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Abstract

Our capacity for higher cognitive reasoning has a measureable limit. This limit is thought to
arise from the brain’s capacity to flexibly reconfigure interactions between spatially
distributed networks. Recent work, however, has suggested that reconfigurations of task-
related networks are modest when compared with intrinsic ‘resting state’ network
architecture. Here we combined resting state and task-driven functional magnetic resonance
imaging to examine how flexible, task-specific reconfigurations associated with increasing
reasoning demands are integrated within a stable intrinsic brain topology. Human participants
(21 males and 28 females) underwent an initial resting state scan, followed by a cognitive
reasoning task involving different levels of complexity, followed by a second resting state
scan. The reasoning task required participants to deduce the identity of a missing element in a
4 x 4 matrix, and item difficulty was scaled parametrically as determined by relational
complexity theory. Analyses revealed that external task engagement was characterized by a
significant change in functional brain modules. Specifically, resting state and null-task
demand conditions were associated with more segregated brain network topology, whereas
increases in reasoning complexity resulted in merging of resting state modules. Further
increments in task complexity did not change the established modular architecture, but
impacted selective patterns of connectivity between fronto-parietal, subcortical, cingulo-
opercular and default-mode networks. Larger increases in network efficiency within the
newly established task modules were associated with higher reasoning accuracy. Our results
shed light on the network architectures that underlie external task engagement, and highlight

selective changes in brain connectivity supporting increases in task complexity.
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Significance Statement

Humans have clear limits in their ability to solve complex reasoning problems. It is thought
that such limitations arise from flexible, moment-to-moment reconfigurations of functional
brain networks. It is less clear how such task-driven adaptive changes in connectivity relate to
stable, intrinsic networks of the brain and behavioral performance. We found that increased
reasoning demands rely on selective patterns of connectivity within cortical networks that
emerged in addition to a more general, task-induced modular architecture. This task-driven
architecture reverted to a more segregated resting state architecture both immediately before
and after the task. These findings reveal how flexibility in human brain networks is integral to

achieving successful reasoning performance across different levels of cognitive demand.
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Introduction

Humans are unparalleled in their ability to reason and solve complex problems in the service
of goal-directed behavior (Penn et al., 2008; Johnson-Laird, 2010). Nevertheless, our ability
to reason successfully is limited by the complexity of the task at hand (Halford et al., 1998,
2005). Increasing reasoning demands are supported by the flexible reconfiguration of large-
scale functional brain networks (Cocchi et al., 2013, 2014), but recent work has demonstrated
that such reconfigurations are relatively modest and occur within a preserved global network
architecture (Cole et al., 2014; Krienen et al., 2014). Here we assessed changes in functional
brain architecture induced by engagement in a complex reasoning task, as well as changes in
communication across regions with parametric increases in reasoning complexity. To do so,
we used high-field functional magnetic resonance imaging (fMRI) to measure brain activity at
rest, and during performance of a behavioral task in which task complexity was manipulated

parametrically.

Higher cognitive functions are supported by the adaptive reconfiguration of large-scale
functional networks (Bassett et al., 2011; Cole et al., 2013; Braun et al., 2015; Cohen and
D’Esposito, 2016; Yue et al., 2017). Previous empirical and theoretical work suggests that a
multitude of complex tasks are related to activity and communication within and between
select fronto-parietal, cingulo-opercular, and default-mode networks (Knowlton et al., 2012;
Cocchi et al., 2014; Hearne et al., 2015; Crittenden et al., 2016; Bolt et al., 2017). Such
networks are flexible and tend to increase their functional relationship in line with task
demands across a wide range of domains, including reasoning (Cocchi et al., 2014), working

memory (Vatansever et al., 2017) and decision making (Cole et al., 2013).

Recent empirical work has shown that task-induced network reconfigurations are modest
when compared with intrinsic, ‘resting state’ networks (Cole et al., 2014; Krienen et al.,
2014). For example, Cole and colleagues reported a matrix-level correlation between rest and

task states of » = 0.90 (on average 38% of connections demonstrated change, with an average
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change of » = 0.04). Likewise, it is now apparent that task-induced activity can be well
predicted and modeled from resting state data alone (Cole et al., 2016; Tavor et al., 2016).
These results suggest that while behaviorally meaningful, selective task-induced
reconfigurations occur against a backdrop of stable, large-scale networks that support diverse
cognitive functions (Power et al., 2011; Crossley et al., 2013). An important unresolved
question is how selective, ‘flexible’ task driven reconfigurations emerge amongst ‘stable’
intrinsic brain topology. Moreover, it is critical to understand how such global and selective

changes are related to behavior (Bolt et al., 2017; Mill et al., 2017).

To investigate this question we measured functional brain networks at rest, as well as during
several discrete levels of reasoning complexity. To systematically manipulate task
complexity, we exploited relational complexity theory (Halford et al., 1998), which posits that
the number of relations between variables quantifies the complexity of a problem, regardless
of the domain of the original stimulus (e.g., semantic, spatial, etc.). Using this theoretical
framework it has been shown that increasing the number of relations imposes a quantifiable
cognitive load (measured via reaction time and accuracy), and eventually results in a
breakdown of the reasoning process (Halford et al., 2005). We collected 7T fMRI data from
65 individuals while they undertook a non-verbal reasoning task known as the Latin Square
Task (Birney et al., 2006). During the task, participants solved problems with three discrete
levels of difficulty, defined formally in terms of their relational complexity (Binary, Ternary,
Quaternary). In addition, just prior to the task, and again immediately afterwards, participants
underwent a resting state scan. To examine network reconfigurations across rest and
reasoning states we utilized modularity to assess segregation and integration and global
efficiency to assess changes in network communication. Further to examine selective changes,
we employed the network-based statistic to identify circumscribed changes in connectivity

patterns (Zalesky et al., 2010), and related such network metrics to behavior.
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Materials and Methods

Participants

Sixty-five healthy, right-handed participants undertook the current study, of whom 49 were
included in the final analysis (M = 23.35 years, SD = 3.6 years, range = 18 — 33 years, 28
females). Four participants were excluded due to MR scanning issues, one participant was
excluded due to an unforeseen brain structure abnormality, a further participant was excluded
due to low accuracy in the behavioral task (total score more than 3 standard deviations below
the mean) and ten participants were excluded due to excessive head movement (see
Preprocessing section for head movement exclusions). Participants provided informed written
consent to participate in the study. The research was approved by The University of

Queensland Human Research Ethics Committee.

Experimental paradigm

Each participant completed two behavioral sessions and one imaging session. In the imaging
session participants underwent a resting state scan, followed by three, 12-minute runs of the
Latin Square Task (LST; described below), a structural scan and finally a second resting state

scan (see Figure 1a).

In the two behavioral sessions, participants completed the Raven’s Advanced Progressive
Matrices (40 minute time limit), which is a standard and widely used measure of fluid
intelligence (Raven, 2000). Of the 49 participants included in the analysis, 43 also completed
a conjunction visual search task in which they were instructed to report the orientation of a
target letter ‘L’ (rotated 90 degrees leftward or rightward) amongst ‘T’ distractors in set sizes
of 8, 16 or 24 items. The search cost was defined as the increase in reaction time between the
smallest and largest set sizes. This task was chosen as a ‘low reasoning’ counterpart to the
Raven’s Progressive Matrices in order to demonstrate the specificity of brain-behavior

correlations, as described in detail in the Results.
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Participants also completed a modified version of the LST (Birney et al., 2006; LST, Birney
and Bowman, 2009). The LST is a non-verbal relational reasoning paradigm in which
reasoning complexity is parametrically varied with minimal working memory demands
(Halford, 1998, Birney et al., 2006). Each LST ‘puzzle’ involves the presentation of a four-
by-four matrix populated with a small number of geometric shapes (square, circle, triangle or
cross), blank spaces and a single target, denoted by a yellow question mark (‘?’; see Figure
1b). Participants were asked to solve for the target according to the rule that each shape can
only occur once in every row and once in every column (similar to the game of Sudoku).
Binary problems require integration of information across a single row or column. Ternary
problems involve integration across a single row and column. Quaternary problems, the most
complex, require integration of information across multiple rows and columns (see Figure 1b
for examples of each of these problems). Null trials involved presentation of an LST grid, but
instead of a target question mark (‘?”) an asterisk was presented (‘*”) to cue the participant
that no reasoning was required in this puzzle. The identity of the shapes that appeared in Null
trials was random, but the number of shapes and their spatial locations were matched to those
in the active LST trials. In total, 144 LST items were presented in the MR session across 16
blocks, with 36 items in each relational complexity condition; Null, Binary, Ternary and
Quaternary. Prior to the MR session participants completed 20 practice trials of the LST (12
with corrective feedback). The visual angle subtended by the LST matrices was ~7.7 degrees,
so that the entire stimulus fell within the parafoveal region of the visual field. Stimuli were
projected onto a screen located at the head end of the MR scanner, and participants viewed

the projected stimuli via a mirror mounted on the head coil.

Administration of all items was pseudo-randomized such that no two items of the same
complexity occurred sequentially, and each block had two problems from each level of
complexity (see Figure 1c for trial structure). Motor responses were counterbalanced across
individuals, such that equal numbers of participants had the same shape-response mapping.

Confidence ratings were used to determine participants’ subjective feeling of success, and to
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identify any trials in which participants inadvertently disengaged from the task altogether
(e.g., due to a momentary lapse of attention). A three-point confidence scale indicated
whether participants felt certain the problem had been answered correctly (4), felt unsure of
their accuracy (3), or felt certain the problem had been answered incorrectly (2). On the far
left (demarcated by a vertical line, see Figure 1¢) was an additional ‘inattention’ rating point
(1) that participants were instructed to select if they felt they had not attempted to solve the
problem due to a momentary lapse of attention, fatigue or other factors. This response was
used to separate incorrect choices arising from failures in reasoning, from those due to non-

specific “off-task” mind wandering (Smallwood and Schooler, 2015).
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Figure 1. Experimental design and sequence of displays in a typical trial of the Latin Square
Task. a. Functional magnetic resonance imaging session outline. Participants completed
resting state scans before and after three runs of task imaging. b. Examples of each reasoning
complexity condition. The correct answers are square, cross and cross, respectively, for the
Binary, Ternary and Quaternary problems illustrated. ¢. Example trial sequence. Each trial
contained a jittered fixation period, followed by an LST item, a second, jittered fixation
period, a response screen, and a confidence rating scale. In Null trials the motor response
screen had one geometric shape replaced with an asterisk, representing the correct button to

press.
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Neuroimaging acquisition and preprocessing

Imaging data were collected using a 7 Tesla Siemens MR scanner fitted with a 32-channel
head coil, at the Centre for Advanced Imaging, The University of Queensland. For both
resting state and task fMRI, whole brain echo-planar images were acquired using a multi-
band sequence (acceleration factor of five; Moeller et al., 2010). In each of the two resting
scans, 1050 volumes were collected (~10 minutes each). In the each of the three runs of the
task, 1250 volumes were collected (~12 minutes each) with the following parameters: voxel
size =2 mm3, TR =586 ms, TE = 23 ms, flip angle = 40°, FOV =208 mm, 55 slices.
Structural images were also collected to assist functional data preprocessing. These images
were acquired using the following parameters: MP2RAGE sequence, voxel size = 0.75 mm’,

TR = 4300 ms, TE = 3.44 ms, 256 slices (see Figure 1a for session structure).

Imaging data were preprocessed using an adapted version of the MATLAB (MathWorks,
USA) toolbox Data Processing Assistant for Resting-State fMRI (DPARSF V 3.0, Chao-Gan
and Yu-Feng, 2010). Both resting state and task data were preprocessed with the same
pipeline (except where noted). DICOM images were first converted to Nifti format and
realigned. T1 images were re-oriented, skull-stripped (FSL BET), and co-registered to the
Nifti functional images using statistical parametric mapping (SPM8) functions. Segmentation
and the DARTEL algorithm were used to improve the estimation of non-neural signal in
subject space and the spatial normalization (Ashburner, 2007). From each gray matter voxel
the following signals were regressed: undesired linear trends, signals from the six head
motion parameters (three translation, three rotation), white matter and cerebrospinal fluid
(estimated from single-subject masks of white matter and cerebrospinal fluid). The CompCor
method (Behzadi et al., 2007) was used to regress out residual signal unrelated to neural
activity (i.e., five principal components derived from noise regions-of-interest in which the
time series data were unlikely to be modulated by neural activity). Global signal regression
was not performed due to the ongoing controversy associated with this step (Saad et al., 2012;

Caballero-Gaudes and Reynolds, 2017). This choice may increase motion artifacts in the data

10
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(Ciric et al., 2017). For this reason we employed a strict head motion censoring approach (see
below). Single-subject functional images were subsequently normalized and smoothed using
DARTEL (4mm®). Data processing steps also involved filtering (0.01-0.15 Hz) at a low
frequency component of the BOLD signal known to be sensitive to both resting state and
task-based functional connectivity (Sun et al., 2004), therefore allowing comparison of both

resting state and task data.

Head movement

Participants with head displacement exceeding 3mm in more than 5% of volumes in any one
scan were excluded. In addition to gross head movement, it has also been shown that
functional connectivity can be influenced by small volume-to-volume ‘micro’ head
movements (Van Dijk et al., 2012; Power et al., 2014). To ensure micro-head movement
artifacts did not contaminate our findings, both resting state and task-based data with frame-
to-frame displacements greater than 0.40 mm were censored (Power et al., 2014). Participants

with less than 85% of data remaining in any condition were excluded.

Functional connectivity network construction

For each subject, regionally averaged time series were extracted for 264 spheres of Smm
radius sampled across cortical and subcortical gray matter. Spheres were positioned according
to an existing brain parcellation, based on task activations induced by a wide range of
behavioral tasks (Power et al., 2011). This parcellation and associated network definitions
were generated from a large cohort of participants (N > 300), and has the advantage of being

independent of the imaging data obtained in the current study.

For both sets of resting state data (pre- and post-task), functional connectivity was estimated
using a temporal Pearson correlation between each pair of time series (Zalesky et al., 2012).
This resulted in a 264 x 264 connectivity matrix for each subject. For the task-based

functional connectivity analyses we used a regression approach (i.e., Cole et al., 2014) rather

11
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than psycho-physiological interactions (PPI) as others have used previously (McLaren et al.,
2012; Cocchi et al., 2014; Gerchen et al., 2014). We opted for this approach rather than PPI
due to our interest in assessing connectivity across both rest and task states. For each brain
region of interest, a task regressor composed of the condition onsets modeled as boxcar
functions convolved with a canonical hemodynamic response function was regressed from the
time series. This step was taken to remove variance associated with task-related coactivation
(Cole et al., 2014). Then, after accounting for the hemodynamic lag, the residual time series
from each five-second reasoning period was concatenated to form a condition-specific time
series of interest, in each brain region. A Pearson correlation was performed on the resulting
regional time series for each condition separately resulting in a 4 (condition) x 264 x 264
connectivity matrix for each subject. Finally, both resting state and task-based matrices were
converted to z-scores. Analysis decisions such as z-normalization and thresholding were
employed so as to be consistent with previous, related work aimed at assessing dynamic
reconfiguration of connectivity patterns as a function of task demands (e.g., Cole et al., 2014,
Power et al., 2011). Such choices do, however, affect the resulting graph metrics (Rubinov
and Sporns, 2011). Thus, unless otherwise noted (see network based statistic analysis, below)
weighted graphs of proportional densities from the top 5% to the top 30% of connections
were considered for analysis. Such network densities have been shown to provide robust
functional brain network characterizations (Garrison et al., 2015) and are similar to those used

in previous, related work (e.g., Power et al., 2011).

Analysis overview

We undertook three complementary analyses to identify functional network reorganization
due to increasing relational complexity. First, we calculated and compared community
partitions that arose in each of the resting state and task conditions. Following this, we
performed an analysis to identify changes in connectivity associated with performance of the
Latin Square Task using the network based statistic (NBS, Zalesky et al., 2010), a sensitive

statistical tool that controls for Type I error at the network level. To assess the functional and
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behavioral impact of the connectivity changes identified in the previous two analyses, we
calculated changes in global efficiency (Achard and Bullmore, 2007) for each functional
module detected. Moreover, to assess the behavioral implications of the observed network
changes, we correlated metrics of changes in module efficiency with performance accuracy
on the LST. When appropriate, nonparametric statistics were used for repeated-measures
comparisons (Friedman test), follow-up tests (Wilcoxon signed rank) and measures of effect

size (Kendall’s coefficient of concordance, 7).

Community detection

A module is a group of nodes in a graph that contains stronger connections within-module
than expected in an appropriate random network null model. A modularity partition
represents the subdivision of a graph into non-overlapping modules (Fortunato, 2010). The
degree of modularity in a network can be characterized by the Q index (Newman and Girvan,
2004), which represents the density of within-module connections relative to an appropriate
random network null model. The aim of community detection is to isolate a module partition

that maximizes Q.

1
Q) =5 ) lay — ypy] 8o
ij
Above is the modularity equation, where aj; represents the weight of the edge between i and j,
kik; . . .
pij = 2—m] represents the expected number of links according to the so-called configuration

null model (Newman et al., 2001), where k; is the degree of node i; in this case the null
preserves the node degree while forming connections at random. 2m represents the total
number of connections in the network, g; denotes the community to which node i is assigned,
the Kronecker delta function, §(0;0;), is 1 if 6; = 0 and 0 if otherwise. Finally, y is the
resolution parameter; when y < 1, larger communities are resolved, if y > 1, smaller

communities are resolved.
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In the present study, modules were identified using the Louvain greedy algorithm (Blondel et
al., 2008) implemented in the Brain Connectivity Toolbox (BCT, Rubinov and Sporns, 2010).
The resolution parameter was set to unity (y = 1). Testing across several levels of y showed
consistent results. For clarity, we highlight the BCT scripts used throughout the Method
section. There are multiple possible module partitions that maximize Q for each graph,
resulting in community assignments that vary across each run of the algorithm (Good et al.,
2010; Sporns and Betzel, 2016). To resolve this variability we used a consensus approach
(Lancichinetti and Fortunato, 2012), whereby module partitions are calculated a number of
times (10’ iterations, for each participant and condition) and used to calculate an agreement
matrix (agreement.m). The agreement matrix represents the tendency for each pair of nodes to
be assigned to the same module across iterations. Finally, the agreement matrix was subjected
to an independent module partitioning (consensus_und.m), resulting in an individual-level
module partition for each participant in each condition. In this step, the resolution parameter
was also set to unity (t = 1), representing the level at which the agreement matrix was
thresholded before being subjected to the consensus procedure. For example, T = 1
thresholds the matrix such that only nodes consistently partitioned into the same community
across all permutations are included. Testing across several levels of T showed consistent
results. A general community structure including motor-sensory, auditory, visual, default-
mode and fronto-parietal/cingulo-opercular modules was entered into the algorithm as the
initial community partition. In our data, this choice decreased computation time, presumably
because the initial community structure was associated with a Q-value that was close to the
true maximum. Module reconfiguration results were replicated using different community
affiliation priors, including variations of the original community partitions (Power et al.,

2011; Cole et al., 2013) and purely data-driven methods (i.e., no community affiliation input).

The procedure for group-level modular decomposition was implemented in a similar fashion
to the individual-level decompositions described above. The critical difference was that

instead of creating an individual-level agreement matrix, the agreement matrix represented

14
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the tendency for each pair of nodes to be assigned to the same module across participants.
The same consensus procedure followed, resulting in a single module partition for each
condition for the group of 49 participants. Resolution parameters were kept identical to the

previous individual-level modularity analysis.

Significance testing for within-participant differences in modular structure

To investigate differences in the nodal composition of modules across conditions, we used the
Variation of Information metric (¥In, Meila, 2007), an information-theoretic measure of
partition distance (partition_distance.m). To ascribe statistical significance to differences in
partition structure we used a repeated-measures permutation procedure to compare real VIn
values to appropriate null distributions (Dwyer et al., 2014). Specifically, half of the
participants’ condition labels were randomly switched in the contrast of interest (e.g., Binary
versus Ternary). This resulted in two new sets of individual-level module structures for the
contrast (albeit with shuffled data). The shuffled module structures were then subjected to the
previously used pipeline to generate group-level module partitions. Finally, VIn was used to
quantify the difference between these partitions. This procedure was repeated 10* times to

build a null distribution for each contrast of interest, with which the real data were compared.

Pairwise functional connectivity analysis

The Network Based Statistic (NBS, Zalesky et al., 2010) was used to identify changes in
pairwise functional connectivity at rest and during the task. For the first contrast, a paired ¢-
test was performed between the Pre- and Post-task resting state data. For the second contrast,
a one-way repeated measures ANOVA was used to compare all four task states (Null, Binary,
Ternary, Quaternary). For the analysis, unthresholded functional connectivity matrices were
used as input into the NBS. Briefly, all possible pairs of connections (264 x 263/2 = 34,716)
were tested against the null hypothesis, endowing each connection with a test statistic, which
was subsequently thresholded. Here an exploratory F-statistic of 20 (equivalent to a z-statistic

of 4.47) was used as the threshold, though additional exploratory analyses showed that
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networks arising using higher or lower t-thresholds resembled the original results. This
threshold was adopted because it allowed the detection of effects of medium size while
discarding small or spurious effects. Family-wise error corrected (FWE) p-values were
ascribed to the resulting networks using a null distribution obtained by 5,000 permutations.
Only components that survived a network-level threshold of p <0.001 FWE were declared
significant. This analysis allowed us to identify sub-networks that significantly increased or
decreased their functional connectivity across relational reasoning task conditions, providing

complementary results to the graph analyses.

Network efficiency analysis

Global efficiency is defined as the inverse of the average characteristic path length between
all nodes in a network (Latora and Marchiori, 2001). Assuming that information follows the
most direct path, global efficiency provides an index for parallel information transfer in a
network (Rubinov and Sporns, 2010). In the context of functional brain networks, global
efficiency is thought to be an index of increased capacity for information exchange (Achard
and Bullmore, 2007). The link between indices of global efficiency and global neural
information transfer is, however, not yet clear. Nevertheless, a number of studies have shown
that high global brain network efficiency can enhance neurophysiological (De Pasquale et al.,
2016; Cocchi et al., 2017) and cognitive processes (Bassett et al., 2009; van den Heuvel et al.,

2009; Shine et al., 2016).

Here we wanted to investigate differences in network communication within module, and
determine how such difference might relate to behavior. To do so, we computed global
efficiency for each participant, in each condition, for the three major modules identified in the
initial modularity analysis (using efficiency wei.m from the BCT). Importantly, matrix
thresholding was performed after dividing the modules to ensure any efficiency effects were

not due to differences in degree across modules. Finally, we computed the difference in
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efficiency between the most and least difficult conditions (i.e., Quaternary versus Null) and

correlated this change in efficiency with overall accuracy scores on the Latin Square Task.

Figures and Visualization

Figures were generated with a combination of MATLAB, and online network visualization
tools (alluvial diagram; (http://www.mapequation.org/apps/MapGenerator.html, and the

connectogram; http://immersive.erc.monash.edu.au/neuromarvl/).

Results

Behavioral results

A nonparametric Friedman test revealed a significant effect of reasoning complexity on both
LST accuracy (x? = 86.20, Kendall’s W = 0.88, p < 0.001) and reaction time (y? = 63.71, W
=0.65, p <0.001, see Figure 2). Bonferroni corrected follow-up Wilcoxon signed-rank test
comparisons revealed that accuracy was significantly higher for the Binary condition (M =
34.96, SD = 1.04) than for both the Ternary condition (M = 31.63, SD =3.52,z=5.59,p <
0.001) and the Quaternary condition (M =22.78, SD = 6.71,z=6.10, p <0.001). Accuracy
was also higher for Ternary items than for Quaternary items (z = 5.74, p <0.001). The
reaction time results followed a similar pattern, such that responses were faster in the Binary
condition (M = 771.60 ms, SD = 201.60 ms) than in the Ternary (M = 844.20 ms, SD =
217.30 ms, z =-4.62, p < 0.001) and Quaternary (M = 933.70 ms, SD = 205.00 ms, z = -5.83,
p <0.001) conditions. Likewise, reaction times in the Ternary condition were significantly

faster than those in the Quaternary condition (z = -4.79, p < 0.001).
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Figure 2. Behavioral results for the Latin Square Task visualized as box and whisker plots.
Here the boxes represent the median and interquartile ranges, and the whiskers show the
minimum and maximum values. a. Accuracy as a function of reasoning complexity. b.
Reaction time as a function of reasoning complexity. Significance markers indicate p < 0.001.
As expected, there was a significant positive correlation between scores on the Raven’s
Advanced Progressive Matrices, a measure of fluid intelligence, and overall accuracy on the
LST (= 0.44, p = 0.002). By contrast, for the visual search task, there was no correlation
between reaction time cost and LST score (N =43, »r=-0.09, p = 0.58). A Steiger z-test (Lee
and Preacher, 2013) demonstrated that these two correlations were significantly different
from one another (N =43, z =-2.90, p = 0.003), confirming that LST performance is linearly
related to an established measure of fluid intelligence, but not to a widely used test of visual

attention (Triesman & Gelade, 1980).

Participants’ confidence was assessed on each trial. Importantly, we included an explicit
rating for when participants had not attempted the reasoning problem due to an attention
lapse, mind wandering, or fatigue. Averaging across all conditions, the mean number of such
lapses was fewer than one out of 36 trials (M across conditions = 0.47 trials, SD across
conditions = 0.98 trials). We can thus conclude that overall, participants were able to engage

as instructed in cognitive reasoning across all three levels of relational complexity in the LST.
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Functional brain module reconfiguration

Modularity analysis revealed four major modules in the baseline (Pre-task) resting state. For
clarity, these modules are represented in reference to Power and colleagues’ (2011) initial
network affiliations. The modules broadly correspond to the sensory, default-mode, visual and

fronto-parietal networks.

Variation of Information analysis (Meild, 2007) revealed a significant difference in the
community structure of Binary, Ternary and Quaternary conditions compared with the Pre-
task resting state (mean statistics across thresholds are reported in text; see Table 1 for
extensive results, Vin = 0.20, p = 0.006, Vin =0.21, p = 0.001, Vin = 0.20, p = 0.003,
respectively) and Post-task resting state (Vin = 0.18, p = 0.039, Vin = 0.20, p = 0.005, Vin =
0.19, p = 0.016). The difference between rest and reasoning states was associated with the
emergence of a single, conjoined fronto-parietal-visual module that was composed of several
large-scale networks identified by Power et al. (2011). The transitory nature of the fronto-
parietal-visual module was confirmed by its switch back to its original configuration in the
Post-task resting state (i.e., after completion of the LST). Figure 3b shows a representation of
the reconfiguration of modules across experimental conditions. There was no significant
difference between the Pre-task and Post-task resting state community structure (Vin = 0.09, p
= (.788). There was also no consistent difference between the Pre- and Post-task resting state
communities and the Null task condition (Vin = 0.16, p = 0.08, Vin = 0.15 p = 0.196,
respectively). These main effects were broadly replicated across all thresholds tested (Figure

3c¢).
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Figure 3. Modular structure as a function of reasoning complexity in the Latin Square Task
(LST). a. Alluvial ‘flow’ demonstrating the network affiliations (as per Power et al., 2011)
compared with the Pre-task resting state (Rosvall et al., 2009). Each individual streamline
represents a node in the network, colored by its original resting state affiliation as shown on
the left (Power et al., 2011). b. Changes in modular structure across the experimental
conditions. Visual and fronto-parietal modules merged to form a ‘Task-related” module
during Binary, Ternary and Quaternary conditions of the LST. Results for 15% network
density are shown, but statistics were performed across several thresholds. ¢. Anatomical
rendering of the task-related modules in the Quaternary condition. Each sphere is color-coded
by its initial resting state module allegiance. d. Variation of Information (VIn) values (black
markers) compared with a null distribution (gray markers, 5"/ 95" percentile in bold line, 1%/
99™ percentile shown in tails) for the three main contrasts across all network densities. Only
the right-most contrast (Binary versus Pre-task rest) showed a consistent difference between
partitions. e. Comparison of VIn values across visual, sensory, fronto-parietal and default-
mode modules in each task condition compared with rest across all network densities. The
fronto-parietal module was consistently more variable in relation to other modules. Error bars

represent 95% confidence intervals.

Having established a difference in community structure we sought to test the relative
contribution of each module to the observed reconfiguration. To do so we implemented a
similar strategy to Braun and colleagues (2015), whereby VIn was calculated at the
individual-community level for our nodes of interest, and compared using repeated-measures
statistics. Thus we compared visual, sensory, fronto-parietal and default-mode modules across
all network densities for the Binary-Rest, Ternary-Rest, and Quaternary-Rest contrasts
(conceptually similar to follow-up parametric statistics). Results revealed that the fronto-
parietal module had higher VIn values (i.e., larger differences in community structure) than
visual (mean p value across thresholds, p < 0.001), sensory (p < 0.001) and default-mode

modules (p < 0.001), see Figure 3d) across all contrasts.

Finally, the index of modularity, Q, was compared across conditions. This index of
modularity increases as more intramodular connections are found than expected by chance
(Newman & Girvan, 2004). Non-parametric Friedman tests revealed a significant difference

in Q across conditions (mean statistic across thresholds, y? = 51.48, p < 0.001). Bonferonni
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corrected follow-up tests were performed to compare each task state (Null, Binary, Ternary,
Quaternary) with each resting state (Pre- and Post-task). Results revealed that Q was
significantly lower in the Ternary (Mean Q = 0.39) and Quaternary conditions (Mean Q =
0.39) when compared with both Pre- (Mean Q = 0.44, z=3.74,z=4.07, p < 0.001) and Post-
task resting states (Mean Q = 0.45, z=4.49, z =4.52, p < 0.001). No effect was found when
comparing Null or Binary conditions with rest. Complementing the observed changes in
community structure, analysis of Q scores highlight a significant reduction in modularity
compared with the resting state, but only in the task conditions that imposed higher demands

on cognitive reasoning.

Network Based Statistic analysis

To further refine our account of module reconfiguration, we assessed changes in whole brain
connectivity using the network based statistic (NBS, Zalesky et al., 2010). In line with the
result from the first analysis, a paired t-test between Pre- and Post-task resting states revealed
no significant differences. Our second contrast, a one-way repeated measures ANOVA was
performed comparing all four reasoning complexity conditions (Null, Binary, Ternary,

Quaternary).

A sub-network comprising 63 nodes and 85 edges changed in response to reasoning
complexity demands (p < 0.001, FWE corrected at the network level, Figure 4). The majority
of edges within the subnetwork demonstrated increased functional connectivity (86% of
edges, shown as warm colors in Figure 4), but a number of edges also demonstrated a
decrease in positive correlations with increasing reasoning complexity (see Figure 4b for
trend across conditions). Consistent with our previous work on changes in functional
connectivity during complex reasoning (Cocchi et al., 2014; Hearne et al., 2015), the network
was largely composed of nodes encompassing fronto-parietal (17%), subcortical (19%),
cingulo-opercular (12%) and default-mode networks (24%, as per Power et al., 2011 network

affiliations, see Table 2 for a list of regions implicated by this analysis). Moreover, nearly all
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edges (95%) were across-network. Two further visual-parietal subnetworks were identified by

the NBS, consisting of two and three nodes respectively (not visualized).
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Figure 4. Change in pairwise functional connectivity associated with reasoning complexity.
a. Connectogram representation of significant changes in pairwise functional connectivity
that scaled with relational complexity. Edges are colored by the direction of the change in
correlation across relational complexity. Warm colors represent increases in connectivity and
cool colors represent decreases in connectivity. Lighter colors represent higher F-statistics.
Network nodes, plotted as circles, are colored by their initial resting state networks (Power et

al., 2011). Outside the connectogram the colored bars represent the modules identified in the
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previous analysis of data from the Quaternary condition: Sensory (orange), Default-mode
(red) and Fronto-parietal-visual modules (green-blue). b. Each individual connection in the
subnetwork (averaged across subjects) plotted as a function of reasoning complexity. Average

values for positive and negative connections are shown as bold lines.

Within-module global efficiency and behavior

Our final analysis sought to investigate changes in global efficiency within each major
module evident during the task. Global efficiency has previously been taken to be an index of
increased capacity for information exchange (Achard and Bullmore, 2007). Specifically, we
were interested in whether each module showed changes in efficiency, and whether any such

changes were related to reasoning performance.

Nonparametric Friedman tests revealed that both the Sensory (orange in Figure 5a) and
Fronto-parietal-visual modules (FPV, green in Figure 5a) demonstrated significant
differences in efficiency across conditions (Sensory y2 = 44.17, p <0.001, FPV: y? = 77.78,
p <0.001, see Figure 5a). No such effect was found for the Default-mode module (p = 0.23).
Bonferroni corrected follow-up tests confirmed that the effect was driven by increased
efficiency within all task states compared with Pre- and Post-task resting states (Sensory: z-

range = 2.4 —4.69, p < 0.02, FPV: z-range = 3.78 — 5.22, p < 0.001).
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Figure 5. Changes in global network efficiency (Egos) across the identified reasoning task
modules. a. Global network efficiency levels within each module across experiment
conditions. Error bars represent 95% confidence intervals. R1= Pre-task rest, B = Binary, T =
Ternary, Q = Quaternary, R2 = Post-task rest. b. Correlation between accuracy in the Latin
Square Task (LST) and changes in fronto-parietal-visual (FPV) module efficiency during the
task. Changes in network efficiency were correlated with overall reasoning performance, such
that increased efficiency correlated with better task performance (» = 0.33, p < 0.01). Results
are visualized at 15% network density.

We also investigated the relationship between individual differences in module efficiency and
behavioral performance. To do so, we correlated reasoning accuracy scores with changes in
module efficiency between the Pre-task resting state and the most complex reasoning
condition (Quaternary). Only module efficiency within the FPV module was significantly
correlated with behavior (see Figure Sb, mean statistics across thresholds: r =0.33,p =
0.026; Spearman’s rs = 0.27, p = 0.084), such that larger increases in efficiency within the

FPV module were associated with better reasoning performance. Neither the Default-mode or

Sensory modules demonstrated such a relationship (p = 0.19, p = 0.29 respectively). Further,
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to probe the reliability of the above finding, we compared change in efficiency from
Quaternary to the Null-task state, which yielded a similar result (r = 0.35, p = 0.021,
Spearman’s rs = 0.30, p = 0.048). The correlation was also robust to partialing out fluid
intelligence scores based on the Raven’s Matrices test (r = 0.35, p = 0.025). By contrast, there
was no correlation between performance in the visual search task and module efficiency (N =
43, p = 0.65), suggesting the module efficiency-behavior relationships were specific to the
LST. Finally, we also replicated these results, as well as the follow up Variation of
Information results (Figure 3d), using the original visual, sensory, default-mode and fronto-
parietal networks defined by Power and colleagues (2011), instead of our own data-driven

modules.

Discussion

Human reasoning has a quantifiable capacity limit (Halford et al., 1998). This limit is thought
to arise from the brain’s ability to reconfigure interactions between spatially distributed
networks (Cocchi et al., 2014; Parkin et al., 2015; Schultz and Cole, 2016), but recent work
has highlighted the circumscribed nature of such interactions when compared with whole
brain ‘resting’ architecture (Cole et al., 2014). In light of these recent findings, we examined
how global and selective network properties change from resting to reasoning states, and how
such changes relate to reasoning behavior. We found that complexity-based limits in
reasoning ability rely on selective patterns of connectivity that emerge in addition to a more

general task-induced functional architecture.

We used a non-verbal reasoning task, originally designed to test predictions from relational
complexity theory, to systematically manipulate reasoning complexity (Halford et al., 1998;
Birney et al., 2006; Birney and Bowman, 2009). In doing so we replicated previous
behavioral results by demonstrating a reliable reduction in accuracy and an increase in
reaction time as a function of increased complexity (Birney et al., 2006; Zhang et al., 2009;

Zeuch et al., 2011). Importantly, an analysis of participants’ trial-by-trial ratings indicated
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that task errors were related to complexity demands and not factors such as transitory lapses
in attention or disengagement from the task. The behavioral results also confirmed previous
reports that individual reasoning capacity limits are correlated with scores on standard
measures of fluid intelligence (Birney et al., 2006; Bhandari and Duncan, 2014) such as

Raven’s Matrices.

Parametric increases in relational complexity have previously been tied to neural activity of
segregated regions of the prefrontal cortices (Christoff et al., 2001; Kroger, 2002; Bunge et
al., 2009; Golde et al., 2010) as well as to functional connectivity within fronto-parietal and
cingulo-opercular “multiple-demand” networks (Cocchi et al., 2014; Parkin et al., 2015;
Crittenden et al., 2016). Cingulo-opercular connectivity has been associated with initiating
and maintaining task sets (Dosenbach et al., 2006) whereas the fronto-parietal network has
been associated with moment-to-moment cognitive control (Cole and Schneider, 2007). Here
we found that reasoning performance was best explained by a module composed of brain
regions within the fronto-parietal, salience, subcortical and visual networks. First, functional
connectivity and global efficiency of this subnetwork increased in line with increased
reasoning demands (Figures 4 & 5). Second, larger increases in global efficiency within this
module were associated with higher accuracy in the reasoning task. Finally, edge-wise
connectivity of the fronto-parietal network was shown to increase in line with relational
complexity, largely between default-mode and subcortical networks. These findings are
broadly consistent with previous work showing that enhanced global network efficiency, and
connectivity within the default-mode and fronto-parietal networks at rest, can predict
intelligence and reasoning performance (Song et al., 2008, 2009; van den Heuvel et al., 2009;
Finn et al., 2015; Hearne et al., 2016). Taken together the results confirm the central role of
flexible fronto-parietal connectivity in implementing external goal-directed cognitive control

(Cole et al., 2013, Cocchi et al., 2014).
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It has been proposed that the cingulo-opercular network can be further divided to include a
separate ‘salience’ system associated with bottom-up attention (Seeley et al., 2007; Power et
al., 2011). Here we found that the salience network was implicated in the fronto-parietal-
visual module but did not show complexity-induced edge-wise connectivity changes. On the
other hand, the cingulo-opercular network did show edge-wise connectivity changes in line
with reasoning complexity, but was not implicated in the fronto-parietal-visual module. This
set of results is consistent with the notion that the cingulo-opercular network is a control-
related counterpart of the fronto-parietal network, and suggests that the cingulo-opercular
network might have a distinct role from that of the salience aspect of the system (Power et al.,

2011).

It remains unclear precisely how ‘resting state’ networks coordinate flexible patterns of
integration and segregation as a function of task complexity. Nevertheless, our findings
support a key role for subcortical structures such as the thalamus in mediating such
relationships (Bell et al., 2016; Sherman, 2016). Specifically, bilateral putamen and thalamus
were implicated in both subnetworks that increased and decreased functional connectivity as
task complexity increased (general trend shown in Figure 4b). This finding is in line with
recent descriptions of the thalamus as a ‘global kinless’ hub, with evidence of activation in
multiple cognitive contexts and strong connectivity across multiple large-scale functional
networks (Guimera et al., 2007, Hwang et al., 2017, van den Heuval & Sporns, 2011). Such
subcortical regions might be interpreted as managing relationships between task-related
networks to form a coherent modular structure. Further work will be needed to elucidate the

particular role of subcortical regions in this relatively unexplored area (Bell & Shine, 2016).

Functional brain module reconfigurations have previously been related to performance on a
range of higher cognitive tasks, including learning (Bassett et al., 2011), working memory
(Braun et al., 2015; Vatansever et al., 2015, 2017) and cognitive control (Dwyer et al., 2014).
Here we found that the community architecture of the brain is flexible, but only in response to

large cognitive shifts. For example, resting state visual and fronto-parietal modules, each of
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which is composed of several known sub-networks (Power et al., 2011), merged together
during the reasoning task (Figure 3). Importantly, this reorganization was relatively isolated;
follow up analyses indicated that the rest of the brain remained stable across changes in task
complexity. In line with this observation, recent network-based re-conceptualizations of
global workspace theory (Dehaene et al., 1998; Kitzbichler et al., 2011) have suggested that
large, task-based module reconfigurations arise to better serve network communication
underpinning behavior. Our work refines this idea by showing that once resting state modules
reconfigure in response to external task demands, the majority of connectivity changes occur
without interrupting the newly established modular architecture, as illustrated schematically
in Figure 6. Moreover, it is these connectivity changes within the newly reconfigured

modules that seem to be most related to behavior.

OO

OO

Figure 6. Conceptual model of functional networks supporting reasoning and rest states. a.
At rest, functional modules are relatively independent. b. External, goal-directed task states
are accompanied by broad module-level changes; a fronto-parietal-visual module forms
(green), amongst stable default-mode (red) and sensory-motor modules (orange). ¢. Increased
task demands are accompanied by specific increases (solid lines) and decreases (dashed-lines)
in functional connectivity, rather than further modular reconfiguration. Ultimately, in the
most complex conditions, the entire network reaches a similar level of correlation through

both integrated and segregated dynamics (see Figure 4b).

Our finding that increased demands on cognitive reasoning are paralleled by a reduction in
network modularity and increased efficiency has now been reported in several different task
contexts (Kitzbichler et al., 2011; Bola and Sabel, 2015; Godwin et al., 2015; Vatansever et

al., 2015; Cohen and D’Esposito, 2016; Shine et al., 2016; Westphal et al., 2017; Yue et al.,
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2017). Using the network-based statistic we found that these global changes were supported
by increases and decreases in functional connectivity across multiple large-scale networks.
Interestingly, the default-mode network has been suggested to act as a ‘global integrator’,
facilitating fronto-parietal cognitive control networks during conscious processing of
information (Dehaene et al., 1998; Guldenmund et al., 2012; Leech et al., 2012; Vatansever et
al., 2015). In line with this notion, we found that default-mode regions such as medial frontal
cortex, angular gyri and posterior cingulate cortex demonstrated increased functional
connectivity with fronto-parietal, cingulo-opercular and visual networks as task demands

increased.

Modulations of visual network connectivity might be related to the visual nature of the LST,
and specifically the requirement that participants search the 4 x 4 matrix to identify a shape at
the probed location. A previous behavioural study found that participants’ eye fixation
patterns differed for one-object and two-object relational problems (Gordon & Moser, 2007),
raising the possibility that changes in relational complexity might be associated with changes
in search patterns (and by extension, associated network connectivity). We cannot
unequivocally rule out potentially small differences in eye movement patterns between
complexity conditions in our study, but there are at least two reasons why such findings are
unlikely to be directly relevant here. First, Gordon and Moser (2007) actively encouraged
visual search by having their participants compare two different picture stimuli arranged one
above the other on a page. By contrast, our LST paradigm involved the relatively brief
presentation of a single 4 x 4 matrix at fixation. Second, the stimuli used by Gordon and
Moser (2007) were visually complex line drawings that included several different object types
that varied in size, shape and semantic content across trials. By contrast, our LST stimuli
involved a single matrix containing identical shapes across complexity conditions, and did not
explicitly require active search to solve for the target. Finally, we found no correlation
between performance on a standard visual search task and reasoning performance or brain-

based network efficiency metrics (subset of participants, N=43). If increasing visual search
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demands across task conditions was responsible for the observed network differences,

performance on this visual search task should have correlated with the brain-derived metrics.

In conclusion, our findings suggest that reasoning demands rely on selective patterns of
connectivity within fronto-parietal, salience, cingulo-opercular, subcortical and default-mode
networks, which emerge in addition to a more general, task-induced modular architecture.
Further work will be needed to elucidate the network processes that bring about the intricate
and coordinated changes in connectivity patterns at the level of edges, modules and the whole
brain, in the service higher cognition. Meanwhile, the current results provide novel insights

into the roles of both specific and global network changes in reasoning.
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Table 1. Variation of Information statistics.

Network density
5% 10% 15% 20% 25% 30%
Contrast VIn p ViIn p Vin p ViIn p Vin p VIn p
Pre-task  Post-task rest ~ 0.056 0.878 0.065 0.863 0.109 0.656 0.098 0.836 0.124 0.552  0.092 0.944
rest Null 0.146 0.013 0.139 0.077 0.124 0.397 0.189 0.009* 0.198 0.005* 0.186 0.029
Binary 0.148 0.006* 0.179 0.001* 0.218 0.001* 0.219 <0.001* 0.216 0.007*  0.209 0.023
Ternary 0.166  0.002* 0.194 <0.001* 0.226 <0.001* 0.226 0.001* 0.221 0.002* 0.215 0.002*
Quaternary 0.148  0.009* 0.189 <0.001* 0.225 <0.001* 0.22 <0.001* 0.221 <0.001* 0.203 0.008*
Post-  Null 0.117 0.231 0.154 0.019 0.098 0.81 0.153 0.084 0.185 0.015 0.191 0.018
task rest Binary 0.128 0.099 0.185 0.001* 0.176 0.033 0.181 0.074 0.212 0.01* 0.203 0.018
Ternary 0.16 0.006%* 0.204 <0.001* 0.194 0.006* 0.203 0.003* 0.2 0.016 022 0.001%*
Quaternary 0.128 0.083 0.189 0.002* 0.195 0.005* 0.202 0.001* 0.2 0.005* 0.211 0.001*
Null Binary 0.028 1 0.121 0.245 0.162 0.199 0.1 0.698 0.1 0.674 0.106 0.534
Ternary 0.094 0.711 0.133 0.237 0.193 0.023 0.13 0.645 0.119 0.567 0.132 0.246
Quaternary 0.052 0.987 0.117 0.272 0.181 0.04 0.14 0.539 0.132 0.467 0.132 0.291
Binary  Ternary 0.096 0.681 0.154 0.159 0.097 0.801 0.1 0.485 0.093 0.571 0.11 0.306
Quaternary 0.038 0.998 0.121 0.375 0.086 0.91 0.111 0.507 0.106 0.484 0.108 0.387
Ternary  Quaternary 0.082 0.747 0.084 0.894 0.041 1 0.051 0.986 0.061 0.943  0.051 0.969

Note: * indicates contrasts where p < 0.01
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Table 2. Significant pairwise changes in functional connectivity associated with
increasing relational complexity

MNI RSN Mod Anatomy Degree
X y z
-7 -52 61 SShand  Vis Precuneus 12
4 -48 51 Mem Sens Precuneus 10
47 10 33 FPN FPN Precentral gyrus 7
-2 -35 31 Mem DMN  Middle cingulate cortex
34 3 4 CO Vis Middle insula
23 10 1 SC Vis Putamen
49 8 -1 CcoO FPN Superior temporal pole

-11 -56 16 DMN DMN  Calcarine gyrus

-2 38 36 DMN DMN  Medial superior frontal gyrus
-42 55 45 FPN FPN Inferior parietal cortex

45 0 9 CcoO Vis Rolandic operculum

52 -59 36 DMN DMN  Angular gyrus

-35 20 51 DMN DMN  Middle frontal gyrus

9 -4 6 SC Vis Thalamus

-2 -13 12 SC Vis Thalamus

-47 11 23 FPN FPN Inferior frontal gyrus (operculum)
-42 45 -2 FPN FPN Inferior frontal gyrus (orbital)
54 28 34 CO Vis Supramarginal gyrus

8 -48 31 DMN DMN  Posterior cingulate cortex

13 30 59 DMN DMN  Superior frontal gyrus

11 -39 50 Sal Sens Middle cingulate cortex

15 =77 31 Vis Sens Cuneus

41 6 33 FPN FPN Precentral gyrus

53 49 43 FPN FPN Inferior parietal cortex

-44 2 46 FPN DMN  Precentral gyrus

3 -17 58 SShand  Vis Supplementary motor area

65 -33 20 Aud Vis Superior temporal gyrus

-51 8 -2 CcoO Vis Insula

15 -63 26 DMN DMN  Cuneus
11 -54 17 DMN DMN Precuneus

36 10 1 CcoO FPN Insula

-10  -18 7 SC Vis Thalamus

227 -5 SC Vis Putamen

43 -78  -12  Vis Sens Inferior occipital cortex
42 -60 -9 DorAtt Sens Inferior temporal gyrus
-3 26 44  FPN FPN Superior frontal gyrus (medial)
44 -53 47 FPN FPN Inferior parietal cortex
32 14 56 FPN DMN  Middle frontal gyrus
-40  -19 54 SShand  Vis Precentral gyrus

0 -15 47 SShand  Vis Middle cingulate cortex
-10 -2 42 CcoO Vis Middle cingulate cortex
50 34 26 Aud Vis Supramarginal gyrus

59  -17 29 Aud Vis Postcentral gyrus

37 1 -4 CcoO Vis Insula

6 -59 35 DMN DMN  Precuneus

-41 75 26 DMN DMN  Middle occipital cortex
65 31 -9 DMN DMN  Middle temporal gyrus
43 =72 28 DMN FPN Middle occipital cortex
-3 42 16 DMN DMN  Anterior cingulate cortex
-16 29 53 DMN DMN  Superior frontal gyrus
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2 -24 30 Mem DMN  Middle cingulate cortex |
12 36 20 DMN DMN  Anterior cingulate cortex 1
6 240 SC Vis Thalamus 1
12 -17 8 SC Vis Thalamus 1
-5 -28 -4 SC Vis Lingual gyrus 1
31 -14 2 SC Vis Putamen 1
29 1 4 SC Vis Putamen 1
31 -11 0 SC Vis Putamen 1
15 5 7 SC Vis Pallidum 1
37 -84 13  Vis Sens Middle occipital cortex 1
37 81 1 Vis Sens Middle occipital cortex 1
33 -79  -13  Vis Sens Inferior occipital cortex 1
49 -42 45 FPN FPN Inferior parietal cortex |

Note: Automated Anatomical Labeling atlas was used to define anatomical regions. RSN = initial
Power et al., 2011 resting state network affiliation. Mod = modules defined by modularity analysis
(i.e., Figure 3).
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