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Abstract 

Our capacity for higher cognitive reasoning has a measureable limit. This limit is thought to 

arise from the brain’s capacity to flexibly reconfigure interactions between spatially 

distributed networks. Recent work, however, has suggested that reconfigurations of task-

related networks are modest when compared with intrinsic ‘resting state’ network 

architecture. Here we combined resting state and task-driven functional magnetic resonance 

imaging to examine how flexible, task-specific reconfigurations associated with increasing 

reasoning demands are integrated within a stable intrinsic brain topology. Human participants 

(21 males and 28 females) underwent an initial resting state scan, followed by a cognitive 

reasoning task involving different levels of complexity, followed by a second resting state 

scan. The reasoning task required participants to deduce the identity of a missing element in a 

4 x 4 matrix, and item difficulty was scaled parametrically as determined by relational 

complexity theory. Analyses revealed that external task engagement was characterized by a 

significant change in functional brain modules. Specifically, resting state and null-task 

demand conditions were associated with more segregated brain network topology, whereas 

increases in reasoning complexity resulted in merging of resting state modules. Further 

increments in task complexity did not change the established modular architecture, but 

impacted selective patterns of connectivity between fronto-parietal, subcortical, cingulo-

opercular and default-mode networks. Larger increases in network efficiency within the 

newly established task modules were associated with higher reasoning accuracy. Our results 

shed light on the network architectures that underlie external task engagement, and highlight 

selective changes in brain connectivity supporting increases in task complexity.  
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Significance Statement 

Humans have clear limits in their ability to solve complex reasoning problems. It is thought 

that such limitations arise from flexible, moment-to-moment reconfigurations of functional 

brain networks. It is less clear how such task-driven adaptive changes in connectivity relate to 

stable, intrinsic networks of the brain and behavioral performance. We found that increased 

reasoning demands rely on selective patterns of connectivity within cortical networks that 

emerged in addition to a more general, task-induced modular architecture. This task-driven 

architecture reverted to a more segregated resting state architecture both immediately before 

and after the task. These findings reveal how flexibility in human brain networks is integral to 

achieving successful reasoning performance across different levels of cognitive demand.  
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Introduction 

Humans are unparalleled in their ability to reason and solve complex problems in the service 

of goal-directed behavior (Penn et al., 2008; Johnson-Laird, 2010). Nevertheless, our ability 

to reason successfully is limited by the complexity of the task at hand (Halford et al., 1998, 

2005). Increasing reasoning demands are supported by the flexible reconfiguration of large-

scale functional brain networks (Cocchi et al., 2013, 2014), but recent work has demonstrated 

that such reconfigurations are relatively modest and occur within a preserved global network 

architecture (Cole et al., 2014; Krienen et al., 2014). Here we assessed changes in functional 

brain architecture induced by engagement in a complex reasoning task, as well as changes in 

communication across regions with parametric increases in reasoning complexity. To do so, 

we used high-field functional magnetic resonance imaging (fMRI) to measure brain activity at 

rest, and during performance of a behavioral task in which task complexity was manipulated 

parametrically. 

Higher cognitive functions are supported by the adaptive reconfiguration of large-scale 

functional networks (Bassett et al., 2011; Cole et al., 2013; Braun et al., 2015; Cohen and 

D’Esposito, 2016; Yue et al., 2017). Previous empirical and theoretical work suggests that a 

multitude of complex tasks are related to activity and communication within and between 

select fronto-parietal, cingulo-opercular, and default-mode networks (Knowlton et al., 2012; 

Cocchi et al., 2014; Hearne et al., 2015; Crittenden et al., 2016; Bolt et al., 2017). Such 

networks are flexible and tend to increase their functional relationship in line with task 

demands across a wide range of domains, including reasoning (Cocchi et al., 2014), working 

memory (Vatansever et al., 2017) and decision making (Cole et al., 2013). 

Recent empirical work has shown that task-induced network reconfigurations are modest 

when compared with intrinsic, ‘resting state’ networks (Cole et al., 2014; Krienen et al., 

2014). For example, Cole and colleagues reported a matrix-level correlation between rest and 

task states of r = 0.90 (on average 38% of connections demonstrated change, with an average 
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change of r = 0.04). Likewise, it is now apparent that task-induced activity can be well 

predicted and modeled from resting state data alone (Cole et al., 2016; Tavor et al., 2016). 

These results suggest that while behaviorally meaningful, selective task-induced 

reconfigurations occur against a backdrop of stable, large-scale networks that support diverse 

cognitive functions (Power et al., 2011; Crossley et al., 2013). An important unresolved 

question is how selective, ‘flexible’ task driven reconfigurations emerge amongst ‘stable’ 

intrinsic brain topology. Moreover, it is critical to understand how such global and selective 

changes are related to behavior (Bolt et al., 2017; Mill et al., 2017). 

To investigate this question we measured functional brain networks at rest, as well as during 

several discrete levels of reasoning complexity. To systematically manipulate task 

complexity, we exploited relational complexity theory (Halford et al., 1998), which posits that 

the number of relations between variables quantifies the complexity of a problem, regardless 

of the domain of the original stimulus (e.g., semantic, spatial, etc.). Using this theoretical 

framework it has been shown that increasing the number of relations imposes a quantifiable 

cognitive load (measured via reaction time and accuracy), and eventually results in a 

breakdown of the reasoning process (Halford et al., 2005). We collected 7T fMRI data from 

65 individuals while they undertook a non-verbal reasoning task known as the Latin Square 

Task (Birney et al., 2006). During the task, participants solved problems with three discrete 

levels of difficulty, defined formally in terms of their relational complexity (Binary, Ternary, 

Quaternary). In addition, just prior to the task, and again immediately afterwards, participants 

underwent a resting state scan. To examine network reconfigurations across rest and 

reasoning states we utilized modularity to assess segregation and integration and global 

efficiency to assess changes in network communication. Further to examine selective changes, 

we employed the network-based statistic to identify circumscribed changes in connectivity 

patterns (Zalesky et al., 2010), and related such network metrics to behavior. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 14, 2017. ; https://doi.org/10.1101/163022doi: bioRxiv preprint 

https://doi.org/10.1101/163022
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 6 

Materials and Methods 

Participants 

Sixty-five healthy, right-handed participants undertook the current study, of whom 49 were 

included in the final analysis (M = 23.35 years, SD = 3.6 years, range = 18 – 33 years, 28 

females). Four participants were excluded due to MR scanning issues, one participant was 

excluded due to an unforeseen brain structure abnormality, a further participant was excluded 

due to low accuracy in the behavioral task (total score more than 3 standard deviations below 

the mean) and ten participants were excluded due to excessive head movement (see 

Preprocessing section for head movement exclusions). Participants provided informed written 

consent to participate in the study. The research was approved by The University of 

Queensland Human Research Ethics Committee. 

Experimental paradigm 

Each participant completed two behavioral sessions and one imaging session. In the imaging 

session participants underwent a resting state scan, followed by three, 12-minute runs of the 

Latin Square Task (LST; described below), a structural scan and finally a second resting state 

scan (see Figure 1a). 

In the two behavioral sessions, participants completed the Raven’s Advanced Progressive 

Matrices (40 minute time limit), which is a standard and widely used measure of fluid 

intelligence (Raven, 2000). Of the 49 participants included in the analysis, 43 also completed 

a conjunction visual search task in which they were instructed to report the orientation of a 

target letter ‘L’ (rotated 90 degrees leftward or rightward) amongst ‘T’ distractors in set sizes 

of 8, 16 or 24 items. The search cost was defined as the increase in reaction time between the 

smallest and largest set sizes. This task was chosen as a ‘low reasoning’ counterpart to the 

Raven’s Progressive Matrices in order to demonstrate the specificity of brain-behavior 

correlations, as described in detail in the Results. 
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Participants also completed a modified version of the LST (Birney et al., 2006; LST, Birney 

and Bowman, 2009). The LST is a non-verbal relational reasoning paradigm in which 

reasoning complexity is parametrically varied with minimal working memory demands 

(Halford, 1998, Birney et al., 2006). Each LST ‘puzzle’ involves the presentation of a four-

by-four matrix populated with a small number of geometric shapes (square, circle, triangle or 

cross), blank spaces and a single target, denoted by a yellow question mark (‘?’; see Figure 

1b). Participants were asked to solve for the target according to the rule that each shape can 

only occur once in every row and once in every column (similar to the game of Sudoku). 

Binary problems require integration of information across a single row or column. Ternary 

problems involve integration across a single row and column. Quaternary problems, the most 

complex, require integration of information across multiple rows and columns (see Figure 1b 

for examples of each of these problems). Null trials involved presentation of an LST grid, but 

instead of a target question mark (‘?’) an asterisk was presented (‘*’) to cue the participant 

that no reasoning was required in this puzzle. The identity of the shapes that appeared in Null 

trials was random, but the number of shapes and their spatial locations were matched to those 

in the active LST trials. In total, 144 LST items were presented in the MR session across 16 

blocks, with 36 items in each relational complexity condition; Null, Binary, Ternary and 

Quaternary. Prior to the MR session participants completed 20 practice trials of the LST (12 

with corrective feedback). The visual angle subtended by the LST matrices was ~7.7 degrees, 

so that the entire stimulus fell within the parafoveal region of the visual field. Stimuli were 

projected onto a screen located at the head end of the MR scanner, and participants viewed 

the projected stimuli via a mirror mounted on the head coil. 

Administration of all items was pseudo-randomized such that no two items of the same 

complexity occurred sequentially, and each block had two problems from each level of 

complexity (see Figure 1c for trial structure). Motor responses were counterbalanced across 

individuals, such that equal numbers of participants had the same shape-response mapping. 

Confidence ratings were used to determine participants’ subjective feeling of success, and to 
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identify any trials in which participants inadvertently disengaged from the task altogether 

(e.g., due to a momentary lapse of attention). A three-point confidence scale indicated 

whether participants felt certain the problem had been answered correctly (4), felt unsure of 

their accuracy (3), or felt certain the problem had been answered incorrectly (2). On the far 

left (demarcated by a vertical line, see Figure 1c) was an additional ‘inattention’ rating point 

(1) that participants were instructed to select if they felt they had not attempted to solve the 

problem due to a momentary lapse of attention, fatigue or other factors. This response was 

used to separate incorrect choices arising from failures in reasoning, from those due to non-

specific “off-task” mind wandering (Smallwood and Schooler, 2015).  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 14, 2017. ; https://doi.org/10.1101/163022doi: bioRxiv preprint 

https://doi.org/10.1101/163022
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 9 

 

  

Figure 1. Experimental design and sequence of displays in a typical trial of the Latin Square 

Task. a. Functional magnetic resonance imaging session outline. Participants completed 

resting state scans before and after three runs of task imaging. b. Examples of each reasoning 

complexity condition. The correct answers are square, cross and cross, respectively, for the 

Binary, Ternary and Quaternary problems illustrated. c.  Example trial sequence. Each trial 

contained a jittered fixation period, followed by an LST item, a second, jittered fixation 

period, a response screen, and a confidence rating scale. In Null trials the motor response 

screen had one geometric shape replaced with an asterisk, representing the correct button to 

press. 
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Neuroimaging acquisition and preprocessing 

Imaging data were collected using a 7 Tesla Siemens MR scanner fitted with a 32-channel 

head coil, at the Centre for Advanced Imaging, The University of Queensland. For both 

resting state and task fMRI, whole brain echo-planar images were acquired using a multi-

band sequence (acceleration factor of five; Moeller et al., 2010). In each of the two resting 

scans, 1050 volumes were collected (~10 minutes each). In the each of the three runs of the 

task, 1250 volumes were collected (~12 minutes each) with the following parameters: voxel 

size = 2 mm3, TR = 586 ms, TE = 23 ms, flip angle = 40°, FOV = 208 mm, 55 slices. 

Structural images were also collected to assist functional data preprocessing. These images 

were acquired using the following parameters: MP2RAGE sequence, voxel size = 0.75 mm3, 

TR = 4300 ms, TE = 3.44 ms, 256 slices (see Figure 1a for session structure).  

Imaging data were preprocessed using an adapted version of the MATLAB (MathWorks, 

USA) toolbox Data Processing Assistant for Resting-State fMRI (DPARSF V 3.0, Chao-Gan 

and Yu-Feng, 2010). Both resting state and task data were preprocessed with the same 

pipeline (except where noted). DICOM images were first converted to Nifti format and 

realigned. T1 images were re-oriented, skull-stripped (FSL BET), and co-registered to the 

Nifti functional images using statistical parametric mapping (SPM8) functions. Segmentation 

and the DARTEL algorithm were used to improve the estimation of non-neural signal in 

subject space and the spatial normalization (Ashburner, 2007). From each gray matter voxel 

the following signals were regressed: undesired linear trends, signals from the six head 

motion parameters (three translation, three rotation), white matter and cerebrospinal fluid 

(estimated from single-subject masks of white matter and cerebrospinal fluid). The CompCor 

method (Behzadi et al., 2007) was used to regress out residual signal unrelated to neural 

activity (i.e., five principal components derived from noise regions-of-interest in which the 

time series data were unlikely to be modulated by neural activity). Global signal regression 

was not performed due to the ongoing controversy associated with this step (Saad et al., 2012; 

Caballero-Gaudes and Reynolds, 2017). This choice may increase motion artifacts in the data 
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(Ciric et al., 2017). For this reason we employed a strict head motion censoring approach (see 

below). Single-subject functional images were subsequently normalized and smoothed using 

DARTEL (4mm3). Data processing steps also involved filtering (0.01–0.15 Hz) at a low 

frequency component of the BOLD signal known to be sensitive to both resting state and 

task-based functional connectivity (Sun et al., 2004), therefore allowing comparison of both 

resting state and task data. 

Head movement 

Participants with head displacement exceeding 3mm in more than 5% of volumes in any one 

scan were excluded. In addition to gross head movement, it has also been shown that 

functional connectivity can be influenced by small volume-to-volume ‘micro’ head 

movements (Van Dijk et al., 2012; Power et al., 2014). To ensure micro-head movement 

artifacts did not contaminate our findings, both resting state and task-based data with frame-

to-frame displacements greater than 0.40 mm were censored (Power et al., 2014). Participants 

with less than 85% of data remaining in any condition were excluded. 

Functional connectivity network construction 

For each subject, regionally averaged time series were extracted for 264 spheres of 5mm 

radius sampled across cortical and subcortical gray matter. Spheres were positioned according 

to an existing brain parcellation, based on task activations induced by a wide range of 

behavioral tasks (Power et al., 2011). This parcellation and associated network definitions 

were generated from a large cohort of participants (N > 300), and has the advantage of being 

independent of the imaging data obtained in the current study. 

For both sets of resting state data (pre- and post-task), functional connectivity was estimated 

using a temporal Pearson correlation between each pair of time series (Zalesky et al., 2012). 

This resulted in a 264 × 264 connectivity matrix for each subject.  For the task-based 

functional connectivity analyses we used a regression approach (i.e., Cole et al., 2014) rather 
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than psycho-physiological interactions (PPI) as others have used previously (McLaren et al., 

2012; Cocchi et al., 2014; Gerchen et al., 2014). We opted for this approach rather than PPI 

due to our interest in assessing connectivity across both rest and task states. For each brain 

region of interest, a task regressor composed of the condition onsets modeled as boxcar 

functions convolved with a canonical hemodynamic response function was regressed from the 

time series. This step was taken to remove variance associated with task-related coactivation 

(Cole et al., 2014). Then, after accounting for the hemodynamic lag, the residual time series 

from each five-second reasoning period was concatenated to form a condition-specific time 

series of interest, in each brain region. A Pearson correlation was performed on the resulting 

regional time series for each condition separately resulting in a 4 (condition) x 264 x 264 

connectivity matrix for each subject. Finally, both resting state and task-based matrices were 

converted to z-scores. Analysis decisions such as z-normalization and thresholding were 

employed so as to be consistent with previous, related work aimed at assessing dynamic 

reconfiguration of connectivity patterns as a function of task demands (e.g., Cole et al., 2014, 

Power et al., 2011). Such choices do, however, affect the resulting graph metrics (Rubinov 

and Sporns, 2011). Thus, unless otherwise noted (see network based statistic analysis, below) 

weighted graphs of proportional densities from the top 5% to the top 30% of connections 

were considered for analysis. Such network densities have been shown to provide robust 

functional brain network characterizations (Garrison et al., 2015) and are similar to those used 

in previous, related work (e.g., Power et al., 2011). 

Analysis overview 

We undertook three complementary analyses to identify functional network reorganization 

due to increasing relational complexity. First, we calculated and compared community 

partitions that arose in each of the resting state and task conditions. Following this, we 

performed an analysis to identify changes in connectivity associated with performance of the 

Latin Square Task using the network based statistic (NBS, Zalesky et al., 2010), a sensitive 

statistical tool that controls for Type I error at the network level. To assess the functional and 
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behavioral impact of the connectivity changes identified in the previous two analyses, we 

calculated changes in global efficiency (Achard and Bullmore, 2007) for each functional 

module detected. Moreover, to assess the behavioral implications of the observed network 

changes, we correlated metrics of changes in module efficiency with performance accuracy 

on the LST. When appropriate, nonparametric statistics were used for repeated-measures 

comparisons (Friedman test), follow-up tests (Wilcoxon signed rank) and measures of effect 

size (Kendall’s coefficient of concordance, W). 

Community detection 

A module is a group of nodes in a graph that contains stronger connections within-module 

than expected in an appropriate random network null model. A modularity partition 

represents the subdivision of a graph into non-overlapping modules (Fortunato, 2010). The 

degree of modularity in a network can be characterized by the Q index (Newman and Girvan, 

2004), which represents the density of within-module connections relative to an appropriate 

random network null model. The aim of community detection is to isolate a module partition 

that maximizes Q. 

𝑄(𝛾) =
1
2𝑚

 𝑎!" − 𝛾𝑝!"
!"

𝛿(𝜎!𝜎!) 

Above is the modularity equation, where a!" represents the weight of the edge between 𝑖 and 𝑗, 

𝑝!" =
!!!!
!!

 represents the expected number of links according to the so-called configuration 

null model (Newman et al., 2001), where 𝑘! is the degree of node 𝑖; in this case the null 

preserves the node degree while forming connections at random. 2𝑚 represents the total 

number of connections in the network, 𝜎! denotes the community to which node 𝑖 is assigned, 

the Kronecker delta function, 𝛿(𝜎!𝜎!), is 1 if 𝜎! = 𝜎! and 0 if otherwise. Finally, 𝛾 is the 

resolution parameter; when 𝛾 < 1, larger communities are resolved, if 𝛾 > 1, smaller 

communities are resolved. 
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In the present study, modules were identified using the Louvain greedy algorithm (Blondel et 

al., 2008) implemented in the Brain Connectivity Toolbox (BCT, Rubinov and Sporns, 2010). 

The resolution parameter was set to unity (γ = 1). Testing across several levels of γ showed 

consistent results. For clarity, we highlight the BCT scripts used throughout the Method 

section. There are multiple possible module partitions that maximize Q for each graph, 

resulting in community assignments that vary across each run of the algorithm (Good et al., 

2010; Sporns and Betzel, 2016). To resolve this variability we used a consensus approach 

(Lancichinetti and Fortunato, 2012), whereby module partitions are calculated a number of 

times (103 iterations, for each participant and condition) and used to calculate an agreement 

matrix (agreement.m). The agreement matrix represents the tendency for each pair of nodes to 

be assigned to the same module across iterations. Finally, the agreement matrix was subjected 

to an independent module partitioning (consensus_und.m), resulting in an individual-level 

module partition for each participant in each condition. In this step, the resolution parameter 

was also set to unity (τ = 1), representing the level at which the agreement matrix was 

thresholded before being subjected to the consensus procedure. For example, τ = 1 

thresholds the matrix such that only nodes consistently partitioned into the same community 

across all permutations are included. Testing across several levels of τ showed consistent 

results. A general community structure including motor-sensory, auditory, visual, default-

mode and fronto-parietal/cingulo-opercular modules was entered into the algorithm as the 

initial community partition. In our data, this choice decreased computation time, presumably 

because the initial community structure was associated with a Q-value that was close to the 

true maximum. Module reconfiguration results were replicated using different community 

affiliation priors, including variations of the original community partitions (Power et al., 

2011; Cole et al., 2013) and purely data-driven methods (i.e., no community affiliation input). 

The procedure for group-level modular decomposition was implemented in a similar fashion 

to the individual-level decompositions described above. The critical difference was that 

instead of creating an individual-level agreement matrix, the agreement matrix represented 
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the tendency for each pair of nodes to be assigned to the same module across participants. 

The same consensus procedure followed, resulting in a single module partition for each 

condition for the group of 49 participants. Resolution parameters were kept identical to the 

previous individual-level modularity analysis. 

Significance testing for within-participant differences in modular structure 

To investigate differences in the nodal composition of modules across conditions, we used the 

Variation of Information metric (VIn, Meilă, 2007), an information-theoretic measure of 

partition distance (partition_distance.m). To ascribe statistical significance to differences in 

partition structure we used a repeated-measures permutation procedure to compare real VIn 

values to appropriate null distributions (Dwyer et al., 2014). Specifically, half of the 

participants’ condition labels were randomly switched in the contrast of interest (e.g., Binary 

versus Ternary). This resulted in two new sets of individual-level module structures for the 

contrast (albeit with shuffled data). The shuffled module structures were then subjected to the 

previously used pipeline to generate group-level module partitions. Finally, VIn was used to 

quantify the difference between these partitions. This procedure was repeated 104 times to 

build a null distribution for each contrast of interest, with which the real data were compared. 

Pairwise functional connectivity analysis 

The Network Based Statistic (NBS, Zalesky et al., 2010) was used to identify changes in 

pairwise functional connectivity at rest and during the task. For the first contrast, a paired t-

test was performed between the Pre- and Post-task resting state data. For the second contrast, 

a one-way repeated measures ANOVA was used to compare all four task states (Null, Binary, 

Ternary, Quaternary). For the analysis, unthresholded functional connectivity matrices were 

used as input into the NBS. Briefly, all possible pairs of connections (264 x 263/2 = 34,716) 

were tested against the null hypothesis, endowing each connection with a test statistic, which 

was subsequently thresholded. Here an exploratory F-statistic of 20 (equivalent to a t-statistic 

of 4.47) was used as the threshold, though additional exploratory analyses showed that 
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networks arising using higher or lower t-thresholds resembled the original results. This 

threshold was adopted because it allowed the detection of effects of medium size while 

discarding small or spurious effects. Family-wise error corrected (FWE) p-values were 

ascribed to the resulting networks using a null distribution obtained by 5,000 permutations. 

Only components that survived a network-level threshold of p < 0.001 FWE were declared 

significant. This analysis allowed us to identify sub-networks that significantly increased or 

decreased their functional connectivity across relational reasoning task conditions, providing 

complementary results to the graph analyses. 

Network efficiency analysis 

Global efficiency is defined as the inverse of the average characteristic path length between 

all nodes in a network (Latora and Marchiori, 2001). Assuming that information follows the 

most direct path, global efficiency provides an index for parallel information transfer in a 

network (Rubinov and Sporns, 2010). In the context of functional brain networks, global 

efficiency is thought to be an index of increased capacity for information exchange (Achard 

and Bullmore, 2007). The link between indices of global efficiency and global neural 

information transfer is, however, not yet clear. Nevertheless, a number of studies have shown 

that high global brain network efficiency can enhance neurophysiological (De Pasquale et al., 

2016; Cocchi et al., 2017) and cognitive processes (Bassett et al., 2009; van den Heuvel et al., 

2009; Shine et al., 2016). 

Here we wanted to investigate differences in network communication within module, and 

determine how such difference might relate to behavior. To do so, we computed global 

efficiency for each participant, in each condition, for the three major modules identified in the 

initial modularity analysis (using efficiency_wei.m from the BCT). Importantly, matrix 

thresholding was performed after dividing the modules to ensure any efficiency effects were 

not due to differences in degree across modules. Finally, we computed the difference in 
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efficiency between the most and least difficult conditions (i.e., Quaternary versus Null) and 

correlated this change in efficiency with overall accuracy scores on the Latin Square Task. 

Figures and Visualization 

Figures were generated with a combination of MATLAB, and online network visualization 

tools (alluvial diagram; (http://www.mapequation.org/apps/MapGenerator.html, and the 

connectogram; http://immersive.erc.monash.edu.au/neuromarvl/). 

Results 

Behavioral results 

A nonparametric Friedman test revealed a significant effect of reasoning complexity on both 

LST accuracy (𝜒! = 86.20, Kendall’s W = 0.88, p < 0.001) and reaction time (𝜒! = 63.71, W 

= 0.65, p < 0.001, see Figure 2). Bonferroni corrected follow-up Wilcoxon signed-rank test 

comparisons revealed that accuracy was significantly higher for the Binary condition (M = 

34.96, SD = 1.04) than for both the Ternary condition (M = 31.63, SD = 3.52, z = 5.59, p < 

0.001) and the Quaternary condition (M = 22.78, SD = 6.71, z = 6.10, p < 0.001). Accuracy 

was also higher for Ternary items than for Quaternary items (z = 5.74, p < 0.001). The 

reaction time results followed a similar pattern, such that responses were faster in the Binary 

condition (M = 771.60 ms, SD = 201.60 ms) than in the Ternary (M = 844.20 ms, SD = 

217.30 ms, z = -4.62, p < 0.001) and Quaternary (M = 933.70 ms, SD = 205.00 ms, z = -5.83, 

p < 0.001) conditions. Likewise, reaction times in the Ternary condition were significantly 

faster than those in the Quaternary condition (z = -4.79, p < 0.001). 
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Figure 2. Behavioral results for the Latin Square Task visualized as box and whisker plots. 

Here the boxes represent the median and interquartile ranges, and the whiskers show the 

minimum and maximum values. a. Accuracy as a function of reasoning complexity. b. 

Reaction time as a function of reasoning complexity. Significance markers indicate p < 0.001. 

As expected, there was a significant positive correlation between scores on the Raven’s 

Advanced Progressive Matrices, a measure of fluid intelligence, and overall accuracy on the 

LST (r = 0.44, p = 0.002). By contrast, for the visual search task, there was no correlation 

between reaction time cost and LST score (N = 43, r = -0.09, p = 0.58). A Steiger z-test (Lee 

and Preacher, 2013) demonstrated that these two correlations were significantly different 

from one another (N = 43, z = -2.90, p = 0.003), confirming that LST performance is linearly 

related to an established measure of fluid intelligence, but not to a widely used test of visual 

attention (Triesman & Gelade, 1980).  

Participants’ confidence was assessed on each trial. Importantly, we included an explicit 

rating for when participants had not attempted the reasoning problem due to an attention 

lapse, mind wandering, or fatigue. Averaging across all conditions, the mean number of such 

lapses was fewer than one out of 36 trials (M across conditions = 0.47 trials, SD across 

conditions = 0.98 trials). We can thus conclude that overall, participants were able to engage 

as instructed in cognitive reasoning across all three levels of relational complexity in the LST. 
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Functional brain module reconfiguration 

Modularity analysis revealed four major modules in the baseline (Pre-task) resting state. For 

clarity, these modules are represented in reference to Power and colleagues’ (2011) initial 

network affiliations. The modules broadly correspond to the sensory, default-mode, visual and 

fronto-parietal networks.  

Variation of Information analysis (Meilă, 2007) revealed a significant difference in the 

community structure of Binary, Ternary and Quaternary conditions compared with the Pre-

task resting state (mean statistics across thresholds are reported in text; see Table 1 for 

extensive results, VIn = 0.20, p = 0.006, VIn = 0.21, p = 0.001, VIn = 0.20, p = 0.003, 

respectively) and Post-task resting state (VIn = 0.18, p = 0.039, VIn = 0.20, p = 0.005, VIn = 

0.19, p = 0.016). The difference between rest and reasoning states was associated with the 

emergence of a single, conjoined fronto-parietal-visual module that was composed of several 

large-scale networks identified by Power et al. (2011). The transitory nature of the fronto-

parietal-visual module was confirmed by its switch back to its original configuration in the 

Post-task resting state (i.e., after completion of the LST). Figure 3b shows a representation of 

the reconfiguration of modules across experimental conditions. There was no significant 

difference between the Pre-task and Post-task resting state community structure (VIn = 0.09, p 

= 0.788). There was also no consistent difference between the Pre- and Post-task resting state 

communities and the Null task condition (VIn = 0.16, p = 0.08, VIn = 0.15 p = 0.196, 

respectively). These main effects were broadly replicated across all thresholds tested (Figure 

3c). 
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Figure 3.  Modular structure as a function of reasoning complexity in the Latin Square Task 

(LST). a. Alluvial ‘flow’ demonstrating the network affiliations (as per Power et al., 2011) 

compared with the Pre-task resting state (Rosvall et al., 2009). Each individual streamline 

represents a node in the network, colored by its original resting state affiliation as shown on 

the left (Power et al., 2011). b.  Changes in modular structure across the experimental 

conditions. Visual and fronto-parietal modules merged to form a ‘Task-related’ module 

during Binary, Ternary and Quaternary conditions of the LST. Results for 15% network 

density are shown, but statistics were performed across several thresholds. c. Anatomical 

rendering of the task-related modules in the Quaternary condition. Each sphere is color-coded 

by its initial resting state module allegiance. d. Variation of Information (VIn) values (black 

markers) compared with a null distribution (gray markers, 5th/ 95th percentile in bold line, 1st/ 

99th percentile shown in tails) for the three main contrasts across all network densities. Only 

the right-most contrast (Binary versus Pre-task rest) showed a consistent difference between 

partitions. e. Comparison of VIn values across visual, sensory, fronto-parietal and default-

mode modules in each task condition compared with rest across all network densities. The 

fronto-parietal module was consistently more variable in relation to other modules. Error bars 

represent 95% confidence intervals. 

Having established a difference in community structure we sought to test the relative 

contribution of each module to the observed reconfiguration. To do so we implemented a 

similar strategy to Braun and colleagues (2015), whereby VIn was calculated at the 

individual-community level for our nodes of interest, and compared using repeated-measures 

statistics. Thus we compared visual, sensory, fronto-parietal and default-mode modules across 

all network densities for the Binary-Rest, Ternary-Rest, and Quaternary-Rest contrasts 

(conceptually similar to follow-up parametric statistics). Results revealed that the fronto-

parietal module had higher VIn values (i.e., larger differences in community structure) than 

visual (mean p value across thresholds, p < 0.001), sensory (p < 0.001) and default-mode 

modules (p < 0.001), see Figure 3d) across all contrasts. 

Finally, the index of modularity, Q, was compared across conditions. This index of 

modularity increases as more intramodular connections are found than expected by chance 

(Newman & Girvan, 2004). Non-parametric Friedman tests revealed a significant difference 

in Q across conditions (mean statistic across thresholds, 𝜒! = 51.48, p < 0.001). Bonferonni 
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corrected follow-up tests were performed to compare each task state (Null, Binary, Ternary, 

Quaternary) with each resting state (Pre- and Post-task). Results revealed that Q was 

significantly lower in the Ternary (Mean Q = 0.39) and Quaternary conditions (Mean Q = 

0.39) when compared with both Pre- (Mean Q = 0.44, z = 3.74, z = 4.07, p < 0.001) and Post-

task resting states (Mean Q = 0.45, z = 4.49, z = 4.52, p < 0.001). No effect was found when 

comparing Null or Binary conditions with rest. Complementing the observed changes in 

community structure, analysis of Q scores highlight a significant reduction in modularity 

compared with the resting state, but only in the task conditions that imposed higher demands 

on cognitive reasoning. 

Network Based Statistic analysis 

To further refine our account of module reconfiguration, we assessed changes in whole brain 

connectivity using the network based statistic (NBS, Zalesky et al., 2010).  In line with the 

result from the first analysis, a paired t-test between Pre- and Post-task resting states revealed 

no significant differences. Our second contrast, a one-way repeated measures ANOVA was 

performed comparing all four reasoning complexity conditions (Null, Binary, Ternary, 

Quaternary). 

A sub-network comprising 63 nodes and 85 edges changed in response to reasoning 

complexity demands (p < 0.001, FWE corrected at the network level, Figure 4). The majority 

of edges within the subnetwork demonstrated increased functional connectivity (86% of 

edges, shown as warm colors in Figure 4), but a number of edges also demonstrated a 

decrease in positive correlations with increasing reasoning complexity (see Figure 4b for 

trend across conditions). Consistent with our previous work on changes in functional 

connectivity during complex reasoning (Cocchi et al., 2014; Hearne et al., 2015), the network 

was largely composed of nodes encompassing fronto-parietal (17%), subcortical (19%), 

cingulo-opercular (12%) and default-mode networks (24%, as per Power et al., 2011 network 

affiliations, see Table 2 for a list of regions implicated by this analysis). Moreover, nearly all 
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edges (95%) were across-network. Two further visual-parietal subnetworks were identified by 

the NBS, consisting of two and three nodes respectively (not visualized). 
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Figure 4. Change in pairwise functional connectivity associated with reasoning complexity. 

a. Connectogram representation of significant changes in pairwise functional connectivity 

that scaled with relational complexity. Edges are colored by the direction of the change in 

correlation across relational complexity. Warm colors represent increases in connectivity and 

cool colors represent decreases in connectivity. Lighter colors represent higher F-statistics. 

Network nodes, plotted as circles, are colored by their initial resting state networks (Power et 

al., 2011). Outside the connectogram the colored bars represent the modules identified in the 
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previous analysis of data from the Quaternary condition: Sensory (orange), Default-mode 

(red) and Fronto-parietal-visual modules (green-blue). b. Each individual connection in the 

subnetwork (averaged across subjects) plotted as a function of reasoning complexity. Average 

values for positive and negative connections are shown as bold lines. 

Within-module global efficiency and behavior 

Our final analysis sought to investigate changes in global efficiency within each major 

module evident during the task. Global efficiency has previously been taken to be an index of 

increased capacity for information exchange (Achard and Bullmore, 2007). Specifically, we 

were interested in whether each module showed changes in efficiency, and whether any such 

changes were related to reasoning performance. 

Nonparametric Friedman tests revealed that both the Sensory (orange in Figure 5a) and 

Fronto-parietal-visual modules (FPV, green in Figure 5a) demonstrated significant 

differences in efficiency across conditions (Sensory 𝜒! = 44.17, p < 0.001, FPV: 𝜒! = 77.78, 

p < 0.001, see Figure 5a). No such effect was found for the Default-mode module (p = 0.23). 

Bonferroni corrected follow-up tests confirmed that the effect was driven by increased 

efficiency within all task states compared with Pre- and Post-task resting states (Sensory: z-

range = 2.4 – 4.69, p < 0.02, FPV: z-range = 3.78 – 5.22, p < 0.001).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 14, 2017. ; https://doi.org/10.1101/163022doi: bioRxiv preprint 

https://doi.org/10.1101/163022
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 26 

 

Figure 5. Changes in global network efficiency (Eglob) across the identified reasoning task 

modules. a. Global network efficiency levels within each module across experiment 

conditions. Error bars represent 95% confidence intervals. R1= Pre-task rest, B = Binary, T = 

Ternary, Q = Quaternary, R2 = Post-task rest. b. Correlation between accuracy in the Latin 

Square Task (LST) and changes in fronto-parietal-visual (FPV) module efficiency during the 

task. Changes in network efficiency were correlated with overall reasoning performance, such 

that increased efficiency correlated with better task performance (r = 0.33, p < 0.01). Results 

are visualized at 15% network density. 

We also investigated the relationship between individual differences in module efficiency and 

behavioral performance. To do so, we correlated reasoning accuracy scores with changes in 

module efficiency between the Pre-task resting state and the most complex reasoning 

condition (Quaternary). Only module efficiency within the FPV module was significantly 

correlated with behavior (see Figure 5b, mean statistics across thresholds: r  = 0.33, p = 

0.026; Spearman’s rs = 0.27, p = 0.084), such that larger increases in efficiency within the 

FPV module were associated with better reasoning performance. Neither the Default-mode or 

Sensory modules demonstrated such a relationship (p = 0.19, p = 0.29 respectively). Further, 
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to probe the reliability of the above finding, we compared change in efficiency from 

Quaternary to the Null-task state, which yielded a similar result (r = 0.35, p = 0.021, 

Spearman’s rs = 0.30, p = 0.048). The correlation was also robust to partialing out fluid 

intelligence scores based on the Raven’s Matrices test (r = 0.35, p = 0.025). By contrast, there 

was no correlation between performance in the visual search task and module efficiency (N = 

43, p = 0.65), suggesting the module efficiency-behavior relationships were specific to the 

LST. Finally, we also replicated these results, as well as the follow up Variation of 

Information results (Figure 3d), using the original visual, sensory, default-mode and fronto-

parietal networks defined by Power and colleagues (2011), instead of our own data-driven 

modules. 

Discussion 

Human reasoning has a quantifiable capacity limit (Halford et al., 1998). This limit is thought 

to arise from the brain’s ability to reconfigure interactions between spatially distributed 

networks (Cocchi et al., 2014; Parkin et al., 2015; Schultz and Cole, 2016), but recent work 

has highlighted the circumscribed nature of such interactions when compared with whole 

brain ‘resting’ architecture (Cole et al., 2014). In light of these recent findings, we examined 

how global and selective network properties change from resting to reasoning states, and how 

such changes relate to reasoning behavior. We found that complexity-based limits in 

reasoning ability rely on selective patterns of connectivity that emerge in addition to a more 

general task-induced functional architecture. 

We used a non-verbal reasoning task, originally designed to test predictions from relational 

complexity theory, to systematically manipulate reasoning complexity (Halford et al., 1998; 

Birney et al., 2006; Birney and Bowman, 2009). In doing so we replicated previous 

behavioral results by demonstrating a reliable reduction in accuracy and an increase in 

reaction time as a function of increased complexity (Birney et al., 2006; Zhang et al., 2009; 

Zeuch et al., 2011). Importantly, an analysis of participants’ trial-by-trial ratings indicated 
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that task errors were related to complexity demands and not factors such as transitory lapses 

in attention or disengagement from the task. The behavioral results also confirmed previous 

reports that individual reasoning capacity limits are correlated with scores on standard 

measures of fluid intelligence (Birney et al., 2006; Bhandari and Duncan, 2014) such as 

Raven’s Matrices. 

Parametric increases in relational complexity have previously been tied to neural activity of 

segregated regions of the prefrontal cortices (Christoff et al., 2001; Kroger, 2002; Bunge et 

al., 2009; Golde et al., 2010) as well as to functional connectivity within fronto-parietal and 

cingulo-opercular  “multiple-demand” networks (Cocchi et al., 2014; Parkin et al., 2015; 

Crittenden et al., 2016). Cingulo-opercular connectivity has been associated with initiating 

and maintaining task sets (Dosenbach et al., 2006) whereas the fronto-parietal network has 

been associated with moment-to-moment cognitive control (Cole and Schneider, 2007). Here 

we found that reasoning performance was best explained by a module composed of brain 

regions within the fronto-parietal, salience, subcortical and visual networks. First, functional 

connectivity and global efficiency of this subnetwork increased in line with increased 

reasoning demands (Figures 4 & 5). Second, larger increases in global efficiency within this 

module were associated with higher accuracy in the reasoning task. Finally, edge-wise 

connectivity of the fronto-parietal network was shown to increase in line with relational 

complexity, largely between default-mode and subcortical networks. These findings are 

broadly consistent with previous work showing that enhanced global network efficiency, and 

connectivity within the default-mode and fronto-parietal networks at rest, can predict 

intelligence and reasoning performance (Song et al., 2008, 2009; van den Heuvel et al., 2009; 

Finn et al., 2015; Hearne et al., 2016). Taken together the results confirm the central role of 

flexible fronto-parietal connectivity in implementing external goal-directed cognitive control 

(Cole et al., 2013, Cocchi et al., 2014). 
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It has been proposed that the cingulo-opercular network can be further divided to include a 

separate ‘salience’ system associated with bottom-up attention (Seeley et al., 2007; Power et 

al., 2011). Here we found that the salience network was implicated in the fronto-parietal-

visual module but did not show complexity-induced edge-wise connectivity changes. On the 

other hand, the cingulo-opercular network did show edge-wise connectivity changes in line 

with reasoning complexity, but was not implicated in the fronto-parietal-visual module. This 

set of results is consistent with the notion that the cingulo-opercular network is a control-

related counterpart of the fronto-parietal network, and suggests that the cingulo-opercular 

network might have a distinct role from that of the salience aspect of the system (Power et al., 

2011). 

It remains unclear precisely how ‘resting state’ networks coordinate flexible patterns of 

integration and segregation as a function of task complexity. Nevertheless, our findings 

support a key role for subcortical structures such as the thalamus in mediating such 

relationships (Bell et al., 2016; Sherman, 2016). Specifically, bilateral putamen and thalamus 

were implicated in both subnetworks that increased and decreased functional connectivity as 

task complexity increased (general trend shown in Figure 4b). This finding is in line with 

recent descriptions of the thalamus as a ‘global kinless’ hub, with evidence of activation in 

multiple cognitive contexts and strong connectivity across multiple large-scale functional 

networks (Guimera et al., 2007, Hwang et al., 2017, van den Heuval & Sporns, 2011). Such 

subcortical regions might be interpreted as managing relationships between task-related 

networks to form a coherent modular structure. Further work will be needed to elucidate the 

particular role of subcortical regions in this relatively unexplored area (Bell & Shine, 2016). 

Functional brain module reconfigurations have previously been related to performance on a 

range of higher cognitive tasks, including learning (Bassett et al., 2011), working memory 

(Braun et al., 2015; Vatansever et al., 2015, 2017) and cognitive control (Dwyer et al., 2014). 

Here we found that the community architecture of the brain is flexible, but only in response to 

large cognitive shifts. For example, resting state visual and fronto-parietal modules, each of 
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which is composed of several known sub-networks (Power et al., 2011), merged together 

during the reasoning task (Figure 3). Importantly, this reorganization was relatively isolated; 

follow up analyses indicated that the rest of the brain remained stable across changes in task 

complexity. In line with this observation, recent network-based re-conceptualizations of 

global workspace theory (Dehaene et al., 1998; Kitzbichler et al., 2011) have suggested that 

large, task-based module reconfigurations arise to better serve network communication 

underpinning behavior. Our work refines this idea by showing that once resting state modules 

reconfigure in response to external task demands, the majority of connectivity changes occur 

without interrupting the newly established modular architecture, as illustrated schematically 

in Figure 6. Moreover, it is these connectivity changes within the newly reconfigured 

modules that seem to be most related to behavior. 

 

Figure 6.  Conceptual model of functional networks supporting reasoning and rest states. a. 

At rest, functional modules are relatively independent. b. External, goal-directed task states 

are accompanied by broad module-level changes; a fronto-parietal-visual module forms 

(green), amongst stable default-mode (red) and sensory-motor modules (orange). c. Increased 

task demands are accompanied by specific increases (solid lines) and decreases (dashed-lines) 

in functional connectivity, rather than further modular reconfiguration. Ultimately, in the 

most complex conditions, the entire network reaches a similar level of correlation through 

both integrated and segregated dynamics (see Figure 4b). 

Our finding that increased demands on cognitive reasoning are paralleled by a reduction in 

network modularity and increased efficiency has now been reported in several different task 

contexts (Kitzbichler et al., 2011; Bola and Sabel, 2015; Godwin et al., 2015; Vatansever et 

al., 2015; Cohen and D’Esposito, 2016; Shine et al., 2016; Westphal et al., 2017; Yue et al., 
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2017). Using the network-based statistic we found that these global changes were supported 

by increases and decreases in functional connectivity across multiple large-scale networks. 

Interestingly, the default-mode network has been suggested to act as a ‘global integrator’, 

facilitating fronto-parietal cognitive control networks during conscious processing of 

information (Dehaene et al., 1998; Guldenmund et al., 2012; Leech et al., 2012; Vatansever et 

al., 2015). In line with this notion, we found that default-mode regions such as medial frontal 

cortex, angular gyri and posterior cingulate cortex demonstrated increased functional 

connectivity with fronto-parietal, cingulo-opercular and visual networks as task demands 

increased.  

Modulations of visual network connectivity might be related to the visual nature of the LST, 

and specifically the requirement that participants search the 4 x 4 matrix to identify a shape at 

the probed location. A previous behavioural study found that participants’ eye fixation 

patterns differed for one-object and two-object relational problems (Gordon & Moser, 2007), 

raising the possibility that changes in relational complexity might be associated with changes 

in search patterns (and by extension, associated network connectivity). We cannot 

unequivocally rule out potentially small differences in eye movement patterns between 

complexity conditions in our study, but there are at least two reasons why such findings are 

unlikely to be directly relevant here. First, Gordon and Moser (2007) actively encouraged 

visual search by having their participants compare two different picture stimuli arranged one 

above the other on a page. By contrast, our LST paradigm involved the relatively brief 

presentation of a single 4 x 4 matrix at fixation. Second, the stimuli used by Gordon and 

Moser (2007) were visually complex line drawings that included several different object types 

that varied in size, shape and semantic content across trials. By contrast, our LST stimuli 

involved a single matrix containing identical shapes across complexity conditions, and did not 

explicitly require active search to solve for the target.  Finally, we found no correlation 

between performance on a standard visual search task and reasoning performance or brain-

based network efficiency metrics (subset of participants, N=43). If increasing visual search 
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demands across task conditions was responsible for the observed network differences, 

performance on this visual search task should have correlated with the brain-derived metrics. 

In conclusion, our findings suggest that reasoning demands rely on selective patterns of 

connectivity within fronto-parietal, salience, cingulo-opercular, subcortical and default-mode 

networks, which emerge in addition to a more general, task-induced modular architecture. 

Further work will be needed to elucidate the network processes that bring about the intricate 

and coordinated changes in connectivity patterns at the level of edges, modules and the whole 

brain, in the service higher cognition. Meanwhile, the current results provide novel insights 

into the roles of both specific and global network changes in reasoning. 
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Table 1. Variation of Information statistics. 

 Network density 
 5% 10% 15% 20% 25% 30% 

Contrast VIn p VIn p VIn p VIn p VIn p VIn p 
Pre-task 

rest 
Post-task rest 0.056 0.878 0.065 0.863 0.109 0.656 0.098 0.836 0.124 0.552 0.092 0.944 
Null 0.146 0.013 0.139 0.077 0.124 0.397 0.189 0.009* 0.198 0.005* 0.186 0.029 
Binary 0.148 0.006* 0.179 0.001* 0.218 0.001* 0.219 < 0.001* 0.216 0.007* 0.209 0.023 
Ternary 0.166 0.002* 0.194 < 0.001* 0.226 < 0.001* 0.226 0.001* 0.221 0.002* 0.215 0.002* 
Quaternary 0.148 0.009* 0.189 < 0.001* 0.225 < 0.001* 0.22 < 0.001* 0.221 < 0.001* 0.203 0.008* 

Post-
task rest 

Null 0.117 0.231 0.154 0.019 0.098 0.81 0.153 0.084 0.185 0.015 0.191 0.018 
Binary 0.128 0.099 0.185 0.001* 0.176 0.033 0.181 0.074 0.212 0.01* 0.203 0.018 
Ternary 0.16 0.006* 0.204 < 0.001* 0.194 0.006* 0.203 0.003* 0.2 0.016 0.22 0.001* 
Quaternary 0.128 0.083 0.189 0.002* 0.195 0.005* 0.202 0.001* 0.2 0.005* 0.211 0.001* 

Null Binary 0.028 1 0.121 0.245 0.162 0.199 0.1 0.698 0.1 0.674 0.106 0.534 
 Ternary 0.094 0.711 0.133 0.237 0.193 0.023 0.13 0.645 0.119 0.567 0.132 0.246 
 Quaternary 0.052 0.987 0.117 0.272 0.181 0.04 0.14 0.539 0.132 0.467 0.132 0.291 

Binary Ternary 0.096 0.681 0.154 0.159 0.097 0.801 0.1 0.485 0.093 0.571 0.11 0.306 
Quaternary 0.038 0.998 0.121 0.375 0.086 0.91 0.111 0.507 0.106 0.484 0.108 0.387 

Ternary Quaternary 0.082 0.747 0.084 0.894 0.041 1 0.051 0.986 0.061 0.943 0.051 0.969 
Note: * indicates contrasts where p < 0.01	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 14, 2017. ; https://doi.org/10.1101/163022doi: bioRxiv preprint 

https://doi.org/10.1101/163022
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2. Significant pairwise changes in functional connectivity associated with 
increasing relational complexity 

MNI RSN Mod Anatomy Degree 
x y z     
-7 -52 61 SShand Vis Precuneus 12 
4 -48 51 Mem Sens Precuneus 10 
47 10 33 FPN FPN Precentral gyrus 7 
-2 -35 31 Mem DMN Middle cingulate cortex 6 
-34 3 4 CO Vis Middle insula 6 
23 10 1 SC Vis Putamen 6 
49 8 -1 CO FPN Superior temporal pole 5 
-11 -56 16 DMN DMN Calcarine gyrus 5 
-2 38 36 DMN DMN Medial superior frontal gyrus 5 
-42 -55 45 FPN FPN Inferior parietal cortex 5 
-45 0 9 CO Vis Rolandic operculum 4 
52 -59 36 DMN DMN Angular gyrus 4 
-35 20 51 DMN DMN Middle frontal gyrus 4 
9 -4 6 SC Vis Thalamus 4 
-2 -13 12 SC Vis Thalamus 4 
-47 11 23 FPN FPN Inferior frontal gyrus (operculum) 4 
-42 45 -2 FPN FPN Inferior frontal gyrus (orbital) 4 
54 -28 34 CO Vis Supramarginal gyrus 3 
8 -48 31 DMN DMN Posterior cingulate cortex 3 
13 30 59 DMN DMN Superior frontal gyrus 3 
11 -39 50 Sal Sens Middle cingulate cortex 3 
15 -77 31 Vis Sens Cuneus 3 
-41 6 33 FPN FPN Precentral gyrus 3 
-53 -49 43 FPN FPN Inferior parietal cortex 3 
-44 2 46 FPN DMN Precentral gyrus 3 
3 -17 58 SShand Vis Supplementary motor area 2 
65 -33 20 Aud Vis Superior temporal gyrus 2 
-51 8 -2 CO Vis Insula 2 
15 -63 26 DMN DMN Cuneus 2 
11 -54 17 DMN DMN Precuneus 2 
36 10 1 CO FPN Insula 2 
-10 -18 7 SC Vis Thalamus 2 
-22 7 -5 SC Vis Putamen 2 
43 -78 -12 Vis Sens Inferior occipital cortex 2 
-42 -60 -9 DorAtt Sens Inferior temporal gyrus 2 
-3 26 44 FPN FPN Superior frontal gyrus (medial) 2 
44 -53 47 FPN FPN Inferior parietal cortex 2 
32 14 56 FPN DMN Middle frontal gyrus 2 
-40 -19 54 SShand Vis Precentral gyrus 1 
0 -15 47 SShand Vis Middle cingulate cortex 1 
-10 -2 42 CO Vis Middle cingulate cortex 1 
-50 -34 26 Aud Vis Supramarginal gyrus 1 
59 -17 29 Aud Vis Postcentral gyrus 1 
37 1 -4 CO Vis Insula 1 
6 -59 35 DMN DMN Precuneus 1 
-41 -75 26 DMN DMN Middle occipital cortex 1 
65 -31 -9 DMN DMN Middle temporal gyrus 1 
43 -72 28 DMN FPN Middle occipital cortex 1 
-3 42 16 DMN DMN Anterior cingulate cortex 1 
-16 29 53 DMN DMN Superior frontal gyrus 1 
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2 -24 30 Mem DMN Middle cingulate cortex 1 
12 36 20 DMN DMN Anterior cingulate cortex 1 
6 -24 0 SC Vis Thalamus 1 
12 -17 8 SC Vis Thalamus 1 
-5 -28 -4 SC Vis Lingual gyrus 1 
31 -14 2 SC Vis Putamen 1 
29 1 4 SC Vis Putamen 1 
-31 -11 0 SC Vis Putamen 1 
15 5 7 SC Vis Pallidum 1 
37 -84 13 Vis Sens Middle occipital cortex 1 
37 -81 1 Vis Sens Middle occipital cortex 1 
-33 -79 -13 Vis Sens Inferior occipital cortex 1 
49 -42 45 FPN FPN Inferior parietal cortex 1 
Note: Automated Anatomical Labeling atlas was used to define anatomical regions. RSN = initial 
Power et al., 2011 resting state network affiliation. Mod = modules defined by modularity analysis 
(i.e., Figure 3).		
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