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Introductory paragraph

Much of biology is associated with convergent traits, and it is challenging to determine the
extent to which underlying molecular mechanisms are shared across phylogeny. By
analyzing plants representing eighteen independent origins of C, photosynthesis, we
guantified the extent to which this convergent trait utilises identical molecular mechanisms.
We demonstrate that biochemical changes that characterise C, species are recovered by
this process, and expand the paradigm by four metabolic pathways not previously
associated with C4 photosynthesis. Furthermore, we show that expression of many genes
that distinguish C; and C, species respond to low CO,, providing molecular evidence that
reduction in atmospheric CO, was a driver for C, evolution. Thus the origin and architecture

of complex traits can be derived from transcriptome comparisons across natural diversity.
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Main text:

The evolution of complex traits has produced great diversity in form and function across the
living world. A large number of similar complex traits have evolved independently in multiple
disparate lineages indicating that common responses to environmental selection can result in
convergent phenotypes®?. The C, photosynthetic pathway, with at least 65 independent origins
distributed across the angiosperms®, is considered one of the most remarkable examples of
evolutionary convergence in eukaryotes. Thus the C, pathway represents an attractive trait with
which to determine whether phylogenetically diverse species can be examined to discover the
shared molecular basis of complex convergent phenotypes.

Using a comparative approach, we analyzed gene expression of 30 C, and 17 C; species
representing 18 independent evolutionary origins of C, photosynthesis (Fig. 1A,B). This set of
species includes representatives from all seven orders within the eudicotyledons known to have
evolved C, photosynthesis (Fig. 1a, Supplemental File 1)*. This sampling expands upon previous
transcriptome studies with Cz and C, eudicot plants in Cleomaceae, Asteraceae and Portulaceae'
3. RNA was isolated from leaves of all species, sequenced and subjected to de novo transcriptome
assembly. Collectively these samples comprise 850 million reads that were assembled into 1.5
million contigs of which 1.1 million were assigned to orthogroups (Fig. 1B, Supplemental File 1)
using a machine learning approach®. Analysis of the correlation in mMRNA abundance estimates
between species revealed that species did not cluster according to their photosynthetic type but
rather according to phylogenetic relationship (Supplemental File 2). That is, C, species of Flaveria
are more similar to C; Flaveria than to C, species from other genera, and thus variation in gene
expression underlying phenotypic convergence is not the primary determinant of differences in
mMRNA abundance between C; and C, species.

Comparison of the transcriptomes from C; and C, species identified 149 genes that showed
altered transcript abundance between C; and C, species in all 18 lineages: 113 that were more
abundant and 36 less abundant in all C, species (Table 1, Supplemental File 3, Supplemental File
4). This set includes many genes encoding components of C, photosynthesis that are known to
change during evolution of the C, pathway (Fig. 2A, Supplemental File 5, and Supplemental File

6). Four transcription factors were more abundant in all C, species (PAT1, ZML2, SHR and a


https://doi.org/10.1101/163097
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/163097; this version posted July 13, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

4

78  bHLH transcription factor of unknown function). Both PAT1 and ZML2 act to induce the expression
79 of genes encoding photosynthesis proteins downstream of phytochrome and cryptochrome
80 signalling respectively®’ while SHR is a validated regulator of C, Kranz anatomy in Zea mays®™*°.
81  Thus three of the four transcription factors have previously been identified as playing a role in the
82  regulation of photosynthesis gene expression or leaf anatomy, both of which are altered during the
83 evolution of C, photosynthesis. The uncharacterised bHLH domain transcription factor has no
84  known functional role, but has previously been described as being upregulated in the bundle
85 sheath (BS) cells of the C; plant Arabidopsis thaliana®. It is therefore possible that this bHLH
86 transcription factor plays an ancestral role in the BS of C; species that has become enhanced in all
87 C,lineages. Wide sampling of natural diversity therefore indicates that there is convergence in the
88  recruitment of key regulators of gene expression in independent lineages of C, species.
89 Transcripts encoding 16 proteins comprising four metabolic pathways that have not previously
90 been associated with C, photosynthesis were detected as differentially abundant between C, and
91 C; species (Fig. 2B, Supplemental File 7). These pathways described below encompass: a novel
92  carbon concentrating pathway involving the GABA shunt; metabolism associated with regeneration
93  of phosphoenolpyruvate (PEP), the primary CO, acceptor in the C, pathway; modifications to
94  pyruvate metabolism that prevent diversion of pyruvate from the C, cycle into non-photosynthetic
95 pathways such as lipid and branched amino acid biosynthesis; and a photorespiratory pathway
96  previously associated with chlorophyte algae (Supplemental File 7).
97 The abundance of transcripts encoding a key component of the y-aminobutyric acid (GABA)
98 shunt was increased in all C, compared with C3 species. In the conventional model for NAD-ME
99 type C, photosynthesis, aspartate synthesised in mesophyll (M) cells is shuttled to mitochondria in
100 the BS where it is transaminated to oxaloacetate by aspartate amino transferase (ASP1), reduced
101 to malate by NAD-dependent malate dehydrogenase (NAD-MDH), and then decarboxylated to
102  pyruvate which can then return to the M (Fig. 2a). Although ASP1 transcripts were more abundant
103 in all C, species that we studied, this was not the case for the later steps in the NAD-ME pathway
104  (Supplemental File 7). Instead, we propose that oxaloacetate is used to feed the tricarboxylic acid
105 (TCA) cycle in BS cells. Here, 2-oxoglutarate synthesised by the TCA cycle can be converted to

106 glutamate and decarboxylated by glutamate decarboxylase (GAD4) to GABA, resulting in release
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107 of CO, and return of carbon skeletons as succinate to the TCA cycle (Fig. 2, Supplemental File 5,
108 Supplemental File 7). This proposed pathway provides both a novel mechanism to transfer CO, to
109 the BS using CO; that was fixed by phosphoenolpyruvate carboxylase (PEPC) in the M, and a
110 source of ATP in the BS by using NADH generated by the running the TCA cycle for oxidative
111  phosphorylation (Fig. 2B, Supplemental File 5, Supplemental File 6). Two orthogonal approaches
112 provide evidence that this cycle functions to concentrate CO, in the C4 BS. First, computational
113 modelling revealed that the additional ATP this pathway provides to BS cells resulted in an
114 increased CO, assimilation rate irrespective of C, subtype under low light conditions
115 (Supplemental File 8). Moreover, when PEPCK is used for decarboxylation this increase in CO,
116 assimilation rate was maintained under high light (Supplemental File 8). Second, biochemical
117  evidence for this pathway has in fact been reported previously - after **C labelled glutamate was
118 fed to isolated BS strands in Zea mays*?, radiolabel is rapidly released and redistributed to other
119 metabolites in a manner that is most parsimoniously explained by glutamate decarboxylase
120  mediated decarboxylation followed by re-fixation of labelled CO? by RuBisCO. Thus, sampling the
121  natural diversity of C4 species uncovered an adjunct CO, concentrating pathway that is supported
122 by biochemical data and a metabolic model of C, photosynthesis.

123 To maintain flux through the C, pathway, PEP supply is critical as it is the entry point of the
124  cycle. Transcripts encoding a chloroplastic phosphoglucomutase (PGM) and an enolase (ENO)
125 were more abundant in all C, compared with C;z species (Fig. 2B, Supplemental File 7). These
126 proteins facilitate conversion of Calvin-Benson cycle intermediates to PEP (Fig. 2B), providing an
127  additional route for transfer of photo-assimilated carbon to the M, and consequently regeneration
128 of the initial carbon acceptor. Transcripts encoding pyruvate kinase (PK), which catalyzes the
129 reverse reaction, were less abundant in C, compared with C; species (Fig. 2B). A reduction in the
130 amount of the cognate protein would limit futile cycling between PEP and pyruvate during C,
131 photosynthesis. The third pathway detected in our analysis indicates pyruvate metabolism has
132 been modified to prevent diversion of pyruvate from C, photosynthesis into non-photosynthetic
133  pathways such as lipid and branched amino acid biosynthesis. Transcripts encoding pyruvate
134  dehydrogenase kinase (PDK) were more abundant (Fig. 2B), and aceto-lactate synthase (ALS)

135 less abundant, in all C, compared with C; leaves (Supplemental File 7). As PDK deactivates
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136 pyruvate dehydrogenase by phosphorylation and ALS channels pyruvate into the synthesis of

137  branched-chain amino acids, these alterations would support the core C, cycle by reducing loss of
138  pyruvate from photosynthetic pools.

139 The fourth pathway that we propose is modified in all C, compared with C3; species has been
140 previously associated with algae rather than land plants. Chloroplasts of chlorophyte algae enclose
141  their RuBisCO in structures called pyrenoids. These structures facilitate an increased CO,
142  concentration around RuBisCO resulting in reduced photorespiration™*. These algae also lack the
143  peroxisome-based photorespiratory pathway that evolved in the common ancestor of
144  embryophytes and charophyte algae®. Although the ancestral chlorophyte photorespiratory
145  pathway involving glycolate dehydrogenase (GIcDH) and an alanine:glyoxylate amino transferase
146  (ALAAT2) is still active in C; plants, flux of glycolate through this pathway is low compared with the
147  peroxisome-based pathway™. Our analysis indicates that in all 18 C, lineages there is a concerted
148 increase in abundance of transcripts encoding key components of the chlorophyte algal pathway,
149  specifically GIcDH and ALAAT2 (Fig. 2B, Supplemental File 7). Two scenarios may explain this
150 change during C, evolution. First, the chlorophyte photorespiratory pathway plays a role in C,4
151 photosynthesis. Second, GIcDH plays a role in converting some dihydroxyacetone phosphate
152  (DHAP) produced in the Calvin-Benson cycle of BS cells to pyruvate via the methylglyoxal pathway
153 enabling the use of some DHAP to maintain the C, cycle (Supplemental File 9). In this latter
154  scenario, ALAAT2 would still process photorespiratory glyoxylate that had been produced in the
155 peroxisome by glycolate oxidase. Both proposed scenarios require a source of NAD" and in this
156 context it is noteworthy that both transcripts encoding Complex | of the respiratory electron transfer
157 chain and the plant uncoupling mitochondrial protein 1 (PUMP1) were upregulated in C4 species
158 (Fig. 2B). Together, these would increase regeneration of NAD* and de-couple some proton flux
159 through Complex | from ATP synthesis. Moreover, this increase in NAD" would also support
160 photorespiratory glycine decarboxylase and utilise NADH from the TCA cycle (Fig. 2B).

161 We also evaluated whether transcriptome sampling across a deep phylogeny could be used to
162 clarify selective forces promoting C, evolution. Low atmospheric CO, has been proposed to be a
163  key driver of C4 evolution®®, and analysis of A. thaliana identified genes responsive to low CO, in

164  plants®’. Thirty-one of the 113 genes that were more abundant in all C, species sampled showed
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165 increased expression in A. thaliana grown under low CO; (Fig. 3, Supplemental File 10). As the
166  probability of such an overlap is low (p = 4 x 10°), these data indicate that there is a significant
167 association between genes that are expressed highly in C, species and those that are more
168 abundant in C; A. thaliana grown under low CO,. There is also a significant association between
169 genes that are more abundant under low CO; and those that are less abundant in all C4 plants (p =
170 1 x10 ™, Fig. 3). However, nine of these twelve genes encode components of the photorespiratory
171  pathway and the remaining three are unknown proteins predicted to localize to the chloroplast and
172 are thus implicated in photorespiratory processes (Supplemental File 11) These results are
173 consistent with the hypothesis that low atmospheric CO, concentration induced changes in gene
174  expression that facilitated C, evolution. The molecular mechanisms that underpin this response
175 remain to be identified. In the future it will be informative to investigate the extent to which other
176 ecological drivers such as heat, drought and salinity alter gene expression and potentially target
177 genes that are then recruited into this complex trait. In addition, the data also reveal that a set of
178 genes that are more abundant in C, species are preferentially expressed in the BS cells of Cs
179  species and thus indicate that neofunctionalisation of BS cells utilized pathways already present in
180 this cell type (Supplemental File 5, Supplemental File 12). Thus these data also provide molecular
181  support for the hypothesis that expansion and specialization of the C3; BS is an early and key step
182 in the evolution of the C, phenotype™®*2.

183 Finally, the data identify four metabolic pathways previously unknown to be important for C,4
184 function, and identify a role for the GABA shunt pathway in concentrating CO, and generating ATP
185 in the BS of all C,4 species. The re-emergence in plants of the peroxisome-based photorespiratory
186 pathway from algae is to our knowledge, the first documented example of an evolutionary
187 reversion being a key component of the advent of complexity and convergence in eukaryotic
188 biology. We envisage that this approach of comparative transcriptome sampling of non-model
189  species will now be used to provide insight into molecular signatures associated with complex
190 traits across the tree of life. The fact that we recapitulated previous knowledge of C,
191 photosynthesis, but also significantly extended the functional model of C, metabolism, implies

192 there is much more to be discovered about this pathway.

193
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197  Fig. 1: Within the eudicotyledons C, photosynthesis has evolved in eleven families from 7 different
198 orders. (A) Phylogenetic tree showing the seven orders containing C, species (blue). (B)
199 Phylogenetic tree showing the relationship between the eighteen genera (eleven families)
200 encompassing thirty C, species sampled in this study. Numbers after the genus name indicate the
201  number of C4 species sampled. The mean number of de novo transcripts per species is indicated
202  for each genus.

203
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206  Fig. 2: Schematics indicating proteins associated with C, photosynthesis before (A) and after (B)

207  this study. (A) Enzymes and transporters previously known to be upregulated (blue) and down-
208 regulated (red) in C, compared with C; leaves are depicted according subcellular location and
209  whether they are preferentially expressed in either mesophyll of bundle sheath cells. (B) After
210 sequencing 30 C, and 17 C; species spanning the seven eudicotyledon orders known to have

211 evolved C, photosynthesis an additional 16 genes consistently up (blue) or down regulated (red) in
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212 C, compared with C3 leaves were identified. Light blue and orange indicate transcripts for genes
213 that are significantly upregulated and downregulated in all C, species when compared to all C3, but
214  they fail to achieve significance with computational occlusion and resampling. For abbreviations of

215 gene names see Supplemental File 10. TCA, tricarboxylic cycle.

216
Up-regulated Down-regulated
in dicot C, indicot C,
Up-regulated in
A. thaliana in low CO,
217

218 Fig. 3: Overlap between genes that are upregulated in response to low CO, in Arabidopsis

219 thaliana and that are up or downregulated in C, species.

220
Category Cell |Chloroplast|Mitochondrion
Metabolic components 15(8) | 29(10) 6(4)
Signalling components 18(2) 7(1) 0(0)
Transporters 4(1) 9(1) 2(0)
Transcription regulators 4(1) 0(2) 0(0)
Post transcription regulators | 3 (1) 0(0) 0(0)
Other 3(0) 2(2) 0(0)
Unknown 9(3) 1(0) 1(0)

221 n=113, n=36 No. up-regulated (No. down-regulated)

222 Table 1: Summary of functional categories of genes differentially expressed between C, and C;

223 leaves.
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