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Abstract

Motivation: Convolutional neural network (CNN) has been widely used in functional motifs identifica-
tion for large-scale DNA/RNA sequences. Currently, however, the only way to interpret such a convo-
lutional kernel is a heuristic construction of a position weight matrix (PWM) from fragments scored
highly by that kernel.

Results: Instead of using heuristics, we developed a novel, exact kernel-to-PWM transformation
whose equivalency is theoretically proven: the log-likelihood of the resulting PWM generating any
DNA/RNA sequence is exactly the sum of a constant and the convolution of the original kernel on the
same sequence. Importantly, we further proved that the resulting PWM’s performance on sequence
classification/regression can be exactly the same as the original kernel’s under popular CNN frame-
works. In simulation, the exact transformation rivals or outperforms the heuristic PWMs in terms of
classifying sequences with sequence- or structure-motifs. The exact transformation also faithfully
reproduces the output of CNN models on real-world cases, while the heuristic one fails, especially on
the case with little prior knowledge on the form of underlying true motifs. Of note, the time complexity
of the novel exact transformation is independent on the number of input sequences, enabling it to
scale well for massive training sequences.

Availability: Python scripts for the transformation from kernel to PWM, the inverted transformation
from PWM to kernel, and a proof-of-concept for the maximum likelihood estimation of optimal PWM
are available through https://github.com/gao-lab/kernel-to-PWM .

Contact: gaog@ mail.cbi.pku.edu.cn

networks (CNNSs) are exceptionally good at handling such problem fast
and accurately (Alipanahi et al., 2015; Angermueller et al., 2017; Quang
and Xie, 2016; Zhou and Troyanskaya, 2015). Basically, a CNN uses a
series of convolutional kernels as motif detectors to identify potential
sequence patterns. Each of these kernelsisa matrix which is used to scan
the input sequences, i.e., being “align” ed to each position. For each such
“alignment”, a score is computed by convoluting the kernel over the
aligned sequence fragment (LeCun et al., 1989; Cotter et al., 2011).

Introduction

Effective ab inito mining sequence motifs from large number of se-
quences is critical to mechanistic delineation of how the sequences exert
their functions (Mathelier et al., 2016; Ray et al., 2013; Nawrocki et al.,
2015). While classical methods are either computationally expensive and
thus limited to low number of sequences only (e.g., MEME (Bailey et

al., 2009)), or with strong assumptions on input sequences (e.g. MEME-
ChIP (Machanick and Bailey, 2011) assumes that all input sequences
must be centered and have equal length, which might greatly bias the
result when it handles sequences other than those coming from ChIP-
Seq), researchers have discovered recently that convolutional neural

Intuitively, the larger the score, the more “similar” the kernel is to the
specific sequence fragment it aligns to. However, it remains challenging
to extract/interpret the particular sequence patterns learned by these
convolutional kernels.
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Alipanahi et al. proposed a heuristic transformation to convert a given
kernel into a Position Weight Matrix, or PWM (Alipanahi et al., 2015),
which has been widely used to represent experimentally determined
DNA- (Mathelier et al., 2016) or RNA-binding motifs (Ray et al., 2013).
Briefly, it transforms a kernel by (1) first stacking the kernel’s highly
scoring sequence fragments from input sequences, and then (2) normaliz-
ing nucleotide counts per position to obtain the final PWM. Although the
heuristic transformation has been widely used (e.g., Angermueller et al.,
2017; Kelley et al., 2016; Ben-Bassat et al., 2018), it is not guaranteed in
theory (see Discussion for more details) and even fails in certain practi-
cal cases (see the AddGene case in Section Results later) to classify
sequences as accurately as the kernels do.

In this paper, we proposed a novel, fast, exact kernel-to-PWM trans-
formation (Figure 1(a)) to address this problem. We demonstrated, both
theoretically and empirically, that the transformed PWM is capable of
classifying/regressing sequences in exactly the same way as the original
kernel (Figure 1(b)), indicating that this kernel interpretation is the most
accurate among all possible interpretations. Further comparison to the
heuristic transformation in both simulations and real-world cases showed
that, when used to calculate PWM-based log-likelihood as a surrogate
for convolutional output on the same input sequence (Figure 1(b)), the
exact PWMsrival or greatly outperform the heuristic PWMs at detecting
both sequence- and structure-motifs. Of note, our transformation also
provides a direct and accurate probabilistic interpretation for the kernels
used for motif detection (Zuallaert et al., 2018). A Python implementa-
tion of the transformation is freely available online at
https://github.com/gao-lab/kernel-to-PWM .

The exact kernel-to-PWM transformation

Below we describe the transformation itself, and its interpretation. De-
tailed proofs of theorems and corollaries can be found in the Supplemen-
tary Notes.

Thetransformation

The five-step transformation, as illustrated in Figure 1(a), is described
below (with all coordinates one-based; also see Algorithm 1):

(1) Assume that the kernel to be transformed is a 4-by-L matrix
W, where L is the length of this kernel. The element of W at
the ith row and jth column is denoted as w; j.

(2) Choose an arbitrary base of logarithm, b (b > 1), for the log-
likelihood calculation. There's no further restriction on the
choice of b.

(3) Flip W along the second (position) axis to obtain the flipped
kernel W': wW'i j = w; 4+ for al i from {1, 2, 3, 4} and all j
from{1,2, ..., L}.

(4) Replace each w'; ; with b1 to obtain the exponentially trans-
formed kernel C; in other words, ¢ ; = b"" for all | from {1, 2,
3,4} andall j from{1, 2, ..., L}.

(5) Normalize C ina column-wise manner by dividing each column
by its sum, resulting in the PWM P(W, b): (PR(W, b))ij=¢c,;/ (cy,
it CjtCyjtCy) foralifrom{l,2 3 4} andaljfrom{1l 2
. L}

Algorithm 1: the transformation from kernel to PWM

Input : the kernel W and an arbitrary base of logarithm b (b>1)
Output: the transformed PWM P(W, b)
begin
foriin{1,2, 3,4}
forjin{1,2,...,L}
Wi j =W Ljs1
Gj= b
foriin{1,2, 3,4}
forjin{1,2,...,L}
(P(W, b))i,j =G,/ (Cuj+ Coj+ Caj + Caj)
Then as stated by Theorem 1 (see Supplementary Notes for proof), for
any b > 1 and any given sequence X no shorter than W, we have:

(X & W); = constani + logy, Prob(X]|1: 4,5 : (7 + L — 1)]|P(W,&)) (1)

where * denotes the convolution operator that does not consider bor-
der-crossing cases (i.e, W must fall completely within X; see Supple-
mentary Notes for details). In other words, the sequence’s convolution
by W is exactly the sum of a constant and the log-likelihood of the PWM
transformed on X. We also noted that the time complexity of the exact
transformation (Algorithm 1) is O(L) and does not depend on the se-
guence datasets at all, making it very fast and easy to use.

Of note, the transformed PWM is thus capable of classify-
ing/regressing sequences in exactly the same way as the origina kerndl,
because Equation (1) makes it possible to replace the output of convolu-
tional layer with the corresponding log-likelihoods, while keeping the
outputs of subsequent layers unchanged by a simple parameter tuning of
immediately succeeding layers (see Figure 1(b) for a schematic explana-
tion on a popular CNN structure; also see the row “Derivation of model
parameters for our PWMS' in Supplementary Table 2 for a detailed
explanation involving multiple input sequences and kernels, and the
proof of Theorems 1 and 2 in Supplementary Notes for an even more
detailed mathematical treatment). This also immediately leads to two
useful applications: kernel interpretation and PWM reuse.

Interpreting a kernel using the exact transformation

The exact transformation maps (and thus interprets) a kernel to (as) an
infinite set of PWMs parameterized by b only, because Theorem 1 al-
ways holds regardless of the specific b chosen. These PWMs ranges
from “uniform-like” (i.e., filled with values near 0.25; this happens when
abthat is extremely closeto 1 is used) to “fixed” (i.e, filled with values
near 0 or 1; this happens when a very large b is used), yet, as demon-
strated by Corollary 1 (See Supplementary Notes), any of them is capa-
ble of regressing/classifying the input sequences in exactly the same
manner as the original kernel does under popular CNN frameworks (e.g.
those in (Alipanahi et al., 2015; Quang and Xie, 2016; Zhou and
Troyanskaya, 2015)). Therefore, the user may choose a specific PWM of
interest based on prior biological knowledge without biasing the kernel
interpretation.
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If no such prior knowledge is available, an alternative from the statis-

Wyg | Wyp | Wyg tician's view isto find the optimal b using maximum a posteriori estima-
tion (MAP estimation). The exact form depends on the model structure
W Wai [ Wao [ Was and underlying assumptions, and should be treated on a case-by-case
W3q W3, | W33 basis. As a proof-of-concept, we assumed a uniform distribution of b
(thus making M AP estimation equivalent to maximum likelihood estima-
Wai [ Wao | Was tion), and then deduced and implemented in our repository the following
estimate @(bIX®, .. X" W™, W® ) g ponular CNN- framework in
Wyz | Wyp | Wy, which aninput sequence is fed to convolution, linear or ReL U activation,
i W W W global max-pooling, linear function, and finally arbitrary functions (see
W’ 23 | 722 | 721 Section 5 of Supplementary Notes for technical details):
Was | Wz | Was aBXW, - X WU W)
Wiz | Wao | Was 5k kL 4 @
B 3 XD £ WO -2 Y (E o ,,,) ¢
pwiz | pwiz | pwit a—1i-1 E-14-1 i—1
where X© are the n indexed input sequences, W® the k indexed ker-
c bwa2 | bz | bt nels, L the length of each kernel, j'(s, t) the starting coordinate of the
bwss | pwaz | pwar max-scored fragment by W® on X, and e the base of the natural loga-
pWwas | pwaz | pwas rithm.
b¥es/(5,.,0b%3) | b5, | beyg, th ) Reusing a PWM in CNN models
p bW23/(3,_,4b%i3) | b%22/(3_*b"?) | b¥21/(5,*b"i) Corollary 2 (see Supplementary Notes for details) guarantees that, from
b¥s3/(s, b2 | b5, b2 | bWz, i) each PWM (with the restriction that no 0's or 1's are present), akernel --
b¥as/(s, %) | b, o) | breays, b that is capable of classifying/regressing sequences in exactly the same

manner as the PWM -- can be generated by the following steps (Figure 2

(b) and Algorithm 2):

D Similar to the transformation above, assume that the PWM to
be transformed is a 4-by-L matrix P, where L is the length of
this PWM. The element of P at the ith row and jth column is

Kernel W of length L Transformed PWM P(W, b)

denoted as p; ;.
Input X (2)  Choose an arhitrary base of logarithm, b (b>1);
(©) Skip step 5 (normalization) by taking C = P,
Convpluti Log=tikelihopd calculation (4) Invert step 4 to obtain W’ (i.e., set w'; ; =100, G, );
Convolution result | _ Log likelihood, Z(j)= 5) I_nvelzrt step.3 to obtain the transformed kernel W (i.e., set w;
(X*W), =C+ | og,(Prob(X[L:4, j:(+L-1)] | P(W, b)) =W, L );
% - obal ; (6) If ReL U activation isto be used, add to the transformed kernel
Global mx-pooling Globa m%’(’poo g a postive shift sufficiently large to make all elements
Poolillg result —Cs Pooling’result nonnegative.
(X*W); 2(j)
Dense of fPrm y(x)=ax+b Dense of formly(x)=ax+(b+aCl
Dense output _ Dense output
a(X*w), - az(j’) + (b+aC)
Arbitralry layers Arbitraj‘y layers
Final output = Final output

Fig. 1 The transformation from kernel to PWM. (a) Steps of the trans-
formation. Elements were colored to signify the flipping step (W ->
W’). (b) The transformed PWM is capable of classifying/regressing
sequences in exactly the same way as the original kernel, because it can
(with parameters of succeeding layers adjusted accordingly) produce
the same output as that the kernel produces. For simplicity, here we
show this on a popular CNN structure with a single kernel only, but it
can be easily extended to other popular structures (see the proof of
Theorem 2 in Supplementary Notes) and the case with multiple kernels.
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logyp
logyp,,;
logyps,,
logyp

logypy 3 | l0g,P:
log,p, 3 | 108y,
logyps ; | 108,Ps
108,P, 3 | 108,Py

(+positive
constant)

log,p; 1
logyp, 1
log,ps
log,p, 1

log,p, ; | l08yPy 3
log,p, ; | 108,P,3
log,ps, | logyPs
logyp,, | 108pPa s

P11 [ P12 | Pags
P21 [ P22 | P23
P31 [ P32 | Pas
Pa1 [Paz | Pas

P11 [ P12 | P13
P21 | P22 | Pas
P31 | P32 | P3s
Pa1 | Paz | Pags

Fig. 2 The (back) transformation from PWM to kernel. Elements were
colored to signify the flipping step (W’->W). Note that the normaliza-
tion step is skipped, and thus the C matrix isidentical to P.

Algorithm 2: the (back)-transformation from PWM to kernel
Input : the PWM P and an arbitrary base of logarithm b (b>1)
Output: the (back-)transformed kernel W
begin
C=P
foriin{1,2, 3,4}
forjin{1,2,...,L}
Wi =10g,C
Wi j =W L+
if ReL U activation isto be used then
foriin{1,2, 3,4}
forjin{1,2,...,L}
W, j = w;,j + a positive constant that is no smaller than |min; ;

(wi, )|

Empirical results confirmed the outperformance
of the exact transformation over the heuristic
one at motif detection

Despite all the useful features above, it is still in doubt that the trans-

formed PWMs can classify/regress sequences more accurately than

PWMs transformed by other methods (specifically, the heuristic trans-

formation proposed by Deepbind (Alipanahi et al., 2015) ).

In this section, we confirmed the outperformance of the exact trans-
formation by both simulation and real-world cases. Briefly, for each
trained CNN model in each case we obtained the two types of PWMs by
both transformations, and examined which transformation’s PWM-based
log-likelihood can classify/regress the sequence (Figure 1(b)) better.

We note readers that, for PWMs from the exact transformation, pa-
rameters of layers succeeding the convolutional layer can be shift-
ed/scaled accordingly to make the final output unchanged (see Figure
1(b) and proof of Theorem 2 in Supplementary Notes); in this way we do
not need stochastic gradient descent to find the optimal parameters. We
tuned parameters for these PWMs in this way for the two real-world
cases,; for the simulation case, stochastic gradient descent tends to work
well enough aready and we did not tune parameters in this way. For
PWMs from the heuristic transformation, there's no such known easy
way of tuning parameters, and we need to use stochastic gradient descent
tofind the optimal parameters of these subsequent layers.

The exact transformation rivaled or outperformed the heu-
ristic one at classifying simulated sequences with known
sequence- and structure-motifs

In the simulation, we first extracted al motifs from known sequence
(JASPAR (Mathelier et al., 2016)) and structure (Rfam (Nawrocki et al.,
2015)) motif databases. For each motif, we compared the two transfor-
mations by the following pipeline (see Supplementary Table 1 for tech-
nical details):

1 We simulated positive and negative sequences, and trained a
CNN model to classify these sequences;

2. We extracted the kernels and transformed each kernel into a
PWM by either (1) the exact transformation or (2) the heuristic
transformation from Deepbind (as in Section 10.2 “ Sequences
Logos’ of its original Supplementary note);

3. We evaluated which transformation would better classify se-
quences (Figure 1(b)) by comparing their area under ROC curves
(AUROC) and area under PR curves (AUPRC) across the entire
dataset.

We then examined the overall outperformance by performing a Wil-
coxon signed-rank test for both AUPRC and AUROC (NULL hypothesis:
the mean AUC of the exact transformation is equal to or less than the
mean AUC of the heuristic transformation). As expected, we found that
the exact transformation significantly outperformed the heuristic one for
structure-oriented Rfam motifs (Wilcoxon signed-rank test p-value <
2.2e-16 for both AUPRC and AUROC, and the mean absolute difference
in AUC is 0.049 for AUPRC and 0.046 for AUROC), while almost
rivaled for sequence-oriented JASPAR motifs (Wilcoxon signed-rank
test p-value < 2.2e-16 for AUPRC and =1.053e-09 for AUROC, though
the mean absol ute differencein AUC isaround 0.001).

The exact transformation can better recover the motif detec-
tion performance of real-world CNN models.

We further demonstrated by two real-world cases that the exact trans-
formation can better recover the motif detection performance of real-
world CNN models.

The first case (Deephbind itself) trained a separate CNN-based motif
detector for each of all the 461 real-world ChiP-Seq and SELEX motifs
that are not deprecated by Deepbind’ s paper (Alipanahi et al., 2015). For
each of these motifs, we compared the two transformations by the fol-
lowing pipeline (with the technical details available in Supplementary
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Table 2): (1) get the pretrained CNN model from Deepbind
(http://tools.genes.toronto.edu/deepbind/deepbind-v0.11-linux.tgz);  (2)
use this model to generate the benchmark dataset, with input sequences
also from Deepbind
(http://tools.genes.toronto.edu/deepbind/nbtcode/nbt3300-
supplementary-software.zip); (3) transform the model’s kernels by both
transformations; and (4) test for each transformation whether the modi-
fied model, where convolutional outputs are replaced by the correspond-
ing log-likelihoods, replicates the CNN model’s performance after pa-
rameter tuning (for the exact transformation) / retraining (for the heuris-
tic transformation).

MAPE MSE

log10 of loss of retrained model

 Typeof PWM

Fig. 3 The exact transformation outperformed the heuristic one in
exemplar motifs of Deepbind’ s original work. For each of these motifs,
the log-likelihoods from the two transformations were tested on how
close they could approximate the output of original CNN model trained
by Deepbind itself (by both mean absolute percentage error (MAPE)
and mean squared error (MSE)). Codes for reproducing this plot are
available on the Github repository.

We compared MAPE and M SE between the exact transformation and
the heuristic one across all these motifs (Figure 3). Consistent with the
previous subsection, the exact transformation outperformed Deepbind's
transformation on real datasets.

The second case trained a CNN to predict the lab-of-origin of a plas-
mid by its sequence only (Nielsen and Voigt, 2018). Similar to the pipe-
line above, to compare the two transformations on this case, we (1) re-
quested the dataset from AddGene, (2) obtained the PWMs by both
transformations, and finally (3) computed the validation accuracy of
classification for the two transformations (details are available through
Supplementary Table 3).

The retrained CNN model has a validation accuracy of 47.49%, which
appears to replicate the one reported by Nielsen and Voigt (48%); the
small deviation might result from the augmentation of the requested
dataset both in sample size (from 36764 to 64149) and number of differ-
ent labels (from 827 to 1366) since publication. Based on this successful-
ly retrained CNN model, our expectation still holds: PWMs from the
exact transformation achieved almost the same validation accuracy
(47.34%), while the heuristically transformed PWMs only have a valida-

tion accuracy of 1.61% even after training with stochastic gradient de-
scent. This stark difference immediately invalidated the possibility that
the heuristic transformation always represents the underlying true motif.

Discussion

Convolutional neural network (CNN) have been widely used in learning
regulatory sequence codes (Zhou and Troyanskaya, 2015; Kelley et al.,
2016), identifying binding sites (Alipanahi et al., 2015; Quang and Xie,
2016), and calling various functional elements (Umarov and Solovyev,
2017) on large amount of DNA/RNA sequences. The CNN convolves, or
“scans’, these sequences with multiple kernels. While these kernels have
been widely thought to be sort of representation for underlying function-
al elements, only a heuristic transformation (Alipanahi et al., 2015) was
proposed for converting kernels to position weight matrices (PWM), a
commonly used representation of sequence motifs.

Currently, convolutional kernels used for mining nucleotide sequences
are just real matrices that need not conform to probabilistic restrictions
of PWMs (e.g., each element should be areal number within [0, 1]). This
discrepancy makesit heuristically difficult to accurately interpret kernels
as PWMs. We have found for the first time that the kernel, together with
a logarithm base, can be transformed into a PWM with a log-likelihood
that is the sum of a constant and the kernel’s convolution. The mathe-
matical solidity of this method connects intimately the computational
field of CNNs and the biological field of functional elements, and both
empirical simulations and testing on real-world cases have further
demonstrated the superiority of the exact transformation to the heuristic
one. Of note, the time complexity of the exact transformation is O(L) for
a kernel of length L and does not depend on the number of input se-
guences, rendering it scaling well for models with thousands (or even
millions) of training sequences; in contrast, the heuristic transformation
sums fragments of all training sequences passing activation (Alipanahi et
al., 2015) and doesn't scale well for large amount of data..

The failure of the heuristic transformation could be partialy due to its
inherent setup of optimization. From a perspective of maximum likeli-
hood estimation (MLE), the resulting PWM maximizes the probability of
observing highly scoring fragments given the PWM itsdlf, but does not
take into account the kernel itself; i.e., for the t-th kernel W it tries to
find the PWM PY that maximizes the following conditional probability
(using notations from the MLE above), but without considering the spe-
cific value of the kernel to transform:

n

[ [ Prob(XI[1: 4,5%*(s,8) : G*(a8) + L - DIPE) (3)
5=1

If we further impose the condition that the specific value of the kernel
is also observed and should not be biased, we will end up with a combi-
nation of such MLE with the exact transformation; that is, it will try to
find the PWM PY that maximizes the following conditional probability
an'sl that is subject to the following restriction:

[ ] 2rob(X[1: 4,5%(s,8) : (*(s,t) + L = 1)]PP)
r=1
s.t. PO — PO(W) p) (4)
This could explain partially why the exact transformation outper-
formed Deepbind's in some cases, especially when we'd like to recover
the performance of a CNN model whose output is continuous.
Beyond PWMs, the development of this exact transformation com-
pelled us to seek for similar transformations of more complex motif
representations. In fact, PWMs are essentially 0-order Markov chains,
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and it is thus very natural to find the deep-learning counterpart of Mar-
kov chains with 1- or higher orders. Such model might have unexpected
performance and efficiency on learning complex motifs from real biolog-
ical datasets.

We' d like to highlight that our transformation also provides a new sta-
tistical view to understand the convolutional neural network. In this
transformation, the score of the convolution on the given sequenceis (up
to a constant difference) equal to the log-probability of PWM to generate
the same sequence. Based on this equival ence, both the subsequent pool-

ing layer and the dense layer can find their exact, statistical interpretation:

the pooling layer just computes (for global max-pooling) the largest or
(for global average-pooling) the mean log-probability, and the dense
layer computes a weighted joint log-probability ratio from different
kernels (as the coefficient of kernels might have different signs). Our
results well suggest a full probabilistic model for convolutional neural
network, which enables a rational design and optimization for custom-
ized tasksin near future.
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