(nT + k2,n)

=
ṽ3k3,n(k2,n + nT )

2V2

(
1− κf

(
2V2p̃D(v6)

nT
k2,n + nT

+ 1

))
<
ṽ3k3,n(k2,n + nT )

2V2

(
1− κf

(
2V2p̃D(0)

nT
k2,n + nT

+ 1

))
.
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The last inequality follows from the estimate (59) on D(v6). Recall that κf =
k3,f
k2,f

,
so the sign of ∂c

∂v6
is equal to the sign of

k2,f − k3,f − 2V2k3,f p̃
nT

k2,n + nT
D(0).

The prequisite for this theorem is (57), which is exactly the above inequality, so it
holds that

∂c
∂v6

< 0.

At n̂ = nT , the formula (58) becomes

∂a
∂v6

nT
2 +

∂b
∂v6

nT +
∂c
∂v6

=
k2,nV6(nT + k3,n)

2V2

(
ṽ3 −

nT
nT + k3,n

− ṽ3κf
)

=
k2,nV6(nT + k3,n)

2V2V3

(
v3 − V3

nT
nT + k3,n

− κfv3
)
< 0,

because from (73), v3 < v̄3 = V3
nT

nT+k3,n
.

3.6 The imbalanced state
Under certain parameter conditions, glycolysis has been shown to display bistability
between a regular steady state, in which the cell functions properly, and an imbal-
anced state, in which lower glycolysis cannot keep up with upper glycolysis and
FBP accumulates [22]. We now turn our attention to this imbalanced state in the
core glycolysis model.

The steady states of the model are on a one-dimensional curve (Theorem 7)
that at one end always connects to the single equilibrium x0 (Section 3.2). Away
from the equilibria, the curve continues as the Implicit Function Theorem remains
in force. The only possibility for the curve to end is when it connects with the
boundary of the restricted domain of F−1 (32). We will show that in this model,
f and y may both keep increasing to infinity, even simultaneously, depending on
the parameter V4. This extends the analysis on the smaller core model discussed in
[14], in which this type of bistability was also studied.

Recall that we introduced in Section 3.4,

ϕ =
f

k3,f + f
, ρ =

y

k4,y + y
,

such that

ψ(ϕ) =
f

k2,f + f
=

κfϕ

1 + ϕ(κf − 1)
, (60)

ρ5(ρ) =
y

k5,y + y
=

κyρ

1 + ρ(κy − 1)
, (61)

where ψ(ϕ) and ρ5(ρ) map [0, 1] onto [0, 1], and are monotone increasing, one-to-one
functions.
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Lemma 11. If ϕ, ρ ∈ (0, 1] are fixed, then there exist unique values n∗ ∈ (0, nT ),
a∗ ∈ (0, aT ) and λ∗ > 0, and a unique value of V4, which given by

V4 =
7V5ρ5

a∗

k5,a+a∗
nT−n∗

k5,n+nT−n∗ + V6a
∗

ρ n∗

k4,n+n∗
, (62)

where (ϕ,Π, ρ, a∗, n∗, λ∗) solves the steady state equations (10).

Proof. This proof is most easily followed from the schematic graphs in Figures 4, 5
and 6.

Recall the steady state equations can be reformulated using Corollary 2. To
prove the lemma, we need all equations to have clear monotonicity properties in the
variables a and n. So depending on what this behaviour in the positive part in an
equation is, we either choose v3 or v5 together with v6 to complete that equation.
For instance, v2 is monotone decreasing in n, thus in each equation we need the
negative parts to be monotone increasing in n; since v5 is monotone decreasing in
n and v3 is monotone increasing in n, v3 is the right choice the argument. This
leads us to use the following matrix, where only the third row is different than in
the matrix Ñ36 used in the previous sections,

10 0 −28 0 0 −5 0
0 10 −18 0 0 −5 0
0 0 0 1 −7 −1 0
0 0 −2 0 5 0 0
0 0 0 0 0 0 1

 . (63)

The steady state equations can then be rewritten as

2v3 = 5v5, (64)
10v2 = 18v3 + 5v6, (65)
v4 = 7v5 + v6, (66)

together with

λ =
28v3 + 5v6
10h(a)

and p = Π.

Recall the flux functions (7); written out, the first equation (64) is

2V3ϕ
n

k3,n + n
= 5V5ρ5

a

k5,a + a

nT − n
k5,n + nT − n

.

There is a unique solution n = n∗(a): this follows from the IFT, because the lhs is
0 at n = 0 and increasing in n, the rhs is 0 at n = nT and decreasing in n. The
function n̂(a) is strictly increasing in a, because ∂v3

∂a = 0 and ∂v5
∂a > 0 (see Figure 4).

The next equation (65) written out is

10V2ψΠ
aT − a

k2,a + aT − a
nT − n

k2,n + nT − n
= 18V3ϕ

n

k3,n + n
+ 5V6a.

Considered independently from (64), we have a unique solution n = n∗∗(a) if a
is small enough: note that the lhs is monotone decreasing and the rhs monotone
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0 nNT

2v3
5v5

5v5

n∗→n∗

a ↑

Figure 4: Schematic representation of (64) in terms of n. As a in-
creases (the dotted graph), n∗ is increases.

increasing in n. At n = nT the lhs is zero and the rhs positive, so we can only use
the IFT if, at n = 0, there is the inequality

10V2ψΠ
aT − a

k2,a + aT − a
nT

k2,n + nT
> 5V6a.

For a = 0, this inequality holds and by continuity, it will still hold as a increases, with
a maximum a∗∗, where the inequality becomes an equality, yielding n∗∗(a∗∗) = 0.
Therefore a ∈ [0, a∗∗), yields that n∗∗(a) ∈ (0, nT ) is a solution, which is strictly
decreasing in a, because ∂v2

∂n > 0, ∂
∂n(18v3 + 5v6) < 0 (see Figure 5).

0 nNT

18v3 + 5v6

18v3 + 5v6

10v2
10v2

n∗∗←n∗∗

Figure 5: Schematic representation of (65). The dotted graphs are
for larger a, giving smaller n∗∗. Note that a < a∗∗ in both cases.

The equations (64) and (65) are not independent, so we need that n∗(a) = n∗∗(a).
These two solutions of n are the same for a unique a = a∗: the solution to (64)
n∗(a) is 0 at a = 0 and increasing, and the solution to (65) n∗∗(a) is 0 at a = a∗∗

and decreasing (see also Figure 6).
For simplicity, we will denote n∗(a∗) as n∗. Note that n∗ and a∗ do not depend

on V4.
The last steady state equation (66) written out with n = n∗ and a = a∗ is solved

by V4 ∈ R+:

V4 =
7V5ρ5

a∗

k5,a+a∗
nT−n∗

k5,n+nT−n∗ + V6a
∗

ρ n∗

k4,n+n∗
.

If V4 is this value, the steady state curve will pass through our given (ϕ, ρ) ∈ (0, 1]2

with a = a∗ and n = n∗ as the remaining variables, and λ = 28v3(ϕ,n∗)+5v6(a∗)
10h(a∗) ,

p = Π.
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0 aT aa∗∗

n∗(a)

n∗∗(a)

a∗

Figure 6: The equations (64) and (65) have a unique solution (a∗, n∗)
as the two solutions for n can be solved at the same time with a = a∗.

Note that within this model, it is possible for f to accumulate, but also for y to
accumulate. Accumulation of pyruvate (y) is an artifact of this model, and not seen
in experiments, since very high pyruvate concentrations impede the production of
pyruvate. Accumulation of FBP (f), however, does not have a negative effect on
its production.

The experimental imbalanced state is characterised as having an accumulation
of f while the other variables are in steady state. In our analysis, this means that
we investigate a steady state of the related model where ϕ = 1 is fixed and ḟ = 0 is
not part of the steady state equations:

˙̃x = Ñv(x̃), (67)

where ϕ = 1, x̃ = (p, y, a, n) and

Ñ =


0 −2 2 0 4 1 1
0 2 0 −1 −2 0 0
−2 4 0 0 4 1 0
0 2 −2 −1 3 0 0

 .

We should however have ḟ > 0 as we want accumulation of f .
If we consider the steady states of this problem without assuming ϕ = 1, the

steady state curve as parameterised by v3 in Theorem 10 solves these equations,
because we have the same equations, without ϕ̇ = 0. Moreover the solutions were
nondegenerate (which follows from Lemma 6), so locally the solutions to Ñv(x) = 0
are a curved plane and the steady state curve separates the part where ḟ < 0 and
ḟ > 0. If the steady state curve connects to a point where ϕ = 1, this is the starting
point of a curve of imbalanced states. We can continue in two directions; one will
have ḟ > 0 and this is the branch we want to follow.

To find out which branch it is, we manipulate Ñv = 0. We sum the first and
third rows to see that ṗ+ ȧ = 0, which yields

0 = −2v2 + 2v3 + 4v5 + v6 + v7 − 2v1 + 4v2 − 4v5 − v6
= −2(v1 − v2 − v3) + v7,

in which we recognise ḟ = v1 − v2 − v3. We substitute v7 = V7(Π− p) from (7) to
get

ḟ =
1

2
V7(Π− p). (68)

Hence on the curved plane of solutions to Ñv(x), we have that p < Π is equivalent
to ḟ > 0, thus we follow the branch for decreasing p. This is to be expected
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Figure 7: The steady state curve for three different values of V4. Note
that the curve tends to f →∞ (ϕ→ 1) for smaller values of V4 and
to y →∞ (ρ→ 1) for larger values. At the a critical value V4 = V c

4 ,
both tend to infinity simultaneously.

biologically: to continue production of FBP, phosphate needs to be added from the
vacuole, causing a drop in the vacuole concentration [22].

3.7 Numerical illustrations
Parameter-free analysis of the imbalanced state proved too cumbersome. However,
Lemma 11 provides us with a good starting point for numerical investigations. We
use a custom extension of MATLAB, called MatCont [3] that allows us to continue
steady states in a bifurcation parameter. First we simulate our original model (as
described in Section 2). Parameter values and initial conditions are given in Table
S1.

Lemma 11 yields that for a particular value of V4 the steady state curve connects
to the boundary of the domain of F−1 at ϕ = 1, while ρ < 1. In the same way,
there exists a critical value V4 such that we connect at a point where ϕ < 1 and
ρ = 1. Thus manipulation of V4 should yield both these results. With this in mind,
we continue the steady state curve for multiple values of V4 in MatCont and see
that we get a bifurcation: the steady state curve asymptotically goes to f = ∞
(ϕ = 1), and for increasing V4 this shifts as it goes asymptotically to y =∞ (ρ = 1;
see Figure 7).

To investigate the approach to the imbalanced state, we compactify the dynamics
and consider the system with the transformed variable ϕ instead of f , with time
derivative

ϕ̇ =
dϕ

df

df

dt

=
k3,f

(k3,f + f)2
ḟ .

Note that 1− ϕ =
k3,f

k3,f+f , such that (1−ϕ)2

k3,f
=

k3,f
(k3,f+f)2

and so

ϕ̇ =
(1− ϕ)2

k3,f
ḟ .
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Figure 8: The steady state curve for the transformed variable ϕ,
reaching ϕ = 1 (in blue) and the imbalanced states branching off
from this (red). Left: bifurcation curves in (p, λ, ϕ)-space; Right: the
same curves, showing the p and ϕ values along the curve, to better
illustrate the bistability between regular and imbalanced states.

We want to continue the steady states using λ as bifurcation parameter to reach
ϕ = 1. Hence we need to disregard the term (1−ϕ)2

k3,f
describing the imbalanced states

of ϕ = 1, and focus on ḟ = 0.
Using the results from the last simulation, we have a setting in which the steady

state curve reaches ϕ = 1 while y remains finite. Thus we have a starting point
x∞ from which we can continue and follow the imbalanced state. This is found by
solving the system “at infinity” (67) for decreasing p: since ḟ = 1

2V7(Π − p) (68),
p < Π means ḟ > 0. Parameter V7 in v7 does not influence the regular steady states,
but may be varied in the imbalanced states to produce bistability [14].

The combined results of the last two sections yield a steady state curve and a
curve of imbalanced states (see Figure 8). The steady state curve has increasing
λ and has negative eigenvalues, making it locally stable. The imbalanced state
continues in increasing λ and is also stable, until there is a limit point near p = 0,
where we get rapidly decreasing λ and instability, followed by another limit point
to increasing λ even closer to p = 0 (see Figure 8). Thus with λ a bit greater than
its value in this second limit point the system has a stable steady state and a stable
imbalanced state. This is an example of the bistability between a regular and an
imbalanced state as found experimentally.

4 Discussion

With the goal of parameter-free analysis for more complex metabolic pathways, we
have given a detailed description of the steady states of the core model of yeast
glycolysis described in Section 2. It was possible to prove under very mild para-
meter conditions that FBP parameterises the steady states, but to show a similar
statement for the glycerol flux variable v3 turned out to be much more involved.
Also the analysis of imbalanced states proved partially beyond current techniques.
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4.1 A surprisingly simple condition for non-equilibrium
steady states

If the parameter condition V1 > V6/2 is met, the equilibrium state is unstable
and the emerging steady state is stable (Section 3.2). In other words, if the rate of
consumption of ATP (V6) is less than twice the rate of glucose feeding into glycolysis,
then the cell can balance the production and consumption of ATP in a stable steady
state. This ratio of 1 : 2 is exactly the ratio between the reactions v1 and v6 in the
Elementary Flux Mode EFM1, which represents the normal glycolytic flux through
the pathway (11). This does not even take into account the other EFM, EFM2,
which does involve the side branches and should account for a part of the glucose
uptake, specifically the part that does not produce any ATP (as seen by v6 = 0 in
this flux vector). This is surprising: as soon as the rate of glucose uptake can support
the ATP consumption downstream, the system has an emerging stable steady state
with balanced metabolism. So although the condition V1 > V6/2 would seem to be
a bare minimum for stability, it is all that is required.

The subtle point in our proof where we see why this bare minimum is enough is
in the power series expansion (25). If we insert this expansion in the reactions (7),
we get exactly that the nonzero reactions in EFM1 are of order t2, while the side
branch reactions v3 and v5 are of order t3. Hence, near the equilibrium, the flux
directly through glycolysis is dominating the glucose intake.

This result is also simpler in the more complicated model studied in this paper
than in the previous simpler core model studied in [14]. In that smaller model, there
was a richer set of solutions. The addition of NADH/NAD householding, which was
lacking from [14], induced a more complicated model with two instead of one side
branch (the other being the pyruvate to succinate branch, which was specifically
added for redox balance) and simplified the bifurcation structure considerably.

4.2 The one-dimensional curve of non-equilibrium steady
states
The steady states are locally a one-dimensional manifold, by Theorem 7. So it
follows that the only ways the steady state curve could change character is if a pair
of eigenvalues passes the imaginary axis (Hopf bifurcation) or if the curve changes
direction in the parameter λ (fold bifurcation). We have neither found nor excluded
these types of bifurcations in our model, but the main result of our work is that these
are the only possibilities. This means that there are no pitchfork bifurcations, which
would create multiple steady state branches, and no other transcritical bifurcations.
In case of a fold, the steady state would become unstable, but it would coexist with
a stable steady state as the curve changes direction. In case of a Hopf bifurcation, a
limit cycle would emerge, possibly leading to oscillations, a well-known phenomena
in yeast glycolysis [5], and also present in the previous core model we extended
here [14]. If in addition it would be possible to show that the curve is monotone
increasing in the parameter λ, then all the points on the curve have different λ,
so for a fixed λ, the steady state is unique. We have not been able to prove this
monotonicity property of the curve, but we found it in all the numerical simulations.
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4.3 FBP as a flux sensor
As introduced at the start of our work, we wanted to understand if FBP always
parameterises the steady state curve, so that it could function as a flux sensor [2, 8].
Indeed, in Theorem 5 this was shown to be true if

k4,n ≥ k3,n.

Note that this is a sufficient condition and could still be true if k4,n < k3,n. The
inequality above is in correspondence with measured values of the affinities of NADH
to the two reactions in which FBP is a substrate [20]. This suggests that in all
likelihood FBP could indeed act as a flux sensor under practically any parameter
setting; in other words, this fact is explained by the stoichiometry and structure
of the kinetics of the rate functions of this metabolic pathway, rather than by the
precise parameters involved in those rate functions.

Another question was whether a flux could parameterise the steady states, which
we found can be shown to be true for the glycerol flux v3 in Theorem 10. However,
we needed a restriction on the parameters (57). This restriction involves many
parameters, but most notably k2,f and k3,f . A sufficient condition for (57) to hold
is that k2,f < k3,f , which should be interpreted as that lower glycolysis has a higher
affinity for FBP than glycerol production. This is a very reasonable assumption,
and is in line with experimental data [20]. The central flux through glycolysis is the
major flux in our model, therefore its response to a change in FBP should be more
sensitive than the response of a side branch.

4.4 The imbalanced state

Experimentally, the imbalanced state occurs in a fraction of the cells [22], and
there is a bistability between steady and imbalanced states; the dynamics converge
to either stable state depending on the initial conditions. Most initial conditions
will approach a stable steady state, but there is a small basin of attraction for
the imbalanced state. This matches well with the numerical results as depicted in
Section 3.6.

The continuation of the imbalanced state (the red curve in Figure 8) consists
of three parts, due to two fold bifurcations. We see that for a certain range of the
parameter λ, the stable steady state and two imbalanced states coexist, where one
imbalanced state is stable and one is unstable. For a fixed λ in this range, the stable
imbalanced state is very close to zero for the concentrations a and p, which coincides
with the experimental picture: the cell depletes the inorganic phosphate (p) and
ATP (a) concentrations in the cell, and all the production lower glycolysis can
muster is immediately invested to produce more FBP, which therefore accumulates
in the cell [22].

4.5 Scope of the techniques and general outlook
In this paper we have used three main techniques to study the bifurcation struc-
ture of the moderately detailed pathway with explicit kinetics: EFMs, the Implicit
Function Theorem, and coordinate transformations. Here we briefly discuss the
generality of our approach to other (and larger) pathways.
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The use of EFMs to construct alternative steady state equations (Proposition
1) is general. This method will be of use particularly for models with between four
to about ten independent variables; with less, one can oversee the recombination of
rows easily, and with more equations there will be a combinatorial explosion in the
number of EFMs, and they do not provide additional insight. For higher numbers
of independent variables, Extremal Pathways might be more suitable than EFMs,
as there are less of those, but at some point also these will become cumbersome to
use.

The Implicit Function Theorem was used especially to prove that the non-
equilibrium steady states formed a single curve emerging from one equilibrium
steady state. The technique uses smaller subdeterminants of the complete Jac-
obian matrix, and the linearity of Vmax parameters in reaction functions to prove
that at least one subdeterminant is always nonzero. This technique scales in prin-
ciple to much larger networks, and it should eventually be possible to prove in full
generality whether a detailed model such as the ones by Teusink et al. [20] or Hynne
et al. [9] have the same property.

Finally, we used coordinate transformations to reformulate the steady state equa-
tions, for two reasons: to exploit the linearity of fluxes in those equations, and to
compactify the dynamics and study imbalanced states “at infinity”. In our case the
inverse transformation could be explicitly calculated, but this is not to be expected
for larger networks (unless they involve several smaller individual transformations
between metabolites and fluxes). Moreover, the amount of work necessary to prove
that v3 parameterises the steady states was considerable, and was strongly depend-
ent on the explicit choices of reaction rate functions, their product structure and
whether they happened to be increasing or decreasing in their respective variables.
We do not expect that such calculations are possible in much larger networks. On
the other hand, setting up the transformation itself was straightforward, and already
allowed the study of both regular steady states and imbalanced states.
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Supplementary Information

The supplementary Mathematica file contains the calculations for

• The expansion in equation (25), Section 3.2.

• The local stability of steady states emerging from the equilibrium x0 at the
end of Section 3.2;

• The calculations in the proof of Lemma 6, Section 3.3.

In Section 3.4, we mentioned that equation (44) admits a unique solution. The
proof is given here.

We need to show that n∗ is uniquely determined by v2 and v3 in the image of
F . Recall the quadratic equation n∗ needs to solve,

v2 = V2
κf ṽ3(k3,n + n)

n+ ṽ3(k3,n + n)(κf − 1)
p̃ã

nT − n
k2,n + nT − n

.

A quadratic equation can have zero, one or two solutions, but since F is smoothly
invertible on its domain (Lemma 8) we know that there has to be exactly one on
the restricted domain of F .

We recall the short version of this equation,

an2 + bn+ c = 0, (69)

where

a = ṽ2(1 + ṽ3(κf − 1))− ṽ3κf p̃ã, (70)
b = ṽ2ṽ3k3,n(κf − 1) + ṽ3κf p̃ã(nT − k3,n),
− (ṽ2 + ṽ2ṽ3(κf − 1))(nT + k2,n) (71)

c = ṽ3κf p̃ãk3,nnT − ṽ2ṽ3k3,n(κf − 1)(nT + k2,n). (72)

The transformation F is bounded. The borders of the image in (v2, v3, v4)-space
are complicated curves, but each reaction has a clear global upper bound and 0 as
a lower bound: the typical Michaelis Menten fraction z

k+z approaches 1 for z →∞.
Furthermore n ∈ (0, nT ), so we have the following bounds for F ,

v2 < V2p̃ã
nT

k2,n + nT
, v3 < V3

nT
k3,n + nT

, v4 < V4
nT

k4,n + nT
. (73)
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Denote these upper bounds for vi as v̄i.
The transformation F has this bounded image, which yields a bounded domain

for F−1.
R(F ) = D(F−1) ⊂ [0, v̄2]× [0, v̄3]× [0, v̄4].

This will be a tool to prove which of the two roots of the quadratic equation for n
is the right one.

Lemma 12. For all v2 and v3, c from (72) is positive.

Proof. From (73), we have v2 < v̄2 = V2p̃ã
nT

k2,n+nT
. Now (72) can be rewritten to a

form that is positive:

c = ṽ3κf p̃ãk3,nnT − ṽ2ṽ3k3,nκf (k2,n + nT ) + ṽ2ṽ3k3,n(k2,n + nT )

= ṽ3κfk3,n
k2,n + nT

V2

(
V2p̃ã

nT
k2,n + nT

− v2
)
+ ṽ2ṽ3k3,n(k2,n + nT ) > 0

Lemma 13. If a from (70) is positive, then b < −
√

b2 − 4ac.

Proof. This implication follows from a sign argument. The term c is positive by
Lemma 12 and a > 0 is assumed. Therefore b2 − 4ac < b2. Note F is one-to-one,
implicitly shown in Lemma 8, so there is a single solution to (69) that is in the
interval (0, nT ). It follows that the discriminant b2 − 4ac is positive, because its
square root has to be real. Now

√
b2 − 4ac <

√
b2 = |b|. A positive b is excluded

as both roots of (69) are then negative, hence b < −
√

b2 − 4ac.

Lemma 14. The relevant solution to (69) is

n =
−b−

√
b2 − 4ac
2a

, (74)

with continuous extention n = −c
b for a = 0.

Proof. There are three cases.

a > 0. By Lemma 13, b < −
√

b2 − 4ac. So both solutions are positive,

n± =
−b±

√
b2 − 4ac
2a

> 0.

By Lemma 8 there is only one solution in (0, nT ), so nT must separate the two

solutions. Of these, n− is closer to 0 as
√

b2−4ac
2a > 0.

a < 0. In this case, we have n+ < 0. From Lemma 12, c > 0, so
√

b2 − 4ac >√
b2 = |b|, therefore

−b +
√

b2 − 4ac > 0, i.e.

n+ =
−b +

√
b2 − 4ac
2a

< 0. (a < 0)
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a = 0. Now (69) becomes bn+ c = 0⇔ n = − c
b . This is a continuous extention of

n−:
c > 0 by Lemma 12 . If a is near 0, then (69) is close to bn + c = 0, so
b ≥ 0 would imply that n > 0 can only be a solution to (69) if a < 0 and n is
large, then as a approaches zero, this value would have to pass nT making all
solutions irrelevant. Hence we have b < 0.
From this it follows that −b = |b| =

√
b
2
. Now we can show that indeed n−

may be continuously extended:

lim
a→0

n− = lim
a→0

−b−
√

b2 − 4ac −b√
b2

2a

= −b lim
a→0

1−
√

b2−4ac
b2

2a

= −b lim
a→0

(
1−

√
1− 4ac

b2

)(
1 +

√
1− 4ac

b2

)
2a
(
1 +

√
1− 4ac

b2

)
= −b lim

a→0

1− 1 + 4ac
b2

2a
(
1 +

√
1− 4ac

b2

)
= − 4bc

2b2(1 +
√
1)

= − c
b
.

So n− is the relevant solution.
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parameter value
aT 4
nT 1
Π 10
V1 40
V2 6.5
V3 0.4
V4 8
V5 0.6
V6 1.28
V7 10
d1 1
d2 20
d3 100
d4 1
d5 1
k2,f 1.01
k2,p 0.99
k2,a 1.02
k2,n 0.98
k3,f 1.1
k3,n 0.97
k4,y 1.04
k4,n 1.05
k5,y 0.96
k5,a 0.95
k5,n 0.94

variable initial condition
f 0.4
p 10
y 0.81
a 0.80
n 0.83

Table 1: Parameter values and initial conditions used in MatCont
simulations.
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