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Abstract	17	

Across	 academia	 and	 industry,	 text	mining	 has	 become	 a	 popular	 strategy	 for	18	

keeping	up	with	the	rapid	growth	of	the	scientific	literature.	Text	mining	of	the	19	

scientific	literature	has	mostly	been	carried	out	on	collections	of	abstracts,	due	to	20	

their	availability.	Here	we	present	an	analysis	of	15	million	English	scientific	full-21	

text	 articles	 published	 during	 the	 period	 1823–2016.	 We	 describe	 the	22	
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development	in	article	length	and	publication	sub-topics	during	these	nearly	250	23	

years.	We	showcase	the	potential	of	text	mining	by	extracting	published	protein–24	

protein,	disease–gene,	and	protein	subcellular	associations	using	a	named	entity	25	

recognition	 system,	 and	 quantitatively	 report	 on	 their	 accuracy	 using	 gold	26	

standard	 benchmark	 data	 sets.	 We	 subsequently	 compare	 the	 findings	 to	27	

corresponding	 results	obtained	on	16.5	million	abstracts	 included	 in	MEDLINE	28	

and	 show	 that	 text	 mining	 of	 full-text	 articles	 consistently	 outperforms	 using	29	

abstracts	only.		30	

	31	

	32	

Introduction	33	

Text	 mining	 has	 become	 a	 widespread	 approach	 to	 identify	 and	 extract	34	

information	 from	 unstructured	 text.	 Text	 mining	 is	 used	 to	 extract	 facts	 and	35	

relationships	 in	 a	 structured	 form	 that	 can	 be	 used	 to	 annotate	 specialized	36	

databases,	 to	 transfer	 knowledge	between	domains	 and	more	 generally	within	37	

business	intelligence	to	support	operational	and	strategic	decision-making	[1–3].	38	

Biomedical	 text	 mining	 is	 concerned	 with	 the	 extraction	 of	 information	39	

regarding	 biological	 entities,	 such	 as	 genes	 and	 proteins,	 phenotypes,	 or	 even	40	

more	broadly	biological	pathways	(reviewed	extensively	in	[3–9])	from	sources	41	

like	 scientific	 literature,	 electronic	 patient	 records,	 and	 most	 recently	 patents	42	

[10–13].	Furthermore,	the	extracted	information	has	been	used	as	annotation	of	43	

specialized	databases	and	tools	(reviewed	 in	[3,14]).	 In	addition,	 text	mining	 is	44	

routinely	used	to	support	manual	curation	of	biological	databases	[15,16].	Thus,	45	
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text	 mining	 has	 become	 an	 integral	 part	 of	 many	 resources	 serving	 a	 wide	46	

audience	of	scientists.	The	main	text	source	for	scientific	literature	has	been	the	47	

MEDLINE	corpus	of	abstracts,	essentially	due	to	the	restricted	availability	of	full-48	

text	articles.	However,	full-text	articles	are	becoming	more	accessible	and	there	49	

is	a	growing	interest	in	text	mining	of	complete	articles.	Nevertheless,	to	date	no	50	

studies	have	presented	a	systematic	comparison	of	the	performance	comparing	51	

abstracts	and	full-texts	in	corpora	that	are	similar	in	size	to	MEDLINE.		52	

	53	

Full-text	 articles	 and	 abstracts	 are	 structurally	 different	 [17].	 Abstracts	 are	54	

comprised	of	shorter	sentences	and	very	succinct	text	presenting	only	the	most	55	

important	 findings.	 By	 comparison,	 full-text	 articles	 contain	 complex	 tables,	56	

display	 items	 and	 references.	 Moreover,	 they	 present	 existing	 and	 generally	57	

accepted	 knowledge	 in	 the	 introduction	 (often	 presented	 in	 the	 context	 of	58	

summaries	 of	 the	 findings),	 and	 move	 on	 to	 reporting	 more	 in-depth	 results,	59	

while	discussion	sections	put	the	results	in	perspective	and	mention	limitations	60	

and	concerns.	The	latter	is	often	considered	to	be	more	speculative	compared	to	61	

the	abstract	[3].		62	

	63	

While	text-mining	results	from	accessible	full-text	articles	have	already	become	64	

an	 integral	 part	 of	 some	 databases	 (reviewed	 recently	 for	 protein-protein	65	

intaractions	 [18]),	 very	 few	 studies	 to	 date	 have	 compared	 text	 mining	 of	66	

abstracts	and	full-text	articles.	Using	a	corpus	consisting	of	~20,000	articles	from	67	

the	 PubMed	 Central	 (PMC)	 open-access	 subset	 and	 Directory	 of	 Open	 Access	68	

Journals	 (DOAJ),	 it	 was	 found	 that	 many	 explicit	 protein–protein	 interactions	69	
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only	are	mentioned	in	the	full	text	[19].	Additionally,	in	a	corpus	of	1,025	full-text	70	

articles	it	was	noticed	that	some	pharmacogenomics	associations	are	only	found	71	

in	 the	 full	 text	 [20].	 One	 study	 using	 a	 corpus	 of	 3,800	 articles	 with	 focus	 on	72	

Caenorhabditis	 elegans	 noted	 an	 increase	 in	 recall	 from	 45%	 to	 95%	 when	73	

including	the	full	text	[21].	Other	studies	have	worked	with	even	smaller	corpora	74	

[17,22,23].	 One	 study	 have	 even	 noted	 that	 the	 majority	 of	 claims	 within	 an	75	

article	 is	 not	 reported	 in	 the	 abstract	 [24].	Whilst	 these	 studies	 have	 been	 of	76	

significant	 interest,	 the	 number	 of	 full-text	 articles	 and	 abstracts	 used	 for	77	

comparison	are	nowhere	near	 the	magnitude	of	 the	actual	number	of	scientific	78	

articles	published	to	date,	and	it	is	thus	unclear	if	the	results	can	be	generalized	79	

to	 the	 scientific	 literature	 as	 a	 whole.	 The	 earlier	 studies	 have	 mostly	 used	80	

articles	retrieved	from	PMC	in	a	structured	XML	file.	However,	 full-text	articles	81	

received	 or	 downloaded	 directly	 from	 the	 publishers	 often	 come	 in	 the	 PDF	82	

format,	which	must	be	converted	to	a	raw	unformatted	text	file.	This	presents	a	83	

challenge,	as	the	quality	of	the	text	mining	will	depend	on	the	proper	extraction	84	

and	filtering	of	the	unformatted	text.	A	previous	study	dealt	with	this	by	writing	85	

custom	 software	 taking	 into	 account	 the	 structure	 and	 font	 of	 each	 journal	 at	86	

that	 time	 [21].	 More	 recent	 studies	 typically	 provide	 algorithms	 that	87	

automatically	determines	the	layout	of	the	articles	[25–27].		88	

	89	

In	this	work,	we	describe	a	corpus	of	15	million	full-text	scientific	articles	from	90	

Elsevier,	 Springer,	 and	 the	 open-access	 subset	 of	 PMC.	 The	 articles	 were	91	

published	 during	 the	 period	 1823–2016.	 We	 highlight	 the	 possibilities	 by	92	

extracting	 protein–protein	 associations,	 disease–gene	 associations,	 and	protein	93	
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subcellular	 localization	 from	 the	 large	 collection	 of	 full-text	 articles	 using	 a	94	

Named	 Entity	 Recognition	 (NER)	 system	 combined	 with	 a	 scoring	 of	 co-95	

mentions.	 We	 quantitatively	 report	 the	 accuracy	 and	 performance	 using	 gold	96	

standard	benchmark	data	sets.	Lastly,	we	compare	the	findings	to	corresponding	97	

results	obtained	on	the	matching	set	of	abstracts	included	in	MEDLINE	as	well	as	98	

the	full	set	of	16.5	million	MEDLINE	abstracts.	99	

	100	

	101	

Results	102	

	103	

Growth	and	temporal	development	in	full	text	corpora	104	

The	growth	of	the	data	set	over	time	is	of	general	interest	in	itself,	however,	it	is	105	

also	important	to	secure	that	the	concepts	used	in	the	benchmarks	are	likely	to	106	

be	present	 in	a	 large	part	of	 the	 corpus.	We	 found	 that	 the	number	of	 full-text	107	

articles	 has	 grown	exponentially	 over	 a	 long	period	 (Fig	 1a,	 a	 log-transformed	108	

version	is	provided	in	Supplementary	Fig	1).	We	also	observed	that	the	growth	109	

represents	 a	 mixture	 of	 two	 components:	 one	 from	 1823–1944,	 and	 another	110	

from	1945–2016.	Fitting	an	exponential	curve	to	the	years	1945–2016	we	found	111	

that	the	growth	rate	is	0.103	(𝑝 < 2 ∗ 10'(),	𝑅+ = 0.95).	Thus,	the	doubling	time	112	

for	the	full-text	corpus	is	9.7	years.	In	comparison,	MEDLINE	had	a	growth	rate	113	

of	0.195	(𝑝 < 2 ∗ 10'(),	𝑅+ = 0.91)	and	a	doubling	time	of	5.1	years.	We	noticed	114	

that	 there	was	a	drop	 in	 the	number	of	 full-text	publications	around	 the	years	115	
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1914–1918	 and	 1940–1945.	 Likewise,	 we	 see	 a	 decrease	 in	 the	 number	 of	116	

publications	indexed	by	MEDLINE	in	the	entire	period	1930–1948.		117	

Fig	1:	Temporal	corpus	statistics.		(a)	Number	of	publications	per	year	in	the	118	

period	1823-2016.	The	growth	in	publications	was	found	to	fit	an	exponential	119	

model.	(b)	Temporal	development	in	the	distribution	of	six	different	topical	120	

categories	in	the	period	1823-2016.	Publications	from	health	science	journals	121	

made	up	nearly	75%	of	all	publications	until	1950,	at	which	point	it	started	to	122	

decrease	rapidly.	To	date,	it	makes	up	approximately	25%	of	the	publications	in	123	

the	full-text	corpus.	(c)	Development	in	the	number	of	pages	per	article	in	the	124	

period	1823-2016.	The	range	of	pages	varies	from	1-1,572	pages.	Until	year	125	

1900	the	number	of	one-page	articles	were	increasing,	at	one	point	making	up	126	

75%	of	all	articles.	At	the	end	of	the	19th	century,	the	number	of	one-page	127	

articles	started	to	decrease,	and	by	the	start	of	the	21th	century	they	made	up	128	

less	than	20%.	Conversely,	the	number	of	articles	with	11+	pages	has	been	129	

increasing,	and	by	the	start	of	the	21th	century	made	up	more	than	20%	of	all	130	

articles.	131	

	132	

We	 binned	 the	 full-text	 articles	 into	 four	 categories	 based	 on	 the	 number	 of	133	

pages	(see	Methods).	The	average	 length	of	articles	has	 increased	considerably	134	

during	the	almost	250	years	studied	(Fig	1b).	Whereas	75%	of	the	articles	were	135	

1–3	 pages	 long	 at	 the	 end	 of	 the	 20th	 century,	 less	 than	 25%	 of	 the	 articles	136	

published	after	year	2000	are	 that	 short.	Conversely,	articles	with	 ten	or	more	137	

pages	only	made	up	between	0.7%-7%	in	the	19th	century,	a	level	that	had	grown	138	

to	20%	by	the	start	of	the	21st	century.		139	
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	140	

In	the	full-text	corpora	we	found	a	total	of	12,781	unique	journal	titles.	The	most	141	

prevalent	 journals	 are	 tied	 to	 health	 or	 life	 sciences,	 such	 as	 The	 Lancet,	142	

Tetrahedron	Letters,	 and	Biochemical	and	Biophysical	Research	Communications,	143	

or	the	more	broad	journals	such	as	PLoS	ONE	(see	Supplementary	Table	1	for	the	144	

top-15	 journals).	The	Lancet	publishes	 only	 very	 few	 articles	 per	 issue,	 it	 was	145	

established	in	1823	and	has	been	active	in	publishing	since	then,	thus	explaining	146	

why	 it	 so	 far	has	nearly	published	400,000	articles.	 In	 contrast,	PLoS	ONE	was	147	

launched	in	2006,	and	has	published	more	than	172,000	articles.	Of	the	12,781	148	

journal	titles,	6,900	had	one	or	more	category	labels	assigned	by	librarians	at	the	149	

Technical	University	of	Denmark.	The	vast	majority	of	the	full-texts,	13,343,040,	150	

were	published	 in	 journals	with	one	or	more	category	 labels.	The	 frequency	of	151	

each	 category	 within	 the	 corpus	 can	 be	 seen	 in	 Supplementary	 Fig	 2.	 We	152	

observed	that	before	the	1950’s	health	science	dominated	and	made	up	almost	153	

75%	of	all	publications	(Fig	1c).	At	the	start	of	the	1950’s	the	fraction	started	to	154	

decrease,	 and	 to	 date	 health	 science	 makes	 up	 approximately	 25%	 of	 all	155	

publications	in	the	full-text	corpus.	Inspecting	the	remaining	eleven	categories	in	156	

a	separate	plot	we	found	that	there	was	no	single	category	that	was	responsible	157	

for	the	growth	(Supplementary	Fig	3).		158	

	159	

Evaluating	information	extraction	across	corpora	160	

We	 analyzed	 and	 compared	 four	 different	 corpora	 comprising	 all	 full-text	161	

articles	(14,549,483	articles,	All	Full-texts),	 full-text	articles	that	had	a	separate	162	

abstract	 (10,376,626	 articles,	 Core	 Full-texts),	 the	 abstract	 from	 the	 full-text	163	
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articles	 (10,376,626	 abstracts,	 Core	 Abstracts),	 and	 the	 MEDLINE	 corpus	164	

(16,544,511	abstracts,	MEDLINE).	165	

	166	

We	have	used	quite	difficult,	but	still	well	established	benchmarks,	 to	 illustrate	167	

the	differences	in	performance	when	comparing	text	mining	of	abstracts	to	full-168	

text	 articles.	 Within	 biology,	 and	 specifically	 in	 the	 area	 of	 systems	 biology,	169	

macromolecular	 interactions	 and	 the	 relationships	 between	 genes,	 tissues	 and	170	

diseases	are	key	data	that	drive	modeling	and	the	analysis	of	causal	biochemical	171	

mechanisms.	 Knowledge	 of	 interactions	 between	 proteins	 is	 extremely	 useful	172	

when	revealing	the	components,	which	contribute	to	mechanisms	in	both	health	173	

and	disease.	As	many	biological	species	from	evolution	share	protein	orthologs,	174	

their	 mutual	 interactions	 can	 often	 be	 transferred,	 for	 example	 from	 an	175	

experiment	 in	 another	 organism	 to	 the	 corresponding	 pair	 of	 human	 proteins	176	

where	 the	 experiment	 has	 not	 yet	 been	 performed.	 Such	 correspondences	 can	177	

typically	 be	 revealed	 by	 text	mining	 as	 researchers	 in	 one	 area	 often	will	 not	178	

follow	the	literature	in	the	other	and	vice	versa.		179	

	180	

We	ran	the	text	mining	pipeline	on	the	two	full-text	and	two	abstract	corpora.	In	181	

all	cases	we	 found	that	 the	AUC-value	was	 far	greater	 than	0.5,	 from	which	we	182	

conclude	 that	 the	 results	 were	 substantially	 better	 than	 random	 (Fig	 2).	 The	183	

biggest	gain	in	performance	when	using	full-text	was	seen	in	finding	associations	184	

between	diseases	 and	genes	 (Supplementary	Table	2).	 Compared	 to	MEDLINE,	185	

the	traditional	corpus	used	for	biomedical	text	mining,	there	was	an	increase	in	186	

the	AUC	from	0.85	to	0.91.	The	smallest	gain	was	associations	between	proteins,	187	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 11, 2017. ; https://doi.org/10.1101/162099doi: bioRxiv preprint 

https://doi.org/10.1101/162099
http://creativecommons.org/licenses/by/4.0/


	 9	

which	 increased	 from	 0.70	 to	 0.73.	 Likewise,	 the	 Core	 Full-texts	 always	188	

performed	better	than	Core	Abstracts,	signifying	that	some	associations	are	only	189	

reported	 in	 the	main	body	of	 the	 text.	 Consequently,	 traditional	 text	mining	of	190	

abstracts	will	never	be	able	to	find	this	information.		191	

	192	

Fig	2:	Benchmarking	the	four	different	corpora.	In	all	cases	the	AUC	is	far	greater	193	

than	0.5,	indicating	that	the	results	obtained	are	better	than	random.	The	biggest	194	

gain	in	AUC	is	seen	for	disease-gene	associations	(a),	followed	by	protein-195	

compartment	associations	(c)	and	protein-protein	associations	(b).		196	

	197	

It	has	previously	been	speculated	if	text	mining	of	full-text	articles	may	be	more	198	

difficult	and	lead	to	an	increased	rate	of	false	positives	[3].	To	investigate	this	we	199	

altered	 the	 weights	 of	 the	 scoring	 system.	 The	 scoring	 scheme	 used	 here	 has	200	

weights	 for	 within	 sentence,	 within	 paragraph	 and	 within	 document	 co-201	

occurrences	 (see	Methods).	When	 setting	 the	 document	weight	 to	 zero	 versus	202	

using	 the	 previously	 calibrated	 value	 we	 found	 that	 having	 a	 non-zero	 small	203	

value	does	indeed	improve	extraction	of	known	facts	in	all	cases	(Supplementary	204	

Fig	4).	Inspecting	the	gain	in	AUC	we	found	that	it	is	lower,	compared	to	having	a	205	

document	 weight	 (Supplementary	 Table	 2).	 In	 one	 case,	 protein–protein	206	

associations,	 the	 MEDLINE	 abstract	 corpus	 outperforms	 the	 full-text	 articles.	207	

Abstracts	 are	 generally	 unaffected	 by	 the	 document	 weight,	 mainly	 because	208	

abstracts	 are	 almost	 always	 one	 paragraph.	 Overall,	 the	 difference	 in	209	

performance	gain	is	largest	for	full-texts	and	lowest	for	abstracts	and	MEDLINE.	210	

Hence,	all	the	full-text	information	is	indeed	valuable	and	necessary.		211	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 11, 2017. ; https://doi.org/10.1101/162099doi: bioRxiv preprint 

https://doi.org/10.1101/162099
http://creativecommons.org/licenses/by/4.0/


	 10	

	212	

For	practical	applications,	it	is	often	necessary	to	have	a	low	False	Positive	Rate	213	

(FPR).	Accordingly,	we	 evaluated	 the	True	Positive	Rate	 (TPR)	 of	 the	different	214	

corpora	at	 the	10%	FPR	(TPR@10%FPR)	(Fig	3).	We	found	that	 full-texts	have	215	

the	highest	TPR@10%FPR	 for	disease-gene	associations	 (Supplementary	Table	216	

3).	 When	 considering	 protein–protein	 associations	 and	 protein-compartment	217	

associations,	 full-texts	 perform	 equivalently	 to	 Core	 Abstracts	 and	 Core	 Full-218	

texts.	The	result	was	similar	to	when	we	evaluated	the	AUC	across	the	full	range,	219	

removing	 the	 document	 weight	 has	 the	 biggest	 impact	 on	 the	 full-texts	220	

(Supplementary	Fig	5),	while	abstracts	remain	unaffected.		221	

	222	

Fig	3:	Benchmarking	the	four	different	corpora	at	low	false	positive	rates.	At	a	223	

false	positive	rate	of	10%,	relevant	to	practical	applications,	the	full-text	corpus	224	

still	outperforms	the	collection	of	MEDLINE	abstracts	for	the	extraction	of	225	

disease-gene	associations.	Conversely,	the	performance	is	the	same	for	protein-226	

protein	associations	and	protein-compartment	associations.	227	

	228	

Discussion		229	

We	have	 investigated	a	unique	corpus	consisting	of	15	million	 full-text	articles	230	

and	compared	the	results	to	the	most	commonly	used	corpus	for	biomedical	text	231	

mining,	MEDLINE.	We	found	that	the	full-text	corpus	outperforms	the	MEDLINE	232	

abstracts	 in	 all	 benchmarked	 cases.	 To	 our	 knowledge,	 this	 is	 the	 largest	233	

comparative	study	to	date	of	abstracts	and	full-text	articles.	We	envision	that	the	234	
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results	presented	here	can	be	used	 in	 future	applications	 for	discovering	novel	235	

associations	 from	 mining	 of	 full-text	 articles,	 and	 as	 a	 motivation	 to	 always	236	

include	full-text	articles	when	available	and	to	improve	the	techniques	used	for	237	

this	purpose.		238	

	239	

The	corpus	consisted	of	15,032,496	 full-text	documents,	mainly	 in	PDF	 format.	240	

1,504,674	 documents	 had	 to	 be	 discarded	 for	 technical	 reasons,	 primarily	241	

because	 they	were	not	 in	English.	 Further,	 a	 large	number	of	 documents	were	242	

also	 found	 to	be	duplicates	or	 subsets	of	 each	other.	On	manual	 inspection	we	243	

found	 that	 these	were	often	conference	proceedings,	 collections	of	articles	etc.,	244	

which	were	not	easily	separable	without	manual	curation.	We	also	managed	to	245	

identify	 the	 list	 of	 references	 in	 the	 majority	 of	 the	 articles	 thereby	 reducing	246	

some	 repetition	 of	 knowledge	 that	 could	 otherwise	 lead	 to	 an	 increase	 in	 the	247	

false	positive	rate.		248	

	249	

We	have	encountered	and	described	a	number	of	problems	when	working	with	250	

full-text	articles	converted	 from	PDF	 to	TXT	 from	a	 large	corpus.	However,	 the	251	

majority	of	 the	problems	did	not	 stem	 from	 the	PDF	 to	TXT	conversion,	which	252	

could	 potentially	 be	 solved	 using	 a	 layout	 aware	 conversion	 tool.	 Examples	253	

include	LA-PDFText	[27],	SectLabel	[26]	of	PDFX	[25],	of	which	the	latter	is	not	254	

practical	for	very	large	corpora	as	it	only	exists	as	an	online	tool.	Nonetheless,	to	255	

make	use	 of	 the	 large	 volume	of	 existing	 articles	 it	 is	 necessary	 to	 solve	 these	256	

problems.	 Having	 all	 the	 articles	 in	 a	 structured	 XML	 format,	 such	 as	 the	 one	257	

provided	 by	 PubMed	 Central,	 would	 with	 no	 doubt	 produce	 a	 higher	 quality	258	
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corpus.	 This	 may	 in	 turn	 further	 increase	 the	 benchmark	 results	 for	 full-text	259	

articles.	Nevertheless,	 the	reality	 is	 that	many	articles	are	not	served	 that	way.	260	

Consequently,	the	performance	gain	we	report	here	should	be	viewed	as	a	lower	261	

limit	 as	we	 have	 sacrificed	 quality	 in	 favor	 of	 a	 larger	 volume	 of	 articles.	 The	262	

solutions	we	have	outlined	here	will	serve	as	a	guideline	and	baseline	for	future	263	

studies.			264	

	265	

The	 increasing	 article	 length	may	 have	 different	 underlying	 causes,	 but	 one	 of	266	

the	 main	 contributors	 is	 most	 likely	 increased	 funding	 to	 science	 worldwide	267	

[28,29].	 	 Experiments	 and	 protocols	 are	 consequently	 getting	 increasingly	268	

complex	 and	 interdisciplinary	 –	 aspects	 that	 also	 contribute	 to	 driving	269	

meaningful	publication	lengths	upward.	The	increased	complexity	has	also	been	270	

found	 to	 affect	 the	 language	 of	 the	 articles,	 as	 it	 is	 becoming	 more	271	

specialized[30].	 It	was	outside	 the	scope	of	 this	paper	 to	go	 further	 into	 socio-272	

economic	impact.	We	have	limited	this	to	presenting	the	trends	from	what	could	273	

be	computed	from	the	meta-data.		274	

	275	

Previous	 papers	 are	 –	 in	 terms	 of	 benchmarking	 –	 only	 making	 qualitative	276	

statements	about	the	value	of	full-text	articles	as	compared	to	text	in	abstracts.	277	

In	 one	 paper	 a	 single	 statement	 is	 made	 on	 the	 potential	 for	 extracting	278	

information,	but	no	quantitative	evidence	is	presented	[31].	In	a	paper	targeting	279	

pharmacogenomics	it	is	similarly	stated	that	that	there	are	associations	that	only	280	

are	found	in	the	full-text,	but	no	quantitative	estimates	are	presented	[20].	In	a	281	

paper	 analyzing	 around	 20,000	 full-text	 papers	 a	 search	 for	 physical	 protein	282	
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interactions	was	made,	concluding	that	these	contain	considerable	higher	levels	283	

of	 interaction	 [19].	 Again,	 no	 quantitative	 benchmarks	 were	 made	 comparing	284	

different	 sources.	 In	 this	 paper,	 we	 have	 made	 a	 detailed	 comparison	 of	 four	285	

different	corpora	that	provides	a	strong	basis	for	estimating	the	added	value	of	286	

using	full-text	articles	in	text	mining	workflows.		287	

	288	

The	 results	 presented	 here	 are	 purely	 associational.	 Through	 rigorous	289	

benchmarking	and	comparison	of	a	variety	of	biologically	relevant	associations,	290	

we	have	demonstrated	that	a	substantial	amount	of	relevant	information	is	only	291	

found	in	the	full	body	of	text.	Additionally,	by	modifying	the	document	weight	we	292	

found	 that	 it	was	 important	 to	 take	 into	 account	 the	whole	 document	 and	not	293	

just	 individual	paragraphs.	Consequently,	 as	 text	mining	methods	 improve	and	294	

become	more	 sophisticated,	 the	 quantitative	 benchmarks	will	 improve.	 Event-295	

based	text	mining	will	be	the	next	step	for	a	deeper	interpretation	and	extending	296	

the	 applicability	 of	 the	 results	 [5].	 With	 more	 development	 it	 may	 also	 be	297	

possible	 to	 extract	 quantitative	 values,	 as	 has	 been	 demonstrated	 for	298	

pharmacokinetics	[32].	However,	this	was	outside	the	scope	of	this	article.			299	

	300	

The	 Named	 Entity	 Recognition	 (NER)	 system	 used	 depends	 heavily	 on	 the	301	

dictionaries	 and	 stop	 word	 lists.	 A	 NER	 system	 is	 also	 very	 sensitive	 to	302	

ambiguous	words.	 To	 combat	 this	we	have	used	dictionaries	 from	well-known	303	

and	peer-reviewed	databases,	and	we	have	included	other	dictionaries	to	avoid	304	

ambiguous	 terms.	 Other	 approaches	 to	 text	 mining	 have	 previously	 been	305	

extensively	reviewed	[10,14,32].	306	
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	307	

The	 full-text	 corpus	presented	here	 consists	 of	 articles	 from	Springer,	 Elsevier	308	

and	PubMed.	However,	we	still	believe	that	the	results	presented	here	are	valid	309	

and	can	be	generalized	across	publishers,	to	even	bigger	corpora.	Preprocessing	310	

of	corpora	is	an	ongoing	research	project,	and	it	can	be	difficult	to	weed	out	the	311	

rubbish	when	dealing	with	millions	of	documents.	We	have	tried	to	use	a	process	312	

where	 we	 evaluate	 the	 quality	 of	 a	 subset	 of	 randomly	 selected	 articles	313	

repeatedly	and	manually,	until	it	no	longer	improves.			314	

	315	

	316	

Methods	317	

MEDLINE	Corpus	318	

The	 MEDLINE	 corpus	 consists	 of	 26,385,631	 citations.	 We	 removed	 empty	319	

citations,	 corrections	 and	duplicate	PubMed	 IDs.	 For	duplicate	PubMed	 IDs	we	320	

kept	 only	 the	newest	 entry.	This	 led	 to	 a	 total	 of	 16,544,511	abstracts	 for	 text	321	

mining.	322	

	323	

PMC	Corpus	324	

The	 PubMed	 Central	 corpus	 comprises	 1,488,927	 freely	 available	 scientific	325	

articles	 (downloaded	 27th	 January	 2017).	 Each	 article	 was	 retrieved	 in	 XML	326	

format.	The	XML	file	contains	the	article	divided	into	paragraphs,	article	category	327	

and	meta-information	 such	 as	 journal,	 year	 published,	 etc.	 Articles	 that	 had	 a	328	
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category	 matching	 Addendum,	 Corrigendum,	 Erratum	 or	 Retraction	 were	329	

discarded.	A	total	of	5,807	documents	were	discarded	due	to	this,	yielding	a	total	330	

of	1,483,120	articles	 for	 text	mining.	The	article	paragraphs	were	extracted	 for	331	

text	mining.	No	 further	pre-processing	of	 the	text	was	done.	The	 journals	were	332	

categorized	 according	 to	 categories	 (described	 in	 the	 following	 section)	 by	333	

matching	 the	 ISSN	 number.	 The	 number	 of	 pages	 for	 each	 article	 was	 also	334	

extracted	 from	the	XML,	 if	possible.	Permission	 for	use	of	 the	PMC	corpus	was	335	

obtained	by	the	Technical	Information	Center	of	Denmark	(DTU	Library).	336	

		337	

TDM	Corpus	338	

The	 Technical	 Information	 Center	 of	 Denmark	 (DTU	 Library)	 TDM	 corpus	 is	 a	339	

collection	of	 full-text	 articles	 from	 the	publishers	Springer	 and	Elsevier,	where	340	

the	 library	 has	 obtained	 permission	 for	 use	 in	 the	 context	 of	 text	mining.	 The	341	

corpus	 covers	 the	period	 from	1823	 to	2016.	The	 corpus	 comprises	3,335,400	342	

and	 11,697,096	 full-text	 articles	 in	 PDF	 format,	 respectively.	 An	 XML	 file	343	

containing	 meta-data	 such	 as	 publication	 date,	 journal,	 etc.	 accompanies	 each	344	

full-text	article.	PDF	to	TXT	conversion	was	done	using	pdftotext	v0.47.0,	part	of	345	

the	Poppler	suite	(poppler.freedesktop.org).	192	articles	could	not	be	converted	346	

to	text	due	to	errors	in	the	PDF	file.	The	article	length,	counted	as	the	number	of	347	

pages,	 was	 extracted	 from	 the	 XML	 file.	 If	 not	 recorded	 in	 the	 XML	 file	 we	348	

counted	the	number	of	pages	in	the	PDF	file	using	the	Unix	tool	pdfinfo	v0.26.5.	349	

Articles	were	grouped	into	four	bins,	determined	from	the	25%,	50%,	and	75%	350	

quantiles,	 respectively.	 These	were	 found	 to	 be	 1-4	 pages	 (0-25%),	 5-7	 pages	351	

(25-50%),	8-10	pages	 (50-75%)	and	11+	pages	 (75%-100%).	Each	article	was,	352	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 11, 2017. ; https://doi.org/10.1101/162099doi: bioRxiv preprint 

https://doi.org/10.1101/162099
http://creativecommons.org/licenses/by/4.0/


	 16	

based	 on	 the	 journal	 where	 it	 was	 published,	 assigned	 to	 one	 or	more	 of	 the	353	

following	 seventeen	 categories:	 Health	 Sciences,	 Chemistry,	 Life	 Sciences,	354	

Engineering,	 Physics,	 Agriculture	 Sciences,	 Material	 Science	 and	 Metallurgy,	355	

Earth	 Sciences,	 Mathematical	 Sciences,	 Environmental	 Sciences,	 Information	356	

Technology,	Social	Sciences,	Business	and	Economy	and	Management,	Arts	and	357	

Humanities,	 Law,	 Telecommunications	 Technology,	 Library	 and	 Information	358	

Sciences.	Due	 to	 the	 large	number	of	categories,	we	condensed	anything	not	 in	359	

the	 top-6	 into	 the	 category	 “Other”.	 The	 top-six	 categories	 health	 science,	360	

chemistry,	 life	 sciences,	 engineering,	 physics	 and	 agricultural	 sciences	make	 up	361	

74.8%	of	the	data	(Supplementary	Fig	2).	The	assignment	of	categories	used	in	362	

this	 study	 was	 taken	 from	 the	 existing	 index	 for	 the	 journal	 made	 by	 the	363	

librarians	at	 the	DTU	Library.	For	 the	 temporal	 statistics,	 the	years	1823-1900	364	

were	condensed	into	one.			365	

	366	

Pre-processing	of	PDF-to-text	converted	documents	367	

Following	the	PDF-to-text	conversion	of	the	Springer	and	Elsevier	articles	we	ran	368	

a	 language	detection	 algorithm	 implemented	 in	 the	python	package	 langdetect	369	

v1.0.7	(https://pypi.python.org/pypi/langdetect).	We	discarded	902,415	articles	370	

that	 were	 not	 identified	 as	 English.	We	 pre-processed	 the	 remaining	 raw	 text	371	

from	the	articles	as	follows:	372	

1. Non-printable	characters	were	removed	using	the	POSIX	filter	[[:^print:]].	373	

2. A	line	of	text	was	removed	if	digits	make	up	more	than	10%	of	the	text,	or	374	

symbols	make	up	more	than	10%	of	the	text,	or	 lowercase	text	was	 less	375	

than	50%.	Symbols	are	anything	not	matching	[0-9A-Za-z].		376	
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3. Removal	of	acknowledgements	and	reference-	or	bibliography-lists	using	377	

a	rule-based	system	explained	below.	378	

4. Text	was	split	 into	sentences	and	paragraphs	using	a	 rule-based	system	379	

described	below.	380	

	381	

We	assumed	that	acknowledgements	and	reference	lists	are	always	at	the	end	of	382	

the	 article.	 Upon	 encountering	 either	 of	 the	 terms:	 “acknowledgement”,	383	

“bibliography”,	 “literature	 cited”,	 “literature”,	 “references”,	 and	 the	 following	384	

misspellings	thereof:	“refirences”,	“literatur”,	“références”,	“referesces”.	In	some	385	

cases	the	articles	had	no	heading	indicating	the	start	of	a	bibliography.	We	tried	386	

to	take	these	cases	into	account	by	constructing	a	RegEx	that	matches	the	typical	387	

way	 of	 listing	 references	 (e.g.	 [1]	 Westergaard,	 …).	 Such	 a	 pattern	 can	 be	388	

matched	by	the	RegEx	“^\[\d+\]\s[A-Za-z]”.	The	other	commonly	used	pattern,	389	

“1.	 Westergaard,	 …”,	 was	 avoided	 since	 it	 may	 also	 indicate	 a	 new	 heading.	390	

Keywords	were	identified	based	on	several	rounds	of	manual	inspection.	In	each	391	

round,	100	articles	in	which	the	reference	list	had	not	been	found	was	randomly	392	

selected	 and	 inspected.	 We	 were	 unable	 to	 find	 references	 in	 286,287	 and	393	

2,896,144	Springer	and	Elsevier	articles,	respectively.	Manual	inspection	of	100	394	

randomly	 selected	 articles	 revealed	 that	 these	 articles	 indeed	 did	 not	 have	 a	395	

reference	list	or	that	the	pattern	was	not	easily	describable	with	simple	metrics,	396	

such	as	keywords	and	RegEx.	Articles	without	references	were	not	discarded.		397	

	398	

The	 PDF	 to	 text	 conversion	 often	 breaks	 up	 paragraphs	 and	 sentences,	 due	 to	399	

new	 page,	 new	 column,	 etc.	 Paragraph	 and	 sentence	 splitting	 was	 performed	400	
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using	a	ruled-based	system.	If	the	previous	line	of	text	does	not	end	with	a	“.!?”,	401	

and	the	current	line	does	not	start	with	a	lower-case	letter,	it	is	assumed	that	the	402	

line	is	part	of	the	previous	sentence.	Otherwise,	the	line	of	text	is	assumed	to	be	a	403	

new	paragraph.		404	

	405	

Text	article	filtering	406	

A	 number	 of	 Springer	 and	Elsevier	 documents	were	 removed	 due	 to	 technical	407	

issues	post	pre-processing.	An	article	was	removed	if:	408	

1. Article	contained	no	text	post-preprocessing	(51,399	documents).		409	

2. Average	word	length	was	below	the	2%	quantile	(263,902	documents).	410	

3. Article	 contained	 specific	 keywords,	 described	 below	 (286,958	411	

documents).	412	

	413	

Some	PDF	 files	without	 texts	are	 scans	of	 the	original	article	 (point	1).	We	did	414	

not	attempt	to	make	an	optical	character	recognition	conversion	(OCR)	as	the	old	415	

typesetting	fonts	often	are	less	compatible	with	present	day	OCR	programs,	and	416	

this	can	lead	to	text	recognition	errors	[33,34].	For	any	discarded	document,	we	417	

still	used	the	meta-data	to	calculate	summary	statistics.	In	some	cases	the	PDF	to	418	

text	conversion	failed,	and	produced	non-sense	data	with	a	white	space	between	419	

the	characters	of	a	majority	of	 the	words	(point	2).	To	empirically	determine	a	420	

cutoff	we	gradually	increased	the	cutoff	and	repeatedly	inspected	100	randomly	421	

selected	articles.	At	the	2%	quantile	we	saw	no	evidence	of	broken	text.		422	

	423	
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Articles	with	the	following	keywords	in	the	article	were	discarded:	Author	Index,	424	

Key	Word	Index,	Erratum,	Editorial	Board,	Corrigendum,	Announcement,	Books	425	

received,	 Product	 news,	 and	 Business	 news	 (point	 3).	 These	 keywords	 were	426	

found	as	part	of	the	process	of	identifying	acknowledgements	and	reference	lists.	427	

Further,	 any	 article	 that	 was	 available	 through	 PubMed	 Central	 was	428	

preferentially	selected	by	matching	doi	identifiers.	This	left	a	total	of	14,549,483	429	

full-text	articles	for	further	analysis.		430	

	431	

Some	 articles	 were	 not	 separable,	 or	 were	 subsets	 of	 others.	 For	 instance,	432	

conference	proceedings	may	contain	many	 individual	articles	 in	 the	same	PDF.	433	

We	 found	 1,911,365	 articles	 in	 which	 this	 was	 the	 case.	 In	 these	 cases	 we	434	

removed	the	duplicates,	or	the	shorter	texts,	but	kept	one	copy	for	text	mining.	In	435	

total,	we	removed	898,048	duplicate	text	files.		436	

	437	

The	 majority	 of	 articles	 had	 a	 separate	 abstract.	 We	 matched	 articles	 from	438	

PubMed	 Central	 to	 their	 respective	 MEDLINE	 abstract	 using	 the	 PMCID	 to	439	

PubMed	 ID	 conversion	 file	 available	 from	 PMC.	 Articles	 from	 Springer	 and	440	

Elsevier	typically	had	a	separate	abstract	in	the	meta-data.	Any	abstract	from	an	441	

article	 that	was	part	 of	 the	1,911,365	 articles	 that	 could	not	 be	 separated	was	442	

removed.	This	led	to	a	total	of	10,376,626	abstracts	for	which	the	corresponding	443	

full-text	was	also	included	downstream,	facilitating	a	comparative	analysis.	444	

	445	
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Text	mining	of	articles	446	

We	 performed	 text	 mining	 of	 the	 articles	 using	 a	 Named	 Entity	 Recognition	447	

(NER)	system,	described	earlier[35–38].	The	software	is	open	source	and	can	be	448	

downloaded	 from	 https://bitbucket.org/larsjuhljensen/tagger.	 The	 NER	449	

approach	is	dictionary	based,	and	thus	depends	on	well-constructed	dictionaries	450	

and	stop	word	lists.	We	used	the	gene	names	from	the	STRING	dictionary	v10.0	451	

[35],	 disease	 names	 from	 the	 Disease	 Ontology	 (DO)	 [39]	 and	 compartment	452	

names	from	the	Gene	Ontology	branch	cellular	component	[40].	Stop	word	lists	453	

were	 all	 created	 and	 maintained	 in-house.	 Pure	 NER	 based	 approaches	 often	454	

struggles	 with	 ambiguity	 of	 words.	 Therefore,	 we	 included	 additional	455	

dictionaries	 that	we	do	not	 report	 the	 results	 from.	 If	 any	 identified	 term	was	456	

found	in	multiple	dictionaries,	it	was	discarded	due	to	ambiguity.	The	additional	457	

dictionaries	include	small	molecule	names	from	STITCH	[41],	tissue	names	from	458	

the	 Brenda	 Tissue	 Ontology	 [42],	 Gene	 Ontology	 biological	 process	 and	459	

molecular	function	[40],	and	the	mammalian	phenotype	ontology	[43].	The	latter	460	

is	 a	 modified	 version	 made	 to	 avoid	 clashes	 with	 the	 disease	 ontology.	 The	461	

dictionaries	can	be	downloaded	from	http://download.jensenlab.org/.	462	

	463	

In	 the	 cases	 where	 the	 dictionary	 was	 constructed	 from	 an	 ontology	 co-464	

occurrences	were	backtracked	through	all	parents.	E.g.	the	term	type	1	diabetes	465	

mellitus	 from	 the	 Disease	 Ontology	 is	 backtracked	 to	 its	 parent,	 diabetes	466	

mellitus,	then	to	glucose	metabolism	disease,	etc.	467	

	468	
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Co-occurrences	were	scored	using	the	scoring	system	described	in	[44].	In	short,	469	

a	weighted	count	for	each	pair	of	entities	(e.g.	disease-gene)	was	calculated	using	470	

the	formula,	471	

𝑪 𝒊, 𝒋 = 	 𝒘𝒅𝜹𝒅𝒌 𝒊, 𝒋
𝒏

𝒌;𝟏

	+ 	𝒘𝒑𝜹𝒑𝒌 𝒊, 𝒋 + 𝒘𝒔𝜹𝒔𝒌 𝒊, 𝒋 	472	

(1)	473	

where	𝛿	is	 an	 indicator	 function	 taking	 into	 account	 whether	 the	 terms	 i,j	 co-474	

occur	within	the	same	document	(d),	paragraph	(p),	or	sentence	(s).	w	is	the	co-475	

occurrence	 weight	 here	 set	 to	 1.0,	 2.0,	 and	 0.2,	 respectively.	 Based	 on	 the	476	

weighted	count,	the	score	S(i,j)	was	calculated	as,	477	

𝑺(𝒊, 𝒋) = 𝑪𝒊𝒋𝜶(
𝑪𝒊𝒋𝑪..
𝑪𝒊.𝑪.𝒋

)𝟏'𝜶	478	

(2)	479	

where	𝛼	is	set	to	0.6.	All	weights	were	optimized	using	the	KEGG	pathway	maps	480	

as	 benchmark	 (described	 further	 below).	 The	 S	 scores	 were	 converted	 to	 Z	481	

scores,	as	described	earlier	[45].	482	

	483	

Benchmarking	of	associations	484	

PPIs	were	benchmarked	using	pathway	maps	from	the	KEGG	database	[46].	Any	485	

two	proteins	in	the	same	pathway	were	set	to	be	a	positive	example,	and	any	two	486	

proteins	present	in	at	least	one	pathway,	but	not	the	same,	were	set	as	a	negative	487	
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example.	 This	 approach	 assumes	 that	 the	 pathways	 are	 near	 complete	 and	488	

includes	all	relevant	proteins.	The	same	approach	has	been	used	for	the	STRING	489	

database	 [44].	 The	 disease–gene	 benchmarking	 set	was	 created	 by	 setting	 the	490	

disease-gene	 associations	 from	 UniProt	 [47]	 and	 Genetics	 Home	 Reference	491	

(https://ghr.nlm.nih.gov/,	accessed	23th	March	2017)	as	positive	examples.	The	492	

positive	 examples	 were	 then	 shuffled,	 and	 the	 shuffled	 examples	 were	 set	 as	493	

negative	 examples.	 Shuffled	 examples	 that	 ended	 up	 overlapping	 with	 the	494	

positive	examples	were	discarded.	This	approach	has	previously	been	described	495	

[36].	 The	 protein–compartment	 benchmark	 set	 was	 created	 by	 extracting	 the	496	

compartment	 information	 for	each	protein	 from	UniProt	and	counting	 these	as	497	

positive	 examples.	 For	 every	 protein	 found	 in	 at	 least	 one	 compartment,	 all	498	

compartments	where	it	was	not	found	were	set	as	negative	examples.	The	same	499	

approach	has	been	used	previously	[38].	500	

	501	

Receiver	 Operating	 Characteristic	 (ROC)	 curves	 were	 created	 by	 gradually	502	

increasing	 the	 Z-score	 and	 calculating	 the	 True	 Positive	 Rate	 (TPR)	 and	 False	503	

Positive	Rate	(FPR),	as	described	in	eqs.	(3)	and	(4).	504	

	505	

𝑻𝑷𝑹 =
𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔
𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 	506	

(3)	507	
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	508	

𝑭𝑷𝑹 =
𝑻𝒓𝒖𝒆	𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔 	509	

(4)	510	

We	 compare	 the	 ROC	 curves	 by	 the	 Area	 Under	 the	 Curve	 (AUC),	 a	 metric	511	

ranging	from	0	to	1.		512	

	513	
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	Supporting	Information	Captions	663	

S1	Fig:	Number	of	publications	per	year	on	the	log	scale.	664	

	665	

S2	Fig:	Category	overview	across	all	journals	and	years.	The	bar	chart	indicates	666	

the	frequency,	whilst	the	line	is	the	cumulative	sum.	The	first	six	categories	667	

contribute	74,8%.	Due	to	the	large	number	of	categories,	anything	outside	the	668	

top-6	was	condensed	into	the	joint	category	“Other”.	669	

	670	

S3	Fig:	Temporal	trend	for	the	categories	embedded	in	the	“Other”	category.	We	671	

note	that	the	category	has	grown	as	a	whole,	but	that	the	growth	is	not	tied	to	672	

one	category.	673	

	674	

S4	Fig:	Benchmarking	the	four	different	corpora	not	using	a	document	weight.	675	

(a-c)	The	increase	in	performance	has	fallen,	compared	to	including	a	document	676	

weight.	In	one	case,	protein-protein	associations,	the	MEDLINE	corpus	677	

outperforms	the	full	text	articles.	678	

	679	

S5	Fig:	Benchmarking	the	four	different	corpora	at	a	low	false	positive	rate	not	680	

using	a	document	weight.	The	increase	in	performance	has	fallen.	In	one	case,	for	681	

protein-protein	associations,	the	MEDLINE	corpus	outperforms	the	full	text	682	

articles.	683	
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	684	

S1	Table:	The	top	15	journals	in	the	corpora.	685	

	686	

S2	Table:	Area	under	 the	 curve	 (AUC)	 for	 the	 four	different	 corpora,	with	and	687	

without	document	weight	for	scoring	co-occurrences.	688	

	689	

S3	Table:	True	Positive	Rate	at	10%	False	Positive	Rate	(TPR@10%FPR)	for	the	690	

four	 different	 corpora,	 with	 and	 without	 document	 weight	 for	 scoring	 co-691	

occurrences.	692	

	693	
	694	
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