

1 **Text mining of 15 million full-text scientific articles**

2

3 David Westergaard^{1,2}, Hans-Henrik Stærfeldt², Christian Tønsberg³, Lars Juhl
4 Jensen² [†], Søren Brunak¹[†]

5

6 ¹Center for Biological Sequence Analysis, Department of Bio and Health
7 Informatics, Technical University of Denmark, DK-2800 Lyngby, Denmark

8 ²Novo Nordisk Foundation Center for Protein Research, Faculty of Health and
9 Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark

10 ³Office for Innovation and Sector Services, Technical Information Center of
11 Denmark, Technical University of Denmark, DK-2800 Lyngby, Denmark

12

13 [†]To whom correspondence should be addressed: brunak@cbs.dtu.dk or
14 lars.juhl.jensen@cpr.ku.dk

15

16

17 **Abstract**

18 Across academia and industry, text mining has become a popular strategy for
19 keeping up with the rapid growth of the scientific literature. Text mining of the
20 scientific literature has mostly been carried out on collections of abstracts, due to
21 their availability. Here we present an analysis of 15 million English scientific full-
22 text articles published during the period 1823–2016. We describe the

23 development in article length and publication sub-topics during these nearly 250
24 years. We showcase the potential of text mining by extracting published protein-
25 protein, disease-gene, and protein subcellular associations using a named entity
26 recognition system, and quantitatively report on their accuracy using gold
27 standard benchmark data sets. We subsequently compare the findings to
28 corresponding results obtained on 16.5 million abstracts included in MEDLINE
29 and show that text mining of full-text articles consistently outperforms using
30 abstracts only.

31

32

33 **Introduction**

34 Text mining has become a widespread approach to identify and extract
35 information from unstructured text. Text mining is used to extract facts and
36 relationships in a structured form that can be used to annotate specialized
37 databases, to transfer knowledge between domains and more generally within
38 business intelligence to support operational and strategic decision-making [1–3].
39 Biomedical text mining is concerned with the extraction of information
40 regarding biological entities, such as genes and proteins, phenotypes, or even
41 more broadly biological pathways (reviewed extensively in [3–9]) from sources
42 like scientific literature, electronic patient records, and most recently patents
43 [10–13]. Furthermore, the extracted information has been used as annotation of
44 specialized databases and tools (reviewed in [3,14]). In addition, text mining is
45 routinely used to support manual curation of biological databases [15,16]. Thus,

46 text mining has become an integral part of many resources serving a wide
47 audience of scientists. The main text source for scientific literature has been the
48 MEDLINE corpus of abstracts, essentially due to the restricted availability of full-
49 text articles. However, full-text articles are becoming more accessible and there
50 is a growing interest in text mining of complete articles. Nevertheless, to date no
51 studies have presented a systematic comparison of the performance comparing
52 abstracts and full-texts in corpora that are similar in size to MEDLINE.

53

54 Full-text articles and abstracts are structurally different [17]. Abstracts are
55 comprised of shorter sentences and very succinct text presenting only the most
56 important findings. By comparison, full-text articles contain complex tables,
57 display items and references. Moreover, they present existing and generally
58 accepted knowledge in the introduction (often presented in the context of
59 summaries of the findings), and move on to reporting more in-depth results,
60 while discussion sections put the results in perspective and mention limitations
61 and concerns. The latter is often considered to be more speculative compared to
62 the abstract [3].

63

64 While text-mining results from accessible full-text articles have already become
65 an integral part of some databases (reviewed recently for protein-protein
66 interactions [18]), very few studies to date have compared text mining of
67 abstracts and full-text articles. Using a corpus consisting of ~20,000 articles from
68 the PubMed Central (PMC) open-access subset and Directory of Open Access
69 Journals (DOAJ), it was found that many explicit protein–protein interactions

70 only are mentioned in the full text [19]. Additionally, in a corpus of 1,025 full-text
71 articles it was noticed that some pharmacogenomics associations are only found
72 in the full text [20]. One study using a corpus of 3,800 articles with focus on
73 *Caenorhabditis elegans* noted an increase in recall from 45% to 95% when
74 including the full text [21]. Other studies have worked with even smaller corpora
75 [17,22,23]. One study have even noted that the majority of claims within an
76 article is not reported in the abstract [24]. Whilst these studies have been of
77 significant interest, the number of full-text articles and abstracts used for
78 comparison are nowhere near the magnitude of the actual number of scientific
79 articles published to date, and it is thus unclear if the results can be generalized
80 to the scientific literature as a whole. The earlier studies have mostly used
81 articles retrieved from PMC in a structured XML file. However, full-text articles
82 received or downloaded directly from the publishers often come in the PDF
83 format, which must be converted to a raw unformatted text file. This presents a
84 challenge, as the quality of the text mining will depend on the proper extraction
85 and filtering of the unformatted text. A previous study dealt with this by writing
86 custom software taking into account the structure and font of each journal at
87 that time [21]. More recent studies typically provide algorithms that
88 automatically determines the layout of the articles [25–27].

89

90 In this work, we describe a corpus of 15 million full-text scientific articles from
91 Elsevier, Springer, and the open-access subset of PMC. The articles were
92 published during the period 1823–2016. We highlight the possibilities by
93 extracting protein–protein associations, disease–gene associations, and protein

94 subcellular localization from the large collection of full-text articles using a
95 Named Entity Recognition (NER) system combined with a scoring of co-
96 mentions. We quantitatively report the accuracy and performance using gold
97 standard benchmark data sets. Lastly, we compare the findings to corresponding
98 results obtained on the matching set of abstracts included in MEDLINE as well as
99 the full set of 16.5 million MEDLINE abstracts.

100

101

102 **Results**

103

104 **Growth and temporal development in full text corpora**

105 The growth of the data set over time is of general interest in itself, however, it is
106 also important to secure that the concepts used in the benchmarks are likely to
107 be present in a large part of the corpus. We found that the number of full-text
108 articles has grown exponentially over a long period (Fig 1a, a log-transformed
109 version is provided in Supplementary Fig 1). We also observed that the growth
110 represents a mixture of two components: one from 1823–1944, and another
111 from 1945–2016. Fitting an exponential curve to the years 1945–2016 we found
112 that the growth rate is 0.103 ($p < 2 * 10^{-16}$, $R^2 = 0.95$). Thus, the doubling time
113 for the full-text corpus is 9.7 years. In comparison, MEDLINE had a growth rate
114 of 0.195 ($p < 2 * 10^{-16}$, $R^2 = 0.91$) and a doubling time of 5.1 years. We noticed
115 that there was a drop in the number of full-text publications around the years

116 1914–1918 and 1940–1945. Likewise, we see a decrease in the number of
117 publications indexed by MEDLINE in the entire period 1930–1948.

118 **Fig 1:** Temporal corpus statistics. **(a)** Number of publications per year in the
119 period 1823–2016. The growth in publications was found to fit an exponential
120 model. **(b)** Temporal development in the distribution of six different topical
121 categories in the period 1823–2016. Publications from health science journals
122 made up nearly 75% of all publications until 1950, at which point it started to
123 decrease rapidly. To date, it makes up approximately 25% of the publications in
124 the full-text corpus. **(c)** Development in the number of pages per article in the
125 period 1823–2016. The range of pages varies from 1–1,572 pages. Until year
126 1900 the number of one-page articles were increasing, at one point making up
127 75% of all articles. At the end of the 19th century, the number of one-page
128 articles started to decrease, and by the start of the 21th century they made up
129 less than 20%. Conversely, the number of articles with 11+ pages has been
130 increasing, and by the start of the 21th century made up more than 20% of all
131 articles.

132

133 We binned the full-text articles into four categories based on the number of
134 pages (see Methods). The average length of articles has increased considerably
135 during the almost 250 years studied (Fig 1b). Whereas 75% of the articles were
136 1–3 pages long at the end of the 20th century, less than 25% of the articles
137 published after year 2000 are that short. Conversely, articles with ten or more
138 pages only made up between 0.7%–7% in the 19th century, a level that had grown
139 to 20% by the start of the 21st century.

140

141 In the full-text corpora we found a total of 12,781 unique journal titles. The most
142 prevalent journals are tied to health or life sciences, such as *The Lancet*,
143 *Tetrahedron Letters*, and *Biochemical and Biophysical Research Communications*,
144 or the more broad journals such as *PLoS ONE* (see Supplementary Table 1 for the
145 top-15 journals). *The Lancet* publishes only very few articles per issue, it was
146 established in 1823 and has been active in publishing since then, thus explaining
147 why it so far has nearly published 400,000 articles. In contrast, *PLoS ONE* was
148 launched in 2006, and has published more than 172,000 articles. Of the 12,781
149 journal titles, 6,900 had one or more category labels assigned by librarians at the
150 Technical University of Denmark. The vast majority of the full-texts, 13,343,040,
151 were published in journals with one or more category labels. The frequency of
152 each category within the corpus can be seen in Supplementary Fig 2. We
153 observed that before the 1950's health science dominated and made up almost
154 75% of all publications (Fig 1c). At the start of the 1950's the fraction started to
155 decrease, and to date health science makes up approximately 25% of all
156 publications in the full-text corpus. Inspecting the remaining eleven categories in
157 a separate plot we found that there was no single category that was responsible
158 for the growth (Supplementary Fig 3).

159

160 **Evaluating information extraction across corpora**

161 We analyzed and compared four different corpora comprising all full-text
162 articles (14,549,483 articles, All Full-texts), full-text articles that had a separate
163 abstract (10,376,626 articles, Core Full-texts), the abstract from the full-text

164 articles (10,376,626 abstracts, Core Abstracts), and the MEDLINE corpus
165 (16,544,511 abstracts, MEDLINE).

166

167 We have used quite difficult, but still well established benchmarks, to illustrate
168 the differences in performance when comparing text mining of abstracts to full-
169 text articles. Within biology, and specifically in the area of systems biology,
170 macromolecular interactions and the relationships between genes, tissues and
171 diseases are key data that drive modeling and the analysis of causal biochemical
172 mechanisms. Knowledge of interactions between proteins is extremely useful
173 when revealing the components, which contribute to mechanisms in both health
174 and disease. As many biological species from evolution share protein orthologs,
175 their mutual interactions can often be transferred, for example from an
176 experiment in another organism to the corresponding pair of human proteins
177 where the experiment has not yet been performed. Such correspondences can
178 typically be revealed by text mining as researchers in one area often will not
179 follow the literature in the other and *vice versa*.

180

181 We ran the text mining pipeline on the two full-text and two abstract corpora. In
182 all cases we found that the AUC-value was far greater than 0.5, from which we
183 conclude that the results were substantially better than random (Fig 2). The
184 biggest gain in performance when using full-text was seen in finding associations
185 between diseases and genes (Supplementary Table 2). Compared to MEDLINE,
186 the traditional corpus used for biomedical text mining, there was an increase in
187 the AUC from 0.85 to 0.91. The smallest gain was associations between proteins,

188 which increased from 0.70 to 0.73. Likewise, the Core Full-texts always
189 performed better than Core Abstracts, signifying that some associations are only
190 reported in the main body of the text. Consequently, traditional text mining of
191 abstracts will never be able to find this information.

192

193 **Fig 2:** Benchmarking the four different corpora. In all cases the AUC is far greater
194 than 0.5, indicating that the results obtained are better than random. The biggest
195 gain in AUC is seen for disease-gene associations **(a)**, followed by protein-
196 compartment associations **(c)** and protein-protein associations **(b)**.

197

198 It has previously been speculated if text mining of full-text articles may be more
199 difficult and lead to an increased rate of false positives [3]. To investigate this we
200 altered the weights of the scoring system. The scoring scheme used here has
201 weights for within sentence, within paragraph and within document co-
202 occurrences (see Methods). When setting the document weight to zero versus
203 using the previously calibrated value we found that having a non-zero small
204 value does indeed improve extraction of known facts in all cases (Supplementary
205 Fig 4). Inspecting the gain in AUC we found that it is lower, compared to having a
206 document weight (Supplementary Table 2). In one case, protein-protein
207 associations, the MEDLINE abstract corpus outperforms the full-text articles.
208 Abstracts are generally unaffected by the document weight, mainly because
209 abstracts are almost always one paragraph. Overall, the difference in
210 performance gain is largest for full-texts and lowest for abstracts and MEDLINE.
211 Hence, all the full-text information is indeed valuable and necessary.

212

213 For practical applications, it is often necessary to have a low False Positive Rate
214 (FPR). Accordingly, we evaluated the True Positive Rate (TPR) of the different
215 corpora at the 10% FPR (TPR@10%FPR) (Fig 3). We found that full-texts have
216 the highest TPR@10%FPR for disease-gene associations (Supplementary Table
217 3). When considering protein–protein associations and protein-compartment
218 associations, full-texts perform equivalently to Core Abstracts and Core Full-
219 texts. The result was similar to when we evaluated the AUC across the full range,
220 removing the document weight has the biggest impact on the full-texts
221 (Supplementary Fig 5), while abstracts remain unaffected.

222

223 **Fig 3:** Benchmarking the four different corpora at low false positive rates. At a
224 false positive rate of 10%, relevant to practical applications, the full-text corpus
225 still outperforms the collection of MEDLINE abstracts for the extraction of
226 disease-gene associations. Conversely, the performance is the same for protein-
227 protein associations and protein-compartment associations.

228

229 **Discussion**

230 We have investigated a unique corpus consisting of 15 million full-text articles
231 and compared the results to the most commonly used corpus for biomedical text
232 mining, MEDLINE. We found that the full-text corpus outperforms the MEDLINE
233 abstracts in all benchmarked cases. To our knowledge, this is the largest
234 comparative study to date of abstracts and full-text articles. We envision that the

235 results presented here can be used in future applications for discovering novel
236 associations from mining of full-text articles, and as a motivation to always
237 include full-text articles when available and to improve the techniques used for
238 this purpose.

239

240 The corpus consisted of 15,032,496 full-text documents, mainly in PDF format.
241 1,504,674 documents had to be discarded for technical reasons, primarily
242 because they were not in English. Further, a large number of documents were
243 also found to be duplicates or subsets of each other. On manual inspection we
244 found that these were often conference proceedings, collections of articles etc.,
245 which were not easily separable without manual curation. We also managed to
246 identify the list of references in the majority of the articles thereby reducing
247 some repetition of knowledge that could otherwise lead to an increase in the
248 false positive rate.

249

250 We have encountered and described a number of problems when working with
251 full-text articles converted from PDF to TXT from a large corpus. However, the
252 majority of the problems did not stem from the PDF to TXT conversion, which
253 could potentially be solved using a layout aware conversion tool. Examples
254 include LA-PDFText [27], SectLabel [26] of PDFX [25], of which the latter is not
255 practical for very large corpora as it only exists as an online tool. Nonetheless, to
256 make use of the large volume of existing articles it is necessary to solve these
257 problems. Having all the articles in a structured XML format, such as the one
258 provided by PubMed Central, would with no doubt produce a higher quality

259 corpus. This may in turn further increase the benchmark results for full-text
260 articles. Nevertheless, the reality is that many articles are not served that way.
261 Consequently, the performance gain we report here should be viewed as a lower
262 limit as we have sacrificed quality in favor of a larger volume of articles. The
263 solutions we have outlined here will serve as a guideline and baseline for future
264 studies.

265

266 The increasing article length may have different underlying causes, but one of
267 the main contributors is most likely increased funding to science worldwide
268 [28,29]. Experiments and protocols are consequently getting increasingly
269 complex and interdisciplinary – aspects that also contribute to driving
270 meaningful publication lengths upward. The increased complexity has also been
271 found to affect the language of the articles, as it is becoming more
272 specialized[30]. It was outside the scope of this paper to go further into socio-
273 economic impact. We have limited this to presenting the trends from what could
274 be computed from the meta-data.

275

276 Previous papers are – in terms of benchmarking – only making qualitative
277 statements about the value of full-text articles as compared to text in abstracts.
278 In one paper a single statement is made on the potential for extracting
279 information, but no quantitative evidence is presented [31]. In a paper targeting
280 pharmacogenomics it is similarly stated that that there are associations that only
281 are found in the full-text, but no quantitative estimates are presented [20]. In a
282 paper analyzing around 20,000 full-text papers a search for physical protein

283 interactions was made, concluding that these contain considerable higher levels
284 of interaction [19]. Again, no quantitative benchmarks were made comparing
285 different sources. In this paper, we have made a detailed comparison of four
286 different corpora that provides a strong basis for estimating the added value of
287 using full-text articles in text mining workflows.

288

289 The results presented here are purely associational. Through rigorous
290 benchmarking and comparison of a variety of biologically relevant associations,
291 we have demonstrated that a substantial amount of relevant information is only
292 found in the full body of text. Additionally, by modifying the document weight we
293 found that it was important to take into account the whole document and not
294 just individual paragraphs. Consequently, as text mining methods improve and
295 become more sophisticated, the quantitative benchmarks will improve. Event-
296 based text mining will be the next step for a deeper interpretation and extending
297 the applicability of the results [5]. With more development it may also be
298 possible to extract quantitative values, as has been demonstrated for
299 pharmacokinetics [32]. However, this was outside the scope of this article.

300

301 The Named Entity Recognition (NER) system used depends heavily on the
302 dictionaries and stop word lists. A NER system is also very sensitive to
303 ambiguous words. To combat this we have used dictionaries from well-known
304 and peer-reviewed databases, and we have included other dictionaries to avoid
305 ambiguous terms. Other approaches to text mining have previously been
306 extensively reviewed [10,14,32].

307

308 The full-text corpus presented here consists of articles from Springer, Elsevier
309 and PubMed. However, we still believe that the results presented here are valid
310 and can be generalized across publishers, to even bigger corpora. Preprocessing
311 of corpora is an ongoing research project, and it can be difficult to weed out the
312 rubbish when dealing with millions of documents. We have tried to use a process
313 where we evaluate the quality of a subset of randomly selected articles
314 repeatedly and manually, until it no longer improves.

315

316

317 **Methods**

318 **MEDLINE Corpus**

319 The MEDLINE corpus consists of 26,385,631 citations. We removed empty
320 citations, corrections and duplicate PubMed IDs. For duplicate PubMed IDs we
321 kept only the newest entry. This led to a total of 16,544,511 abstracts for text
322 mining.

323

324 **PMC Corpus**

325 The PubMed Central corpus comprises 1,488,927 freely available scientific
326 articles (downloaded 27th January 2017). Each article was retrieved in XML
327 format. The XML file contains the article divided into paragraphs, article category
328 and meta-information such as journal, year published, etc. Articles that had a

329 category matching Addendum, Corrigendum, Erratum or Retraction were
330 discarded. A total of 5,807 documents were discarded due to this, yielding a total
331 of 1,483,120 articles for text mining. The article paragraphs were extracted for
332 text mining. No further pre-processing of the text was done. The journals were
333 categorized according to categories (described in the following section) by
334 matching the ISSN number. The number of pages for each article was also
335 extracted from the XML, if possible. Permission for use of the PMC corpus was
336 obtained by the Technical Information Center of Denmark (DTU Library).

337

338 **TDM Corpus**

339 The Technical Information Center of Denmark (DTU Library) TDM corpus is a
340 collection of full-text articles from the publishers Springer and Elsevier, where
341 the library has obtained permission for use in the context of text mining. The
342 corpus covers the period from 1823 to 2016. The corpus comprises 3,335,400
343 and 11,697,096 full-text articles in PDF format, respectively. An XML file
344 containing meta-data such as publication date, journal, etc. accompanies each
345 full-text article. PDF to TXT conversion was done using pdftotext v0.47.0, part of
346 the Poppler suite (poppler.freedesktop.org). 192 articles could not be converted
347 to text due to errors in the PDF file. The article length, counted as the number of
348 pages, was extracted from the XML file. If not recorded in the XML file we
349 counted the number of pages in the PDF file using the Unix tool pdfinfo v0.26.5.
350 Articles were grouped into four bins, determined from the 25%, 50%, and 75%
351 quantiles, respectively. These were found to be 1-4 pages (0-25%), 5-7 pages
352 (25-50%), 8-10 pages (50-75%) and 11+ pages (75%-100%). Each article was,

353 based on the journal where it was published, assigned to one or more of the
354 following seventeen categories: Health Sciences, Chemistry, Life Sciences,
355 Engineering, Physics, Agriculture Sciences, Material Science and Metallurgy,
356 Earth Sciences, Mathematical Sciences, Environmental Sciences, Information
357 Technology, Social Sciences, Business and Economy and Management, Arts and
358 Humanities, Law, Telecommunications Technology, Library and Information
359 Sciences. Due to the large number of categories, we condensed anything not in
360 the top-6 into the category “Other”. The top-six categories *health science*,
361 *chemistry*, *life sciences*, *engineering*, *physics* and *agricultural sciences* make up
362 74.8% of the data (Supplementary Fig 2). The assignment of categories used in
363 this study was taken from the existing index for the journal made by the
364 librarians at the DTU Library. For the temporal statistics, the years 1823-1900
365 were condensed into one.

366

367 **Pre-processing of PDF-to-text converted documents**

368 Following the PDF-to-text conversion of the Springer and Elsevier articles we ran
369 a language detection algorithm implemented in the python package langdetect
370 v1.0.7 (<https://pypi.python.org/pypi/langdetect>). We discarded 902,415 articles
371 that were not identified as English. We pre-processed the remaining raw text
372 from the articles as follows:

373 1. Non-printable characters were removed using the POSIX filter `[:^print:]`.
374 2. A line of text was removed if digits make up more than 10% of the text, or
375 symbols make up more than 10% of the text, or lowercase text was less
376 than 50%. Symbols are anything not matching `[0-9A-Za-z]`.

377 3. Removal of acknowledgements and reference- or bibliography-lists using
378 a rule-based system explained below.

379 4. Text was split into sentences and paragraphs using a rule-based system
380 described below.

381

382 We assumed that acknowledgements and reference lists are always at the end of
383 the article. Upon encountering either of the terms: “acknowledgement”,
384 “bibliography”, “literature cited”, “literature”, “references”, and the following
385 misspellings thereof: “refirences”, “literatur”, “références”, “referesces”. In some
386 cases the articles had no heading indicating the start of a bibliography. We tried
387 to take these cases into account by constructing a RegEx that matches the typical
388 way of listing references (e.g. [1] Westergaard, ...). Such a pattern can be
389 matched by the RegEx “^[\d+\]\s[A-Za-z]”. The other commonly used pattern,
390 “1. Westergaard, ...”, was avoided since it may also indicate a new heading.

391 Keywords were identified based on several rounds of manual inspection. In each
392 round, 100 articles in which the reference list had not been found was randomly
393 selected and inspected. We were unable to find references in 286,287 and
394 2,896,144 Springer and Elsevier articles, respectively. Manual inspection of 100
395 randomly selected articles revealed that these articles indeed did not have a
396 reference list or that the pattern was not easily describable with simple metrics,
397 such as keywords and RegEx. Articles without references were not discarded.

398

399 The PDF to text conversion often breaks up paragraphs and sentences, due to
400 new page, new column, etc. Paragraph and sentence splitting was performed

401 using a ruled-based system. If the previous line of text does not end with a “!?”,
402 and the current line does not start with a lower-case letter, it is assumed that the
403 line is part of the previous sentence. Otherwise, the line of text is assumed to be a
404 new paragraph.

405

406 **Text article filtering**

407 A number of Springer and Elsevier documents were removed due to technical
408 issues post pre-processing. An article was removed if:

- 409 1. Article contained no text post-preprocessing (51,399 documents).
- 410 2. Average word length was below the 2% quantile (263,902 documents).
- 411 3. Article contained specific keywords, described below (286,958
412 documents).

413

414 Some PDF files without texts are scans of the original article (point 1). We did
415 not attempt to make an optical character recognition conversion (OCR) as the old
416 typesetting fonts often are less compatible with present day OCR programs, and
417 this can lead to text recognition errors [33,34]. For any discarded document, we
418 still used the meta-data to calculate summary statistics. In some cases the PDF to
419 text conversion failed, and produced non-sense data with a white space between
420 the characters of a majority of the words (point 2). To empirically determine a
421 cutoff we gradually increased the cutoff and repeatedly inspected 100 randomly
422 selected articles. At the 2% quantile we saw no evidence of broken text.

423

424 Articles with the following keywords in the article were discarded: Author Index,
425 Key Word Index, Erratum, Editorial Board, Corrigendum, Announcement, Books
426 received, Product news, and Business news (point 3). These keywords were
427 found as part of the process of identifying acknowledgements and reference lists.
428 Further, any article that was available through PubMed Central was
429 preferentially selected by matching doi identifiers. This left a total of 14,549,483
430 full-text articles for further analysis.

431

432 Some articles were not separable, or were subsets of others. For instance,
433 conference proceedings may contain many individual articles in the same PDF.
434 We found 1,911,365 articles in which this was the case. In these cases we
435 removed the duplicates, or the shorter texts, but kept one copy for text mining. In
436 total, we removed 898,048 duplicate text files.

437

438 The majority of articles had a separate abstract. We matched articles from
439 PubMed Central to their respective MEDLINE abstract using the PMCID to
440 PubMed ID conversion file available from PMC. Articles from Springer and
441 Elsevier typically had a separate abstract in the meta-data. Any abstract from an
442 article that was part of the 1,911,365 articles that could not be separated was
443 removed. This led to a total of 10,376,626 abstracts for which the corresponding
444 full-text was also included downstream, facilitating a comparative analysis.

445

446 **Text mining of articles**

447 We performed text mining of the articles using a Named Entity Recognition
448 (NER) system, described earlier[35–38]. The software is open source and can be
449 downloaded from <https://bitbucket.org/larsjuhljensen/tagger>. The NER
450 approach is dictionary based, and thus depends on well-constructed dictionaries
451 and stop word lists. We used the gene names from the STRING dictionary v10.0
452 [35], disease names from the Disease Ontology (DO) [39] and compartment
453 names from the Gene Ontology branch cellular component [40]. Stop word lists
454 were all created and maintained in-house. Pure NER based approaches often
455 struggles with ambiguity of words. Therefore, we included additional
456 dictionaries that we do not report the results from. If any identified term was
457 found in multiple dictionaries, it was discarded due to ambiguity. The additional
458 dictionaries include small molecule names from STITCH [41], tissue names from
459 the Brenda Tissue Ontology [42], Gene Ontology biological process and
460 molecular function [40], and the mammalian phenotype ontology [43]. The latter
461 is a modified version made to avoid clashes with the disease ontology. The
462 dictionaries can be downloaded from <http://download.jensenlab.org/>.

463

464 In the cases where the dictionary was constructed from an ontology co-
465 occurrences were backtracked through all parents. E.g. the term type 1 diabetes
466 mellitus from the Disease Ontology is backtracked to its parent, diabetes
467 mellitus, then to glucose metabolism disease, etc.

468

469 Co-occurrences were scored using the scoring system described in [44]. In short,
470 a weighted count for each pair of entities (e.g. disease-gene) was calculated using
471 the formula,

$$472 \quad C(i, j) = \sum_{k=1}^n w_d \delta_{dk}(i, j) + w_p \delta_{pk}(i, j) + w_s \delta_{sk}(i, j) \quad (1)$$

473 where δ is an indicator function taking into account whether the terms i, j co-
474 occur within the same document (d), paragraph (p), or sentence (s). w is the co-
475 occurrence weight here set to 1.0, 2.0, and 0.2, respectively. Based on the
476 weighted count, the score $S(i, j)$ was calculated as,

$$478 \quad S(i, j) = C_{ij}^\alpha \left(\frac{C_{ij} C_{..}}{C_i C_j} \right)^{1-\alpha} \quad (2)$$

479 where α is set to 0.6. All weights were optimized using the KEGG pathway maps
480 as benchmark (described further below). The S scores were converted to Z
481 scores, as described earlier [45].

483

484 **Benchmarking of associations**

485 PPIs were benchmarked using pathway maps from the KEGG database [46]. Any
486 two proteins in the same pathway were set to be a positive example, and any two
487 proteins present in at least one pathway, but not the same, were set as a negative

488 example. This approach assumes that the pathways are near complete and
489 includes all relevant proteins. The same approach has been used for the STRING
490 database [44]. The disease–gene benchmarking set was created by setting the
491 disease-gene associations from UniProt [47] and Genetics Home Reference
492 (<https://ghr.nlm.nih.gov/>, accessed 23th March 2017) as positive examples. The
493 positive examples were then shuffled, and the shuffled examples were set as
494 negative examples. Shuffled examples that ended up overlapping with the
495 positive examples were discarded. This approach has previously been described
496 [36]. The protein–compartment benchmark set was created by extracting the
497 compartment information for each protein from UniProt and counting these as
498 positive examples. For every protein found in at least one compartment, all
499 compartments where it was not found were set as negative examples. The same
500 approach has been used previously [38].

501

502 Receiver Operating Characteristic (ROC) curves were created by gradually
503 increasing the Z-score and calculating the True Positive Rate (TPR) and False
504 Positive Rate (FPR), as described in eqs. (3) and (4).

505

$$506 \quad TPR = \frac{\mathbf{True \ Positives}}{\mathbf{Positives}} \quad 507 \quad (3)$$

508

509
$$FPR = \frac{\text{True Negatives}}{\text{Negatives}}$$

510 (4)

511 We compare the ROC curves by the Area Under the Curve (AUC), a metric
512 ranging from 0 to 1.

513

514

515 **Acknowledgements**

516 We would like to acknowledge funding from ActionableBiomarkersDK, a grant
517 from DeIC, the Danish e-Infrastructure Collaboration, as well as the Novo
518 Nordisk Foundation (grant agreement NNF14CC0001).

519 References

520

521 1. Azevedo A. Integration of Data Mining in Business Intelligence Systems.
522 1st Editio. Azevedo A, Santos MF, editors. Integration of Data Mining in
523 Business Intelligence Systems. IGI Publishing Hershey, PA, USA; 2014. 314
524 p.

525 2. Krallinger M, Valencia A. Text-mining and information-retrieval services
526 for molecular biology. Vol. 6, *Genome biology*. 2005.6(7):224.

527 3. Fleuren WWM, Alkema W. Application of text mining in the biomedical
528 domain. Vol. 74, *Methods*. 2015.74:97–106.

529 4. Luo Y, Riedlinger G, Szolovits P. Text Mining in Cancer Gene and Pathway
530 Prioritization. Vol. 13, *Cancer Informatics*. 2014.13(Suppl 1):69–79.

531 5. Ananiadou S, Thompson P, Nawaz R, McNaught J, Kell DB. Event-based text
532 mining for biology and functional genomics. Vol. 14, *Briefings in functional*
533 *genomics*. 2015.14(3):213–30.

534 6. Hoffmann R, Krallinger M, Andres E, Tamames J, Blaschke C, Valencia A.
535 Text mining for metabolic pathways, signaling cascades, and protein
536 networks. Vol. 283/pe21, *Sci. STKE*. 2005.283/pe21:e21.

537 7. Liu F, Chen J, Jagannatha A, Yu H. Learning for Biomedical Information
538 Extraction: Methodological Review of Recent Advances. *arXiv:1606.07993*
539 [cs]. 2016. Cited 20 June 2017.

540 8. Krallinger M, Valencia A, Hirschman L. Linking genes to literature: text
541 mining, information extraction, and retrieval applications for biology. Vol.
542 9 Suppl 2, *Genome biology*. 2008.9 Suppl 2(Suppl 2):S8.

543 9. Gonzalez GH, Tahsin T, Goodale BC, Greene AC, Greene CS. Recent
544 advances and emerging applications in text and data mining for
545 biomedical discovery. Vol. 17, *Briefings in Bioinformatics*. 2016.17(1):33–
546 42.

547 10. Rebholz-Schuhmann D, Oellrich A, Hoehndorf R. Text-mining solutions for
548 biomedical research: enabling integrative biology. Vol. 13, *Nature Reviews*
549 *Genetics*. 2012.13(12):829–39.

550 11. Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards
551 better research applications and clinical care. Vol. 13, *Nature Reviews*
552 *Genetics*. 2012.13(6):395–405.

553 12. Rodriguez-Esteban R, Bundschatz M. Text mining patents for biomedical
554 knowledge. Vol. 21, *Drug Discovery Today*. 2016.21(6):997–1002.

555 13. Simmons M, Singhal A, Lu Z. Text mining for precision medicine: Bringing
556 structure to ehrs and biomedical literature to understand genes and
557 health. In: Vol. 939, *Advances in Experimental Medicine and Biology*.
558 Springer Singapore; 2016. p. 139–66.

559 14. Jensen LJ, Saric J, Bork P. Literature mining for the biologist: from
560 information retrieval to biological discovery. Vol. 7, *Nature reviews*
561 *Genetics*. 2006.7(2):119–29.

562 15. Winnenburg R, Wächter T, Plake C, Doms A, Schroeder M. Facts from text:
563 Can text mining help to scale-up high-quality manual curation of gene
564 products with ontologies? Vol. 9, *Briefings in Bioinformatics*.

565 2008.9(6):466–78.

566 16. Wei C-H, Kao H-Y, Lu Z. Text mining tools for assisting literature curation.
567 In: Proceedings of the 5th ACM Conference on Bioinformatics,
568 Computational Biology, and Health Informatics - BCB '14 [Internet]. New
569 York, New York, USA: ACM Press; 2014. p. 590–1.

570 17. Cohen KB, Johnson HL, Verspoor K, Roeder C, Hunter LE, Verspoor K, et al.
571 The structural and content aspects of abstracts versus bodies of full text
572 journal articles are different. Vol. 11, BMC Bioinformatics. 2010.11(1):492.

573 18. Papanikolaou N, Pavlopoulos GA, Theodosiou T, Iliopoulos I. Protein-
574 protein interaction predictions using text mining methods. Vol. 74,
575 Methods. 2015.74:47–53.

576 19. Samuel J, Yuan X, Yuan X, Walton B. Mining online full-text literature for
577 novel protein interaction discovery. In: 2010 IEEE International
578 Conference on Bioinformatics and Biomedicine Workshops, BIBMW 2010
579 [Internet]. IEEE; 2010. p. 277–82.

580 20. Garten Y, Altman R. Pharmaspresso: a text mining tool for extraction of
581 pharmacogenomic concepts and relationships from full text. Vol. 10, BMC
582 bioinformatics. 2009.10(Suppl 2):S6.

583 21. Müller HM, Kenny EE, Sternberg PW. Textpresso: An ontology-based
584 information retrieval and extraction system for biological literature. Vol. 2,
585 PLoS Biology. 2004.2(11):e309.

586 22. Martin EPG, Bremer EG, Guerin M-C, DeSesa C, Jouve O. Analysis of
587 protein/protein interactions through biomedical literature: Text mining of
588 abstracts vs. text mining of full text articles. In: Vol. 3303, Knowledge
589 Exploration in Life Science Informatics. Springer, Berlin, Heidelberg; 2004.
590 p. 96–108.

591 23. Corney DPA, Buxton BF, Langdon WB, Jones DT. BioRAT: extracting
592 biological information from full-length papers. Vol. 20, Bioinformatics.
593 2004.20(17):3206–13.

594 24. Blake C. Beyond genes, proteins, and abstracts: Identifying scientific claims
595 from full-text biomedical articles. Vol. 43, Journal of Biomedical
596 Informatics. 2010.43(2):173–89.

597 25. Constantin A, Pettifer S, Voronkov A. Pdfx. Proceedings of the 2013 ACM
598 symposium on Document engineering - DocEng '13. 2013.:177.

599 26. Luong M-T, Nguyen TD, Kan M-Y. Logical Structure Recovery in Scholarly
600 Articles with Rich Document Features. Vol. 1, International Journal of
601 Digital Library Systems. 2012.1(4):1–23.

602 27. Ramakrishnan C, Patnia A, Hovy E, Burns GACP. Layout-aware text
603 extraction from full-text PDF of scientific articles. Vol. 7, Source Code for
604 Biology and Medicine. 2012.7(1):7.

605 28. Adams J. Collaborations: The rise of research networks. Vol. 490, Nature.
606 2012.490(7420):335–6.

607 29. Eckhouse S, Lewison G, Sullivan R. Trends in the global funding and
608 activity of cancer research. Vol. 2, Molecular Oncology. 2008.2(1):20–32.

609 30. Plaven-Sigray P, Matheson GJ, Schiffler BC, Thompson WH. The Readability
610 Of Scientific Texts Is Decreasing Over Time. bioRxiv. 2017.:119370.

611 31. Mallory EK, Zhang C, Ré C, Altman RB. Large-scale extraction of gene
612 interactions from full-text literature using DeepDive. Vol. 32,
613 Bioinformatics. 2015.32(1):106–13.

614 32. Fluck J, Hofmann-Apitius M. Text mining for systems biology. Vol. 19, Drug
615 Discovery Today. 2014.19(2):140–4.

616 33. Thompson P, Batista-Navarro RT, Kontonatsios G, Carter J, Toon E,
617 McNaught J, et al. Text mining the history of medicine. Rocha LM, editor.
618 Vol. 11, PLoS ONE. 2016.11(1):e0144717.

619 34. Lopresti D. Optical character recognition errors and their effects on
620 natural language processing. Vol. 12, International Journal on Document
621 Analysis and Recognition. 2009.12(3):141–51.

622 35. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas
623 J, et al. STRING v10: Protein-protein interaction networks, integrated over
624 the tree of life. Vol. 43, Nucleic Acids Research. 2015.43(D1):D447–52.

625 36. Pletscher-Frankild S, Pallej?? A, Tsafou K, Binder JX, Jensen LJ. DISEASES:
626 Text mining and data integration of disease-gene associations. Vol. 74,
627 Methods. 2015.74:83–9.

628 37. Santos A, Tsafou K, Stolte C, Pletscher-Frankild S, O'Donoghue SI, Jensen LJ.
629 Comprehensive comparison of large-scale tissue expression datasets. Vol.
630 3, PeerJ. 2015.3:e1054.

631 38. Binder JX, Pletscher-Frankild S, Tsafou K, Stolte C, O'Donoghue SI,
632 Schneider R, et al. COMPARTMENTS: Unification and visualization of
633 protein subcellular localization evidence. Vol. 2014, Database.
634 2014.2014(0):bau012-bau012.

635 39. Schriml LM, Arze C, Nadendla S, Chang YWW, Mazaitis M, Felix V, et al.
636 Disease ontology: A backbone for disease semantic integration. Vol. 40,
637 Nucleic Acids Research. 2012.40(D1):D940-6.

638 40. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene
639 Ontology: Tool for The Unification of Biology. Vol. 25, Nature Genetics.
640 2000.25(1):25–9.

641 41. Szklarczyk D, Santos A, Von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5:
642 Augmenting protein-chemical interaction networks with tissue and
643 affinity data. Vol. 44, Nucleic Acids Research. 2016.44(D1):D380–4.

644 42. Gremse M, Chang A, Schomburg I, Grote A, Scheer M, Ebeling C, et al. The
645 BRENDA Tissue Ontology (BTO): The first all-integrating ontology of all
646 organisms for enzyme sources. Vol. 39, Nucleic Acids Research.
647 2011.39(SUPPL. 1):D507–13.

648 43. Smith CL, Eppig JT. The mammalian phenotype ontology: Enabling robust
649 annotation and comparative analysis. Vol. 1, Wiley Interdisciplinary
650 Reviews: Systems Biology and Medicine. 2009.1(3):390–9.

651 44. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et
652 al. STRING v9.1: Protein-protein interaction networks, with increased
653 coverage and integration. Vol. 41, Nucleic Acids Research.
654 2013.41(D1):D808-15.

655 45. Mørk S, Pletscher-Frankild S, Caro AP, Gorodkin J, Jensen LJ. Protein-
656 driven inference of miRNA-disease associations. Vol. 30, Bioinformatics.
657 2014.30(3):392–7.

658 46. Wasmuth E V, Lima CD. OUP accepted manuscript. Vol. 45, Nucleic Acids
659 Research. 2016.45(D1):1–15.

660 47. Bateman A, Martin MJ, O'Donovan C, Magrane M, Apweiler R, Alpi E, et al.
661 UniProt: A hub for protein information. Vol. 43, Nucleic Acids Research.
662 2015.43(D1):D204–12.

663 **Supporting Information Captions**

664 **S1 Fig:** Number of publications per year on the log scale.

665

666 **S2 Fig:** Category overview across all journals and years. The bar chart indicates
667 the frequency, whilst the line is the cumulative sum. The first six categories
668 contribute 74,8%. Due to the large number of categories, anything outside the
669 top-6 was condensed into the joint category “Other”.

670

671 **S3 Fig:** Temporal trend for the categories embedded in the “Other” category. We
672 note that the category has grown as a whole, but that the growth is not tied to
673 one category.

674

675 **S4 Fig:** Benchmarking the four different corpora not using a document weight.
676 (a-c) The increase in performance has fallen, compared to including a document
677 weight. In one case, protein-protein associations, the MEDLINE corpus
678 outperforms the full text articles.

679

680 **S5 Fig:** Benchmarking the four different corpora at a low false positive rate not
681 using a document weight. The increase in performance has fallen. In one case, for
682 protein-protein associations, the MEDLINE corpus outperforms the full text
683 articles.

684

685 **S1 Table:** The top 15 journals in the corpora.

686

687 **S2 Table:** Area under the curve (AUC) for the four different corpora, with and
688 without document weight for scoring co-occurrences.

689

690 **S3 Table:** True Positive Rate at 10% False Positive Rate (TPR@10%FPR) for the
691 four different corpora, with and without document weight for scoring co-
692 occurrences.

693

694

Fig 1

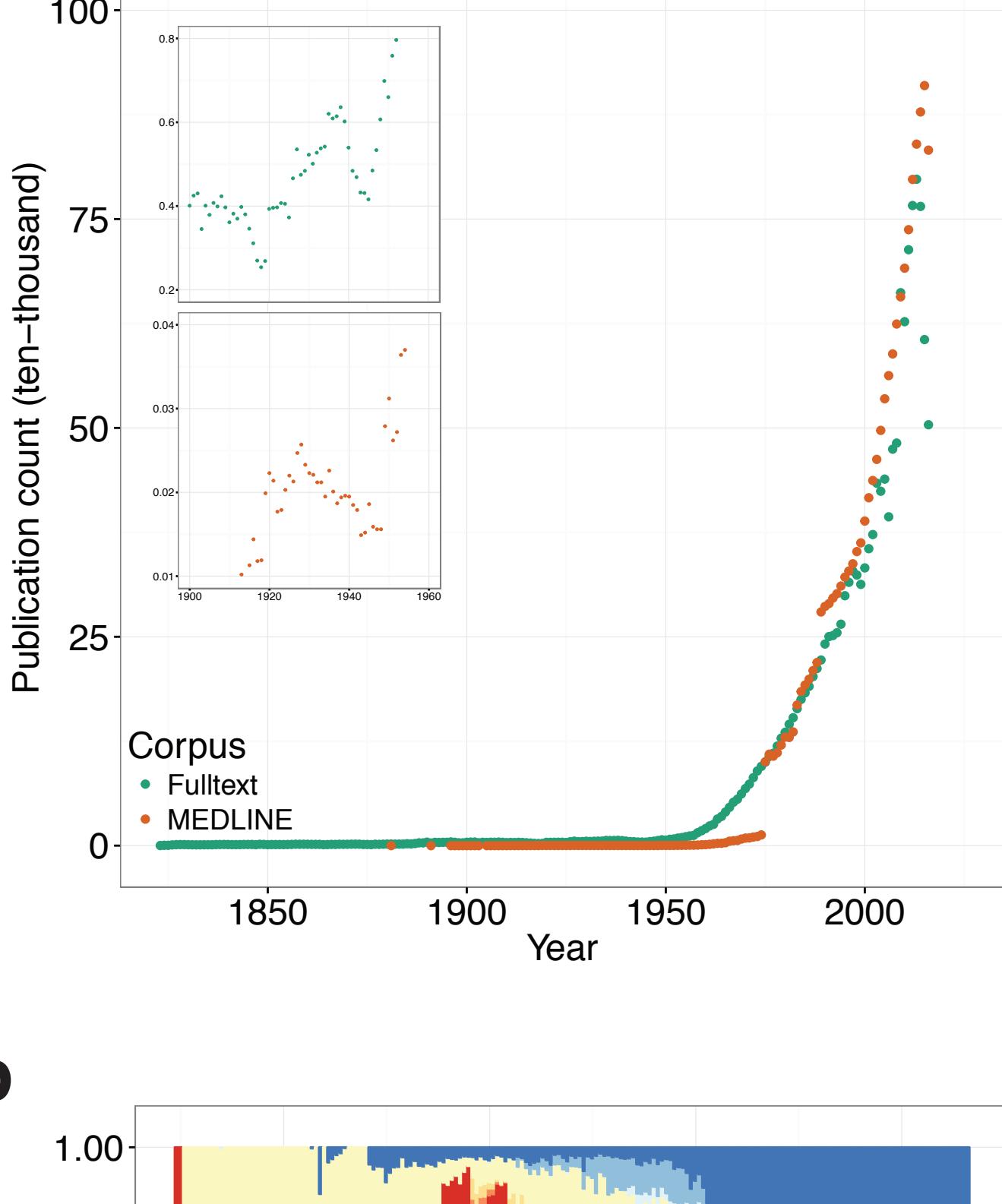
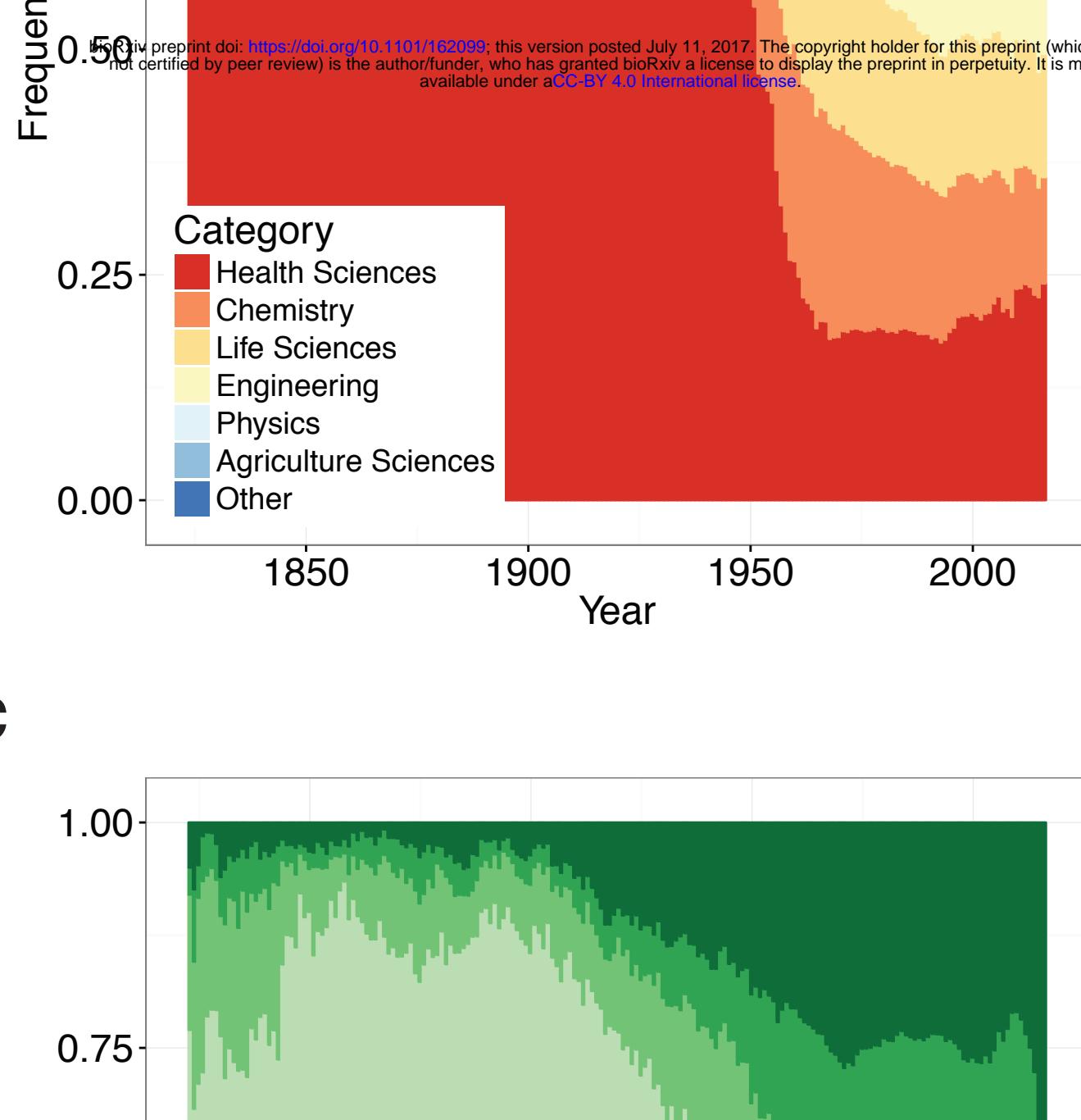
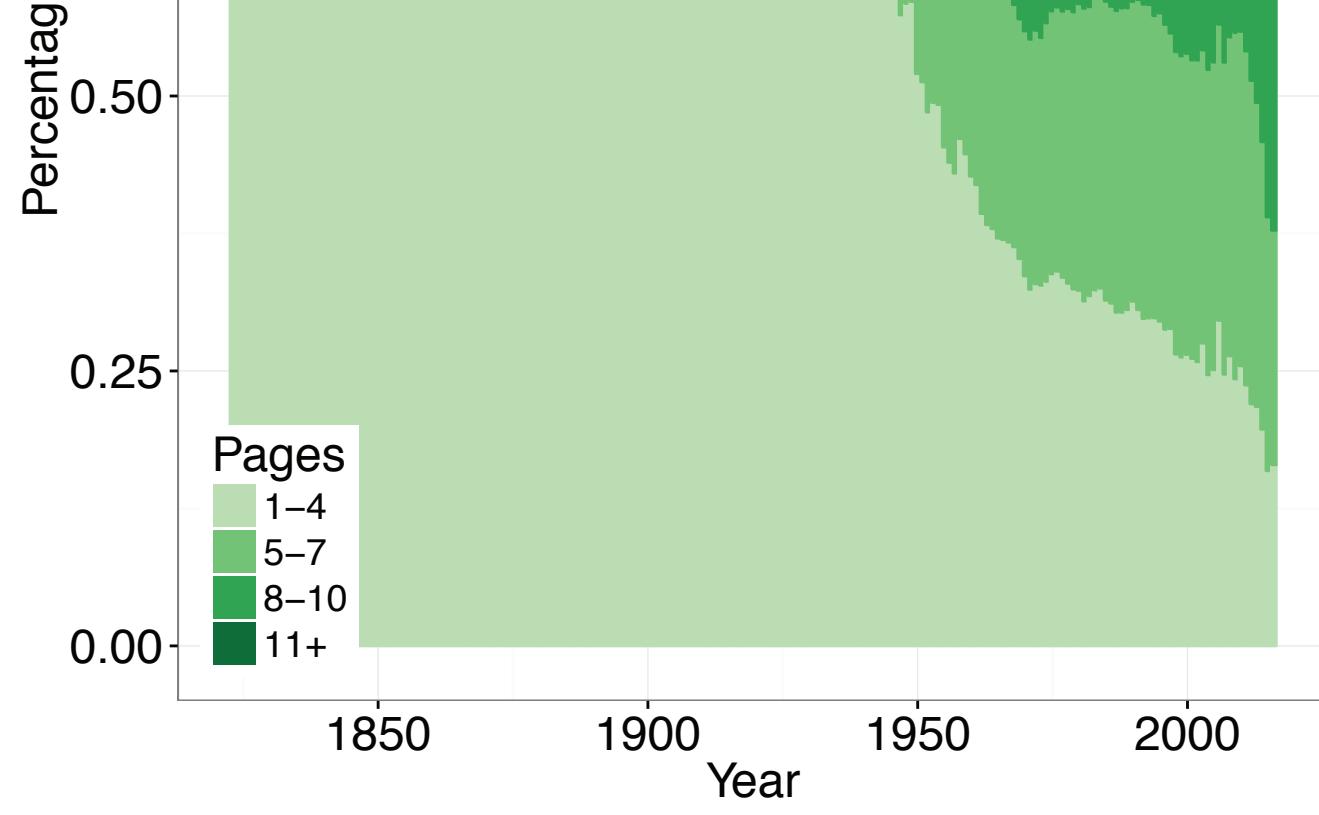
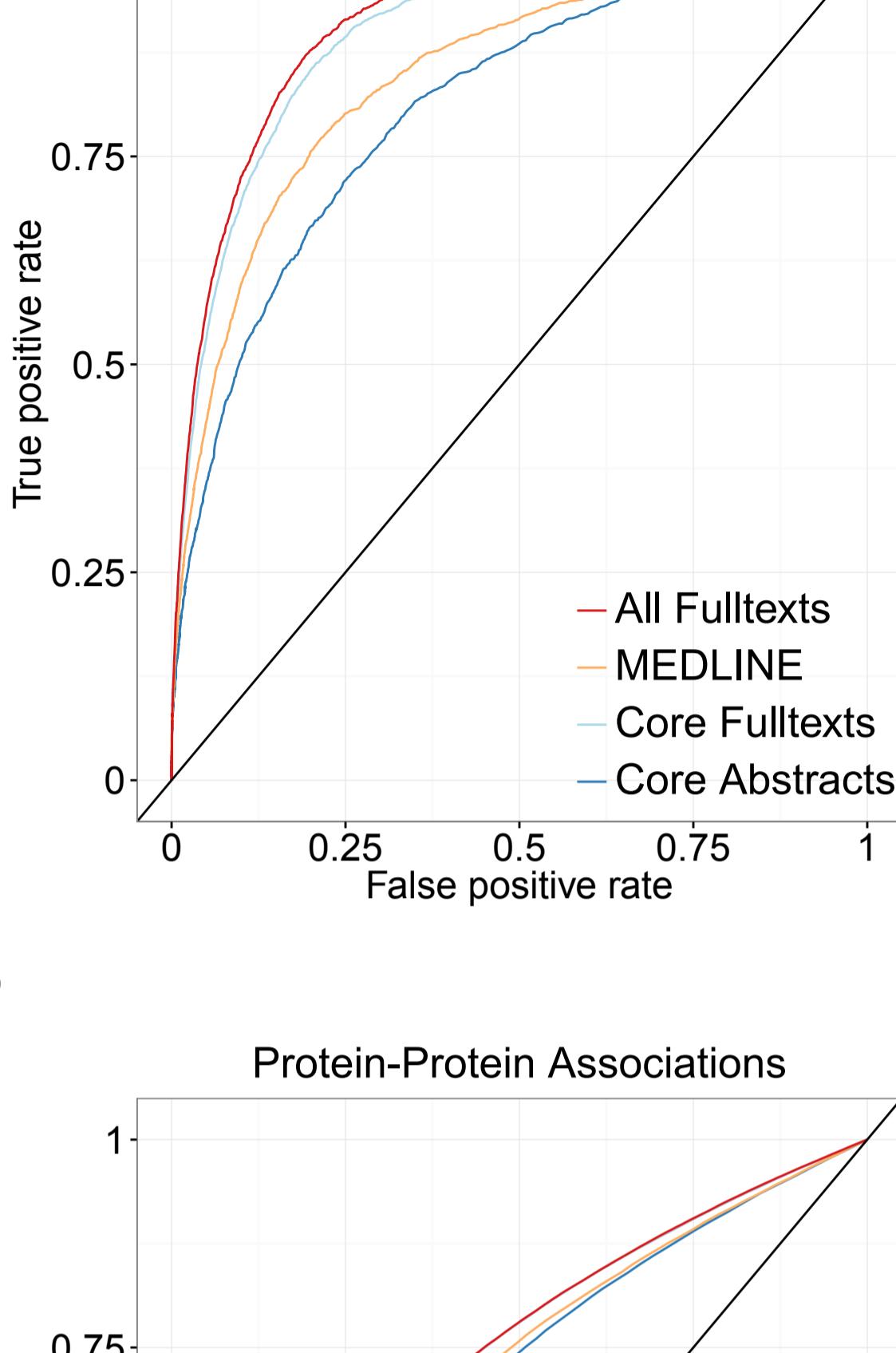
a**b****c**

Fig 2

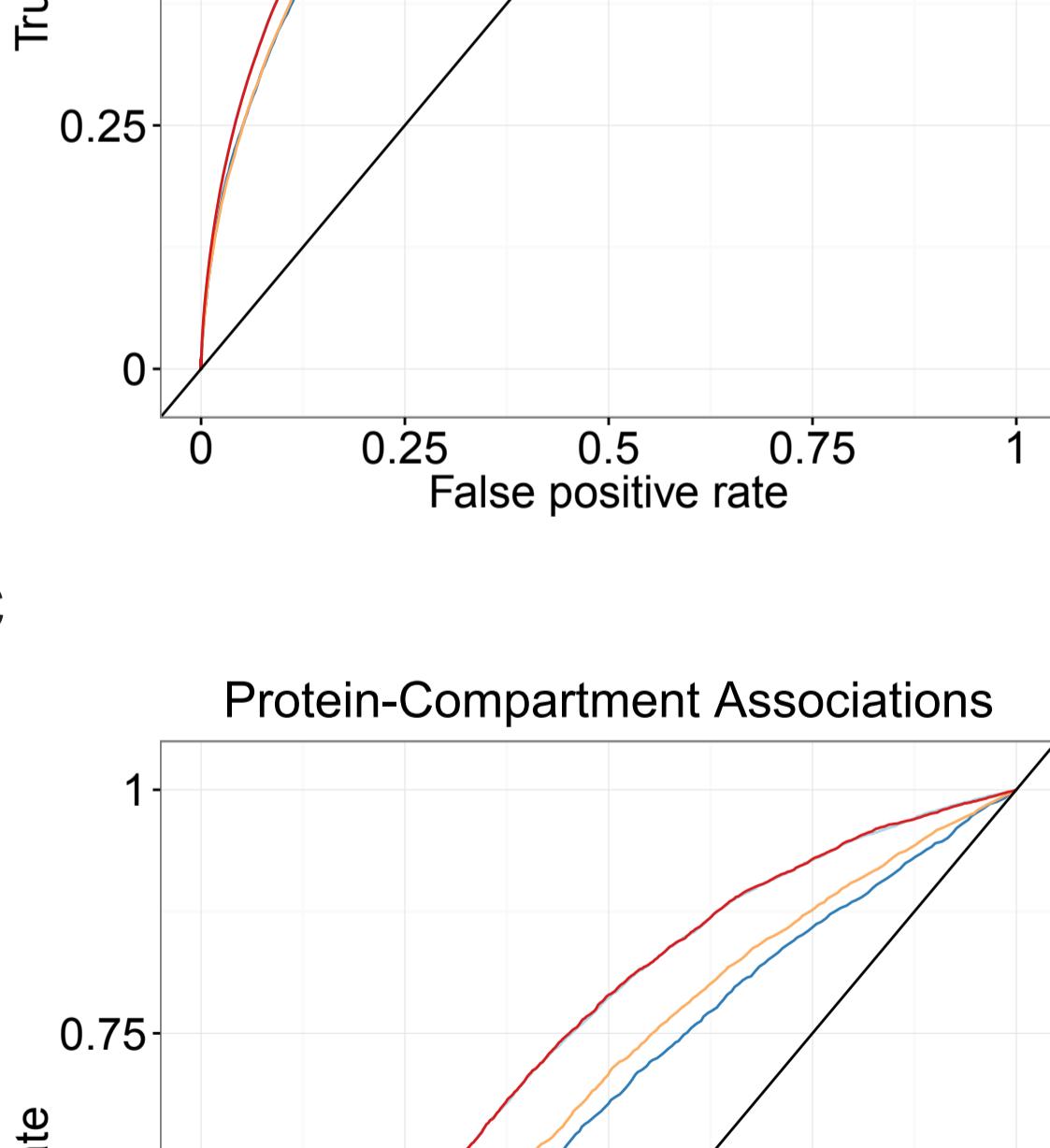
a

Disease-Gene Associations



b

Protein-Protein Associations



c

Protein-Compartment Associations

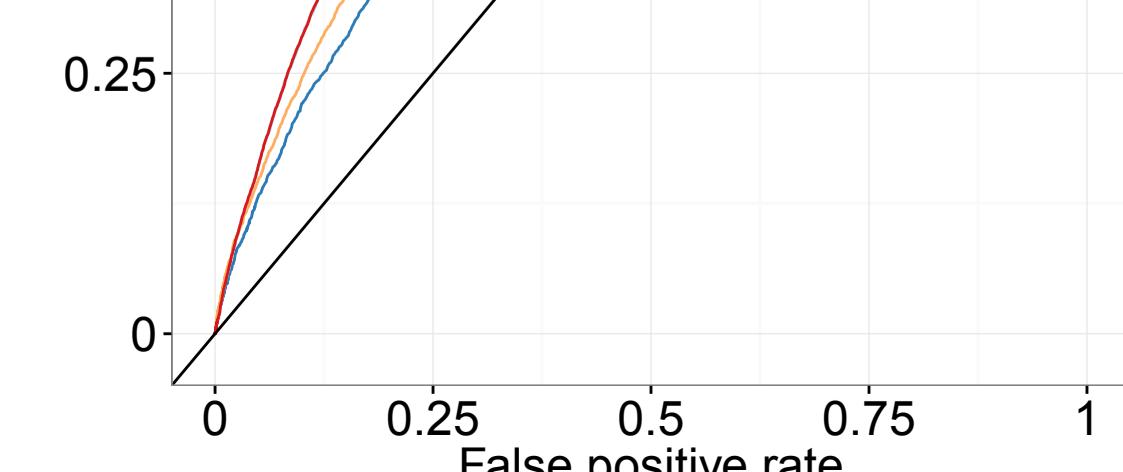
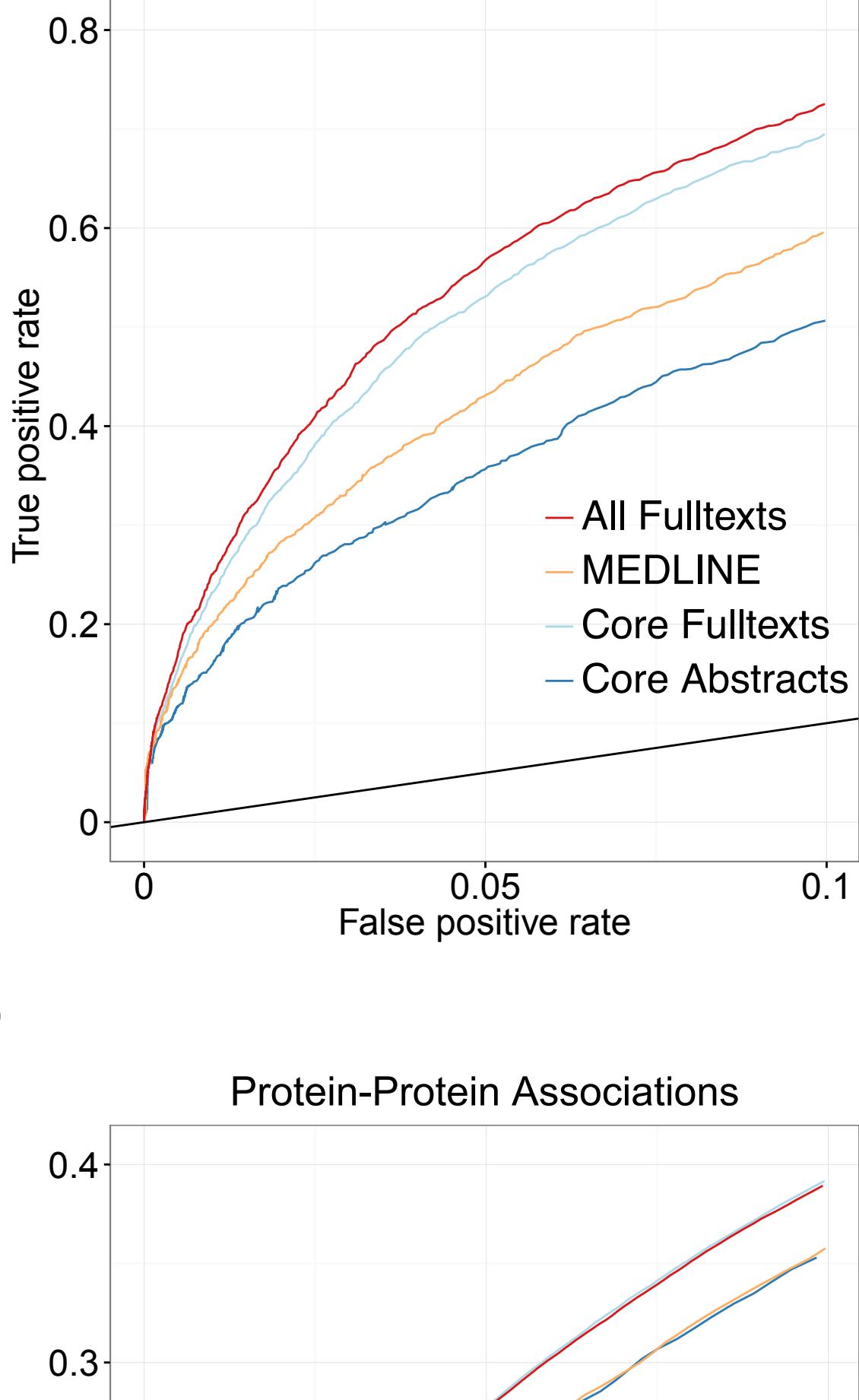
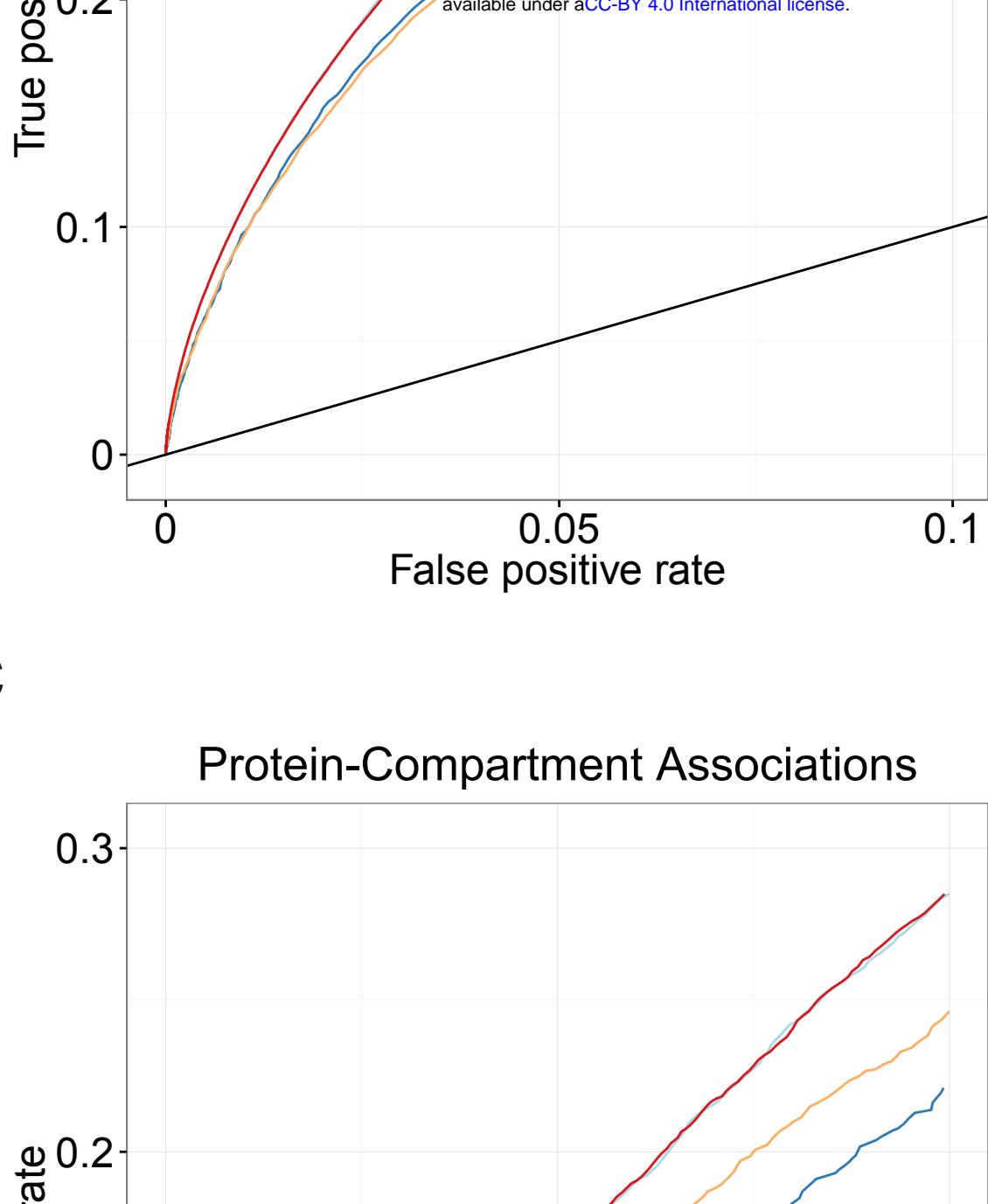


Fig 3

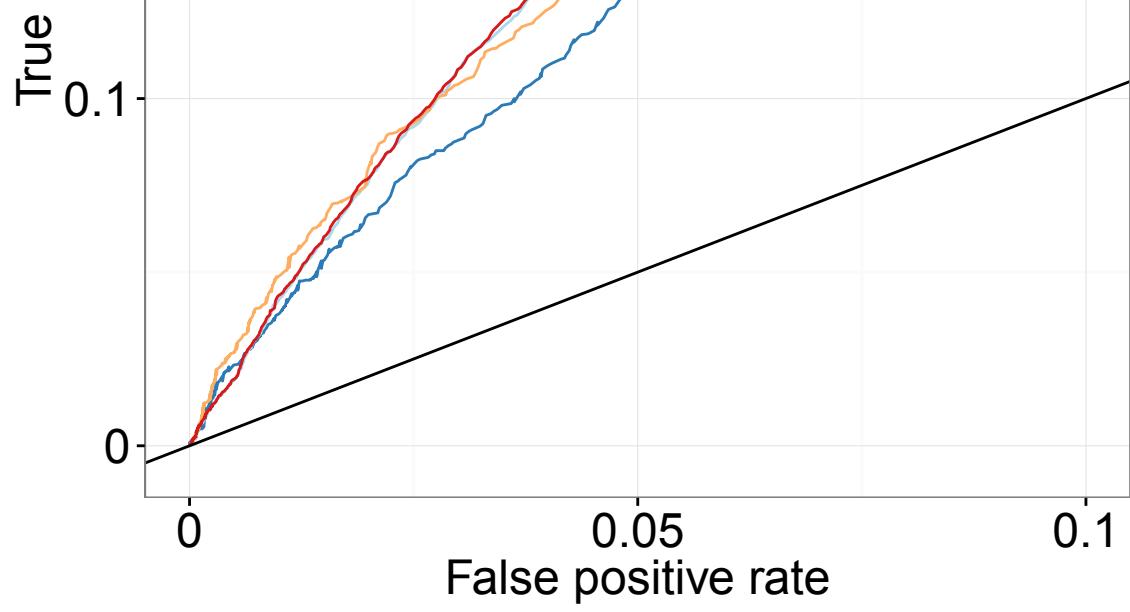
a



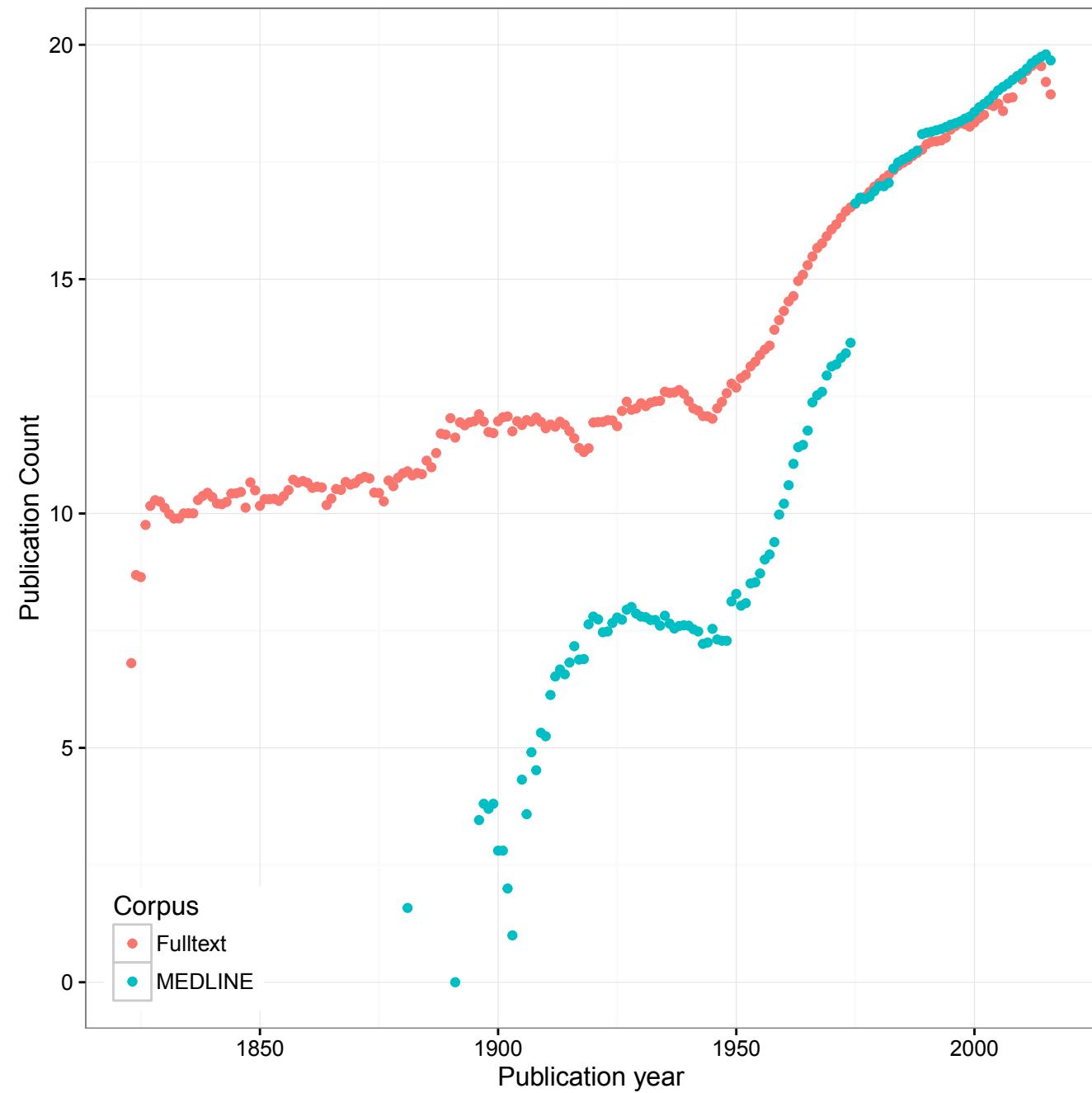
b



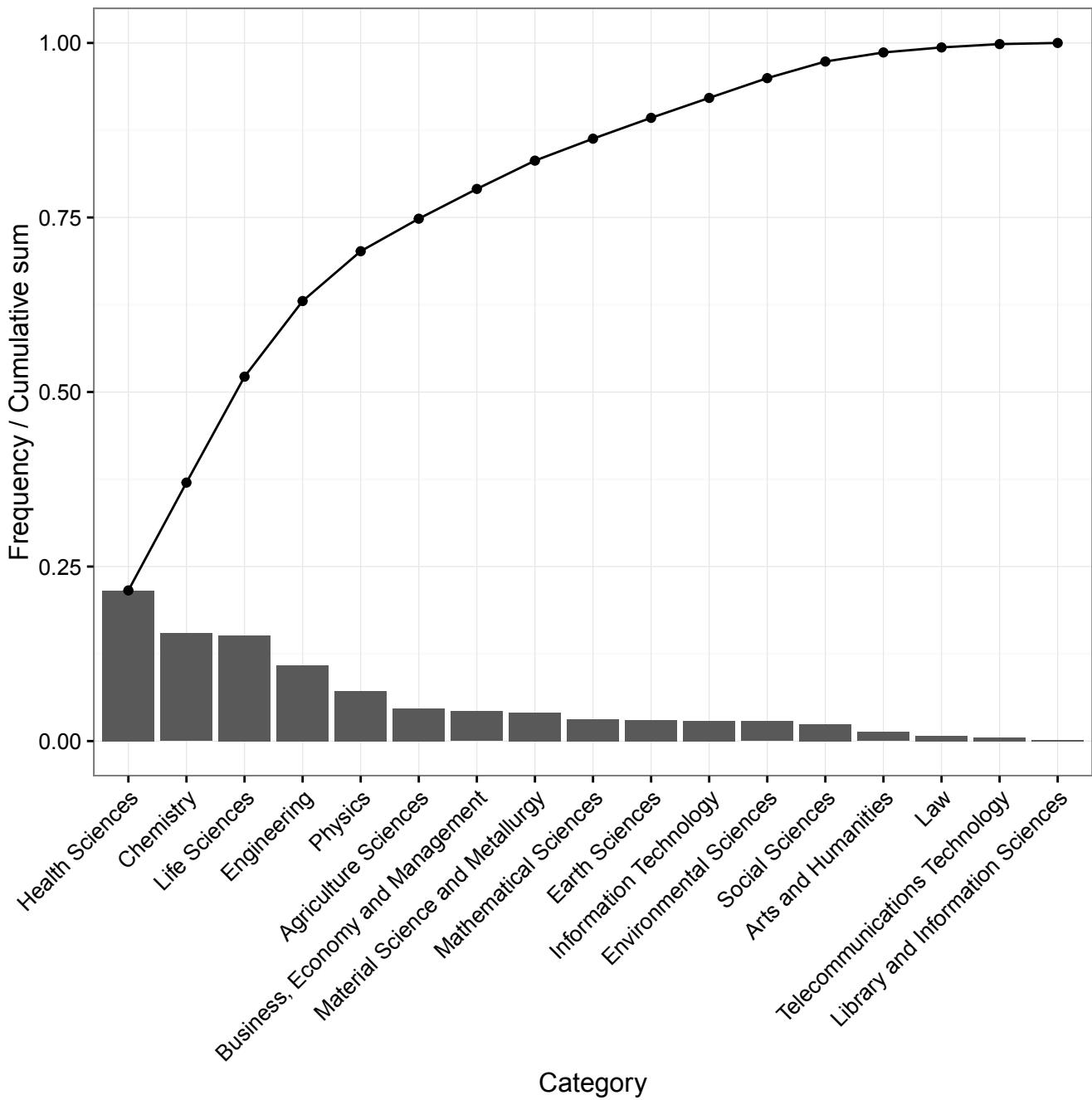
c



S1 Fig



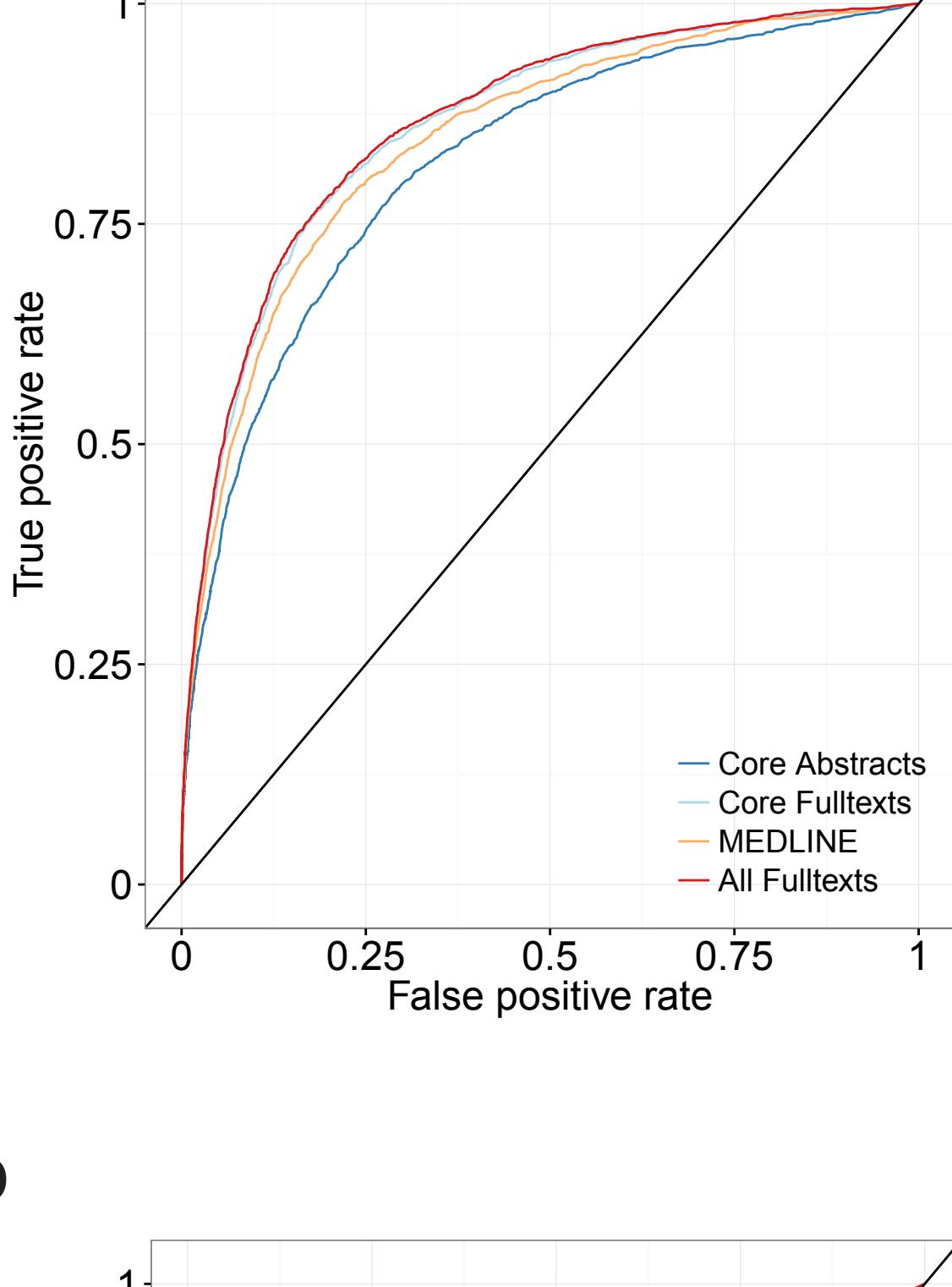
S2 Fig



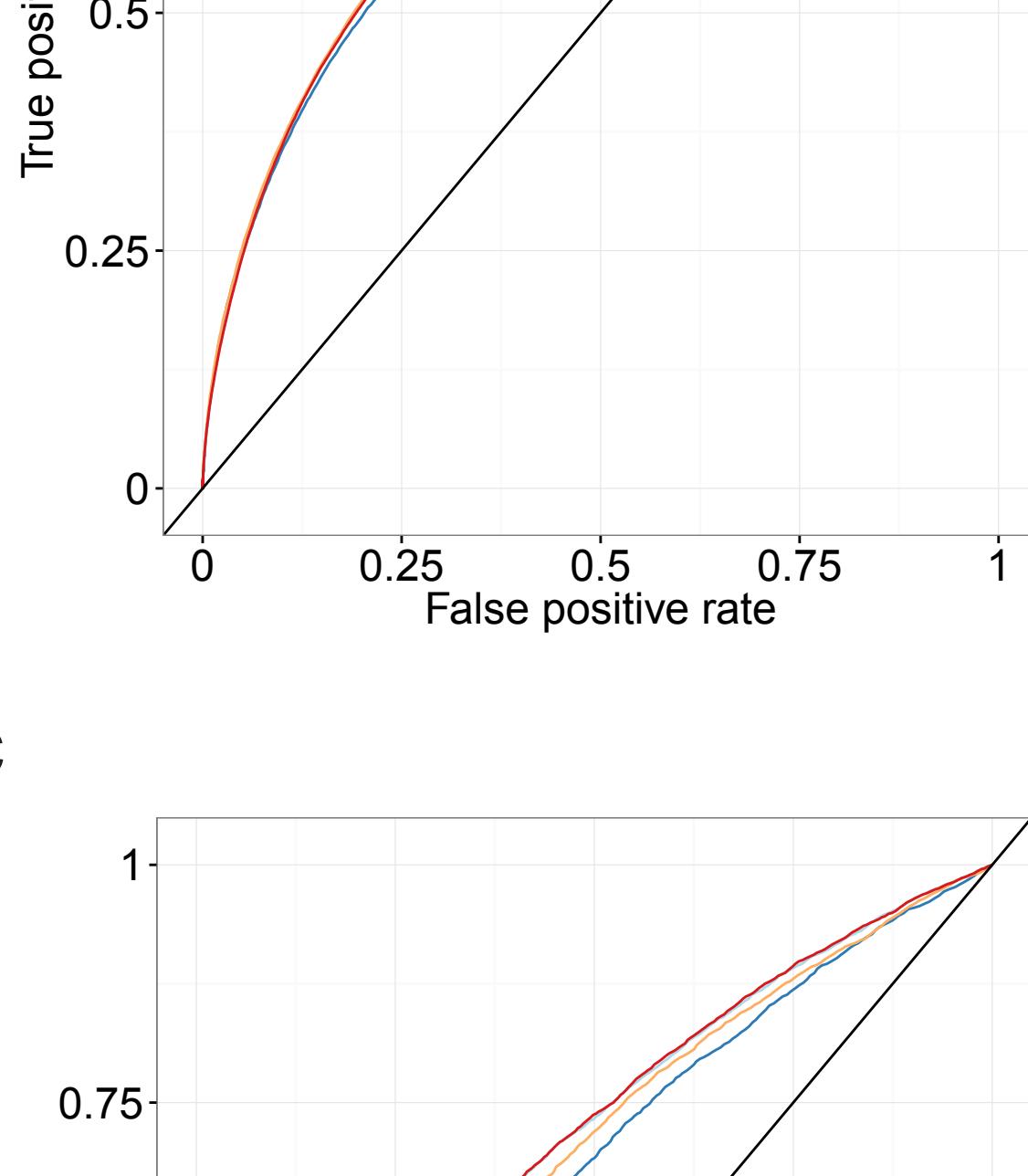
Supplementary Figure 3

S4 Fig

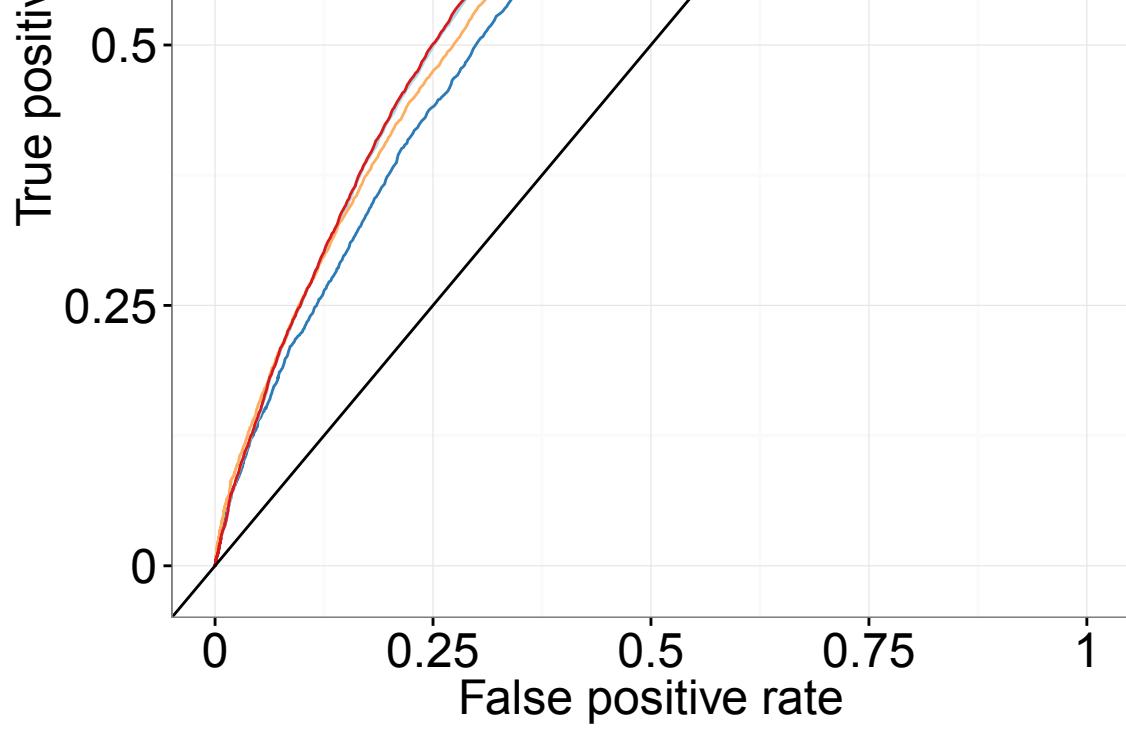
a



b

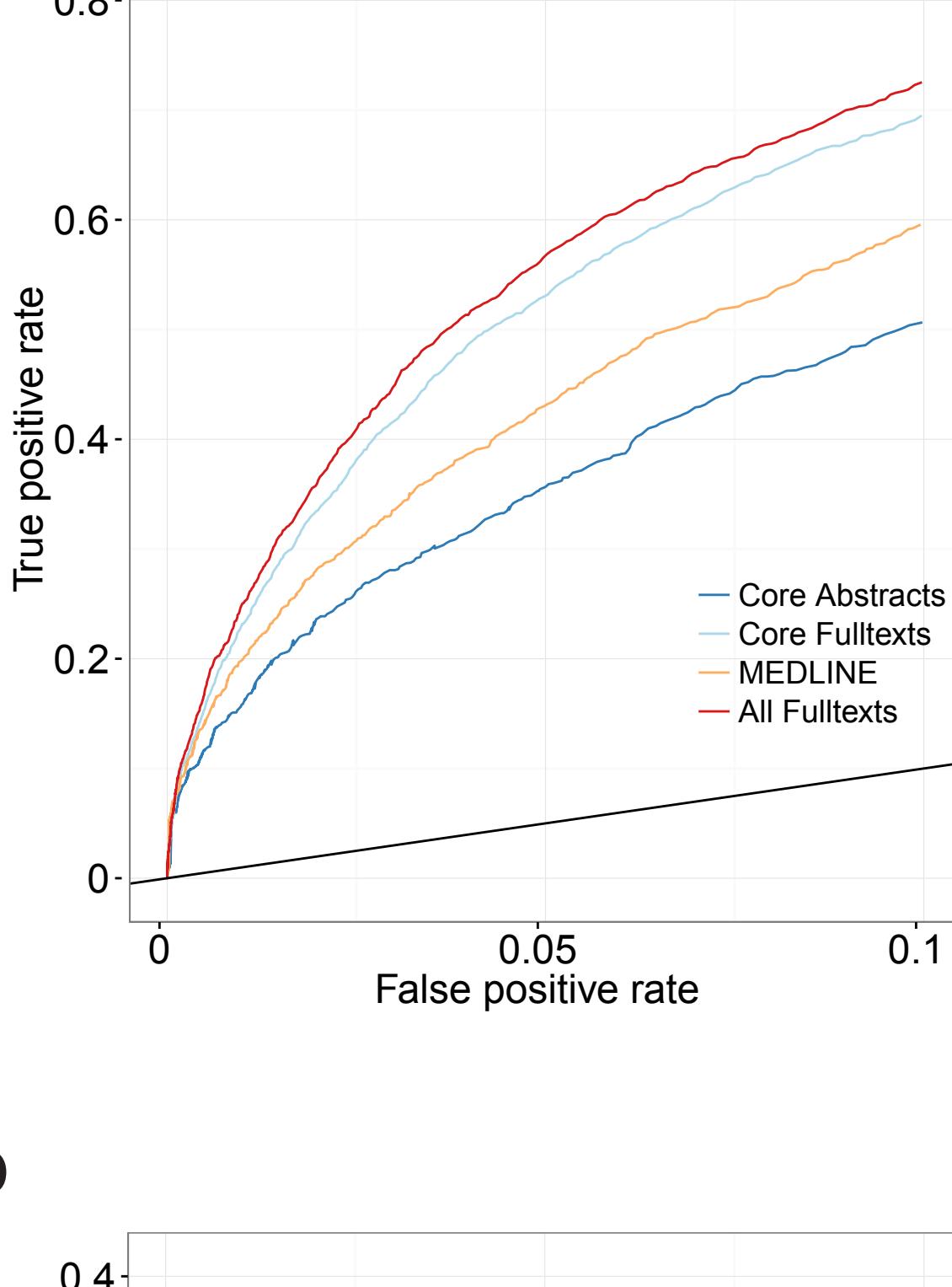


c

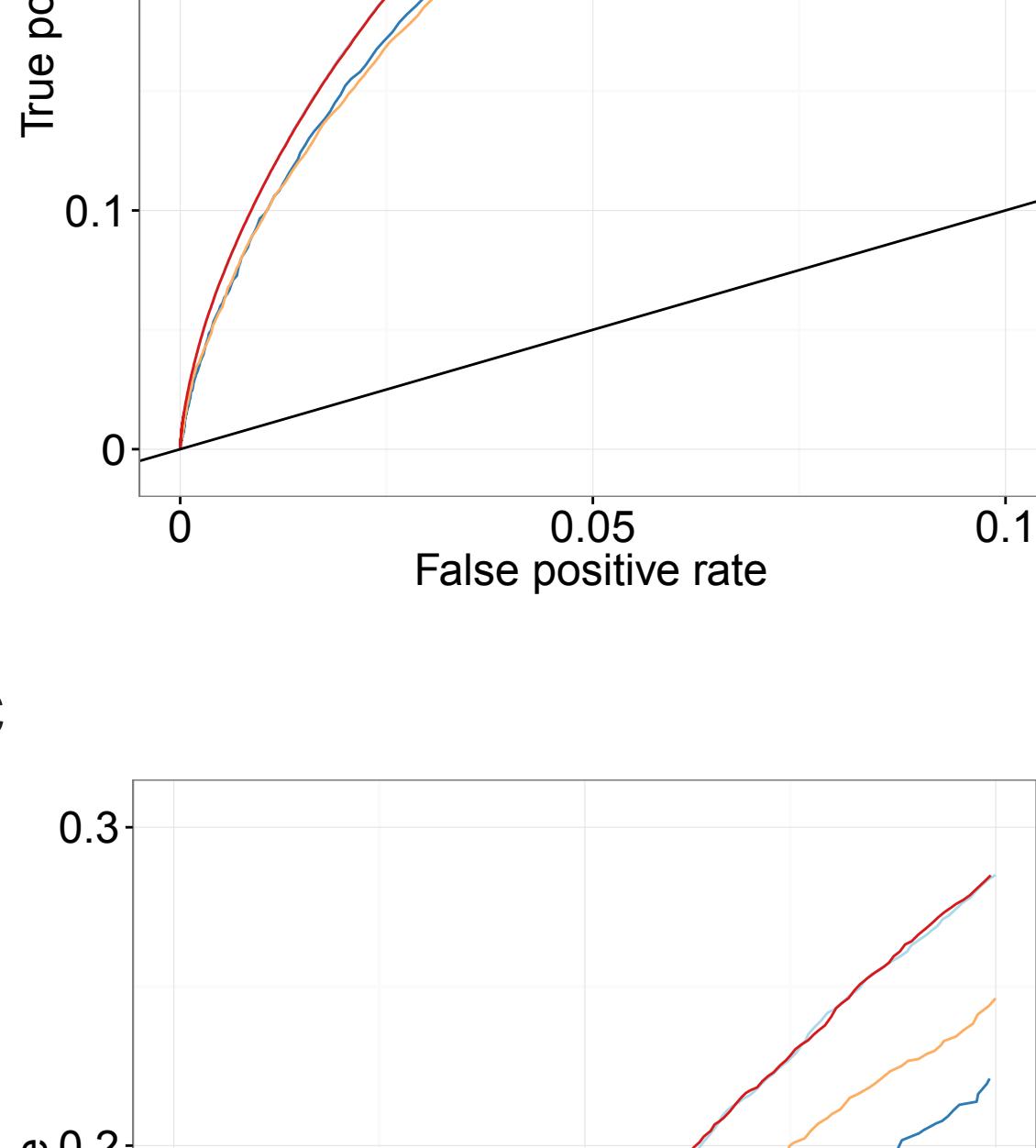


S5 Fig

a



b



c

