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Abstract 
Motivation: Convolutional neural network (CNN) has been widely used in functional motifs identifica-
tion for large-scale DNA/RNA sequences. Currently, however, the only way to interpret such a convo-
lutional kernel is a heuristic construction of a position weight matrix (PWM) from fragments scored 
highly by that kernel. 
Results: Instead of using heuristics, we developed a novel, exact kernel-to-PWM transformation 
whose equivalency is theoretically proven: the log-likelihood of the resulting PWM generating any 
DNA/RNA sequence is exactly the sum of a constant and the convolution of the original kernel on the 
same sequence. Importantly, we further proved that the resulting PWM’s performance on sequence 
classification/regression can be exactly the same as the original kernel’s under popular CNN frame-
works. In simulation, the exact transformation rivals or outperforms the heuristic PWMs in terms of 
classifying sequences with sequence- or structure-motifs. The exact transformation also faithfully 
reproduces the output of CNN models on real-world cases, while the heuristic one fails, especially on 
the case with little prior knowledge on the form of underlying true motifs. Of note, the time complexity 
of the novel exact transformation is independent on the number of input sequences, enabling it to 
scale well for massive training sequences. 
Availability: Python scripts for the transformation from kernel to PWM, the inverted transformation 
from PWM to kernel, and a proof-of-concept for the maximum likelihood estimation of optimal PWM 
are available through https://github.com/gao-lab/kernel-to-PWM . 
Contact: gaog@mail.cbi.pku.edu.cn  

 
 

Introduction  
Effective ab inito mining sequence motifs from large number of se-

quences is critical to mechanistic delineation of how the sequences exert 
their functions (Mathelier et al., 2016; Ray et al., 2013; Nawrocki et al., 
2015). While classical methods are either computationally expensive and 

thus limited to low number of sequences only (e.g., MEME (Bailey et 

al., 2009)), or with strong assumptions on input sequences (e.g. MEME-
ChIP (Machanick and Bailey, 2011) assumes that all input sequences 
must be centered and have equal length, which might greatly bias the 
result when it handles sequences other than those coming from ChIP-
Seq), researchers have discovered recently that convolutional neural 

networks (CNNs) are exceptionally good at handling such problem fast 

and accurately (Alipanahi et al., 2015; Angermueller et al., 2017; Quang 
and Xie, 2016; Zhou and Troyanskaya, 2015). Basically, a CNN uses a 
series of convolutional kernels as motif detectors to identify potential 
sequence patterns. Each of these kernels is a matrix which is used to scan 
the input sequences, i.e., being “align”ed to each position. For each such 
“alignment”, a score is computed by convoluting the kernel over the 
aligned sequence fragment (LeCun et al., 1989; Cotter et al., 2011). 
Intuitively, the larger the score, the more “similar” the kernel is to the 
specific sequence fragment it aligns to. However, it remains challenging 

to extract/interpret the particular sequence patterns learned by these 
convolutional kernels.  
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Alipanahi et al. proposed a heuristic transformation to convert a given 
kernel into a Position Weight Matrix, or PWM (Alipanahi et al., 2015), 
which has been widely used to represent experimentally determined 
DNA- (Mathelier et al., 2016) or RNA-binding motifs (Ray et al., 2013). 
Briefly, it transforms a kernel by (1) first stacking the kernel’s highly 

scoring sequence fragments from input sequences, and then (2) normaliz-
ing nucleotide counts per position to obtain the final PWM. Although the 
heuristic transformation has been widely used (e.g., Angermueller et al., 
2017; Kelley et al., 2016; Ben-Bassat et al., 2018), it is not guaranteed in 
theory (see Discussion for more details) and even fails in certain practi-
cal cases (see the AddGene case in Section Results later) to classify 
sequences as accurately as the kernels do.  

In this paper, we proposed a novel, fast, exact kernel-to-PWM trans-
formation (Figure 1(a)) to address this problem. We demonstrated, both 

theoretically and empirically, that the transformed PWM is capable of 
classifying/regressing sequences in exactly the same way as the original 
kernel (Figure 1(b)), indicating that this kernel interpretation is the most 
accurate among all possible interpretations. Further comparison to the 
heuristic transformation in both simulations and real-world cases showed 
that, when used to calculate PWM-based log-likelihood as a surrogate 
for convolutional output on the same input sequence (Figure 1(b)), the 
exact PWMs rival or greatly outperform the heuristic PWMs at detecting 
both sequence- and structure-motifs. Of note, our transformation also 

provides a direct and accurate probabilistic interpretation for the kernels 
used for motif detection (Zuallaert et al., 2018).  A Python implementa-
tion of the transformation is freely available online at 
https://github.com/gao-lab/kernel-to-PWM .  

The exact kernel-to-PWM transformation 
 
Below we describe the transformation itself, and its interpretation. De-
tailed proofs of theorems and corollaries can be found in the Supplemen-
tary Notes. 

The transformation 

The five-step transformation, as illustrated in Figure 1(a), is described 
below (with all coordinates one-based; also see Algorithm 1): 

(1) Assume that the kernel to be transformed is a 4-by-L matrix 

W, where L is the length of this kernel. The element of W at 
the ith row and jth column is denoted as wi, j.  

(2) Choose an arbitrary base of logarithm, b (b > 1), for the log-

likelihood calculation. There’s no further restriction on the 
choice of b. 

(3) Flip W along the second (position) axis to obtain the flipped 

kernel W’: w’i, j = wi, L-j+1 for all i from {1, 2, 3, 4} and all j 
from {1, 2, …, L}. 

(4) Replace each w’i, j with bw’i, j to obtain the exponentially trans-

formed kernel C; in other words, ci, j = bw’i, j for all I from {1, 2, 
3, 4} and all j from {1, 2, …, L}. 

(5) Normalize C in a column-wise manner by dividing each column 

by its sum, resulting in the PWM P(W, b): (P(W, b))i, j = ci, j / (c1, 

j + c2, j + c3, j + c4, j) for all i from {1, 2, 3, 4} and all j from {1, 2, 
…, L}.  

 

 

Algorithm 1: the transformation from kernel to PWM 

Input   : the kernel W and an arbitrary base of logarithm b (b>1)
Output: the transformed PWM P(W, b) 

begin 
for i in {1, 2, 3, 4} 
    for j in {1, 2, …, L} 
        w’i, j = wi, L-j+1 
        ci, j = bw’i, j 
for i in {1, 2, 3, 4} 
    for j in {1, 2, …, L} 

        (P(W, b))i, j = ci, j / (c1, j + c2, j + c3, j + c4, j) 

Then as stated by Theorem 1 (see Supplementary Notes for proof
any b > 1 and any given sequence X no shorter than W, we have: 

 

 
where * denotes the convolution operator that does not consider

der-crossing cases (i.e., W must fall completely within X; see Su
mentary Notes for details). In other words, the sequence’s convol
by W is exactly the sum of a constant and the log-likelihood of the P

transformed on X. We also noted that the time complexity of the 
transformation (Algorithm 1) is O(L) and does not depend on th
quence datasets at all, making it very fast and easy to use. 

Of note, the transformed PWM is thus capable of cla
ing/regressing sequences in exactly the same way as the original k
because Equation (1) makes it possible to replace the output of con
tional layer with the corresponding log-likelihoods, while keepin
outputs of subsequent layers unchanged by a simple parameter tuni
immediately succeeding layers (see Figure 1(b) for a schematic exp

tion on a popular CNN structure; also see the row “Derivation of m
parameters for our PWMs” in Supplementary Table 2 for a de
explanation involving multiple input sequences and kernels, an
proof of Theorems 1 and 2 in Supplementary Notes for an even
detailed mathematical treatment). This also immediately leads to
useful applications: kernel interpretation and PWM reuse.  

Interpreting a kernel using the exact transformation 

The exact transformation maps (and thus interprets) a kernel to (a
infinite set of PWMs parameterized by b only, because Theorem 

ways holds regardless of the specific b chosen. These PWMs r
from “uniform-like” (i.e., filled with values near 0.25; this happens 
a b that is extremely close to 1 is used) to “fixed” (i.e., filled with v
near 0 or 1; this happens when a very large b is used), yet, as de
strated by Corollary 1 (See Supplementary Notes), any of them is 
ble of regressing/classifying the input sequences in exactly the 
manner as the original kernel does under popular CNN frameworks
those in (Alipanahi et al., 2015; Quang and Xie, 2016; Zhou
Troyanskaya, 2015)). Therefore, the user may choose a specific PW

interest based on prior biological knowledge without biasing the k
interpretation.  
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(a)  

(b)  

 

 
If no such prior knowledge is available, an alternative from the statis

tician’s view is to find the optimal b using maximum a posteriori estima
tion (MAP estimation). The exact form depends on the model structur
and underlying assumptions, and should be treated on a case-by-cas

basis. As a proof-of-concept, we assumed a uniform distribution of b
(thus making MAP estimation equivalent to maximum likelihood estima
tion), and then deduced and implemented in our repository the followin
estimate for a popular CNN framework i
which an input sequence is fed to convolution, linear or ReLU activation
global max-pooling, linear function, and finally arbitrary functions (se
Section 5 of Supplementary Notes for technical details):  

 

where X(s) are the n indexed input sequences, W(t) the k indexed ker
nels, L the length of each kernel, j*(s, t) the starting coordinate of th
max-scored fragment by W(t) on X(s), and e the base of the natural loga
rithm.  

Reusing a PWM in CNN models 

Corollary 2 (see Supplementary Notes for details) guarantees that, from
each PWM (with the restriction that no 0’s or 1’s are present), a kernel 
that is capable of classifying/regressing sequences in exactly the sam
manner as the PWM  -- can be generated by the following steps (Figure 2
and Algorithm 2): 

(1) Similar to the transformation above, assume that the PWM t
be transformed is a 4-by-L matrix P, where L is the length o
this PWM. The element of P at the ith row and jth column i

denoted as pi, j. 
(2) Choose an arbitrary base of logarithm, b (b>1); 
(3) Skip step 5 (normalization) by taking C = P; 
(4) Invert step 4 to obtain W’ (i.e., set w’i, j = logb ci, j ); 
(5) Invert step 3 to obtain the transformed kernel W (i.e., set wi

= w’i, L-j+1 ); 
(6) If ReLU activation is to be used, add to the transformed kerne

a positive shift sufficiently large to make all element
nonnegative.  

Fig. 1 The transformation from kernel to PWM. (a) Steps of the trans-
formation. Elements were colored to signify the flipping step (W -> 
W’). (b) The transformed PWM is capable of classifying/regressing 
sequences in exactly the same way as the original kernel, because it can 
(with parameters of succeeding layers adjusted accordingly) produce 
the same output as that the kernel produces. For simplicity, here we 
show this on a popular CNN structure with a single kernel only, but it 
can be easily extended to other popular structures (see the proof of 
Theorem 2 in Supplementary Notes) and the case with multiple kernels.
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Algorithm 2: the (back)-transformation from PWM to kernel 

Input   : the PWM P and an arbitrary base of logarithm b (b>1) 
Output: the (back-)transformed kernel W 
begin 
C = P 
for i in {1, 2, 3, 4} 
    for j in {1, 2, …, L} 
        w’i, j = logb ci, j 

        wi, j = w’i, L-j+1 
if ReLU activation is to be used then 

for i in {1, 2, 3, 4} 
        for j in {1, 2, …, L} 
            wi, j = wi, j + a positive constant that is no smaller than |mini, j 
(wi, j)| 

Empirical results confirmed the outperformance 
of the exact transformation over the heuristic 
one at motif detection 

Despite all the useful features above, it is still in doubt that the trans-

formed PWMs can classify/regress sequences more accurately than 
PWMs transformed by other methods (specifically, the heuristic trans-
formation proposed by Deepbind (Alipanahi et al., 2015) ).  

In this section, we confirmed the outperformance of the exact 
formation by both simulation and real-world cases. Briefly, for 
trained CNN model in each case we obtained the two types of PWM
both transformations, and examined which transformation’s PWM-
log-likelihood can classify/regress the sequence (Figure 1(b)) better.

We note readers that, for PWMs from the exact transformation
rameters of layers succeeding the convolutional layer can be 
ed/scaled accordingly to make the final output unchanged (see F
1(b) and proof of Theorem 2 in Supplementary Notes); in this way w
not need stochastic gradient descent to find the optimal parameters
tuned parameters for these PWMs in this way for the two real-
cases; for the simulation case, stochastic gradient descent tends to 
well enough already and we did not tune parameters in this way
PWMs from the heuristic transformation, there’s no such known

way of tuning parameters, and we need to use stochastic gradient de
to find the optimal parameters of these subsequent layers. 

The exact transformation rivaled or outperformed the 
ristic one at classifying simulated sequences with kn
sequence- and structure-motifs 

In the simulation, we first extracted all motifs from known sequ
(JASPAR (Mathelier et al., 2016))  and structure (Rfam (Nawrocki 
2015)) motif databases. For each motif, we compared the two tran

mations by the following pipeline (see Supplementary Table 1 for 
nical details): 
1. We simulated positive and negative sequences, and train

CNN model to classify these sequences;  
2. We extracted the kernels and transformed each kernel i

PWM by either (1) the exact transformation or (2) the heu
transformation from Deepbind (as in Section 10.2 “Sequ
Logos” of its original Supplementary note); 

3. We evaluated which transformation would better classif

quences (Figure 1(b)) by comparing their area under ROC c
(AUROC) and area under PR curves (AUPRC) across the 
dataset.  

We then examined the overall outperformance by performing a
coxon signed-rank test for both AUPRC and AUROC (NULL hypo
the mean AUC of the exact transformation is equal to or less tha
mean AUC of the heuristic transformation). As expected, we found
the exact transformation significantly outperformed the heuristic on
structure-oriented Rfam motifs (Wilcoxon signed-rank test p-val

2.2e-16 for both AUPRC and AUROC, and the mean absolute diffe
in AUC is 0.049 for AUPRC and 0.046 for AUROC), while a
rivaled for sequence-oriented JASPAR motifs (Wilcoxon signed
test p-value < 2.2e-16 for AUPRC and =1.053e-09 for AUROC, th
the mean absolute difference in AUC is around 0.001). 

The exact transformation can better recover the motif d
tion performance of real-world CNN models.   

We further demonstrated by two real-world cases that the exact 
formation can better recover the motif detection performance of
world CNN models. 
 

The first case (Deepbind itself) trained a separate CNN-based 
detector for each of all the 461 real-world ChIP-Seq and SELEX m

that are not deprecated by Deepbind’s paper (Alipanahi et al., 2015
each of these motifs, we compared the two transformations by th
lowing pipeline (with the technical details available in Suppleme

Fig. 2 The (back) transformation from PWM to kernel. Elements were 
colored to signify the flipping step (W’->W). Note that the normaliza-
tion step is skipped, and thus the C matrix is identical to P. 
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Table 2): (1) get the pre-trained CNN model from Deepbind 
(http://tools.genes.toronto.edu/deepbind/deepbind-v0.11-linux.tgz); (2) 
use this model to generate the benchmark dataset, with input sequences 
also from Deepbind 
(http://tools.genes.toronto.edu/deepbind/nbtcode/nbt3300-

supplementary-software.zip); (3) transform the model’s kernels by both 
transformations; and (4) test for each transformation whether the modi-
fied model, where convolutional outputs are replaced by the correspond-
ing log-likelihoods, replicates the CNN model’s performance after pa-
rameter tuning (for the exact transformation) / retraining (for the heuris-
tic transformation).  

  
 

 
We compared MAPE and MSE between the exact transformation and 

the heuristic one across all these motifs (Figure 3). Consistent with the 
previous subsection, the exact transformation outperformed Deepbind’s 
transformation on real datasets. 

 
The second case trained a CNN to predict the lab-of-origin of a plas-

mid by its sequence only (Nielsen and Voigt, 2018). Similar to the pipe-
line above, to compare the two transformations on this case, we (1) re-

quested the dataset from AddGene, (2) obtained the PWMs by both 
transformations, and finally (3) computed the validation accuracy of 
classification for the two transformations (details are available through 
Supplementary Table 3). 

The retrained CNN model has a validation accuracy of 47.49%, which 
appears to replicate the one reported by Nielsen and Voigt (48%); the 
small deviation might result from the augmentation of the requested 
dataset both in sample size (from 36764 to 64149) and number of differ-
ent labels (from 827 to 1366) since publication. Based on this successful-

ly retrained CNN model, our expectation still holds: PWMs from the 
exact transformation achieved almost the same validation accuracy 
(47.34%), while the heuristically transformed PWMs only have a valida-

tion accuracy of 1.61% even after training with stochastic gradient de
scent. This stark difference immediately invalidated the possibility tha
the heuristic transformation always represents the underlying true motif.
 

Discussion 
Convolutional neural network (CNN) have been widely used in learning
regulatory sequence codes (Zhou and Troyanskaya, 2015; Kelley et al.

2016), identifying binding sites (Alipanahi et al., 2015; Quang and Xie
2016), and calling various functional elements (Umarov and Solovyev
2017) on large amount of DNA/RNA sequences. The CNN convolves, o

“scans”, these sequences with multiple kernels. While these kernels hav
been widely thought to be sort of representation for underlying function
al elements, only a heuristic transformation (Alipanahi et al., 2015) wa
proposed for converting kernels to position weight matrices (PWM), 
commonly used representation of sequence motifs.  

Currently, convolutional kernels used for mining nucleotide sequence
are just real matrices that need not conform to probabilistic restriction
of PWMs (e.g., each element should be a real number within [0, 1]). Thi
discrepancy makes it heuristically difficult to accurately interpret kernel

as PWMs. We have found for the first time that the kernel, together with
a logarithm base, can be transformed into a PWM with a log-likelihood
that is the sum of a constant and the kernel’s convolution. The mathe
matical solidity of this method connects intimately the computationa
field of CNNs and the biological field of functional elements, and bot
empirical simulations and testing on real-world cases have furthe
demonstrated the superiority of the exact transformation to the heuristi
one. Of note, the time complexity of the exact transformation is O(L) fo
a kernel of length L and does not depend on the number of input se

quences, rendering it scaling well for models with thousands (or eve
millions) of training sequences; in contrast, the heuristic transformation
sums fragments of all training sequences passing activation (Alipanahi e
al., 2015) and doesn’t scale well for large amount of data.. 

The failure of the heuristic transformation could be partially due to it
inherent setup of optimization. From a perspective of maximum likel
hood estimation (MLE), the resulting PWM maximizes the probability o
observing highly scoring fragments given the PWM itself, but does no
take into account the kernel itself; i.e., for the t-th kernel W(t) it tries t

find the PWM P(t) that maximizes the following conditional probabilit
(using notations from the MLE above), but without considering the spe
cific value of the kernel to transform: 

If we further impose the condition that the specific value of the kerne
is also observed and should not be biased, we will end up with a comb
nation of such MLE with the exact transformation; that is, it will try t

find the PWM P(t) that maximizes the following conditional probabilit
and that is subject to the following restriction:  

This could explain partially why the exact transformation outper
formed Deepbind’s in some cases, especially when we’d like to recove

the performance of a CNN model whose output is continuous. 
Beyond PWMs, the development of this exact transformation com

pelled us to seek for similar transformations of more complex moti
representations. In fact, PWMs are essentially 0-order Markov chains

Fig. 3 The exact transformation outperformed the heuristic one in 
exemplar motifs of Deepbind’s original work. For each of these motifs, 
the log-likelihoods from the two transformations were tested on how 
close they could approximate the output of original CNN model trained 
by Deepbind itself (by both mean absolute percentage error (MAPE) 
and mean squared error (MSE)). Codes for reproducing this plot are 
available on the Github repository. 
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and it is thus very natural to find the deep-learning counterpart of Mar-
kov chains with 1- or higher orders. Such model might have unexpected 
performance and efficiency on learning complex motifs from real biolog-
ical datasets. 

We’d like to highlight that our transformation also provides a new sta-

tistical view to understand the convolutional neural network. In this 
transformation, the score of the convolution on the given sequence is (up 
to a constant difference) equal to the log-probability of PWM to generate 
the same sequence. Based on this equivalence, both the subsequent pool-
ing layer and the dense layer can find their exact, statistical interpretation: 
the pooling layer just computes (for global max-pooling) the largest or 
(for global average-pooling) the mean log-probability, and the dense 
layer computes a weighted joint log-probability ratio from different 
kernels (as the coefficient of kernels might have different signs). Our 

results well suggest a full probabilistic model for convolutional neural 
network, which enables a rational design and optimization for custom-
ized tasks in near future. 
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