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Abstract

Tauopathies feature progressive accumulation of tau amyloids. Pathology may begin when
these amplify from a protein template, or seed, whose structure is unknown. We have purified
and characterized distinct forms of tau monomer—inert (M;) and seed-competent (Ms).
Recombinant Ms triggered intracellular tau aggregation, induced tau fibrillization in vitro, and
self-assembled. Ms from Alzheimer’s disease also seeded aggregation and self-assembled in
vitro to form seed-competent multimers. We used crosslinking with mass spectrometry to
probe structural differences in M; vs. Ms. Crosslinks informed models of local peptide
structure within the repeat domain which suggest relative inaccessibility of residues that drive
aggregation (VQIINK/VQIVYK) in M;, and exposure in Ms. Limited proteolysis supported this
idea. Although tau monomer has been considered to be natively unstructured, our findings
belie this assumption and suggest that initiation of pathological aggregation could begin with
conversion of tau monomer from an inert to a seed-competent form.
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Introduction

Amyloids are ordered protein assemblies, typically rich in beta sheet, that underlie multiple
disorders such as Alzheimer’s disease (AD). Amyloid-forming proteins include tau, synuclein,
and expanded polyglutamine proteins such as huntingtin, among many others. It is unknown
how or why intracellular proteins such as tau transition from a relatively inert form to one that
efficiently self-assembles into ordered structures in vivo. This process begins with the
formation of a pathogenic “seed,” a structure that serves as a template for homotypic fibril
growth. This structural transition could be a critical event in the pathogenesis of
neurodegeneration. Under defined conditions and relatively high concentrations (typically
micromolar), recombinant tau monomer will form amyloid fibrils in vifro. However the basis of
spontaneous assembly in cells is unknown. The conversion of a protein from a monomer to a
large, ordered multimer could occur by several mechanisms, but the first step probably
involves the formation of a seed. This event, and indeed the actual conformation or assembly
state of the protein that constitutes the “minimal” seed, has remained obscure. This has led to
the idea that a seed is potentially transitory, arising from an equilibrium between two states:
one relatively aggregation-resistant, and another that is short-lived. A seed could be a single
molecule, or several. Based on extrapolation from kinetic aggregation studies, it has been
suggested that a critical seed for tau and polyglutamine peptide amyloid formation is a single
molecule’?, while an earlier study (among others®) has proposed a tau multimer“. Isolation of
the seed-competent form of tau could be critical to understanding the initiation of disease and
the design of more effective diagnostics and therapeutics.

Tau forms amyloids that underlie neurodegeneration in a variety of neuropathological
syndromes, collectively termed tauopathies®. These include AD and frontotemporal
dementias, among many others. Multiple groups, including ours, have now observed that tau
will propagate an aggregated state from the outside to the inside of a cell, between cells,
across synapses, and within brain networks®. In prior work we used size exclusion
chromatography (SEC) to define tau trimers as the minimal unit of spontaneous cellular
uptake and intracellular amyloid formation, and proposed this as the smallest particle capable
of propagating aggregates between cells’. This work involved application of “naked” protein
assemblies derived from recombinant protein or human brain onto cultured “biosensor”
HEK293 cells or primary neurons that express a tau aggregation reporter®°. Biosensor cells
and primary neurons alike take up tau aggregates via macropinocytosis'. The aggregates
subsequently serve as highly specific templates to trigger intracellular amyloid formation®'".
We have also determined that preincubation of cationic lipids such as Lipofectamine with tau
seeds facilitates their direct transduction into a cell, bypassing the physiologic uptake
mechanism®12. Lipofectamine-mediated delivery into biosensor cells allows direct quantitation
of seed titer for both tau and a-synuclein.

Tau is intrinsically disordered upon isolation from bacteria or mammalian cells and is
relatively inert in terms of spontaneous self-assembly. However under various conditions,
including exposure to polyanions such as heparin, tau will form aggregates via nucleated self-
assembly 3141t is unknown how these experimental conditions relate to the initiation of
aggregation in human brain. We have now purified various stable forms of full-length tau
monomer from recombinant sources and human brain. One is relatively inert and is stable for
long periods. Another is “seed-competent,” triggers amyloid formation in cells and in vitro,
and exhibits intrinsic properties of self-assembly. We have used crosslinking with mass
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spectrometry (XL-MS) to probe the structures of these molecules. Models of discrete regions
within the RD predict that differential exposure of hexapeptide motifs previously known to be
important for amyloid formation distinguishes the two forms of tau. These models are
supported by limited proteolysis studies. The identification of distinct and stable forms of tau
monomer, including some that are uniquely seed-competent, bears directly on how we
understand the initiation of protein aggregation in the tauopathies.

MATERIALS AND METHODS

Tau expression, purification, fibrillization, and labeling

We utilized several forms of recombinant tau. Full-length (FL), wild-type (WT) tau contains
two cysteines that create disulfide bridges and could complicate isolation of monomer. Thus
in addition to preparing FL WT tau (2N4R) as previously described'®, we purified FL tau
(2N4R) that contains two cysteine/alanine substitutions (C291A, C322A), termed tau (2A).
We used the 2A and WT forms of tau in our initial studies, before exclusively studying WT.
Additionally, for fluorescence correlation spectroscopy (FCS), we engineered a single
cysteine at the amino terminus (Cys-Tau (2A)) for labeling via maleimide chemistry. These
modified proteins have fibrillization and seeding properties similar to FL WT tau. To initiate
fibrillization, we incubated 8uM tau in 10mM HEPES, 100mM NaCl, and 8 uM heparin (1:1
ratio of FL tau to heparin) at 37°C for 72 h without agitation. For cysteine labeling, we
incubated 200 pL of 8uM fibrils (monomer equivalent) and monomer with 0.025 mg of Alexa
Fluor-488 (AF488) C5-maleimide (Invitrogen) and 80uM Tetramethylrhodamine-5-maleimide
(Sigma-Aldrich) overnight at 4°C with gentle rotation. We quenched excess dye with 10mM
DTT for 1h at room temperature. For limited heparin exposure, recombinant tau at 1uM was
incubated with heparin at 1uM for 15min, 1hr and 4hr at 37°C before purification of monomer
via Superdex 200 column.

To avoid confusion throughout the manuscript, we employ the following terminology:
Mi: This refers to “inert” tau monomer, whether recombinant or derived from control brain.
Ms: This refers to “seed competent” monomer, whether derived from sonicated fibrils,
heparin-treated monomer, or AD brain.

Sonication and size exclusion chromatography (SEC)

We sonicated labeled and non-labeled fibrils using a Q700 Sonicator (QSonica) at a power of
100-110 watt (Amplitude 50) at 4°C for 3h. Samples were then centrifuged at 10,000 x g for
10 min and 1 mL of supernatant was loaded into a Superdex 200 Increase 10/300 GL column
(GE Healthcare) and eluted in PBS buffer at 4°C. After measuring the protein content of each
fraction with a Micro BCA assay (Thermo Scientific) and/or fluorescence using a plate reader
(Tecan M1000), we aliquoted and stored samples at -80°C or immediately used them in
biochemical studies and cell seeding assays. Each aliquot was thawed immediately before
use. The molecular weight/radius of proteins in each fraction was estimated by running gel
filtration standards (Bio-Rad): Thyroglobulin (bovine) 670 kDa/845nm; y-globulin (bovine) 158
kDa/5.29nm; Ovalbumin (chicken) 44 kDa/3.05nm; myoglobin (horse) 17 kDa/2.04nm; and
vitamin B12 1.35 kDa/0.85nm.

Size-cutoff filtration
Monomer, dimer and trimer fractions were passed through a 100kDa MWCO filter (Corning)
as instructed by the manufacturer (centrifuged at 15,000 x g for 15min at 4°C). Filtered
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material was immediately collected and used in seeding assay along with the non-filtered
samples of the same fraction at a final concentration of 100nM, or analyzed by limited
proteolysis. Protein concentration was determined before and after filtration by determining
absorption at 205nm.

CD spectroscopy

Circular dichroism (CD) measurements were performed at 25°C on a Jasco J-815
spectropolarimeter using a 0.1cm optical path length. 200uL of 2uM Ms or Mi monomer was
dialyzed onto 10 mM NaP and the spectra were measured at 0.10 nm intervals, with a band
width of 1.0nm, and scan speed of 10nm/min. The spectrum represents the average of 4
scans in the range of 195 to 250nm.

Enzyme-linked immunosorbent assay

A total tau “sandwich” ELISA was performed similarly to that described previously’.
Antibodies were kindly provided by Dr. Peter Davies (Albert Einstein College of Medicine).
96-well round-bottom plates (Corning) were coated for 48 hours at 4°C with DA-31 (aa 150-
190) diluted in sodium bicarbonate buffer (6ug/mL). Plates were rinsed with PBS 3 times,
blocked for 2h at room temperature with Starting Block (Pierce), and rinsed with PBS 5
additional times. SEC fractions were diluted in SuperBlock solution (Pierce; 20% SuperBlock,
diluted in TBS), and 50 yL sample was added per well. DA-9 (aa 102-150) was conjugated to
HRP using the Lighting-Link HRP Conjugation Kit (Innova Biosciences), diluted 1:50 in
SuperBlock solution, and 50uL was added per well (15ug/mL). Sample + detection antibody
complexes were incubated overnight at 4°C. Plates were washed with PBS 9 times with a 15
sec incubation between each wash, and 75 yL 1-Step Ultra TMB Substrate Solution (Pierce)
was added. Plates were developed for 30min, and the reaction quenched with 2M sulfuric
acid. Absorbance was measured at 450nm using an Epoch plate reader (BioTek). Each plate
contained a standard curve, and all samples were run in triplicate.

Fluorescence correlation spectroscopy

FCS measurements were conducted on a Confocal/Multiphoton Zeiss LSM780 Inverted
microscope (Carl Zeiss-Evotec, Jena, Germany), using a 40X water immersion objective as
previously described '7. Fluorescently labeled tau from SEC fractions (in PBS) was excited at
488nm and 561nm for 30sec, recording 10 times'®. The data analysis was performed with
Origin 7.0 (OriginLab, Northampton, MA).

Liposome-mediated transduction of tau seeds

Stable cell lines were plated at a density of 35,000 cells per well in a 96-well plate. After 18h,
at 60% confluency, cells were transduced with protein seeds. Transduction complexes were
made by combining [8.75uL Opti-MEM (Gibco) +1.25uL Lipofectamine 2000 (Invitrogen)] with
[Opti-MEM + proteopathic seeds] for a total volume of 20uL per well. Liposome preparations
were incubated at room temperature for 20min before adding to cells. Cells were incubated
with transduction complexes for 24h.

FRET flow cytometry

Cells were harvested with 0.05% trypsin and fixed in 2% paraformaldehyde (Electron
Microscopy Services) for 10min, then resuspended in flow cytometry buffer. The MACSQuant
VYB (Miltenyi) was used to perform FRET flow cytometry. To measure CFP and FRET, cells
were excited with a 405nm laser, and fluorescence was captured with 405/50nm and
525/50nm filters, respectively. To measure YFP, cells were excited with a 488nm laser and
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fluorescence was captured with a 525/50nm filter. To quantify FRET, we used a gating
strategy similar to that previously described®. The integrated FRET density (IFD), defined as
the percentage of FRET-positive cells multiplied by the median fluorescence intensity of
FRET-positive cells, was used for all analyses. For each experiment, ~20,000 cells were
analyzed in triplicate. Analysis was performed using FlowJo v10 software (Treestar).

Tau seeding in vitro

Recombinant full length (ON4R) tau monomer was purified as previously described'? at
1mg/mL in BRB80 buffer (80mM PIPES, 1TmM MgCI2, 1mM EGTA, pH 6.8 with 0.3M NaCl)
and boiled at 100°C for 5min with 25mM B-mercaptoethanol. The tau protein solution was
then rapidly diluted 1:5 and cooled to 20°C in PBS, pH 7.4, to a final concentration of
0.2mg/mL of tau and 5mM (B-mercaptoethanol. This solution was supplemented with
Thioflavin T (ThT) to a final concentration of 20uM and filtered through a sterile 0.2um filter.
Reaction sizes of 195uL were aliquoted from the prepared protein stock and thoroughly
mixed with 5pL of each sample at 100nM monomer equivalent, or 5uL of buffer control. For
each sample, three different technical replicates were prepared. An opaque 96-well plate was
prepared with a 3mm glass bead added to each well to increase agitation. The recombinant
tau solution was added to the plate in 200pul reaction volumes. The plate was sealed with
sealing tape to prevent evaporation and incubated in the plate reader (SpectraMax M2) at
37°C. ThT fluorescence was monitored over time with excitation and emission filters set to
444nm and 485nm, respectively. Fluorescence readings were taken every 5min, with
agitation for 5sec before each reading.

Tau extraction from brain and characterization by SEC

0.5g frontal lobe sections from AD patients at late Braak stage (VI) and age-matched controls
lacking evident tau pathology were gently homogenized at 4°C in 5SmL of TBS buffer
containing protease inhibitor cocktails (Roche) using a dounce homogenizer. Samples were
centrifuged at 21,000 x g for 15 min at 4°C to remove cellular debris. Supernatant was
partitioned into aliquots, snap frozen and stored at -80°C. Immunopurification was performed
with HJ8.5 anti-tau antibody?° at a ratio of 1:50 (1ug mAb per 50ug of total protein),
incubating overnight at 4°C while rotating. To each 1mL of mAb/brain homogenate we added
200puL of a 50% slurry protein G-agarose beads (Santa-Cruz). We washed the bead with TBS
buffer before overnight incubation at 4°C. We then centrifuged the complexes at 1000 x g for
3min and discarded the supernatant. Beads were washed with Ag/Ab Binding Buffer, pH 8.0
(Thermo Scientific) three times. Tau bound to the beads was eluted in 100 L low pH elution
buffer (Thermo Scientific), incubated at room temperature for 7min, followed by neutralization
with 10uL Tris-base pH 8.5. This elution step was repeated once more with 50 pL elution
buffer and 5uL Tris-base pH 8.5 for a total of 165uL. Samples were then centrifuged at
10,000 x g for 10min, and the supernatant loaded onto a Superdex 200 Increase 10/300 GL
column (GE Healthcare). SEC fractions were frozen at -80°C after evaluation of protein
content by Micro BCA assay (Thermo Scientific).

To compare different extraction methods, fresh frozen frontal lobe section from an AD patient
brain was suspended in TBS buffer containing protease inhibitor cocktails (Roche) at 10%
w/vol in 4 portions. Samples were homogenized using 3 different devices: a dounce
homogenizer, probe sonicator (Omni International), and tissue homogenizer (Power Gen 125,
Fischer Scientific). We also included one more condition of homogenizing with tissue
homogenizer followed by probe sonication for 10min. Samples were centrifuged at 21,000 x g
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for 15min at 4°C to remove cellular debris. Supernatant was partitioned into aliquots followed
by immunopurification.

To control for release of tau Ms from fibrils in AD brain, a tau KO Mouse brain was divided
into two halves, followed by spiking one half with recombinant fibrils and the other with fibril-
derived Ms, both at final concentration of 10uM monomer equivalent. Each was dounce
homogenized, centrifuged, immunoprecipitated with HJ8.5 anti-tau antibody, and fractionated
by SEC with identical techniques as used for human brain processing. SEC fractions were
then used in seeding experiments.

Analysis of heat denaturation data
We analyzed the IFD from measurements of temperature dependent seeding using global fits
to a proposed unimolecular heat denaturation reaction. This analysis rests on the Arrhenius
equation?":
E

ky = Ae RT
where ky is the unfolding rate constant, E is the activation energy, R is the gas constant, T is
the temperature, and A is the pre-exponential factor. For the unimodal model, the data were
fit globally to:

IFD(t) = 100e~t/7.

Here, t is the heat denaturation time and 7= 1/ky is the unfolding time. A second, multimodal
model was deployed to account for discrepancies in the early time points which appeared to
suggest the presence of a lag phase in denaturation. In this model, the data were fit globally
to
IFD(t) = 100; t<l,
IFD(t) = 100e~t—)/7; ¢ > [,

where [, is the lag time given by
E

1/, = Be RT

and B is a pre-exponential factor. We used the Akaike information criterion (AIC) to evaluate
the best model as it quantifies the trade-off between goodness of fit and the complexity of the
model %2. For least squares model fitting, AIC can be reduced to:

AIC = 2p + nIn(RSS/n)

where p is the number of parameters in the model, n is the number of observations, and RSS
is the residual sum of squares. The preferred model is the one with the minimum AIC. Here,
we find AIC = 123 for the unimodal model and AIC = 105 for the multimodal model, which
suggests the multimodal model is a better description of the denaturation data.

Crosslinking, sample processing and LC-MS/MS analysis

Mi and Ms tau samples were prepared as described above. In all cases, tau preparations
were crosslinked at a total protein concentration of ~0.1mg/mL using 10 — 20ug starting
material. The crosslinking buffer was 50 mM HEPES-KOH (pH 7.4) containing 150mM NaCl
and 1mM DTT. The crosslinking reaction was initiated by adding disuccinimidyl suberate
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(DSS) stock solution (25 mM DSS-do and —d+2, Creative Molecules) in DMF to a final
concentration of 1ImM. Samples were incubated at 37°C for 1min. For the heparin-derived Ms
sample, heparin sulfate (Sigma) was added to a final concentration of 5uM, followed by 1mM
DSS and the samples were incubated for 1min at 37°C. Excess reagent was quenched by
addition of ammonium hydrogen carbonate to 50mM and incubation at 37°C for 30min, and
then flash frozen at -80°C. Absence of higher molecular species was confirmed by SDS-
PAGE and coomassie stain. After the quenching step, samples were evaporated to dryness
in a vacuum centrifuge and resuspended in 8M urea. Proteins were reduced with 2.5mM
TCEP (37°C, 30 min) and alkylated with 5mM iodoacetamide (30min, room temperature,
protected from light). The sample solutions were diluted to 1M urea with 50mM ammonium
hydrogen carbonate and trypsin (Promega) was added at an enzyme-to-substrate ratio of
1:50. Proteolysis was carried out at 37°C overnight followed by acidification with formic acid
to 2% (v/v). Samples were then purified by solid-phase extraction using Sep-Pak tC18
cartridges (Waters) according to standard protocols. Samples were fractionated by size
exclusion chromatography (SEC) on a Superdex Peptide column as described elsewhere 2.
Two fractions collected from SEC were evaporated to dryness and reconstituted in
water/acetonitrile/formic acid (95:5:0.1, v/v/v) to a final concentration of approximately 0.5
Mg/ul. 2uL each were injected for duplicate LC-MS/MS analyses on an Eksigent 1D-NanoLC-
Ultra HPLC system coupled to a Thermo Orbitrap Fusion Tribrid system. Peptides were
separated on self-packed New Objective PicoFrit columns (11cm x 0.075mm 1.D.) containing
Magic C+s material (Michrom, 3um particle size, 200A pore size) at a flow rate of 300nL/min
using the following gradient. 0-5min = 5 %B, 5-95min = 5-35 %B, 95-97min = 35-95 %B and
97-107min = 95 %B, where A = (water/acetonitrile/formic acid, 97:3:0.1) and B =
(acetonitrile/water/formic acid, 97:3:0.1). The mass spectrometer was operated in data-
dependent mode by selecting the five most abundant precursor ions (m/z 350-1600, charge
state 3+ and above) from a preview scan and subjecting them to collision-induced
dissociation (normalized collision energy = 35%, 30ms activation). Fragment ions were
detected at low resolution in the linear ion trap. Dynamic exclusion was enabled (repeat count
1, exclusion duration 30sec).

Analysis of mass spectrometry data

Thermo .raw files were converted into the open .mzXML format using msconvert
(proteowizard.sourceforge.net) and analyzed using an in-house version of xQuest?*. Spectral
pairs with a precursor mass difference of 12.075321 Da were extracted and searched against
the respective FASTA databases containing Tau (TAU_HUMAN P10636-8). xQuest settings
were as follows: Maximum number of missed cleavages (excluding the crosslinking site) = 2,
peptide length = 5-50 aa, fixed modifications = carbamidomethyl-Cys (mass shift = 57.021460
Da), mass shift of the light crosslinker = 138.068080 Da, mass shift of mono-links =
156.078644 and 155.096428 Da, MS" tolerance = 10 ppm, MS? tolerance = 0.2 Da for
common ions and 0.3 Da for crosslink ions, search in ion-tag mode. For brain-derived
samples we also included variable modifications including: Methionine oxidation = 15.99491,
Ser/Thr/Tyr Phosphorylation = 79.96633 and Lysine Ubiquitylation = 114.043 with
nvariable_mod = 1. Post-search manual validation and filtering of the recombinant samples
was performed using the following criteria: xQuest score > 16, mass error between -4 and
+7ppm, %TIC > 10, and a minimum peptide length of six aa. In addition, at least four
assigned fragment ions (or at least three contiguous fragments) were required on each of the
two peptides in a crosslink. False discovery rates (FDR) for the identified crosslinks were
estimated using xprophet?*. For the recombinant samples, M; and Ms, the FDR ranged from
6-10%. Post-search manual validation of the brain-derived samples was performed using the
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333 following criteria: xQuest score > 7, mass error between -5 and +7ppm, %TIC > 10, and a
334  minimum peptide length of six aa. In addition, at least four assigned fragment ions (or at least
335 three contiguous fragments) were required on each of the two peptides in a crosslink. The
336 FDRs for the brain samples were much higher and ranged between 20-25%. For triplicate
337 datasets corresponding to the M; and Ms boiling time course we computed consensus

338 crosslink profiles enforcing that at least two of the three datasets contain a crosslink.

339 Crosslink data was visualized using Xvis?°. Average contact distance was computed by
340 averaging the sequence separation between crosslink pairs in a given dataset.

341

342  Generation of structural models using XL-MS-derived constraints

343  High confidence crosslink pairs identified above were used to generate an ensemble of
344  possible structures using a Rosetta protocol employing the crosslink pairs as structural

345 restraints. The integration of XL-MS derived restraints have been previously used to refine
346  structural models of large complexes?? and simpler heterodimeric complexes?6. Based on
347  distance distributions of crosslink pairs mapped onto crystallographic structures we set a
348 lower bound of 15A and an upper bound of 25A for lysine Ca pairs in our simulations.

349 Importantly, in our simulations we weighted the constraint pairs as to allow some distances
350 above the upper bound limit. The fragment library was supplanted by using chemical shifts
351  derived from fibrillar tau ssSNMR assignments (bmrb entry 17920) using csrosetta®’. We
352 generated 1000 models for each of the four XL-MS datasets on a high performance cluster
353 (biohpc.swmed.edu). Representative structures were selected according to the low Rosetta
354  score and radius of gyration. All plots were generated with gnuplot. All figures were

355 generated using Pymol.

356

357 Commandline used for ab initio protocol calculations with XL-MS restraints

358 AbinitioRelax.default.linuxgccrelease -in:file:fasta tau.fasta -file:frag3 tau.frags3.dat -file:frag9
359 tau.frags9.dat -nstruct 1000 -abinitio::increase_cycles 0.5 -abinitio::relax -score::weights
360 score13_env_hb -abinitio::rg_reweight 0.5 -abinitio::rsd_wt_helix 0.5 -abinitio::rsd_wt_loop
361 0.5 -disable_co_filter true -out:file:silent csrosetta.out -constraints:cst_fa_file tau.cst -

362 constraints:cst_file tau.cst -constraints:cst_weight 0.1 -constraints:cst_fa_weight 0.1 -

363 loopfcst::coord_cst_weight 10.0

364

365  Statistical analysis

366  Group mean values were analyzed by one-way ANOVA with Bonferroni post hoc significant
367 differences test using GraphPad prism 5 software. Data in text and figures are represented
368 as mean = SEM.

369

370 Kinetic analyses of Mi and Ms proteolysis

371  Limited proteolysis of Mi/Ms using trypsin was carried out in 50mM TEAB at 25 °C. The

372 enzyme to tau ratio was adjusted to 1:100 (wt/wt) with around 11ug of Mi/Ms present initially.
373  The total reaction mixture volume was 60pl. Aliquots were withdrawn from the reaction

374  mixture at 1, 5, 15, 30, 60 and 120min by using 10uL of 10% trifluoroacetic acid (TFA) to
375 quench the reaction (PH<3). The trypsin-digested peptides were then desalted using an
376  Oasis HLB plate (Waters) and eluted with 100uL 80% acetonitrile (ACN) containing 0.1%
377 TFA. The solvent was evaporated in a SpeedVac concentrator and the dried samples were
378 reconstituted in 20ul of 2% acetonitrile, 0.1% TFA and 2ul solution was used for by

379 LC/MS/MS analysis, the analysis were performed on an Orbitrap Elite mass spectrometer
380 (Thermo Electron) coupled to an Ultimate 3000 RSLC-Nano liquid chromatography systems
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(Dionex). Samples were injected onto a 75um i.d., 15-cm long EasySpray column (Thermo),
and eluted with a gradient from 1-28% buffer B over 60 min. Buffer A contained 2% (v/v) ACN
and 0.1% formic acid in water, and buffer B contained 80% (v/v) ACN, 10% (v/v)
trifluoroethanol, and 0.1% formic acid in water. The mass spectrometer operated in positive
ion mode with a source voltage of 2.8kV and an ion transfer tube temperature of 275 °C. MS
scans were acquired at 240,000 resolution in the Orbitrap and up to 14 MS/MS spectra were
obtained in the ion trap for each full spectrum acquired using collision-induced dissociation
(CID), with charge 1 ions rejected. Dynamic exclusion was set for 15s after an ion was
selected for fragmentation. Raw MS data files were searched against the appropriate protein
database from Uniprot, and reversed decoy sequences appended (Elias and Gygi, 2007) by
using Protein Discovery 2.2 (Thermo Fisher Scientific). Fragment and precursor tolerances of
20ppm and 0.6Da were specified, and 12 missed cleavages were allowed.
Carbamidomethylation of Cys was set as a fixed modification and oxidation of Met was set as
a variable modification. Label-free quantitation of proteins across samples was performed.
Average peptide intensity values were computed for all time points for each peptide. To
estimate differences in kinetic profiles we calculated the median value of each profile and
compared the M; to Ms ratio.

RESULTS

Isolation of fibril-derived monomer and other assemblies

We initially sought to define the tau seeding unit that would trigger intracellular aggregation
upon direct delivery to the cell interior. We had previously observed that a tau trimer is the
minimal assembly size that triggers endocytosis and intracellular seeding’. These
experiments depended on spontaneous cell uptake, since no Lipofectamine was added to the
reactions. A prior study had also indicated the role of disulfide linkages in promoting tau
aggregation, potentially by dimer formation®. Thus, for our initial studies we engineered and
purified full-length (FL) tau monomer that lacks any internal cysteines due to alanine
substitutions (C299A and C322A), termed tau (2A). FL tau (2A) cannot self-associate based
on disulfide linkages, which helped prevent the formation of cryptic dimers that could have
confounded our studies. These substitutions did not affect tau purification, heparin-induced
fibrillization, and sonication protocols, which we performed as described previously’. We
covalently labeled the fibril preps prior to sonication and isolation of recombinant FL tau (2A)
assemblies of various sizes by size exclusion chromatography (SEC)’. In parallel, we also
studied FL wild type (WT) tau. We purified unfibrillized recombinant FL tau (2A) monomer by
SEC (Fig. 1A), and isolated SEC fractions of sonicated fibrils that contained putative
monomer, dimer, trimer and ~10-mer (Fig. 1B).

Fibril-derived monomer exhibits seeding activity in cells and in vitro

To test the seeding activity of the tau preparations, we used a previously described
“pbiosensor” cell reporter line®.These cells stably express 4R tau repeat domain (RD)
containing the disease-associated P301S mutation, fused to cyan and yellow fluorescent
proteins (RD-CFP/YFP). Exogenously applied seeds induce intracellular aggregation with
resultant fluorescence resonance energy transfer (FRET) that can be measured via flow
cytometry®'2. The degree of aggregation is scored using “integrated FRET density” (IFD),
which is the product of the percent positive cells and the mean fluorescence intensity of
FRET-positive cells, and from this we determine a titer of tau seeding activity®. Lipofectamine
directly transduces tau assemblies across the plasma membrane and increases the assay’s
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sensitivity by approximately 100-fold. Upon incubation with Lipofectamine, we were surprised
to observe seeding by monomer and larger assemblies alike, whether FL WT or 2A. (Fig.
1C,D). Epifluorescence microscopy confirmed the presence of intracellular inclusions after FL
WT tau monomer seeding (Fig. 1D). We termed the inert monomer “M;,” and the seed-
competent monomer “Ms.” To rule out higher order assemblies of tau within the putative
monomer fraction, immediately prior to the seeding assay we passed fractions through a
100kDa cutoff filter to eliminate anything larger than a monomer. While monomer fraction
retained ~80% of seeding activity, only ~20% of dimer seeding activity remained, and ~1-2%
of trimer seeding activity remained (Fig. 1E). To exclude an artifact related to Lipofectamine
transduction into cells, we tested FL (2A) tau preparations in an in vitro seeding assay that
induces fibril formation by full-length tau (ON4R) through iterative polymerization and agitation
steps'®. Mi had no intrinsic seeding activity. However Ms induced amyloid formation, albeit
more slowly than trimer or unfractionated fibrils (Fig. 1F). This slow aggregation process may
reflect inefficient fibril assembly, and a predominance of small nucleated assembly events
from the added monomer. We concluded that the Ms fraction contained seeding activity that
enabled intracellular aggregation of tau RD-CFP/YFP in cells, or full-length tau in vitro.
Finally, we tested whether contamination of very small amounts of seeds could somehow
account for the seeding activity in monomer fractions by carrying out dose-response titrations
of the various preparations. Ms had an ECsp of ~10nM (Fig. 1G), which was very similar to
dimer and trimer (Fig. 1H). Thus to account for signal observed in the seeding assay,
contamination of an otherwise inert monomer with larger seed-competent assemblies would
have to be substantial.

Comparison of M and Ms by CD and FCS

We tested for obvious structural differences between M; and Ms using CD spectroscopy,
which revealed none (Fig. 2A). We re-tested the assemblies using fluorescence correlation
spectroscopy (FCS), which measures particle diffusion through a fixed volume. As we
previously observed’, we accurately estimated the units of small assemblies (<10-mer), but
not larger assemblies (>10-mer) (Fig. 2B). In an additional effort to detect cryptic multimers
within the Ms preparation, we used double-label FCS. We engineered a cysteine onto the
amino terminus of FL tau (2A) to enable its covalent modification (Cys-Tau (2A)). We then
prepared Cys-tau (2A) fibrils, or monomer, and labeled them simultaneously with Alexa488
(green) and tetramethylrhodamine (TMR) via maleimide chemistry. We carried out sonication
and purification by SEC as before, isolating assemblies of various sizes. We evaluated each
for cross-correlation between red and green signal, which indicates the presence of at least
two tau molecules in a particle. We analyzed >300 events for each assembly. When we
evaluated M; and Ms, 100% of events in each case showed a diffusion time consistent with a
tau monomer (Fig. 2C,D). Furthermore, we observed no cross-correlation between red and
green signal, indicating that neither preparation had detectable multimeric assemblies (Fig.
2C,D,H). By contrast, when we evaluated larger species such as dimer, trimer, or ~10-mer,
we observed longer diffusion times consistent with the predicted assembly sizes, and
significant cross-correlation values (Fig. 2E-H), consistent with the presence of multimers.
The FCS studies supported the conclusion that M; and Ms are comprised predominantly of
monomer.

SEC preparation efficiently purifies Ms monomer

To rule out cross-contamination of assemblies within the SEC column, we tested its ability to
exclude larger seeds from the monomer fraction. We first isolated Ms and larger assemblies

from a sonicated fibril preparation (Fig. 3, Group 1). Removing the fraction that contained Ms
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479 (BS), we then pooled the remaining fractions, and spiked them with Mi. We re-fractionated the
480 material on SEC to isolate the monomer in fraction BS again (Fig. 3, Group 2). As previously
481 observed, Ms and other fibril-derived assemblies in Group 1 had seeding activity (Fig. 3).
482 However, in Group 2, while we observed seeding activity in larger assemblies, the monomer
483 (which we take to be M;) re-isolated from a pool of larger fibril-derived assemblies had no
484  seeding activity (Fig. 3). This confirmed that larger, seed-competent assemblies do not

485 appreciably contaminate the monomer fraction during SEC.

486

487 Heat denaturation of assemblies

488  Although prior controls had essentially excluded the presence of tau multimers in the sample,
489 we used heat-mediated dissociation of oligomeric assemblies as an additional test for the
490 possibility that Ms in fact represents a uniquely compact multimer that somehow purifies as a
491 monomer. We collected Ms by SEC, and heated the sample to 95°C for 3h. We then re-

492 isolated the sample via SEC. We carried out the same procedure with trimer and ~20-mer. In
493 each case, we tested the resultant fractions for seeding activity. In the first instance, after
494  heating we re-isolated Ms purely as monomer that retained virtually all of its seeding activity
495 (Fig. 4A). The trimer assembly (fraction B8) broke down to smaller assemblies, predominantly
496 monomer, each of which retained seeding activity (Fig. 4B). The ~20-mer (fraction A5) was
497 largely stable following heat treatment, and retained its seeding activity (Fig. 4C). These

498 experiments highlighted the lability of small multimers (i.e. trimer), and a surprising

499 persistence of seeding activity in heat-treated monomer.

500

501 Differential heat lability of tau assemblies

502 In the preceding experiment Ms retained seeding activity even after 3h at 95°C, a condition
503 sufficient to dissociate trimers. These experiments implied that Ms consists of a stable seed-
504 competent structure, resistant to heat denaturation. Consequently, we used more nuanced
505 heat denaturation of seeding activity to probe the relative stabilities of Ms, dimer, trimer, and
506 larger assemblies of FL WT tau. We first isolated tau monomer, dimer, trimer, ~10-mer, and
507 ~20-mer on SEC. We then incubated the various assemblies at a range of temperatures (65,
508 75, 85, 95°C) and times (0, 3, 12, 18, 24, 48, 72h) before measuring seeding activity. Lower
509 temperatures only slightly reduced seeding activity, whereas exposure of Ms, dimer, and

510 trimer to temperatures 285°C for 18-24h eliminated it at roughly the same rate for each (Fig.
511  4D-G). By contrast, the seeding activities of ~10-mer and ~20-mer were relatively heat-

512  resistant (Fig. 4D-G). This was consistent with our prior observations that tau seeds derived
513 from cultured cells are resistant to boiling ''. To determine a putative energy barrier between
514  Ms and M;, we evaluated the denaturation data for Ms by integrating the data from the prior
515 experiments (Fig. 4H). We compared two models for the transition of Ms to an inert form

516  (which we assumed to be an unfolding reaction): a unimodal unfolding model vs. a

517 multimodal model that assumes intermediate seed-competent states. The unimodal model
518 did not account for the data at early time points, which indicated a lag phase in denaturation,
519  whereas the multimodel model performed better (Fig. 4H). The lag phase in denaturation
520 implied an ensemble of seed-competent states that define Ms, each separated by smaller
521  energy barriers. Using the multimodal model, we calculated the barrier to conversion of Ms to
522 aninert form to be ~78 kcal/mol.

523

524  Ms has unique properties of self-assembly

525  Aggregation of M; in vitro is relatively slow, requires high protein concentration (micromolar),
526  and polyanions such as heparin'®'4, Based on the seeding activity of Ms we predicted that it
527 might more readily self-associate. We incubated FL WT tau M; and Ms alone, or dimer or
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trimer at equimolar ratios, keeping total particle concentration constant at 500nM. We then
monitored change in assembly size over 24h. M;, dimer, and trimer showed no evidence of
self-association in this timeframe (Fig. 5A,C,D). By contrast, when incubated alone, Ms
readily formed larger assemblies (Fig. 5B). When we incubated M; with dimer or trimer, we
saw no change in the assembly population over 24h (Fig. 5E,F). By contrast, when we mixed
Ms with dimer or trimer we observed a growth of larger assemblies with a concomitant
reduction in dimer and trimer peaks (Fig. 5G,H). We conclude that M;, dimer, and trimer do
not form larger assemblies at an appreciable rate, while Ms self-assembles and adds on to
larger assemblies.

Heparin induces transition from M; to Ms

The preparation of Ms based on sonication of fibrils raised two important issues. First, it left
uncertain whether M; could be converted to a seed-competent form without previously being
incorporated into a fibril. Second, we observed that sonication could create fragments from
tau monomer that might potentially act as seeds (Supp. Fig. S6A). Consequently, we used
heparin to induce the formation of Ms, thereby avoiding sonication. We exposed FL WT tau to
heparin for varying amounts of time before purifying different assembly sizes by SEC and
testing for seeding activity. After 15min of heparin exposure, we detected low but significant
amounts of seed-competent monomer, and much fewer larger assemblies (Fig. 6A).
Crosslinking of purified, heparin-induced Ms revealed no evidence of multimers or an
increase in fragments (Supp. Fig. S6B). Recombinant monomer not treated with heparin had
no seeding activity at any time point (Fig. 6A). At longer heparin treatment times (1h, 4h)
monomer fractions as well as larger assemblies all had strong seeding activity (Fig. 6A). Ms
derived from heparin exposure was relatively resistant to heat denaturation at 95°C, albeit
less so than fibril-derived Ms (Fig. 6B). Relative seeding efficiency of the various forms of Ms
as well as sonicated or unsonicated fibrils were relatively similar (Fig. 6C). We noted also that
sonication of M; and purification by SEC did not produce any seed-competent species,
eliminating the possibility that small assemblies of sonication-induced fragments accounted
for seeding activity of Ms (Fig. 6C). These experiments also indicated that it is not necessary
for tau monomer to be part of a fibril or to be exposed to sonication to produce an efficient
seed-competent monomer. Heparin, presumably by catalyzing a transition from an inert to a
seed-competent form, enables this critical conformational change.

XL-MS reveals unique contacts associated with Ms

To probe the structures of M; and Ms, we employed cross-linking with mass spectrometry (XL-
MS), which uses DSS-mediated crosslinking of proteins (monomer or larger assembly)
followed by trypsin proteolysis, enrichment of resultant fragments by SEC, and identification
by capillary liquid chromatography tandem mass spectrometry (MS). This method creates
restraints for structural models of single proteins or protein complexes?>2%2%, We assigned
the complex fragment ion spectra to the corresponding peptide sequences using xQuest 24,
Denaturation of recombinant tau with 8M urea prior to crosslinking produced no
intramolecular cross-links (data not shown), indicating that crosslinks observed under native
conditions represented local structure. We studied M, fibril-derived Ms and heparin-derived
Ms using XLMS. Short reaction times ensured the production of only intra-molecular
crosslinks as monitored by SDS-PAGE (Fig. S6). XL-MS for each sample was carried out in
triplicate (Suppl. Table S1), and only considering consensus crosslinks present in each
replicate (Suppl. Table S2). M; exhibited crosslink patterns which indicated local and distant
intramolecular contacts (Fig. 7A). In Ms, we observed a consistent crosslinking of K150 with
K254, K267, K274 or K280 all located between RD 1 and 2. These crosslinks tracked
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exclusively with Ms, both fibril- or heparin-derived (Fig. 7B,C). We never observed these
crosslinks in M. To test the relationship of this crosslink with seed function, we carried out
heat denaturation at 95°C for 3 or 24h, followed by XL-MS. Heating samples results in a
decrease in crosslink frequency (Fig. S7). Importantly, however, we observed a parallel
persistence of this crosslink pattern with seeding activity (Fig. 7B,C). The XL-MS results
indicate a distinct structure and seeding activity for Ms that is surprisingly resistant to
denaturation at 95°C.

AD brain contains Ms

Given our experiments with recombinant M; and Ms, we wished to test whether similar
structures exist in vivo. We extracted AD and control brain samples using a dounce
homogenizer to avoid liberating significant monomer from fibrils. We immunoprecipitated tau
using an antibody that targets the amino-terminus (HJ8.5), and resolved the eluates by SEC,
followed by ELISA to determine tau levels (Fig. 8A,B). Tau from control brain purified in the
monomer fraction (Fig. 8A), while tau from AD brain distributed across multiple fractions,
corresponding to monomer and larger assemblies (Fig. 8B). When we tested each fraction for
seeding activity, we observed none in any control brain fraction (Fig. 8C). However, all AD
fractions contained seeding activity, including monomer (Fig. 8C). To exclude the possibility
that the brain homogenization protocol liberated Ms from neurofibrillary tangles, we spiked tau
KO mouse brain samples with recombinant fibrils in vitro, or fibril-derived Ms. We then used
dounce homogenization and immuno-purification as for human brain. We evaluated the
seeding activity in total lysate, supernatant following 10,000 x g centrifugation, and SEC
fractions (Fig. 8D). We readily observed monomer seeding activity in tau KO brain spiked
with Ms, however we observed none in fractions that had been spiked with fibrils (Fig. 8D).
The homogenization protocol for human brain was thus unlikely to have liberated Ms from
pre-existing tau fibrils.

To test for self-association of control-derived M; vs. AD-derived Ms, we purified these species
by SEC, and divided each monomer fraction in two. We snap-froze one fraction and
incubated the other overnight at room temperature. Then we again resolved the assemblies
via SEC and tested each fraction for seeding activity. Control monomer was inert, even after
incubation at RT (Fig. 8E). AD-derived Ms that was purified, frozen, and re-purified by SEC
exhibited seeding activity exclusively in the monomer fraction (Fig. 8E). By contrast, AD-
derived Ms incubated at RT formed seed-competent assemblies of increasing size (Fig. 8E).
We concluded that, as for other types of Ms, AD-derived Ms exhibited an intrinsic capacity for
self-association into seed-competent assemblies. To compare structures of control vs. AD-
derived monomer via XL-MS, we isolated tau from brains of 3 AD patients and 3 age-
matched controls. In control-derived monomer, we observed no evidence of the crosslink that
marked Ms (Fig. 8G). However, in each AD-derived Ms sample we observed a discrete set of
crosslinks between aa150 and aa259-290 (Fig. 8H). This essential finding did not change, no
matter what method of homogenization we used (Supp. Fig. S8, Suppl. Table S3), and
implied a common structure that unifies ensembles of seed-competent tau monomer, whether
produced in vitro or in vivo.

Models of seed-competent monomer suggest exposure of VQIINK and VQIVYK

Based on intramolecular FRET and electron paramagnetic resonance spin labeling
Mandelkow et al. have previously proposed native tau structure to be in a “paperclip”
configuration, with the C-terminus folded over the RD%. To understand how core elements of
tau control its aggregation, we employed Rosetta to create models of tau structure for M; and
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Ms using restraints from the crosslink patterns and length of the DSS crosslinker. The overall
energetics and radii of gyration in the models were comparable for Mi and Ms (Fig. S9),
indicating global structural similarity. We thus focused on the RD, given its high frequency of
intramolecular crosslinks, and primary role in aggregation (Fig. 9A). We observed differences
in the predicted interface structure between R1/R2 and R2/R3 which encode two core
VQIINK and VQIVYK motifs critical for tau amyloid formation®'32, The M; structural model
predicted masking of VQIINK and VQIVYK sequences in compact “hairpin” structures (Fig.
9B, Supp. Movie M;), similar to the structure of microtubule-bound tau previously determined
by NMR 33. By contrast, within Ms the model predicted relative exposure of VQIINK and
VQIVYK (Fig. 9C, Supp. Movie Ms). We next evaluated XL-MS-guided predictions of patient-
derived tau, although lower sample quality and fewer high confidence crosslinks (possibly
due to protein heterogeneity) limited our accuracy. As for recombinant protein, M; from control
patients also featured VQIINK/VQIVYK sequences in a less accessible configuration (Fig. 9D,
Supp. Table S1; Supp. Movie: Control1). In AD-derived Ms, long-range contacts from aa150
to R2 influenced the model, and predicted an exposed configuration of VQIINK/VQIVYK (Fig.
9E, Table S1; Supp. Movie: AD1). With important caveats, the models guided by XL-MS
imply that the general difference between M; and Ms derives from relative shielding vs.
exposure of VQIINK/VQIVYK sequences.

Limited proteolysis supports models of exposed VQIINK/VQIVYK sequences

As an orthogonal comparison of the structures of M; and Ms, we used limited proteolysis with
trypsin. M; or Ms (heparin-exposed) that had been passed through a 100kD filter immediately
prior were subjected to a fine time course of limited proteolysis (Fig. 10A). Each sample was
prepared in triplicate with matched protein quantities to facilitate label-free analysis. We then
used mass spectrometry to evaluate the production of tau fragments and mapped these to
specific cleavage sites. We identified 60 peptides common across the two conditions (Suppl.
Table S4). To summarize enrichment of peptides across the two datasets we compared the
ratio of averaged kinetic profiles (Fig. S10). Differences between the M; and Ms primarily
localized to the RD (Fig. S10). In M;, an R1R2 fragment was enriched (Fig. 10C) while only
the R2 portion of that fragment was enriched in Ms (Fig. 10D). We observed similar patterns
in R2R3 (Fig. 10F,G). By contrast, other domains outside of these regions had similar
cleavage kinetics in Mi and Ms (Fig. 10E,H, Fig. S10). Mapping these cleavage sites onto our
structural models revealed that proteolysis in M; preferentially occurred outside the hairpin
that includes VQIINK and VQIVYK amyloid sequences, while cleavage in Ms occurred
adjacent to the amyloid sequences (Fig. 101,J). The cleavage patterns were thus consistent
with structural models of VQIINK and VQIVYK regions, which predicted relative inaccessibility
of hairpin-associated sequences in M;, and accessibility in Ms.

Discussion

We propose that tau monomer occupies two distinct and stable conformational ensembles.
One set of structures (collectively termed M) is relatively inert, while another has intrinsic
ability to self-assemble, and acts as a template, or seed, for fibril growth in vitro and in cells
(collectively termed Ms). Multiple controls indicated that our original preparation of fibril-
derived Ms is in fact a monomer, uncontaminated by larger assemblies. Tau monomer
purified from AD brain also had intrinsic seeding activity, and self-associated to produce
larger seed-competent assemblies. A model restrained by the XL-MS data, and consistent
with biochemical studies, predicts that VQIVYK and VQIINK sequences assume an open
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configuration in all types of Ms (fibril-derived, heparin-induced, and AD-derived). By contrast,
the model predicts lack of VQIINK/VQIVYK exposure in M;. Limited proteolysis studies are
consistent with this idea, although clearly more detailed biochemical, biophysical, and
structural analyses will be needed to test its validity. Taken together, these data establish a
new concept for tau: this intrinsically disordered protein has multiple, stable monomeric
states, functionally distinguished by the presence or absence of seeding activity.

Amyloid proteins form progressively larger assemblies over time, and it has been difficult to
define the composition of the minimal seed. Mandelkow and colleagues studied tau
aggregation in vitro and concluded that a seed of 8-12 molecules existed in their
experimental system*. By contrast, Kuret and colleagues posited an “intermediate” of tau that
could subsequently initiate self-assembly, and their data, based on extrapolation of tau
concentrations needed to enable development of thioflavin fluorescence in vitro, were
consistent with a monomeric seed'. Wetzel and colleagues also proposed that a monomer is
the basis of a “thermodynamic nucleus” that templates the aggregation of synthetic
polyglutamine peptides34. However, no prior study has previously identified stable forms of
tau monomer that seed amyloid formation.

The actual cause of tau aggregation in tauopathies is unknown. It has been proposed that
dissociation of tau monomer from microtubules, possibly due to phosphorylation, allows high
concentration and self-association to form pathogenic assemblies®. In this study, using a
single source of recombinant protein, we define distinctly structured seed-competent and
inert forms of tau. We have similarly identified seed-competent species in human brain. In
reality “seed-competent” and “inert” forms of tau almost certainly represent multiple structural
ensembles separated by defined energy and/or kinetic barriers. The barrier for conversion of
an inert to a seed-competent form of tau can apparently be overcome by incubation with
heparin and/or incorporation into a fibril. In neurons, other factors such as post-translational
modifications and heterologous binding events likely play a role. |Identification of the factors
that trigger conversion from inert to seed-competent forms will thus have obvious implications
for understanding disease mechanisms.

Isolation of seed-competent monomer from AD brain, with a very mild purification that
explicitly excludes sonication or vigorous tissue homogenization, strongly suggests that this
form of tau exists in vivo. Furthermore, we observed that both recombinant Ms and AD-
derived Ms build multimeric assemblies in vitro far more efficiently than M; or control-derived
monomer. Thus, we hypothesize that a uniquely structured form of tau may be required for
efficient assembly growth in cells. This contrasts with the idea that multimeric assemblies
uniquely stabilize the conformation of otherwise unstructured proteins as they incorporate into
the growing fibril, or that liquid-liquid phase separation with extremely high local concentration
underlies tau aggregation®. Instead, we imagine that the initiation of aggregation in human
brain might begin with a stable transition of tau monomer from an inert to a seed-competent
form. To fully study this process will require more extensive biochemical purification of tau Ms
from the earliest stages of disease.

Ms has a remarkably stable structure, as it resists heat denaturation at 95°C for up to 3h. This
suggests a heretofore unrecognized conformation of tau that, to account for its slow
denaturation, likely involves multiple intra-molecular interactions involving short and long
range amino acid contacts. XL-MS provides some indication of what these might be, and
crosslinks between aa150 and R2 appear to mark a seed-competent conformation. In
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agreement with the XL-MS results, we observed that heat inactivation of Ms seeding activity
occurs with a lag phase, rather than first order time-dependent decay. This implies a complex
tertiary structure in which Ms has multiple seed-competent intermediates. Future XL-MS
studies performed at different temperatures could reveal these structures. With more
advanced methods to interrogate the structure of monomeric tau in patient material, we
imagine that “seed-competent monomer” will in fact represent myriad structures, depending
on the underlying disease. This could provide an explanation for how a single tau protein
might self-assemble into diverse amyloid strains. We note with excitement a recent study of
the yeast prion Sup35 from the Tanaka laboratory. Like tau, Sup35 is intrinsically disordered,
yet they have observed local structure that influences the conformations of fibrils it can
form?7.

Without further studies to identify structures of tau at higher resolution, we cannot know for
certain why one form acts as a seed and another does not. However, we gained important
insights when we modeled the configurations of R1R2 and R2R3 using Rosetta, with
crosslinks as restraints. With obvious caveats, our models predicted that the local
environment surrounding two hexapeptide motifs, VQIINK and VQIVYK, which are required
for tau to form amyloid structures, may explain the differences between seed-competent and
inert forms. In the models of M;, and control brain-derived tau, these motifs lie buried in
hairpin structures. By contrast, in Ms and AD-derived tau, both are exposed. VQIINK and
VQIVYK thus might mediate intermolecular interaction in a growing assembly. In support of
our structural model, the proteolysis experiments corroborate differences in exposure of the
VQIINK and VQIVYK sequences in the R1R2 and R2R3 regions between Mi and Ms. We note
with great enthusiasm the recent study of Fitzpatrick et al. 38, which defined critical
sequences of tau within the amyloid core that are based on VQIVYK and adjacent amino
acids. Indeed, it has been recently observed that heparin binding involves residues spanning
270-290, and promotes expansion of the remainder of the molecule 3. This is consistent with
our predictions of relative exposure of VQIINK/VQIVYK. The diversity of exposed core
elements (almost certainly beyond VQIINK/VQIVYK) could specify the formation of
assemblies that give rise to distinct strains, as suggested by work from the Tanaka
laboratory®”. Consistent with this idea, the Fitzpatrick et al. study indicates that in AD-derived
tau fibrils the VQIVYK sequence plays a key role in the core amyloid structure (along with
adjacent amino acids), but the VQIINK sequence does not 3. We also note that multiple
disease-associated mutations in tau affect residues in close proximity to VQIINK/VQIVYK.
For example, our models predict that serine or leucine substitutions at P301 (which cause
dominantly inherited tauopathy) would uniquely destabilize the local structure and promote
exposure of the VQIINK/VQIVYK sequences. Future experiments will test these ideas more
definitively.
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772 A patent disclosure has been filed by H.M., L.A.J. and M.1.D. related to the use of unique
773  crosslinks to create biomarkers for neurodegenerative diseases.
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897 FIGURE LEGENDS

898

899 Figure 1: Seeding activity of tau monomer in cells and in vitro

900 (A, B) FL Cys-Tau(2A) was labeled with Alexa488 and resolved by SEC (A), or was fibrillized
901 in the presence of heparin, labeled with Alexa488, sonicated, and the assemblies resolved by
902 SEC (B). The column was calibrated using standards of the indicated hydrodynamic radii.
903 Color codes indicate the putative assembly units. (C) Tau assemblies were seeded into tau
904 RD-CFP/YFP biosensor cells. M; represents “inert” monomer purified in (A), which had no
905 seeding activity; Ms represents “seed-competent” monomer purified in (B), which induced
906 intracellular tau aggregation. (D) FL WT tau and FL Cys-Tau(2A) were similarly fibrillized,
907 sonicated, and the fragments resolved by SEC. Seeding activity of each fraction was

908 determined. Ms and larger assemblies of both forms of tau exhibited seeding activity, but not
909 M. IFD = Integrated FRET Density. (E) Tau assemblies of n=1,2,3 were passed through a
910 100kD size cutoff filter. Filtration had no effect on the Ms fraction, whereas it reduced seeding
911  of assemblies of n=2 or 3. (F) Tau fibrils, trimer, or monomer were used to induce fibrillization
912  in vitro of full-length (ON4R) tau, measured by induced thioflavin fluorescence. M; had no
913 seeding activity, whereas Ms, trimer, and unfractionated fibrils had strong seeding activity.
914  (G,H) Titration of assemblies was performed. (G) Ms exhibited an ECsg of approximately

915 10nM (monomer equivalent); (H) Dimer and trimer had similar potencies. Concentration is
916 reflected as monomer equivalent.

917

918 Figure 2: Analyses of Mi and Ms by CD and FCS

919  (A) CD spectra of M; and Ms were similar. (B) FCS Diffusion times for M;, Ms, dimer, trimer,
920 and ~10mer, and the cross-correlation for Mi, Ms, dimer, trimer, and 210-mer were

921 determined after labeling of fibrils with Alexa488, or double labeling additionally with

922 tetramethylrhodamine prior to sonication. Table reflects the predicted diffusion time and the
923 actual diffusion time. The variance between predicted vs. observed times is reported. (C-G)
924  FCS for double-labeled tau assemblies. Cross correlation (CC) between the two dyes is

925 indicated in grey lines. (H) Summary of FCS cross-correlation, including free dyes. Neither
926 free dye, M nor Ms showed any cross-correlation, indicating that single species predominate.
927  All multimeric assemblies exhibited cross-correlation, indicating detection of both dyes within
928 a single particle.

929

930 Figure 3: Fidelity of SEC purification of assemblies

931  SEC fidelity was tested by isolating Ms from fractions after fibril sonication. Remaining

932 fractions were combined with M;, and the mix was re-isolated by SEC. In Group 1, after the
933 first isolation, the monomer fraction (which contains Ms) contained seeding activity. In Group
934 2, after the second purification by SEC, the monomer fraction (which contains M; spiked in)
935 did not exhibit seeding activity.

936

937 Figure 4: Heat denaturation of assemblies

938 (A-C) Heat-induced dissociation of assemblies. (A) The SEC fraction containing Ms (B5) was
939 heated to 95°C for 3h and re-isolated by SEC prior to testing the FRET biosensor assay. No
940 loss in seeding activity was observed. (B) When the SEC fraction containing trimer (B8) was
941  heated similarly, seeding activity shifted to fractions that contain dimer and monomer (B7,
942  B5). (C) ~20-mer (A5) was largely stable to heating, although some smaller seed-competent
943 assemblies were liberated. (D-G) Various assemblies were subjected to heat denaturation at
944  the indicated temperatures and times, followed by analysis of seeding activity in the FRET
945  Dbiosensor assay. Whereas ~10-mer and ~20-mer were relatively stable from 65-95°C,
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monomer, dimer and trimer showed temperature-dependent loss of seeding activity. (H) Plot
of denaturation data for Ms with multimodal regression curves superimposed.

Figure 5: Ms self-assembles

Mi and Ms were incubated at 500nM or with equivalent amounts (monomer equivalent) of
dimer and trimer for various times prior to resolution by SEC. Assemblies were monitored by
reading the absorbance of fractions using micro BCA assay. (A) M; showed no self-
association. (B) Ms exhibited self-association over time. (C,D) Dimer and trimer were stable
over time. (E,F) M; does not react with dimer or trimer to form larger assemblies. (G,H) Ms
reacts with dimer and trimer to form larger assemblies.

Figure 6: Heparin induces transition from M; to Ms

(A) Heparin treatment of FL WT tau was carried out for 15min, 1h, or 4h. Samples were
resolved by SEC, and fractions of various sizes were compared using the biosensor seeding
assay. “Pre-SEC” refers to the sample prior to fractionation. NT = monomer not treated with
heparin. At 15min, a small, but significant seeding activity was observed primarily in the
monomer fraction. By 1h this signal was very strong, and comparable to the signal of Ms
derived from sonicated fibrils. (B) Ms derived from 4h heparin exposure was heated at 95°C
for different times, followed by analysis of seeding activity in the FRET biosensor assay.
Seeding activity decayed over 24h. (C) Seeding efficiencies per nM of tau (monomer
equivalent) of the various forms of Ms, sonicated, or unsonicated fibrils were relatively similar.
M; was sonicated identically to Ms, followed by purification via SEC, but exhibited no seeding
activity. Transfection of heparin failed to trigger intracellular aggregation (data not shown).

Figure 7. Unique XL-MS patterns for different forms of M; and Ms

Tau monomers were prepared as described, heated at 95°C for 0, 3 or 24h, reacted with
DSS, proteolyzed and analyzed by mass spectrometry to define intramolecular crosslinks.
Diagrams represent crosslinks within the tau protein. Tau is shown in grey; RD is colored in
red (R1), green (R2), blue (R3) and indigo (R4). Each diagram indicates only crosslinks
present in every triplicate (green or red). Crosslinks uniquely observed within Ms preparations
are shown in red. Each sample was prepared, isolated by SEC, and then subjected XL-MS.
(A) M;: tau monomer not previously fibrillized; (B) Ms: fibril-derived tau monomer; (C) Ms:
heparin-exposed tau monomer (0.25h or 1h). Crosslinks from aa150 to aa254-290 mark all
forms of Ms after exposure to 95°C for Oh, 0.25h and 3h, but not 24h.

Figure 8: AD brain contains seed-competent monomer

Tau from control and AD brains was immunoprecipitated and subjected to SEC. (A) SEC
from control brain contained predominantly tau monomer. (B) SEC from AD brain contained a
range of tau assembly sizes. (C) Tau monomer from control brain exhibited no seeding
activity, whereas monomer from AD brain did, along with larger assemblies. Tau Unit refers
to the putative number of molecules per assembly. LF = Lipofectamine control. (D) Tau KO
mouse brain was spiked either with human tau Ms or fibrils prior to dounce homogenization,
immunopurification, and resolution by SEC. Samples spiked with Ms exhibited monomer
seeding activity, but not samples that had been spiked with fibrils. (E) AD-derived tau
monomer was incubated for the indicated times prior to SEC and determination of seeding
activity in each fraction. Larger seed-competent assemblies formed after 24h incubation at
RT. (F, G) Three control and AD brains were homogenized, monomer isolated, and evaluated
by XL-MS. Tau monomer from controls lacked the long-range crosslinks observed in Ms. AD-
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derived Ms contained long-range crosslinks (aa150 to aa254-290) also observed in
recombinant forms of Ms.

Figure 9. Models of M;and Ms suggest differences in the R1R2 and R2R3 regions
XL-MS identified pairs were used as restraints in Rosetta to create structural models of
discrete tau domains. (A) Schematic highlighting the region of the RD encoding structural
differences between Mi and Ms. Tau RD is colored in red (R1), green (R2), blue (R3) and
indigo (R4); N- and C-terminal portions of tau are shown in grey. Fragments of interest are
shown with their position in the RD. (A) recombinant M;; (B) fibril-derived Ms, (C) Control M;
and (D) AD-derived Ms. Regions surrounding the R1R2 and R2R3 are indicated, highlighting
two amyloid-forming sequences, VQIINK (green spheres) and VQIVYK (blue spheres). In
both forms of M; VQIINK and VQIVYK are associated with flanking amino acids in hairpin
structures. In both forms of Ms the VQIINK and VQIVYK sequences are presented at the
protein surface. Please see Supplemental Movie files to better visualize the 3D orientation of
specific regions.

Figure 10. Proteolysis of M; and Ms reveals distinct patterns

(A) M; and Ms were prepared in triplicate, isolated by SEC, and passed through a 100kD filter
immediately prior to exposure to trypsin for 1, 5, 10, 30, 60 and 120min. Samples were
analyzed by mass spectrometry and kinetic profiles generated for peptides present at each
time point. (B) Tau RD is colored in red (R1), green (R2), blue (R3) and indigo (R4). Identified
peptides are shown with their position in the RD. (C-H) Kinetic profiles are indicated for
peptides that were more abundant in M; (C, F), Ms (D, G) or equal in M; and Ms (E, H). Mi and
Ms kinetic profiles are shown in blue and black, respectively. Fragments enriched in M; or Ms
were mapped onto corresponding regions in the structural models (I, J). The models are
shown as cartoons colored in red (R1), green (R2) and blue (R3). Cleavage sites are
indicated by arrows for M; (blue) and Ms (black).

Supplemental Table S1. Summary of triplicate XLMS datasets

Supplemental Table S2. Summary of consensus XLMS datasets

Supplemental Table S3. Summary of patient-derived XLMS datasets

Supplemental Table S4. Summary of peptides identified in the M; and Ms proteolysis

Supplemental Movie Files

PyMol was used to create rotating movies of all structural models for M; and Ms derived from
recombinant or human sources. Each model of Ms features one or both VQIINK/VQIVYK
sequences exposed. Forms of M; feature these sequences relatively buried in hairpin
structures.

Supplemental Figure S6. SDS-PAGE of tau after sonication or heparin treatment.

(A) Two different FL WT tau preparations were sonicated or not, and 1.5ug protein was then
resolved by SDS-PAGE and coomassie stain. Sonication induced a small degree of protein
fragmentation. (B) FL WT tau was exposed to heparin for 15min, sufficient to induce
conversion from M;to Ms, followed by DSS crosslinking for the indicated time periods. 100ng
Protein was then resolved by SDS-PAGE and silver stain. No small fragments or higher-order
crosslinked species were visible.
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043

044  Supplemental Figure S7. Frequency of crosslinks decrease with heat incubation

045 Heat denaturation of M; and Ms (fibril-derived and heparin treated for 0.25h, 1h) decreases
046 the abundance of consensus crosslink pairs (A). Columns represent data after exposure to
047 95°C for Oh, 3h and 24h.

048

049 Supplemental Figure S8. Different brain homogenization methods yield similar

050 crosslink patterns

051 A single AD brain sample was homogenized using four different methods: (A) Dounce

052 homogenization; (B) Pulse sonication; (C) Mechanical homogenization; (D) Mechanical

053 homogenization followed by pulse sonication. Diagrams represent crosslinks within the FL
054 tau protein. RD is colored in red (R1), green (R2), blue (R3) and indigo (R4). High confidence
055  XL-MS crosslinks are shown as light green lines; crosslinks found in Ms are shown in red.
056

057 Supplemental Figure S9. Energetics of Rosetta structural ensembles

058 The ensembles are shown as a distribution of total energy of each model and radius of

059  gyration for recombinant M; (A), recombinant Ms (B), control brain-derived M; (C) and AD-
060 derived Ms (D).

061

062 Supplemental Figure S10. Proteolysis reveals localized differences between Mi and Ms
063 The medians of the averaged kinetic profiles were compared as ratios for M; and Ms. The
064 data were compared to the mean (red line) and standard deviation (dotted grey line).

065 Peptides within the RD that are enriched in M; or Ms are shown as colored dots according to
066 location in the RD and labeled with N-term and C-term peptide positions. As a reference the
067 tau RD is colored in red (R1), green (R2), blue (R3) and indigo (R4). Identified peptides are
068 shown with their position in the RD.
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