

1 **Versatile open software to quantify cardiomyocyte and cardiac**
2 **muscle contraction *in vitro* and *in vivo***

3
4 **Sala L.[#], van Meer B.J.[#], Tertoolen L.G.J., Bakkers J., Bellin M., Davis R.P., Denning**
5 **C., Dieben M.A.E., Eschenhagen T., Giacomelli E., Grandela C., Hansen A., Holman**
6 **E.R., Jongbloed M.R.M., Kamel S.M., Koopman C.D., Lachaud Q., Mannhardt I., Mol**
7 **M.P.H., Orlova V.V., Passier R., Ribeiro M.C., Saleem U., Smith G.L.^{*}, Mummery**
8 **C.L.^{*}, Burton F.L.^{*}**

9
10 # these authors contributed equally to this work
11 * authors for correspondence and equal contributions
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26 **Abstract**

27 Contraction of muscle reflects its physiological state. Methods to quantify contraction are often
28 complex, expensive and tailored to specific models or recording conditions, or require specialist
29 knowledge for data extraction. Here we describe an automated, open-source software tool
30 (MUSCLEMOTION) adaptable for use with standard laboratory and clinical imaging equipment that
31 enables quantitative analysis of normal cardiac contraction, disease phenotypes and pharmacological
32 responses. MUSCLEMOTION allowed rapid and easy measurement of contractility in (i) single
33 cardiomyocytes from primary adult heart and human pluripotent stem cells, (ii) multicellular 2D-
34 cardiomyocyte cultures, 3D engineered heart tissues and cardiac organoids/microtissues *in vitro* and
35 (iii) intact hearts of zebrafish and humans *in vivo*. Good correlation was found with conventional
36 measures of contraction in each system. Thus, using a single method for processing video recordings,
37 we obtained reliable pharmacological data and measures of cardiac disease phenotype in experimental
38 cell- and animal models and human echocardiograms.

39

40 **Introduction**

41 The salient feature of cardiomyocytes (CMs) is their ability to undergo cyclic contraction and
42 relaxation, a feature critical for cardiac function. In many research laboratories and clinical settings it
43 is therefore essential that cardiac contraction can be quantified at multiple levels, from single cells to
44 multicellular or intact cardiac tissues. Measurement of contractility is relevant for analysis of disease
45 phenotypes, cardiac safety pharmacology, and longitudinal measures of cardiac function over time,
46 both *in vitro* and *in vivo*. In addition, human genotype-phenotype correlations, investigation of cardiac
47 disease mechanisms and the assessment of cardiotoxicity are increasingly performed on human
48 induced pluripotent stem cells (hiPSCs) derived from patients¹⁻³. Many of these studies are carried out
49 in non-specialist laboratories so that it is important that analysis methods are simplified such that they
50 can be used anywhere with access to just standard imaging equipment. Here, we describe a single
51 method with high versatility that can be applied to most imaging outputs of cardiac contraction likely
52 to be encountered in the laboratory or clinic.

53 Electrical and calcium signals are usually quantified *in vitro* using established technologies such as
54 patch clamp electrophysiology, multi electrode arrays, cation-sensitive dyes or cation-sensitive genetic
55 reporters⁴. Although experimental details differ among laboratories, the values for these parameters
56 are with some approximations comparable across laboratories, cardiomyocyte source and cell culture
57 configuration (e.g. single cells, multicellular 2-Dimensional (2D) CM monolayers, 3-Dimensional
58 (3D) cultures)^{5,6}. However, there is no comparable method for measuring cardiac contraction across
59 multiple platforms, despite this being a crucial functional parameter affected by many diseases or
60 drugs⁷. We have developed a method to address this that is built on existing algorithms and is fully
61 automated, but most importantly can be used on videos, image stacks or image sequences loaded in the
62 open source image processing program ImageJ⁸. Moreover, it is an open source, dynamic platform that
63 can be expanded, improved and integrated for customized applications. The method, called
64 MUSCLEMOTION, determines dynamic changes in pixel intensity between image frames and
65 expresses the output as a relative measure of displacement during muscle contraction and relaxation.
66 We applied the concept to a range of biomedical- and pharmacologically relevant experimental models
67 that included single hPSC-CMs, patterned- or 2D cultures of hPSC-CMs, cardiac organoids,
68 engineered heart tissues (EHTs) and isolated adult rabbit CMs. Results were validated by comparing
69 outputs of the tool with those from three established methods for measuring contraction: optical flow,
70 post deflection and fractional shortening of sarcomere length. These methods have been tailored to (or
71 only work on) specific cell configurations. Traction force microscopy, fractional shortening of
72 sarcomere length and microposts are predominantly suitable for single cells^{8,9}. Cardiomyocyte edge or
73 perimeter detection is suitable for adult CMs but challenging for immature hPSC-CMs due to poorly
74 defined plasma membrane borders and concentric contraction¹⁰, while large post deflection is suitable
75 for EHTs or small cardiac bundles¹¹ but less so for single cells. Our MUSCLEMOTION software by
76 contrast can be used for all of these applications without significant adaptions. Furthermore, it can be
77 used for multi-parameter recording conditions and experimental settings using transmitted light
78 microscopy, fluorescent membrane labeling, fluorescent beads embedded in soft substrates or patch
79 clamp video recordings. Drug responses to positive and negative inotropic agents were evaluated
80 across four different laboratories in multiple cell configurations using MUSCLEMOTION with

81 reliable predictions of drug effects from all laboratories. Furthermore, MUSCLEMOTION was also
82 applicable to optical recordings of zebrafish hearts *in vivo*, where it represented a significant time-
83 saving in analysis, and in human echocardiograms. This versatile tool thus provides a rapid and
84 straightforward way to detect disease phenotypes and pharmacological responses *in vitro* and *in vivo*.

85

86 **Methods**

87 Extended methods are in the Supplementary Information. The datasets generated and/or analyzed
88 during the current study are available from the corresponding authors on reasonable request.

89 **Code Availability**

90 MUSCLEMOTION source code is included in the Supplementary Material and is available for use
91 and further development.

92 **Model Cell**

93 The *in silico* cardiomyocyte-like model (**Fig. 1d,f,g**) was created using Blender v2.77.

94 **Optical Flow analysis**

95 Optical flow analysis was implemented in LabVIEW as described by Hayakawa et al.^{12,13}.

96 **hPSC Culture and Differentiation**

97 hPSCs from multiple independent cell lines (**Table S1**) were differentiated to CMs as previously
98 described¹⁴⁻¹⁷, or with the Pluricyte® Cardiomyocyte Differentiation Kit (Pluriomics b.v.) according to
99 the manufacturer's protocol. Experiments were performed at 18-30 days after initiation of
100 differentiation, depending on the cell source and configuration. Pluricytes® were kindly provided by
101 Pluriomics b.v.

102 **Patch Clamp Recordings on hPSC-CMs**

103 Electrophysiological recordings of isolated hPSC-CMs were performed as previously described¹⁶.

104 **Movement of embedded beads**

105 Gelatin-patterned polyacrylamide gels containing fluorescent beads were generated and analyzed as
106 described previously¹⁸.

107

108 **Monolayers of hPSC-CMs**

109 25k-40k cells were plated per Matrigel-coated glass ø10 mm coverslip.

110 **Cardiac Organoids**

111 Cardiac organoids composed of hPSC-CMs and hPSC-derived endothelial cells, were generated as
112 previously described¹⁷.

113 **Adult cardiomyocytes**

114 CMs were isolated from New Zealand White male rabbits as previously described¹⁹.

115 **Membrane labelling**

116 hPSC-CMs were plated on Matrigel-coated glass-bottom 24-well plates and labelled with CellMask
117 Deep Red according to the manufacturer's instructions.

118 **Engineered heart tissues**

119 EHTs were generated and analyzed as previously described¹⁴.

120 **Zebrafish hearts**

121 Zebrafishes hearts were recorded, treated and analysed as previously described²³.

122 **Echocardiograms**

123 Anonymized ultrasounds of 5 adult patients were selected from the echocardiography database of the
124 Leiden University Medical Center.

125 **Statistics**

126 One-way ANOVA for paired or unpaired measurements was applied to test the differences in means
127 on normalized drug effects. P-values obtained from two-tailed pairwise comparisons were corrected
128 for multiple testing using Bonferroni's method. Statistical analyses were performed with R v3.3.3. P-
129 values lower than 0.05 were considered statistically significant and indicated with an asterisk (*).

130

131

132

133

134 **Results**

135 **Algorithm development**

136 The principle underlying the algorithm of MUSCLEMOTION is the assessment of contraction using
137 an intuitive approach quantifying absolute changes in pixel intensity between a reference frame and
138 the frame of interest, which can be described as

139

140
$$|img_i - img_{ref}| = img_{result}$$

141

142 where img_i is the frame of interest, img_{ref} is the reference frame and img_{result} is the resulting
143 image. For every pixel in the frame, each reference pixel is subtracted from the corresponding pixel of
144 interest and the difference is presented in absolute numbers. Unchanged pixels result in low (black)
145 values, while pixels that are highly changed result in high (white) values (**Fig. 1a**). Next, the mean
146 pixel intensity of the resulting image is measured. This is a quantitative measure of how much the
147 pixels have moved compared to the reference frame: more white pixels indicate more changing pixels
148 and, thus, more displacement. When a series of images is analysed relative to the same reference
149 image, the output describes the accumulated displacement over time (measure of displacement, **Fig.**
150 **1b**).

151 However, if a series of images is analysed with a reference frame that depends on the frame of interest
152 (e.g. $img_{ref} = img_{i-1}$), this results in a measure of the relative displacement per interframe interval.
153 We defined this parameter as contraction velocity (measure of velocity, **Fig. 1b**).

154 Since velocity is the first derivative of displacement in time, the first derivative of the measure
155 of displacement should resemble the measure of velocity derived from image calculations. To test the
156 linearity of the method, three movies of moving blocks were analysed. The block moved back and
157 forth at two different speeds in each direction (where $v_2 = 2 \cdot v_1$): i) along the x-axis, ii) along the y-
158 axis and iii) along both axes (**Movie S1**). As expected, the measure of displacement and velocity
159 showed a linear correlation (**Fig. S1**). This does not hold when the position of the block in img_i does
160 not overlap the position of the block in img_{ref} , with a consequent saturation in the measure of

161 displacement (i.e. max pixel white value, **Fig. S2**). Therefore, comparison of the differentially derived
162 velocities should approximately overlap in the absence of pixel saturation. This was used as a
163 qualitative parameter to determine whether the algorithm outputs were reliable.

164

165 **Algorithm implementation**

166 MUSCLEMOTION was then modified to handle typical experimental recordings by (i) improving the
167 signal-to-noise ratio (SNR), (ii) automating reference frame selection and (iii) programming built-in
168 checks to validate the generated output data (**Fig. 1c**). The SNR was increased by isolating the pixels
169 of interest in a three-step process: i) maximum projection of pixel intensity in the complete
170 displacement stack, ii) creation of a binary image of this maximum projection with a threshold level
171 equal to the mean grey value plus standard deviation and iii) multiplication of the pixel values in this
172 image by the original displacement and speed of the displacement image stack (**Fig. S3**). This process
173 allowed the algorithm to work on a region of interest with movement above the noise level only.

174 Next, a method was developed to identify the correct img_{ref} from the speed of displacement image
175 stack by comparing values obtained from the frame-to-frame calculation with their direct neighbouring
176 values, while also checking for the lowest absolute value (**Fig. S4**).

177 The reliability of MUSCLEMOTION for structures with complex movements was validated using a
178 custom-made contracting 3D “synthetic CM” model (**Fig. 1d,f,g**) that was adapted to produce
179 contractions with known amplitude and duration. Linearity was preserved during the analysis of the
180 contraction and velocity; other output parameters of the analysis matched the input parameters (**Fig.**
181 **1e**). A second 3D model (**Fig. 1g**), with a repetitive pattern aimed to create out-of-bounds problems
182 was also generated. As expected, contraction amplitude information here was not linear (**Fig. 1e**),
183 although contraction velocity and temporal parameters did remain linear (**Fig. 1e,g**). To mitigate this
184 problem, we implemented an option for a 10-sigma Gaussian blur filter that can be applied on demand
185 to biological samples that presented highly repetitive patterns (e.g. sarcomeres in adult CMs).

186

187

188 **Algorithm application to multiple cell configurations and correlation with existing gold
189 standards**

190 This set of experiments aimed to investigate the versatility of MUSCLEMOTION and examine how
191 its performance compared with standard measures used in each system: i) optical flow for isolated
192 hPSC-CMs, monolayers and organoids; ii) post deflection for EHT; iii) sarcomere length fractional
193 shortening for adult CMs. Remarkably, standard methods currently used measure only contraction or
194 contraction velocity. Linearity was preserved in all cases during the analyses, demonstrating the
195 reliability of the results (**Fig. S5**).

196 First, single hPSC-CMs (**Fig. 2a, Movie S2**) exhibited concentric contraction (**Fig. 2a ii**) and
197 contraction velocity amplitudes correlated well with the amplitudes obtained by optical flow analysis
198 ($R^2 = 0.916$) (**Fig. 2a v**). In contrast to single cells, the area of displacement for hPSC-CM monolayers
199 was distributed heterogeneously throughout the whole field (**Fig. 2b ii, Movie S3**). Optical flow
200 analysis was compared with our measure of velocity (**Fig. 2b iv**); this showed a good linear correlation
201 ($R^2 = 0.803$) (**Fig. 2b v**). Complex (mixed, multicellular) 3D configurations were also investigated by
202 analyzing hPSC-derived cardiac organoids¹⁷ (**Movie S4**) and EHTs¹⁴ (**Movie S5**). Cardiac organoids
203 showed moderate levels of displacement throughout the tissue (**Fig. 2c ii**), while the EHTs showed
204 high deflection throughout the bundle (**Fig. 2d ii**). The contraction velocity of the organoids correlated
205 well with the output of optical flow analysis ($R^2 = 0.747$, **Fig. 2c v**). Similarly, contraction amplitudes
206 in EHTs showed high linear correlation ($R^2 = 0.819$) with the absolute force values derived from
207 measurement of pole deflection (**Fig. 2d v**). Finally, single adult rabbit ventricular CMs were analyzed
208 (**Fig. 2e, Movie S6**). Large displacements were evident around the long edges of the CM (**Fig. 2e ii**).
209 These cells were analyzed with a 10-sigma Gaussian blur filter, which also minimized (unwanted)
210 effects of transverse movements on contraction patterns. Linearity was preserved (**Fig. S5**) despite the
211 repetitive pattern of the sarcomeres and this resulted in accurate measures of both contraction (**Fig. 2e
212 iii**) and speed of contraction (**Fig. 2e iv**). The contraction amplitude of the adult CMs stimulated at 1
213 Hz correlated well with the output of sarcomeric shortening using fast Fourier transform analysis²⁰ (R^2
214 = 0.871, **Fig. 2e v**). Thus, the MUSCLEMOTION algorithm yielded data in these initial studies
215 comparable with methods of analysis tailored for the individual platforms.

216 **Application of MUSCLEMOTION to multiple imaging and recording platforms**

217 To examine whether MUSCLEMOTION could potentially be used in applications that measure other
218 aspects of CMs functionality in parallel, we first determined the electrophysiological properties of
219 hPSC-CMs using patch clamp whilst recording their contractile properties through video imaging.
220 This allowed simultaneous quantitative measurement of action potentials (APs) and contraction (**Fig.**
221 **3a**), for in-depth investigation of their interdependence. We observed a typical²¹ profile of AP
222 followed by its delayed contraction.

223 To measure contractile force in combination with contractile velocity in single CMs, we integrated
224 fluorescent beads into polyacrylamide substrates patterned with gelatin (**Fig. 3b**), where the
225 displacement of the beads is a measure of CM contractile force¹⁸ (**Movie S7**).

226 Similarly, effective quantification of contraction profiles was obtained for fluorescently labeled hPSC-
227 CM monolayer cultures (**Fig. 3c, Movie S8**), allowing MUSCLEMOTION to be integrated on high
228 speed fluorescent microscope systems for automated data analysis.

229

230 **Application of MUSCLEMOTION to drug responses in different cell models in different**
231 **laboratories**

232 Having shown that MUSCLEMOTION was fit-for-purpose in analyzing contraction over a variety of
233 platforms, we next sought to demonstrate its ability to detect the effects of positive and negative
234 inotropes. This is essential for ensuring the scalability of the tool over multiple platforms, particularly
235 in the context of hiPSC-CMs where regulatory authorities and pharmaceutical companies are
236 interested in using these cells as human heart models for drug discovery, target validation or safety
237 pharmacology²². For isoprenaline (ISO) and nifedipine (NIFE) the main parameters of interest are:
238 contraction amplitude (ISO, NIFE), relaxation time (ISO) and contraction duration (NIFE).

239

240 The relaxation time of spontaneously beating isolated hPSC-CMs on gelatin patterned polyacrylamide
241 substrates treated with ISO significantly decreased as expected at doses higher than 1 nM. Similar to
242 what has been reported²⁷, contraction amplitude decreased at doses higher than 1 nM. NIFE treatment
243 decreased both contraction amplitude and duration starting from 3 nM, respectively (**Fig. 4a**). In paced

244 (1.5 Hz) hPSC-CMs monolayers, no significant effects were measured after addition of ISO on either
245 relaxation time or contraction amplitude. NIFE caused a progressive decrease in contraction duration
246 and amplitude in a concentration-dependent manner starting at 100 nM (**Fig. 4b**). Similarly, cardiac
247 organoids paced at 1.5 Hz showed no significant effects on both relaxation time and contraction
248 amplitude with ISO, while both parameters decreased after NIFE, starting from 100 nM and 300 nM,
249 respectively (**Fig. 4c**). EHTs paced at 1.5 times baseline frequency and analyzed with
250 MUSCLEMOTION showed a positive inotropic effect starting from 1 nM ISO and a negative
251 inotropic effect starting at 30 nM NIFE as previously reported¹⁴ (**Fig. 4d**).
252 Paced (1 Hz) adult rabbit CMs exhibited no significant increase in relaxation time and contraction
253 amplitude at any ISO concentration. At concentrations higher than 3 nM, adult CMs exhibited after-
254 contractions and triggered activity during diastole, which hampered their ability to be paced at a fixed
255 frequency. No significant effects were observed on contraction duration with NIFE, while contraction
256 amplitude significantly decreased in a dose-dependent manner starting from 100 nM (**Fig. 4e**). Data
257 generated by post deflection and sarcomere fractional shortening are available for comparison
258 purposes in **Fig. S6**.

259

260 **Analysis of disease phenotypes in vivo**

261 To extend analysis to hearts *in vivo*, we took advantage of the transparency of zebrafish, which allows
262 recording of contracting cardiac tissue *in vivo* (**Fig. 5a, Movie S9**). It was previously shown that
263 mutations in G protein β subunit 5 (*GNB5*) are associated with a multisystem syndrome in human,
264 with severe bradycardia at rest. Zebrafish with loss of function mutations in *gnb5a* and *gnb5b* were
265 generated. Consistent with the syndrome manifestation in patients, zebrafish *gnb5a/gnb5b* double
266 mutant embryos showed severe bradycardia in response to parasympathetic activation²³. Irregularities
267 in heart rate were visually evident and were clearly distinguishable from the wild type counterpart
268 after analysis with MUSCLEMOTION (**Fig. 5b**). Quantification of the heart rate of these zebrafishes
269 with MUSCLEMOTION highly correlated ($R^2 = 0.98$) with the results of the published manual
270 analyses²³ (**Fig. 5c**). There was however, a striking time-saving for operators in carrying out the
271 analysis using the algorithm (5-10 times faster than manual analysis; 150 recordings were analysed in

272 5 hours versus 4 days) without compromising accuracy of the outcome. Qualitative analysis of
273 contraction patterns allowed rapid discrimination between arrhythmic vs non-arrhythmic responses to
274 carbachol treatment (**Fig. 5c**).

275 Finally, we examined human echocardiograms from five healthy and cardiomyopathic individuals
276 (**Fig. 5d**). To assess ventricular function, videos were cropped to exclude movement contributions of
277 the atria and valves. MUSCLEMOTION enabled rapid quantification of temporal parameters from
278 standard ultrasound echography (**Fig. 5e**) such as time-to-peak, relaxation time, RR interval and the
279 contraction duration (**Fig. 5f**).

280

281 **Discussion**

282 A reliable and easy-to-use method to quantify cardiac muscle contraction would be of significant
283 benefit to many basic and clinical science laboratories to characterize cardiac disease phenotypes,
284 understand underlying disease mechanisms and predicting cardiotoxic effects of drugs^{14,24}.
285 Quantification of frame-to-frame differences in pixel intensity has been used in recent reports with
286 success¹⁰; however, the full spectrum of applications for which these algorithms are relevant, how their
287 output data correlates with gold standards in each system and software performance, specifications,
288 license and software availability, have remained unclear.

289 Here we developed and tested a user-friendly, inexpensive, open source software platform that serves
290 this purpose in a variety of biological systems of heart tissue. Its integration into current research
291 practices would benefit data sharing, reproducibility, comparison and translation in many clinically
292 relevant contexts²⁵.

293 The linearity and reliability of MUSCLEMOTION were validated using a 3D reconstructed artificial
294 CM which gave the expected linear correlations between known inputs and the outputs (**Fig. 1d-f**).
295 When random repetitive patterns were applied, amplitude outputs differed from inputs, suggesting a
296 potential limitation to measuring contraction amplitudes in highly repetitive biological samples (such
297 as when sarcomere patterns are well-organized), while temporal parameters remained valid (**Fig.**
298 **1d,e,g**). However, conditions such as these would be unlikely in standard biological samples, where

299 camera noise significantly reduces the possibility of saturating pixel movement. We partially
300 attenuated this problem by applying, on user demand, a 10-sigma Gaussian blur filter which
301 significantly increased the accuracy of MUSCLEMOTION with highly repetitive structures. Also, to
302 increase reliability, we built in additional controls to detect any mismatches and errors.
303 MUSCLEMOTION can automatically identify and select the reference frame and increase the signal-
304 to-noise-ratio, features which were particularly relevant in reducing user bias and interaction while
305 improving user experience. MUSCLEMOTION is valid in a wide range of illumination conditions
306 without changing temporal parameters; however, exposure time was linearly correlated with
307 contraction amplitude (**Fig. S7**). Batch mode analyses and data storage in custom folders were also
308 incorporated to support overnight automated analyses. For accurate quantification of amplitude, time-
309 to-peak and relaxation time, an appropriate sampling rate should be chosen. For applications similar to
310 those described here, we recommend recording rates higher than 70 frames per second to sample
311 correctly the fast upstroke of the time-to-peak typical of cardiac tissue. This recording rate is easily
312 achievable even using smartphone slow motion video options (~120/240 frames per second), obviating
313 the need for dedicated cameras and recording equipment if necessary.

314 We demonstrated excellent linear correlations between our software tool and multiple other standard
315 methods independent of substrate, cell configuration and technology platform and showed that
316 MUSCLEMOTION is able to capture contraction in a wide range of *in vivo* and *in vitro* applications
317 (**Fig. 2** and **Fig. 3**). Specifically, we identified several advantages compared to optical flow algorithms
318 in terms of speed and the absence of arbitrary binning factors or thresholds which, when modified,
319 profoundly affect the results. One limitation compared to optical flow or EHT standard algorithm is
320 that the tool lacks qualitative vector orientation, making it more difficult to assess contraction
321 direction. Particularly important was the correlation with force data calculated from the displacement
322 of flexible posts by EHTs. This indicates that when the mechanical properties of substrates are
323 known²⁶, MUSCLEMOTION allows absolute quantification of contractile force. Technical limitations
324 of the EHT recording system allowed us to analyze only movies with JPEG compression; this resulted
325 in loss of pixel information that might have negatively influenced the correlation shown. For better
326 and more accurate results on contraction quantification, non-lossy/uncompressed video formats should

327 be used for recordings since individual pixel information is lost upon compression and therefore not
328 available for analysis by MUSCLEMOTION.

329 We proposed and validated practical application in pharmacological challenges using multiple
330 biological preparations recorded in different laboratories; this means that immediate use in multiple
331 independent high-throughput drug-screening pipelines is possible without further software
332 development being required, as recently applied for a drug screening protocol on cardiac organoids
333 from hPSCs¹⁷. Intuitively, the possibility of having inter-assay comparisons will also be of particular
334 relevance where comparisons of contraction data across multiple platforms are required by regulatory
335 agencies or consortia (e.g. CiPA, CSAHi)^{5,6,22,27}. Moreover, this might offer a quantitative approach to
336 investigating how genetic or acquired diseases of the heart (e.g. cardiomyopathies⁷, Long QT
337 Syndrome²⁸), heart failure resulting from anticancer treatments^{29,30} or maturation strategies^{18,31,32} affect
338 cardiac contraction. The possibility of linking *in vitro* with *in vivo* assays, with low cost technologies
339 applicable with existing hardware certainly represents an advantage as demonstrated by automatic
340 quantification of zebrafish heartbeats and human echocardiograms (**Fig. 5**). Overall, these results
341 clearly demonstrated that contraction profiles could be derived and quantified in a wide variety of
342 commonly used experimental and clinical settings. MUSCLEMOTION might represent a starting
343 point for a swift screening method to provide clinically relevant insights into regions of limited
344 contractility in the hearts of patients. We encourage further development of this open source platform
345 to fit specific needs; future areas of application could include skeletal or smooth muscle in the same
346 range of formats described here.

347 MUSCLEMOTION allows the use of a single, transparent method of analysis of cardiac contraction in
348 many modalities for rapid and reliable identification of disease phenotypes, potential cardiotoxic
349 effects in drug screening pipelines and translational comparison of contractile behaviour.

350

351 **Limitations**

352 Saturation of pixel movements may affect contraction amplitudes. However, as demonstrated with the
353 artificial CM, contraction velocity and all temporal parameters remained valid. We also minimized the

354 impact of highly repetitive structures on the output of MUSCLEMOTION by applying a Gaussian
355 filter, which also helped in reducing the impact of transverse movements on contraction profiles. High
356 frequency contraction might complicate baseline detection, especially if the duration of the contracted
357 state is similar to that of the relaxed (e.g. approaching sinusoidal). We have implemented a “*fast*
358 *mode*” option that captures reliable baseline values even at high contraction rates. Furthermore,
359 recordings must be free of moving objects (e.g. debris moved by flow, air bubbles) other than those of
360 interest.

361 **Acknowledgements**

362 This work was initiated in the context of The National Centre for the Replacement, Refinement and
363 Reduction of Animals in Research (NC3Rs) CRACK IT InPulse project code 35911-259146, with
364 support from GlaxoSmithKline. It was supported by the following grants: ERC-AdG
365 STEMCARDIOVASC (MCL MBJ, GE, BM, TLGJ), ZonMW MKMD *Applications of Innovations*
366 2015-2016 (MCL, BM, SL), BHF SP/15/9/31605 & PG/14/59/31000 and BIRAX 04BX14CDLG
367 grants (DC), ERC-AdG IndivuHeart (ET) and DZHK (German Centre for Cardiovascular Research;
368 ET, SU, HA, MI), ERC-StG StemCardioRisk (DRP, MMPH), VIDI-917.15.303 (the Netherlands
369 Organisation for Scientific Research (NWO); DRP, GC). The Dutch Heart Foundation (CVON 2012 –
370 10 Predict project), E-Rare (CoHeart project).

371

372 **Conflict of interests**

373 MCL and PR are co-founders of Pluriomics B.V.
374 SGL and BF are co-founders of Clyde Biosciences Ltd.
375 ET, HA and MI are co-founders of EHT Technologies GmbH

376

377 **Author Contributions**

378 **SL:** project design, patch clamp, monolayer and organoids experiments, algorithm design, data
379 analysis, statistics, wrote the manuscript.

380 **MBJ:** project design, monolayer, organoids and membrane labelling experiments, algorithm design,
381 data analysis, statistics, wrote the manuscript.

382 **TLGJ:** project supervision, algorithm design, optical flow analyses.

383 **BJ:** supervision of zebrafish experiments.

384 **BM:** supervision of experiments on isolated hPSC-CM, cardiac organoids and monolayers.

385 **DRP:** supervision of cell culture for membrane labelling experiments.

386 **DC:** expert advice coordination of multi-center drug experiments under Crack-IT InPulse.

387 **DMAE:** designed and rendered the 3D artificial cells.

388 **ET:** supervision of experiments on Engineered Heart Tissues.

389 **GE:** generation of cardiac organoids and cell culture.

390 **CG:** cell culture for membrane labelling experiments.

391 **HA:** supervision on experiments on engineered heart tissues.

392 **HER:** advices and supervision on echocardiography data.

393 **JMRM:** echocardiography recordings and supervision on echocardiography data.

394 **KSM:** recordings and data analysis of zebrafish hearts.

395 **KCD:** recordings and data analysis of zebrafish hearts.

396 **LQ:** recordings and data analysis of adult rabbit cardiomyocytes.

397 **MI:** experiments and recordings of engineered heart tissues.

398 **MMPH:** cell culture for membrane labelling experiments.

399 **OVV:** supervision of experiments on cardiac organoids.

400 **PR:** supervision of drug tests experiments on aligned cardiomyocytes.

401 **RMC:** experiments on aligned cardiomyocytes.

402 **SU:** data analysis of engineered heart tissues.

403 **SGL:** project supervision and discussion.

404 **MCL:** project supervision and discussion, wrote the manuscript.

405 **BFL:** project supervision, algorithm design, discussion.

406

407 **Bibliography**

408 1. Laverty, H. *et al.* How can we improve our understanding of cardiovascular safety liabilities to
409 develop safer medicines? *Br. J. Pharmacol.* **163**, 675–693 (2011).

410 2. Passier, R., Orlova, V. & Mummery, C. Complex Tissue and Disease Modeling using hiPSCs.
411 *Cell Stem Cell* **18**, 309–321 (2016).

412 3. Bellin, M., Marchetto, M. C., Gage, F. H. & Mummery, C. L. Induced pluripotent stem cells:
413 the new patient? *Nat Rev Mol Cell Biol* **13**, 713–726 (2012).

414 4. van Meer, B. J., Tertoolen, L. G. J. & Mummery, C. L. Concise Review: Measuring
415 Physiological Responses of Human Pluripotent Stem Cell Derived Cardiomyocytes to Drugs
416 and Disease. *Stem Cells* **34**, 2008–2015 (2016).

417 5. Kitaguchi, T. *et al.* CSAHi study: Evaluation of multi-electrode array in combination with
418 human iPS cell-derived cardiomyocytes to predict drug-induced QT prolongation and
419 arrhythmia - Effects of 7 reference compounds at 10 facilities. *Journal of Pharmacological and*
420 *Toxicological Methods* **78**, 93–102 (2016).

421 6. Hwang, H. S. *et al.* Comparable calcium handling of human iPSC-derived cardiomyocytes
422 generated by multiple laboratories. *J Mol Cell Cardiol* **85**, 79–88 (2015).

423 7. Birket, M. J. *et al.* Contractile Defect Caused by Mutation in MYBPC3 Revealed under
424 Conditions Optimized for Human PSC-Cardiomyocyte Function. *Cell Rep* **13**, 733–745 (2015).

425 8. Ribeiro, A. J. S. *et al.* Contractility of single cardiomyocytes differentiated from pluripotent
426 stem cells depends on physiological shape and substrate stiffness. *Proc. Natl. Acad. Sci. U.S.A.*
427 **112**, 12705–12710 (2015).

428 9. Ribeiro, A. J. *et al.* Multi-Imaging Method to Assay the Contractile Mechanical Output of
429 Micropatterned Human iPSC-Derived Cardiac Myocytes. *Circ Res*
430 CIRCRESAHA.116.310363–91 (2017). doi:10.1161/CIRCRESAHA.116.310363

431 10. Kijlstra, J. D. *et al.* Integrated Analysis of Contractile Kinetics, Force Generation, and
432 Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes. *Stem Cell Reports* **5**,
433 1226–1238 (2015).

434 11. Stoehr, A. *et al.* Automated analysis of contractile force and Ca²⁺ transients in engineered
435 heart tissue. *Am J Physiol Heart Circ Physiol* **306**, H1353–H1363 (2014).

436 12. Hayakawa, T. *et al.* Image-based evaluation of contraction–relaxation kinetics of human-
437 induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with
438 extracellular electrophysiology. *J Mol Cell Cardiol* **77**, 178–191 (2014).

439 13. Hayakawa, T. *et al.* Noninvasive evaluation of contractile behavior of cardiomyocyte
440 monolayers based on motion vector analysis. *Tissue Engineering Part C: Methods* **18**, 21–32
441 (2012).

442 14. Mannhardt, I. *et al.* Human Engineered Heart Tissue: Analysis of Contractile Force. *Stem Cell
443 Reports* **7**, 29–42 (2016).

444 15. van den Berg, C. W., Elliott, D. A., Braam, S. R., Mummery, C. L. & Davis, R. P.
445 Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined
446 Conditions. *Methods Mol. Biol.* **1353**, 163–180 (2016).

447 16. Sala, L. *et al.* A new hERG allosteric modulator rescues genetic and drug-induced long-QT
448 syndrome phenotypes in cardiomyocytes from isogenic pairs of patient induced pluripotent
449 stem cells. *EMBO Mol Med* **8**, 1065–1081 (2016).

450 17. Giacomelli, E. *et al.* Three-dimensional cardiac microtissues composed of cardiomyocytes and
451 endothelial cells co-differentiated from human pluripotent stem cells. *Development* dev.143438
452 (2017). doi:10.1242/dev.143438

453 18. Ribeiro, M. C. *et al.* Functional maturation of human pluripotent stem cell derived
454 cardiomyocytes in vitro--correlation between contraction force and electrophysiology.
455 *Biomaterials* **51**, 138–150 (2015).

456 19. MacQuaide, N., Ramay, H. R., Sobie, E. A. & Smith, G. L. Differential sensitivity of Ca²⁺
457 wave and Ca²⁺ spark events to ruthenium red in isolated permeabilised rabbit cardiomyocytes.
458 *Journal of Physiology* **588**, 4731–4742 (2010).

459 20. Rocchetti, M. *et al.* Ranolazine prevents INaL enhancement and blunts myocardial remodelling
460 in a model of pulmonary hypertension. *Cardiovascular Research* **104**, 37–48 (2014).

461 21. Bers, D. M. Cardiac excitation-contraction coupling. *Nature* **415**, 198–205 (2002).

462 22. Sala, L., Bellin, M. & Mummery, C. L. Integrating cardiomyocytes from human pluripotent
463 stem cells in safety pharmacology: has the time come? *Br. J. Pharmacol.* **97**, 2684 (2016).

464 23. Lodder, E. M. *et al.* GNB5 Mutations Cause an Autosomal-Recessive Multisystem Syndrome
465 with Sinus Bradycardia and Cognitive Disability. *Am. J. Hum. Genet.* **99**, 704–710 (2016).

466 24. Rodriguez, M. L. *et al.* Measuring the Contractile Forces of Human Induced Pluripotent Stem
467 Cell-Derived Cardiomyocytes With Arrays of Microposts. *J Biomech Eng* **136**, 051005–
468 051010 (2014).

469 25. Bullen, A. Microscopic imaging techniques for drug discovery. *Nat Rev Drug Discov* **7**, 54–67
470 (2008).

471 26. Vandenburgh, H. *et al.* Drug-screening platform based on the contractility of tissue-engineered
472 muscle. *Muscle Nerve* **37**, 438–447 (2008).

473 27. Cavero, I. & Holzgrefe, H. Comprehensive in vitro Proarrhythmia Assay, a novel in vitro/in
474 silico paradigm to detect ventricular proarrhythmic liability: a visionary 21st century initiative.
475 *Expert Opin Drug Saf* **13**, 745–758 (2014).

476 28. Rocchetti, M. *et al.* Elucidating arrhythmogenic mechanisms of long-QT syndrome CALM1-
477 F142L mutation in patient-specific induced pluripotent stem cell-derived cardiomyocytes.
478 *Cardiovascular Research* (2017). doi:10.1093/cvr/cvx006

479 29. Burridge, P. W. *et al.* Human induced pluripotent stem cell-derived cardiomyocytes
480 recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity.
481 *Nat Med* **22**, 547–556 (2016).

482 30. Bellin, M. & Mummery, C. L. Stem cells: The cancer's gone, but did chemotherapy damage
483 your heart? *Nat Rev Cardiol* **13**, 383–384 (2016).

484 31. Nunes, S. S. *et al.* Biowire: a platform for maturation of human pluripotent stem cell-derived
485 cardiomyocytes. *Nat Meth* **10**, 781–787 (2013).

486 32. Chan, Y.-C. *et al.* Electrical stimulation promotes maturation of cardiomyocytes derived from
487 human embryonic stem cells. *J Cardiovasc Transl Res* **6**, 989–999 (2013).

488

489

490 **Figure Legends**

491 **Figure 1**

492 **Algorithm construction and validation.**

493 **a)** Principle of pixel intensity difference by subtraction of img_{ref} of img_i and measurement of the non-
494 zero area after image subtraction.

495 **b)** Principle of using pixel intensity difference as a measure of displacement and as a measure of
496 velocity.

497 **c)** Schematic overview of MUSCLEMOTION. Green blocks indicate basic steps of the algorithm.
498 Dark green blocks indicate important user input choices. Plots within light green blocks indicate
499 results. Optional steps are shown in blue blocks, with graphical representation of the analysed
500 parameters indicated by red lines. Three result files are generated containing the raw data:
501 “contraction.txt”, “speed-of-contraction.txt” and “overview-results.txt”. Furthermore, three images
502 showing relevant traces and a log file are generated and saved (not shown in schematic).

503 **d)** Schematic of the contractile pattern of the artificial cell and relative parameters corresponding to
504 amplitude of contraction (A), time-to-peak (t_1) and relaxation time (t_2).

505 **e)** Correlation between input (x axis) and output (y axis) parameters used to validate
506 MUSCLEMOTION with two artificial cells.

507 **f-g)** Frame representing the two artificial cells built for MUSCLEMOTION validation and their
508 relative output parameters.

509

510 **Figure 2**

511 **Correlation of results with gold standards.**

512 **a)** Brightfield image of isolated hPSC-CMs **(i)**, with maximum projection step visually enhanced with
513 a fire Look Up Table **(ii)**, contraction **(iii)** and velocity **(iv)** profiles of each individual beat have been
514 generated by MUSCLEMOTION and temporally aligned; linear regression analysis between
515 MUSCLEMOTION results (x-axis) and optical flow results (y-axis) **(v)**.

516 **b)** Phase contrast image of hPSC-CM monolayers (**i**), with maximum projection step visually
517 enhanced with a fire Look Up Table (**ii**), contraction (**iii**) and velocity (**iv**) profiles of each individual
518 beat have been generated by MUSCLEMOTION and temporally aligned; linear regression analysis
519 between MUSCLEMOTION results (x-axis) and those obtained with optical flow results (y-axis) (**v**).
520 **c)** Phase contrast image of cardiac organoids (**i**), with maximum projection step visually enhanced
521 with a fire Look Up Table (**ii**), contraction (**iii**) and velocity (**iv**) profiles of each individual beat have
522 been generated by MUSCLEMOTION and temporally aligned; linear regression analysis between
523 MUSCLEMOTION results (x-axis) and those obtained with optical flow results (y-axis) (**v**).
524 **d)** Live view of an EHT during contraction analysis. Scale bar = 1 mm. (**i**), with maximum projection
525 step visually enhanced with a fire Look Up Table (**ii**), contraction (**iii**) and velocity (**iv**) profiles of
526 each individual beat have been generated by MUSCLEMOTION and temporally aligned; linear
527 regression analysis between MUSCLEMOTION results (x-axis) and those obtained with post
528 deflection (y-axis) (**v**).
529 **e)** Brightfield image of adult rabbit CMs (**i**), with maximum projection step visually enhanced with a
530 fire Look Up Table (**ii**); contraction (**iii**) and velocity (**iv**) profiles of each individual beat have been
531 generated by MUSCLEMOTION and temporally aligned; linear regression analysis between
532 MUSCLEMOTION results (x-axis) and those obtained from sarcomere fractional shortening
533 calculation with Fast Fourier Transform (y-axis) (**v**).
534 For details on cell sources and cell lines please refer to the Supplementary Table 1.

535

536

537 **Figure 3**

538 **Application of contraction tool to multiple biological situations.**

539 Representative examples with enhancement of moving pixels (**top**) and profiles (**bottom**) of
540 contraction (**a-c, red**), velocity (**a-c, black**) and voltage (**a, blue**) respectively obtained from high
541 speed movies of patched hPSC-CMs (**a**), aligned hPSC-CMs on polyacrylamide gels with fluorescent
542 beads (**b**) and hPSC-CMs whose membranes have been labelled with CellMask Deep Red (**c**).

543 For details on cell sources and cell lines please refer to the Supplementary Table 1.

544 **Figure 4**

545 **Pharmacological challenge with positive and negative inotropic compounds.**

546 **a)** Average dose-response curves (**black traces**) and single measurements for several parameters
547 obtained in isolated, spontaneously beating, aligned hPSC-CMs treated with isoprenaline (**left, red**)
548 and nifedipine (**right, green**).

549 **b)** Average dose-response curves (**black traces**) and single measurements for several parameters
550 obtained from monolayers of hPSC-CMs treated with isoprenaline (**left, red**) and nifedipine (**right,**
551 **green**).

552 **c)** Average dose-response curves (**black traces**) and single measurements for several parameters
553 obtained in cardiac organoids treated with isoprenaline (**left, red**) and nifedipine (**right, green**).

554 **d)** Average dose-response curves (**black traces**) and single measurements for several parameters
555 obtained in EHTs treated with isoprenaline (**left, red**) and nifedipine (**right, green**).

556 **e)** Average dose-response curves (**black traces**) and single measurements for several parameters
557 obtained in adult rabbit CMs treated with isoprenaline (**left, red**) and verapamil (**right, green**).

558 Average data points (**black**) represent mean \pm standard error of mean. For details on cell sources and
559 cell lines please refer to the Supplementary Table 1.

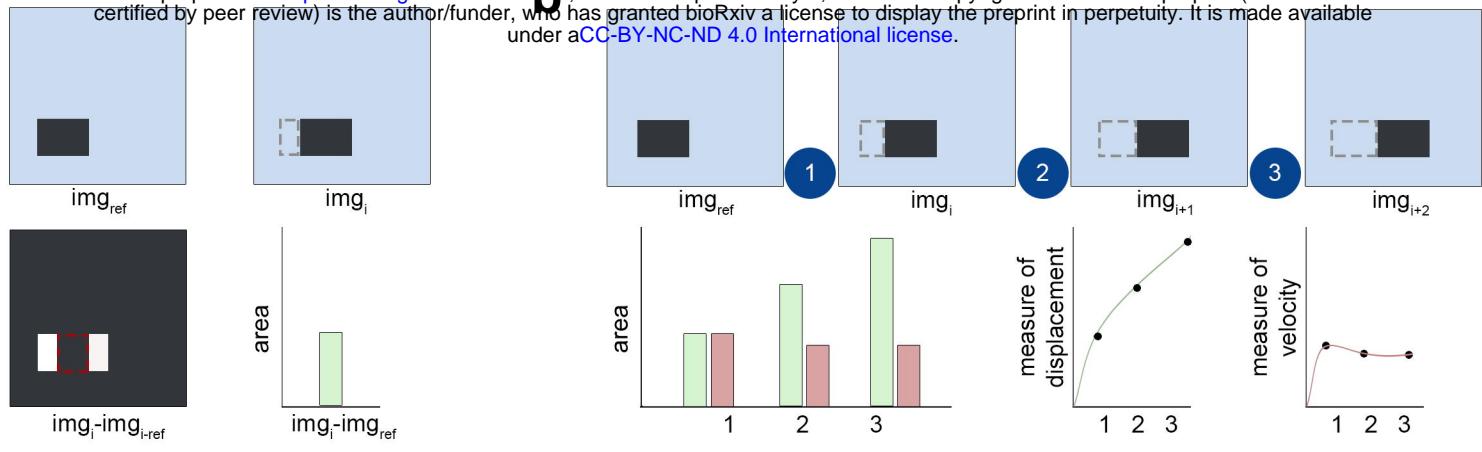
560 Data information: P-values DMSO versus dose. Panel a i) **0.3 nM**: 0.2897; **1 nM**: $3.4 \cdot 10^{-6}$; **3 nM**:
561 $3.8 \cdot 10^{-8}$; **10 nM**: $7 \cdot 10^{-11}$; **30 nM**: $7.3 \cdot 10^{-10}$; **100 nM**: $2.4 \cdot 10^{-10}$. Panel a ii) **0.3 nM**: 1; **1 nM**: 0.0645; **3**
562 **nM**: 0.0136; **10 nM**: $8.2 \cdot 10^{-5}$; **30 nM**: 0.0063; **100 nM**: $2.4 \cdot 10^{-6}$. (N=14; 14; 14; 14; 14; 14; 14)

563 Panel a iii) **3 nM**: 0.6533; **10 nM**: $4 \cdot 10^{-5}$; **30 nM**: $2 \cdot 10^{-9}$; **100 nM**: $1.5 \cdot 10^{-15}$. Panel a iv) **3 nM**:
564 0.00054; **10 nM**: $1.9 \cdot 10^{-11}$; **30 nM**: $< 2 \cdot 10^{-16}$; **100 nM**: $< 2 \cdot 10^{-16}$. (N=14; 14; 14; 14; 14)

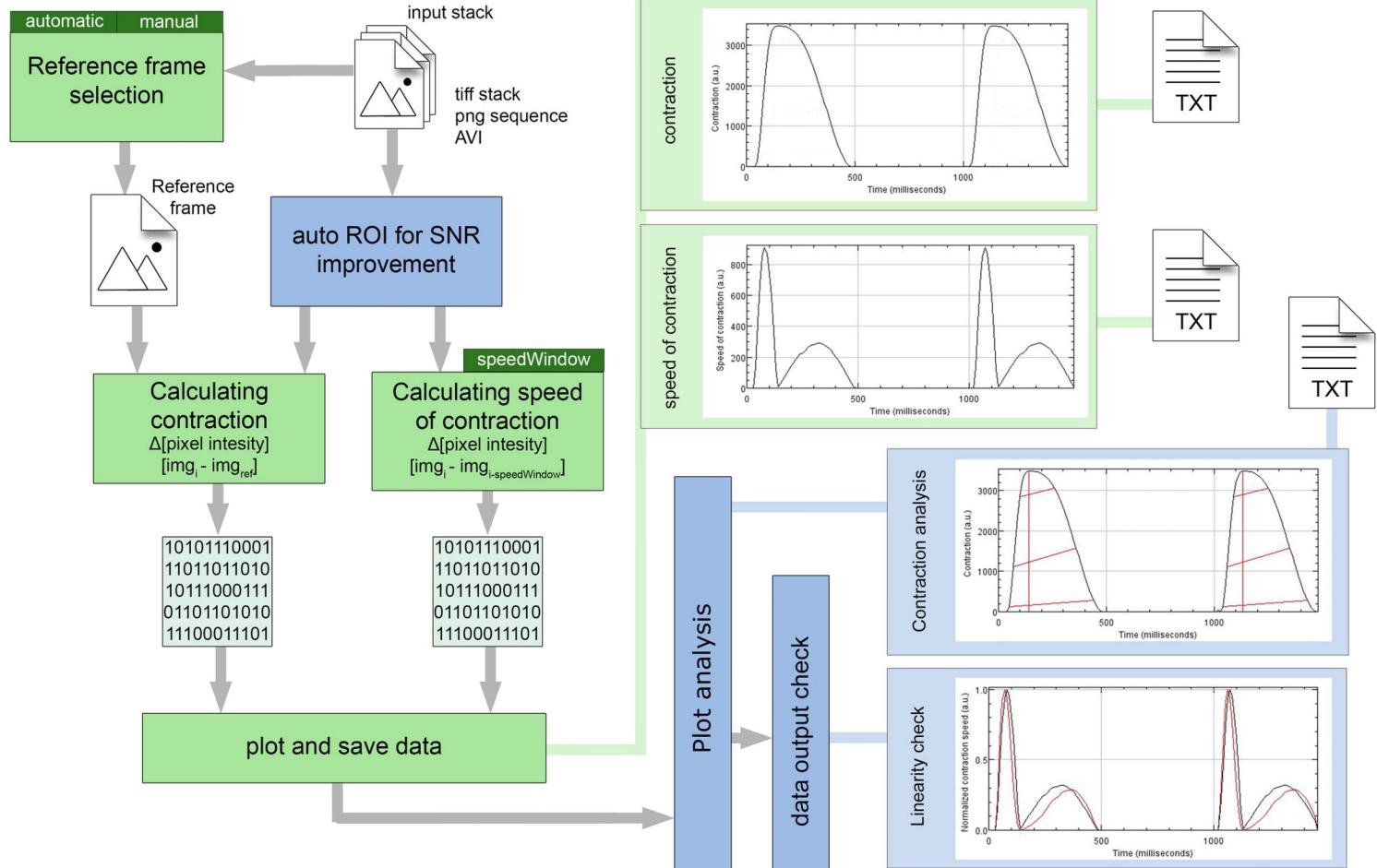
565 P-values baseline versus dose. Panel b i) **1 nM**: 1; **3 nM**: 1; **10 nM**: 1; **30 nM**: 1; **100 nM**: 1; **300 nM**:
566 1. Panel b ii) **1 nM**: 1; **3 nM**: 1; **10 nM**: 1; **30 nM**: 1; **100 nM**: 1; **300 nM**: 1. (N=6; 5; 6; 6; 6; 6)

567 Panel b iii) **3 nM**: 1; **10 nM**: 1; **30 nM**: 1; **100 nM**: 0.00801; **300 nM**: $2.7 \cdot 10^{-9}$; **1000 nM**: $1.8 \cdot 10^{-10}$.
568 Panel b iv) **3 nM**: 1; **10 nM**: 1; **30 nM**: 1; **100 nM**: 0.00084; **300 nM**: $2.9 \cdot 10^{-11}$; **1000 nM**: $1.5 \cdot 10^{-11}$.
569 (N=6; 6; 6; 6; 6; 6)

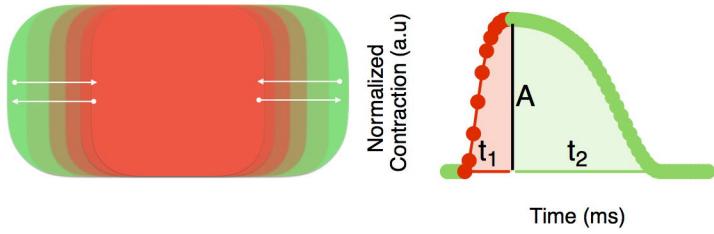
570 P-values baseline versus dose. Panel c i) **1 nM**: 1; **3 nM**: 1; **10 nM**: 1; **30 nM**: 1; **100 nM**: 1; **300 nM**:
571 1. Panel c ii) **1 nM**: 1; **3 nM**: 1; **10 nM**: 1; **30 nM**: 1; **100 nM**: 1; **300 nM**: 1. (N=5; 5; 4; 5; 4; 4; 4)

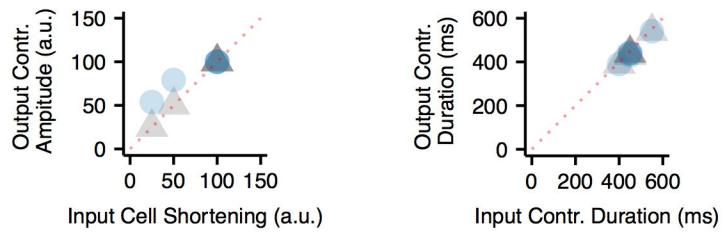

572 Panel c iii) **3 nM**: 1; **10 nM**: 1; **30 nM**: 1; **100 nM**: 0.00181; **300 nM**: $2.9 \cdot 10^{-6}$; **1000 nM**: $1.7 \cdot 10^{-5}$.
573 Panel c iv) **3 nM**: 1; **10 nM**: 1; **30 nM**: 1; **100 nM**: 0.54836; **300 nM**: 0.01392; **1000 nM**: $8.2 \cdot 10^{-5}$.
574 (N=5; 5; 4; 5; 5; 3)
575 P-values baseline versus dose. Panel d i) **1 nM**: 1; **3 nM**: 1; **10 nM**: 1; **30 nM**: 0.47; **100 nM**: 1. Panel
576 d ii) **1 nM**: 0.02318; **3 nM**: 0.00170; **10 nM**: 0.00028; **30 nM**: 0.00044; **100 nM**: 0.00113. (N=5; 5; 5;
577 5; 5; 5). Panel d iii) **3 nM**: 1; **10 nM**: 1; **30 nM**: 1; **100 nM**: $3 \cdot 10^{-5}$. Panel d iv) **3 nM**: 1; **10 nM**:
578 0.49856; **30 nM**: 0.01473; **100 nM**: $7 \cdot 10^{-6}$. (N=6; 6; 6; 6)
579 P-values Krebs versus dose. Panel e i) **1 nM**: 1; **3 nM**: 1. Panel e ii) **1 nM**: 1; **3 nM**: 0.54. (N=6; 10; 7)
580 P-values DMSO versus dose. Panel e iii) **10 nM**: 1; **30 nM**: 1; **100 nM**: 1; **300 nM**: 1. Panel e iv) **10**
581 **nM**: 0.5298; **30 nM**: 0.2470; **100 nM**: 0.0054; **300 nM**: 0.0029. (N=7; 8; 4; 5; 7).
582

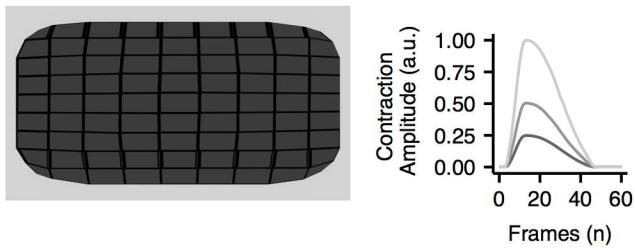
583 **Figure 5**

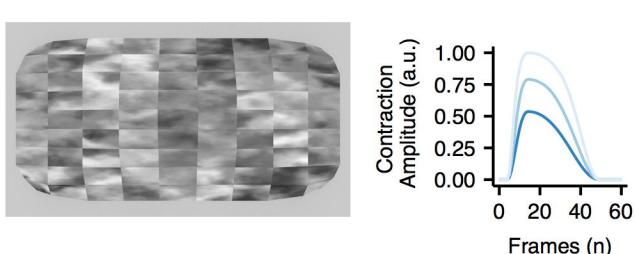

584 **In vivo disease phenotypes.**

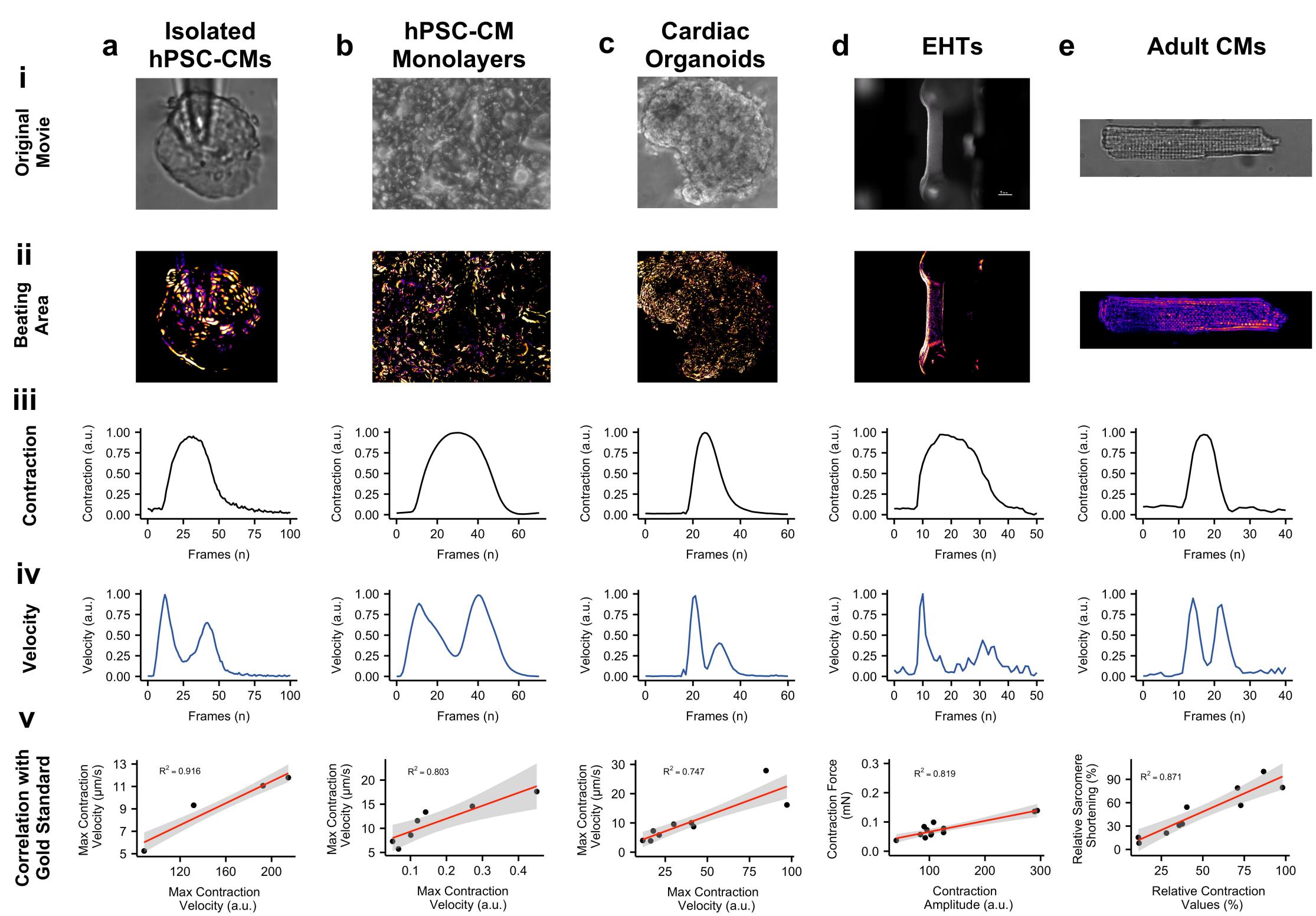
585 **a)** Representative examples of wild type (**top**) and *gnb5a/gnb5b* mutant (**bottom**) zebrafishes and
586 relative enhancement of moving pixels.
587 **b)** Representative qualitative analyses of normal (**top**) and arrhythmic (**bottom**) contraction profiles
588 from wild type and *gnb5a/gnb5b* mutant zebrafishes treated with carbachol.
589 **c)** Correlation of results obtained from manual (x-axis) vs automatic (y-axis) detection of beating
590 frequency (**top**); distribution of normal (green) and arrhythmic (red) contraction patterns in baseline
591 condition (B) and after treatment with carbachol (C) in wild type and *gnb5a/gnb5b* mutant zebrafishes
592 (**bottom**).
593 **d)** Representative echocardiograms of healthy (**top**) and cardiomyopathic (**bottom**) human
594 individuals. Ventricles have been manually cropped and the enhancement of moving pixels is overlaid.
595 **e)** Representative qualitative analyses of normal (**top**) and poor (**bottom**) ventricular functions.
596 **f)** Quantitative data collected from echocardiogram in 5 individuals. Each colour represents one
597 individual.

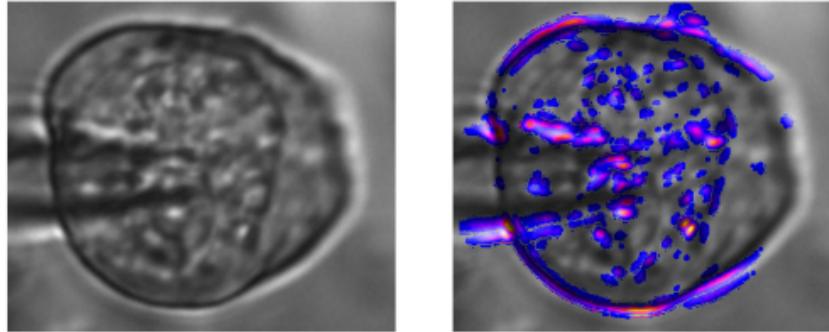
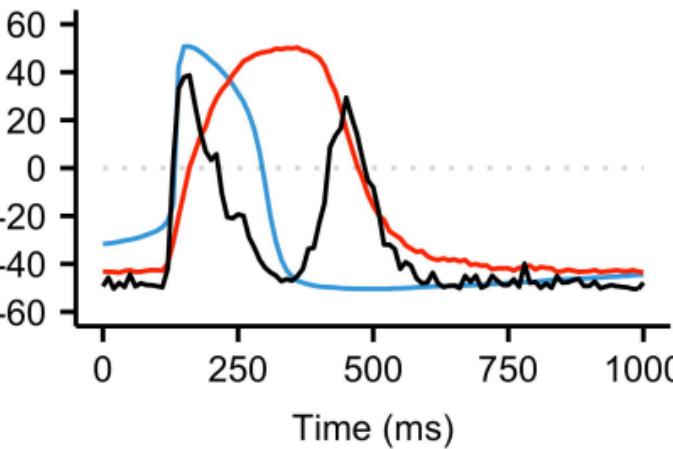
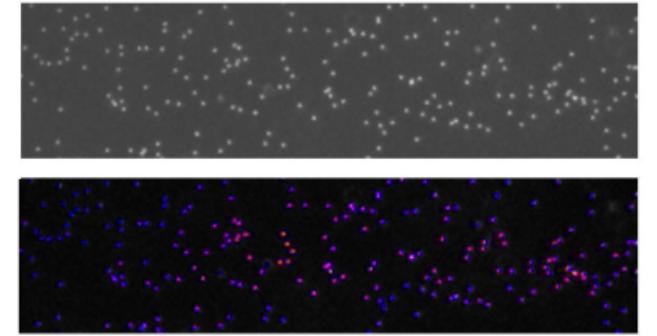
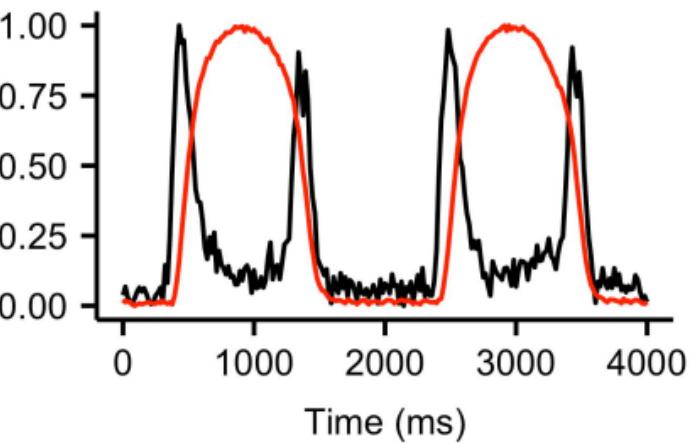
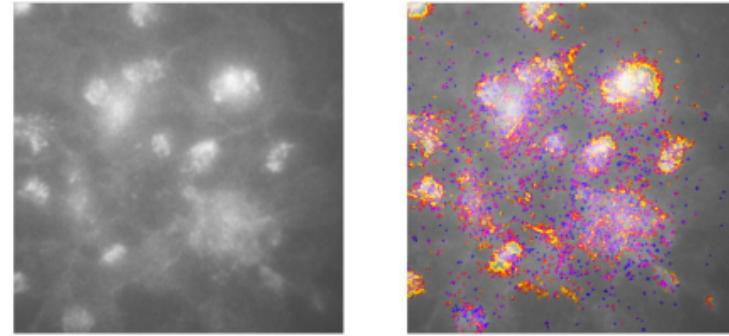
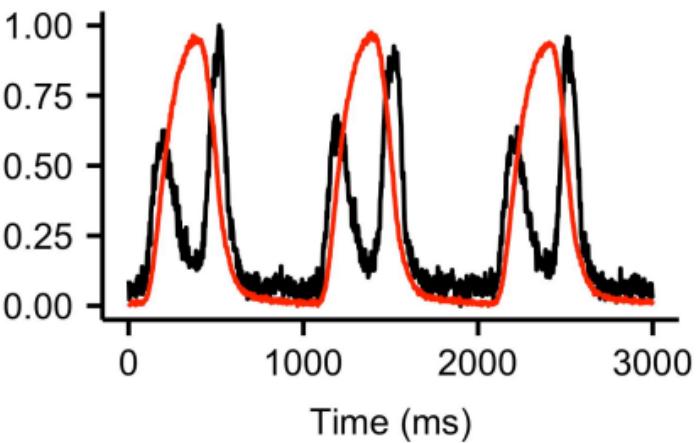

a

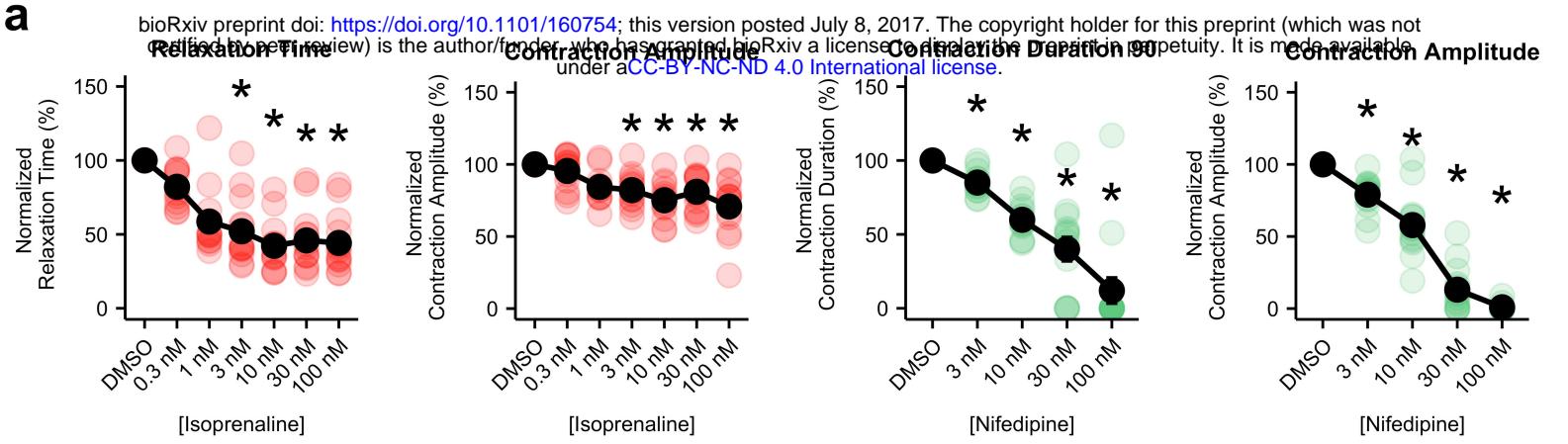
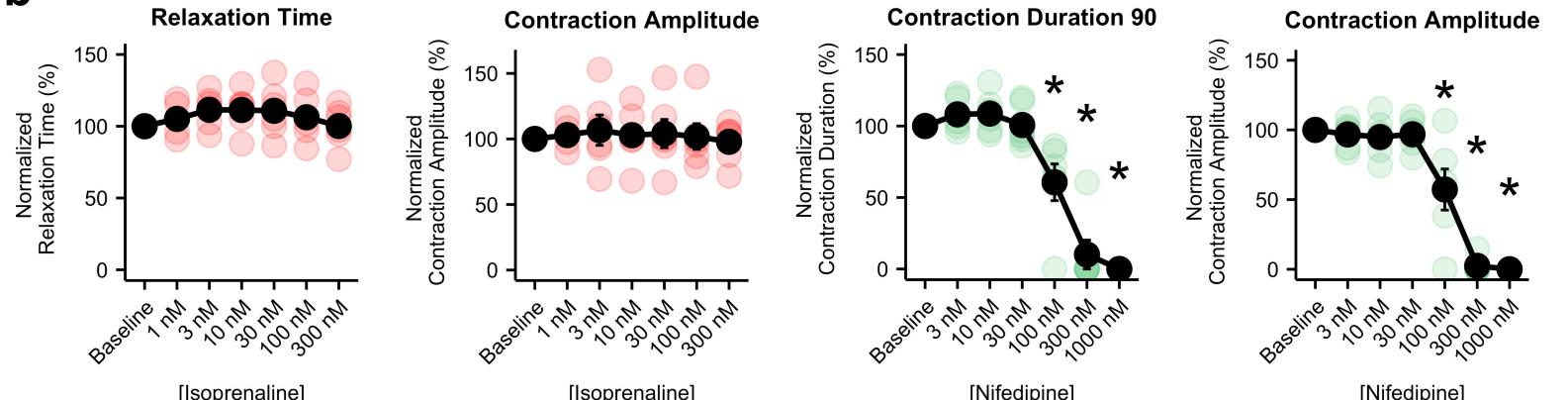
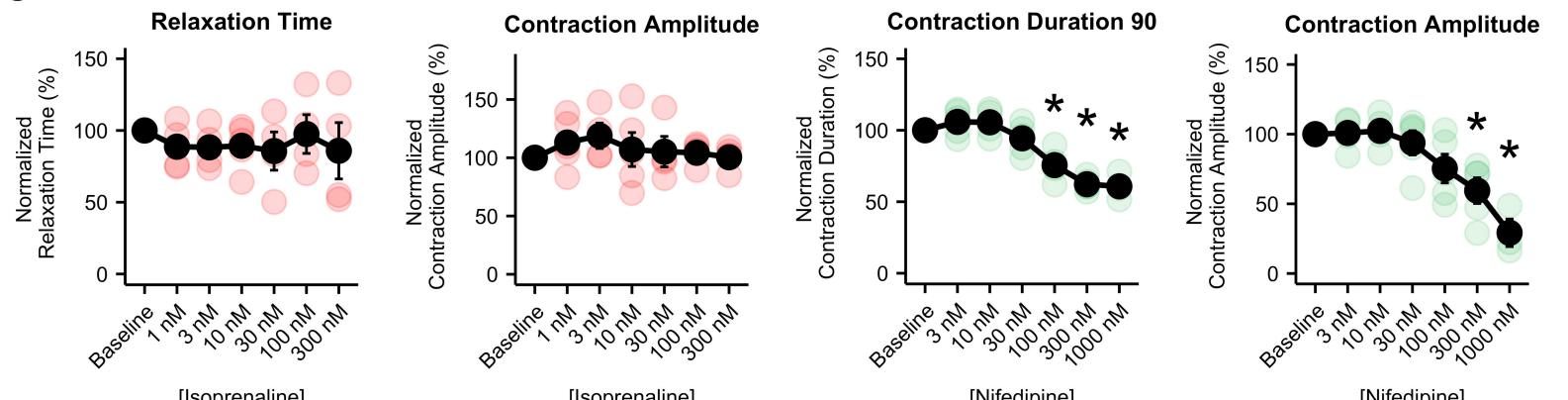
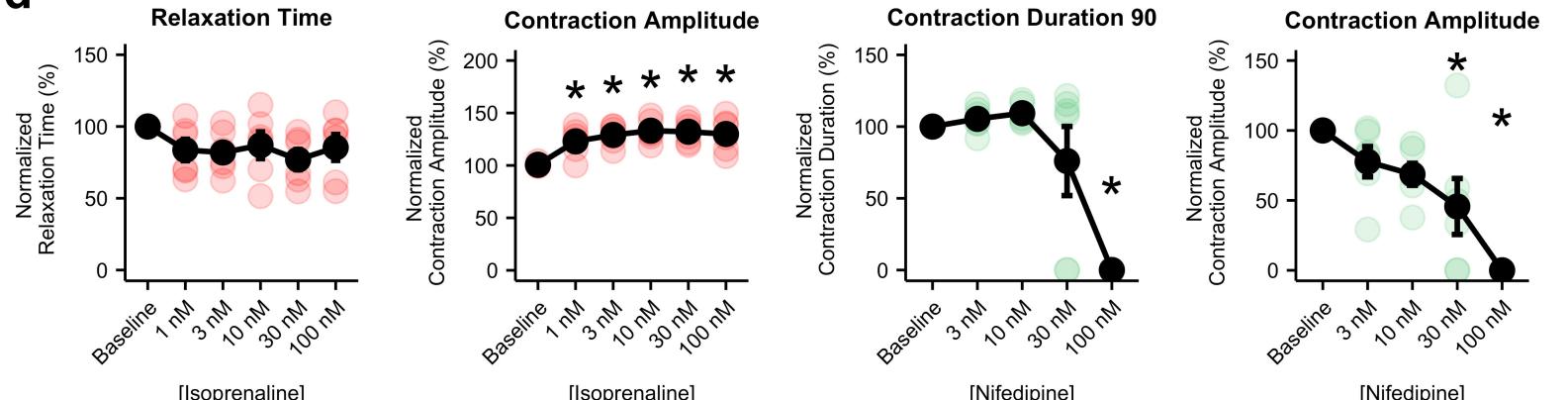
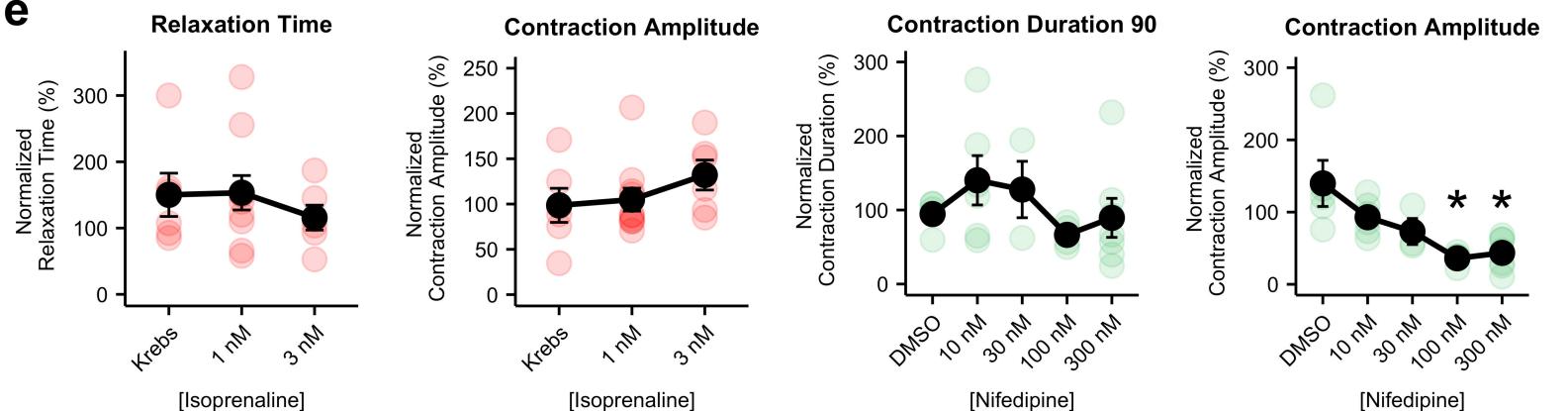

C

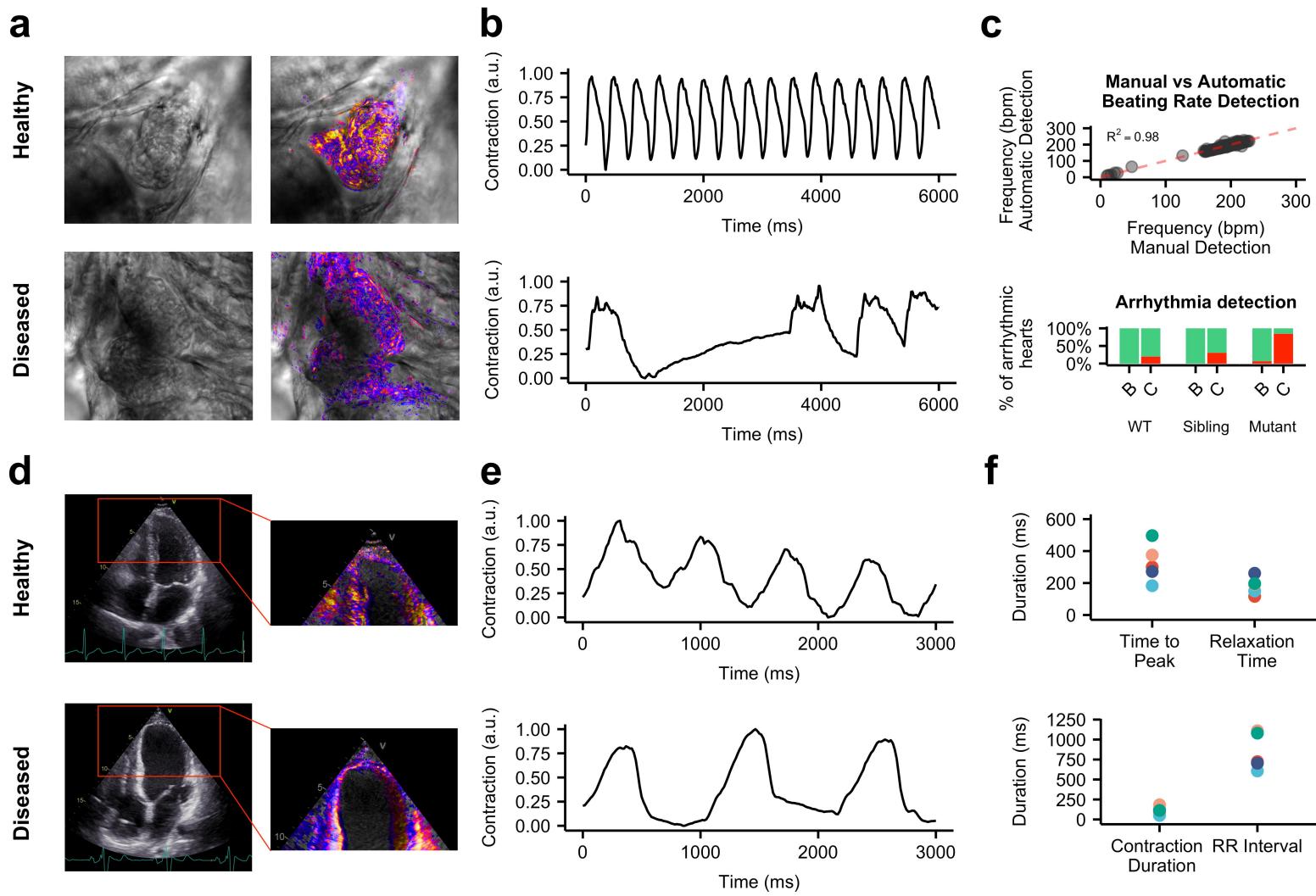

d


e


f






9



The graph illustrates the contraction velocity over 60 frames. The y-axis represents Contraction Velocity in arbitrary units (a.u.), ranging from 0.0 to 1.5. The x-axis represents the number of frames (n), ranging from 0 to 60. Multiple overlapping bell-shaped curves are shown, with the highest peak occurring around frame 10, reaching approximately 1.5 a.u. The velocity then decreases, with smaller peaks around frames 20, 30, and 40, and a final small peak around frame 60.

a**Patch Clamp**Normalized Contraction
and Velocity (a.u.)
and Voltage (mV)**b****Fluorescent Bead Tracking**Normalized
Contraction
and Velocity (a.u.)**c****Membrane Labelling**Normalized
Contraction
and Velocity (a.u.)

a**b****c****d****e**

