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Abstract

Mendelian randomization is the use of genetic variants as instrumental variables to estimate

causal effects of risk factors on outcomes. The total causal effect of a risk factor is the change

in the outcome resulting from intervening on the risk factor. This total causal effect may

potentially encompass multiple mediating mechanisms. For a proposed mediator, the direct

effect of the risk factor is the change in the outcome resulting from a change in the risk factor

keeping the mediator constant. A difference between the total effect and the direct effect

indicates that the causal pathway from the risk factor to the outcome acts at least in part via

the mediator (an indirect effect). Here, we show that Mendelian randomization estimates of

total and direct effects can be obtained using summarized data on genetic associations with

the risk factor, mediator, and outcome, potentially from different data sources. We perform

simulations to test the validity of this approach when there is unmeasured confounding

and/or bidirectional effects between the risk factor and mediator. We illustrate this method

using the relationship between age at menarche and risk of breast cancer, with body mass

index (BMI) as a potential mediator. We show an inverse direct causal effect of age at

menarche on risk of breast cancer (independent of BMI) and a positive indirect effect via

BMI. In conclusion, multivariable Mendelian randomization using summarized genetic data

provides a rapid and accessible analytic strategy that can be undertaken using publicly-

available data to better understand causal mechanisms. (250 words)
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Introduction1

Mendelian randomization is the use of genetic variants as instrumental variables to assess and2

estimate the causal effect of a risk factor on an outcome [Davey Smith and Ebrahim, 2003;3

Burgess and Thompson, 2015b]. A risk factor has a causal effect on an outcome if intervening4

on the risk factor leads to changes in the outcome. Correlation between a risk factor and an5

outcome may arise because the risk factor is a cause of the outcome. However, it may also6

reflect confounding (the risk factor and outcome have common causes) or reverse causation7

(the outcome is a cause of the risk factor). Instrumental variable analysis represents one way8

of assessing whether there is a causal effect of the risk factor on the outcome under certain9

assumptions using observational data.10

For a genetic variant to be a valid instrumental variable, it must satisfy three assumptions.11

First, the genetic variant must be associated with the risk factor. Secondly, the genetic12

variant must not be associated with confounders of the risk factor-to-outcome association.13

Thirdly, the genetic variant must not affect the outcome except via the risk factor of interest14

(no direct effect on the outcome) [Greenland, 2000; Lawlor et al., 2008]. Whereas phenotypic15

variables tend to display widespread correlations with other phenotypes, genetic variants are16

often more specific in their associations [Davey Smith et al., 2007], meaning that Mendelian17

randomization investigations are less susceptible to biases from confounding that adversely18

affect observational studies. Additionally, as the genetic code is fixed at conception, genetic19

associations are less susceptible to reverse causation or confounding due to environmental20

factors.21

The instrumental variable assumptions can be assessed to some extent by testing for as-22

sociations between the genetic variants and potential measured confounders [Burgess et al.,23

2015b]. However, it is possible that a covariate associated with a genetic variant is not a24

confounder, but rather a mediator on the causal pathway from the risk factor to the outcome25

[Haycock et al., 2016]. This is particularly likely if several variants all have directionally con-26

cordant associations with the same covariate. Genetic associations with a mediator may not27

represent pleiotropic effects of the variants, but rather represent downstream consequences28

of intervening on the risk factor. In such a case, the genetic variants are still valid instru-29

ments, as the only causal pathway from the variants to the outcome is via the risk factor30

(and potentially also via the mediator).31
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In many scenarios, it is relevant not only whether the risk factor is a cause of the outcome,32

but also via what mechanism this causal effect acts. Mediation analysis can be used to dissect33

the total causal effect of the risk factor on the outcome into an indirect effect of the risk34

factor on the outcome via the mediator, and a direct effect of the risk factor on the outcome35

not via the mediator (possibly via other causal pathways or other mediators) [VanderWeele36

and Vansteelandt, 2009]. This is illustrated in Figure 1. The total effect is defined as the37

change in the outcome resulting from intervening on the risk factor (say, increasing its value38

by 1 unit). The direct effect is the change in the outcome resulting from intervening on39

the risk factor but holding the mediator constant. The indirect effect is the change in the40

outcome resulting from manipulating the value of the mediator as if we had intervened on41

the risk factor, but in fact holding the risk factor constant. If all variables are continuous and42

all relationships between variables are linear, then the total effect is equal to the direct effect43

plus the indirect effect. Formally, a direct effect defined by intervening on the risk factor and44

mediator separately is a controlled direct effect, which does not have a counterpart indirect45

effect. If all relationships are linear, then the controlled direct effect is equal to the natural46

direct effect, which does have a counterpart, the natural indirect effect. Full details are47

provided in the Supplementary Material A.1.48

[Figure 1 should appear about here.]49

Mendelian randomization analyses using summarized data have recently become widespread50

due to the increasing public availability of suitable data in large sample sizes from GWAS51

consortia, and the possibility of ‘two-sample’ Mendelian randomization in which genetic as-52

sociations with the risk factor and outcome are estimated in different samples [Burgess et al.,53

2015b]. It has previously been demonstrated that a (univariable) Mendelian randomization54

estimate can be obtained from summarized data (beta-coefficients and standard errors) by55

regressing genetic associations with the outcome on genetic associations with the risk factor56

[Burgess et al., 2016]. This represents the total effect of the risk factor on the outcome. It57

has also been demonstrated that direct causal effects of related risk factors can be estimated58

by regressing genetic associations with the outcome on genetic associations with each of the59

risk factors in a multivariable regression model; this is referred to as multivariable Mendelian60

randomization [Burgess and Thompson, 2015a].61

In this report, we demonstrate how the total effect and the direct effect of the risk62
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factor on the outcome can be estimated from summarized data, we consider the assumptions63

necessary for genetic variants to satisfy for consistent estimation, and we exemplify how64

these estimates can be used to interrogate causal mechanisms with an applied example of65

the effect of age at menarche on breast cancer risk, with body mass index (BMI) as a potential66

mediator.67

Methods68

Assumed framework of summarized data and genetic associations69

We initially assume that all variables are continuous, and relationships between variables70

(in particular, the genetic associations with the risk factor X, mediator M , and outcome Y ,71

and the causal effects of the risk factor and mediator on the outcome, and of the risk factor72

on the mediator) are linear with no effect modification (that is, they are the same for all73

individuals in the population and do not vary for different values of the independent variable).74

For each genetic variant Gj (j = 1, 2, . . . , J), we assume that we have an estimate β̂Xj of75

the association of the genetic variant with the risk factor obtained from linear regression.76

Similar association estimates are assumed to be available for the mediator (β̂Mj) and outcome77

(β̂Y j). The standard error of the association estimate with the outcome is se(β̂Y j). If any78

of the variables is binary, then these summarized association estimates may be replaced79

with association estimates from logistic regression; more detail on the binary outcome case80

is provided later in the paper. The relationships between these variables are illustrated in81

Figure 2.82

[Figure 2 should appear about here.]83

We also assume that all genetic variants are uncorrelated (that is, not in linkage disequi-84

librium). Although conventional instrumental variable methods for analysing summarized85

data from correlated variants have been developed [Burgess et al., 2016] and software code86

for analysing correlated variants is provided in the Supplementary Material, as we shall see87

later there are problems of identification in the mediation setting that may be accentuated88

by the use of correlated variants. Although this is a strict assumption, often genetic variants89

in Mendelian randomization investigations are chosen to be the top hits from different gene90

regions identified by a genome-wide association study, and so the assumption is naturally91
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satisfied. The method makes no specific requirements for the level of statistical significance of92

the associations between the genetic variants and the risk factor, but variants with robustly93

verified associations represent more informative instrumental variables.94

Weighted regression for estimation of total and direct effects95

If β̂Xj, β̂Mj, and β̂Y j are the genetic associations of variant Gj (j = 1, 2, . . . , J) with the96

risk factor (X), mediator (M) and outcome (Y ), and se(β̂Y j) are the standard errors of the97

genetic associations with the outcome, then the weighted regression:98

β̂Y j = θT β̂Xj + ϵTj, ϵTj ∼ N (0, se(β̂Y j)
2) (1)

provides an estimate of the total effect of the risk factor on the outcome θT , known as99

the inverse-variance weighted estimate [Burgess et al., 2013]. This regression model does100

not take into account uncertainty in the genetic associations with the risk factor; however,101

these associations are typically more precisely estimated than those with the outcome, and102

ignoring this uncertainty does not lead to inflated Type 1 error rates in realistic scenarios103

[Burgess et al., 2013].104

The inverse-variance weighted estimate can be motivated as the fixed-effect meta-analysis105

pooled estimate of the variant-specific causal estimates
β̂Y j

β̂Xj
with standard errors taken as106

se(β̂Y j)

β̂Xj
(the leading order term from the delta expansion for the standard error of the ratio of107

two variables). This meta-analysis estimate can also be obtained by the weighted regression108

model in equation 1 [Thompson and Sharp, 1999]. The weighted regression model can be109

expanded by including genetic associations with the mediator:110

β̂Y j = θDβ̂Xj + θM β̂Mj + ϵDj, ϵDj ∼ N (0, se(β̂Y j)
2) (2)

to provide an estimate of the direct effect θD. The weighted regression method for calculating111

the total effect (equation 1) is equivalent to the two-stage least squares (2SLS) method with112

individual-level data, in which the first stage of the method regresses the risk factor on113

the genetic variants, and the second stage regresses the outcome on fitted values of risk114

factor [Burgess et al., 2016]. The weighted regression method for calculating the direct115

effect (equation 2) is also equivalent to a two-stage regression method, except that the first116
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stage also regresses the mediator on the genetic variants, and the second stage regresses the117

outcome on fitted values of the risk factor and fitted values of the mediator [Burgess et al.,118

2015a]. Software code to implement these analyses is provided in Supplementary Material119

A.2. With a continuous outcome, the indirect effect of the risk factor on the outcome can120

be calculated as θI = θT − θD.121

For consistent estimation, it is required that all genetic variants used to estimate the122

total effect of the risk factor on the outcome satisfy the standard assumptions of Mendelian123

randomization: they are associated with the risk factor, not associated with confounders,124

and there is no pathway from any genetic variant to the outcome except via the risk factor.125

All variants used to estimate the direct effect of the risk factor on the outcome must satisfy126

the assumptions of multivariable Mendelian randomization: they are associated with the127

risk factor and/or mediator, not associated with confounders, and there is no pathway from128

any genetic variant to the outcome except via the risk factor and/or the mediator [Burgess129

and Thompson, 2015a].130

Identification of the direct effect131

If the genetic associations with the mediator are entirely determined by their associations132

with the risk factor, then with an infinite sample size (if associations are perfectly linear with133

no heterogeneity) the direct effect would not be identified, as the genetic associations with134

the risk factor and mediator would be perfectly correlated. Hence, it is necessary for there to135

be some heterogeneity in the genetic associations or the relationships between the variables.136

This may occur for a complex variable such as BMI, where different genetic variants may137

influence BMI in different ways or via different biological pathways, potentially leading to138

different magnitudes of causal effect on the mediator and/or outcome. Alternatively, if139

there are genetic variants that are instrumental variables for the mediator only, then these140

variants could be included in the multivariable Mendelian randomization analysis. However,141

such variants are not valid instrumental variables for the risk factor, and so should not be142

used to estimate the total causal effect of the risk factor on the outcome.143
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Applied example144

As an illustrative example, we consider the causal effect of age at menarche on breast cancer145

risk. Numerous genetic variants have been discovered that influence age at menarche. Later146

puberty reduces the total number of ovulatory cycles and hence the life-time sex-hormone147

exposure, thus we expect later menarche to be protective for breast cancer. This is in line148

with observational epidemiological findings [Collaborative Group on Hormonal Factors in149

Breast Cancer, 2012]. However, later menarche is also associated with lower BMI, and it150

is known that genetically predicted BMI (and also adolescent BMI) is inversely associated151

with breast cancer risk [Guo et al., 2016; Baer et al., 2010]. Therefore age at menarche will152

likely have an indirect effect on breast cancer risk via BMI as well as a direct effect (in the153

opposite direction) not via BMI.154

We have taken 375 genetic variants demonstrated to be associated with age at menarche155

at a genome-wide level of significance [Day et al., 2017]. Genetic associations with age156

at menarche (measured in years) were obtained from the Reprogen consortium based on157

329,000 women of European descent. Genetic associations with BMI were obtained from the158

GIANT consortium, based on 339,000 individuals, 95% of whom are of European descent159

[Locke et al., 2015]. Genetic associations with breast cancer risk were obtained from the160

Breast Cancer Association Consortium (BCAC) on 47,000 cases and 43,000 controls (all161

female) of European descent [Michailidou et al., 2015]. Although genetic associations with162

BMI were estimated at different timepoints for different studies in the GIANT consortium,163

as genetic variants typically influence variables across the whole life-course, it is not crucial164

when these associations are measured, provided that they are measured in individuals before165

they have disease events (to prevent reverse causation, see Discussion for more detail). A166

more detailed analysis of these same data (although based on the individual-level data) was167

previously reported by Day et al. [2017]; further details relating to applied aspects of the168

analysis are provided in that paper.169

Univariable Mendelian randomization suggested a null effect of age at menarche on breast170

cancer risk (odds ratio per 1 year later menarche 1.00, 95% confidence interval 0.96, 1.05).171

However, a multivariable Mendelian randomization analysis adjusting for genetic associations172

with BMI suggested a protective direct effect of later age at menarche (odds ratio 0.94, 95%173

confidence interval 0.89, 0.98). This suggests that an intervention to delay menarche would174
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have no net effect on breast cancer risk if it also had the expected consequence of lowering175

adolescent BMI (or, similarly, if the delay in menarche was achieved by reducing pre-pubertal176

BMI). However, an intervention which had an effect on post-pubertal sex-hormone exposure177

equivalent to a later menarche would be likely to have a protective effect on breast cancer178

risk, as such an intervention could not affect pubertal timing and hence would not alter BMI;179

hence only the direct effect of age at menarche on breast cancer risk would apply here. We180

note that the results presented here using the summary statistics method are, to 2 decimal181

places, identical to those computed using individual-level BCAC data and reported in Day182

et al. [2017]. As the outcome is binary, we do not provide an estimate of an indirect causal183

effect (see Discussion).184

Simulation study185

To validate the utility of the multivariable Mendelian randomization method for estimating186

a direct causal effect, we performed a simulation analysis. We generated data on 10 genetic187

variants, a risk factor (X), mediator (M), and outcome (Y ) for 10 000 individuals in a one-188

sample Mendelian randomization context. Full details of the simulation setup are provided189

in Supplementary Material A.3. Briefly, we considered eight different sets of values of the190

parameters θ1 (the causal effect of X on M), θ2 (the direct effect of X on Y ), and θ3 (the191

effect of M on Y ) – see Figure 2. The indirect effect of X on Y via M is θ1θ3, and the total192

effect of X on Y is θ2+θ1θ3. We included scenarios where there is no direct effect, no indirect193

effect, a direct effect and a directionally concordant indirect effect, and a direct effect and194

a directionally discordant indirect effect. Parameters were chosen to take realistic values195

and cover a range of scenarios. 10 000 simulated datasets were generated for each choice196

of parameter values. Heterogeneity to ensure identification of the model was generated by197

additionally allowing the genetic variants to affect the mediator directly; these effects were198

drawn from a normal distribution with mean zero. Although this formally leads to pleiotropy199

and violation of the instrumental variable assumptions, it has been shown that such ‘balanced200

pleiotropy’ does not lead to bias in causal estimates [Bowden et al., 2015].201

For each simulated dataset, we performed univariable Mendelian randomization analyses202

to estimate the total causal effect of the risk factor on the outcome, and multivariable203

Mendelian randomization for the direct causal effect not via the mediator. Each analysis was204
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performed by weighted regression using the summarized data only (genetic associations with205

the risk factor, mediator, and outcome: beta-coefficients plus standard errors). We assumed206

that all genetic variants were uncorrelated (no linkage disequilibrium); their distributions207

in the data-generating model were independent. This assumption can be relaxed using208

generalized weighted linear regression as described elsewhere [Burgess et al., 2016].209

Table 1 shows mean estimates of the total and direct effects, mean bias and standard210

deviations of the estimates, and coverage of the 95% confidence interval (the proportion of211

confidence intervals that include the true value of the parameter). The standard errors for212

the causal estimates were adjusted for underdispersion (residual standard error in the regres-213

sion model less than 1) as described in the software code. No correction for overdispersion214

was applied [Burgess and Thompson, 2017]. The Monte Carlo error (uncertainty due to215

the limited number of simulations) was around 0.001 for each mean estimate, and 0.2% for216

the coverage proportion. We see that mean univariable Mendelian randomization estimates217

are similar to the total causal effect, whereas mean multivariable Mendelian randomization218

estimates are similar to the direct causal effect in each scenario considered. Bias in the mean219

estimates is small throughout, and is likely to be due to weak instrument bias arising from220

the limited strength of the genetic variants [Burgess et al., 2011] (no bias was observed on221

repeating the simulation study with a sample size of 1 000 000 for a small number of simu-222

lated datasets). Bias was consistent in direction for the total effect, but varied in direction223

for the direct effect. Coverage rates were close to nominal levels (95%) throughout, except224

for when there was substantial weak instrument bias in estimates of the direct effect. There225

was no noticeable undercoverage resulting from the regression models failing to account for226

uncertainty in the genetic associations with the risk factor or mediator. Further results in227

Supplementary Material A.4 indicate that these findings hold even when there are bidirec-228

tional effects of the risk factor on the mediator and vice versa (as may be the case for age229

at menarche and BMI).230

[Table 1 should appear around here]231

Discussion232

In this paper, we have demonstrated how summarized data on genetic associations can be233

used to investigate causal mechanisms, in particular whether the causal effect of a complex234
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risk factor on an outcome acts via a given mediator. Although the assumptions required235

for a genetic variant to be an instrumental variable are very stringent, in other ways, the236

requirements necessary to perform this analysis are quite flexible – only summarized data237

on genetic associations are required. This allows for the leverage of data from large-scale238

GWAS consortia. As with two-sample Mendelian randomization [Pierce and Burgess, 2013],239

the summarized data methods described here do not require the genetic associations with240

the risk factor, mediator and outcome to be measured in the same individuals. For exam-241

ple, Eppinga et al. used genetic variants to investigate the effect of resting heart rate on242

mortality in UK Biobank [Eppinga et al., 2016]. As a sensitivity analysis, they adjusted243

the genetic associations with the outcome for some covariates using individual-level data244

to assess whether the effect of resting heart rate was mediated via any of those variables.245

Additionally, they adjusted for genetic associations with lipid fractions using the multivari-246

able Mendelian randomization approach outlined here, as lipid measurements are currently247

not available in the dataset. Combining summary statistics from different sources is also248

important in the example of age at menarche and breast cancer here, as BMI measurements249

for breast cancer cases were only available post-diagnosis. These measurements would likely250

be influenced by the disease process, as well as by treatment and lifestyle changes. It is251

therefore preferable here to estimate the effects of the genetic variants on BMI in a separate252

dataset.253

Compatibility of datasets254

When using genetic associations from multiple datasets in a two-sample Mendelian ran-255

domization setting, ideally the associations should be estimated on samples from the same256

underlying population. This is particularly important with regard to ethnicity, as different257

linkage disequilibrium structures can mean that genetic variants may be associated with the258

risk factor in one population and not in another, or be valid instruments in one population259

but not in another. Ideally, genetic associations should not be adjusted for covariates apart260

from principal components of ancestry, particularly if these covariates may be on causal261

pathways relating to the risk factor, mediator or outcome. It is also important to ensure262

that genetic associations with the risk factor and mediator are estimated in individuals who263

have not had disease events, so that these associations are not influenced by reverse causa-264

tion. However, even if associations are estimated in different datasets (say, associations with265
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the risk factor are measured in 20-year olds and associations with the mediator in 50-year266

olds, or vice versa), as genetic variants typically influence variables across the whole life-267

course, inferences from Mendelian randomization for the causal null hypothesis should still268

be qualitatively valid, even if the parametric assumptions necessary for causal estimation269

are not satisfied [Burgess et al., 2016]. In any case, as Mendelian randomization estimates270

represent the effect of changing people’s genetic variants at conception, causal estimates from271

Mendelian randomization should not be interpreted too literally as the expected impact of272

intervening on the risk factor in practice [Burgess et al., 2012]. These issues are discussed in273

greater detail in Burgess et al. [2016] and Bowden et al. [2017].274

In the context of mediation, potential inconsistencies in genetic association estimates275

from different sources are more important. In univariable Mendelian randomization, if the276

genetic associations with the risk factor are misspecified, then the inverse-variance weighted277

estimate is still a weighted sum of the genetic associations with the outcome, and should278

differ from zero when the instrumental variable assumptions are satisfied if and only if there279

is a causal effect of the risk factor on the outcome. However in multivariable Mendelian280

randomization, if genetic associations with the mediator are misspecified, then adjustment281

for genetic associations with the mediator may not fully attenuate the coefficient in the282

weighted regression for the effect of the risk factor even in the case of complete mediation.283

Multiplying genetic associations by a constant would not affect the significance of coefficients284

in the weighted regression, hence any differences between populations that would lead to285

consistent over- or underestimation of genetic associations for all variants should not influence286

inferences from the methods presented here. However, differences that lead to inconsistent287

over- or underestimation of genetic associations would adversely affect causal inferences.288

Therefore, genetic associations should be estimated in as similar populations as possible.289

Binary variables and non-linear relationships290

It is common for the outcome in a Mendelian randomization investigation to be a binary291

variable, such as disease status. In this case, typically genetic associations are obtained from292

logistic regression, and represent log odds ratios. Odds ratios are non-collapsible, meaning293

that they do not average intuitively, and they depend on the choice of covariate adjust-294

ment even in the absence of confounding (so conditional odds ratios differ in magnitude to295

marginal odds ratios) [Greenland et al., 1999]. This means that differences between causal296
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estimates from equations (1) and (2) may arise due to non-collapsibility rather than media-297

tion. However, these differences are likely to be slight [Burgess, 2017]. In practice, as in the298

applied example considered in this paper, we would recommend providing estimates of the299

total and direct effects, but not the indirect effect, as calculation of the indirect effect relies300

on the linearity of the relationships that cannot occur with a binary outcome. The total and301

direct effects still have interpretations as population-averaged causal effects (conditional on302

the mediator for the direct effect), representing the average change in the outcome resulting303

from intervening on the population distribution of the risk factor (while keeping the medi-304

ator constant for the direct effect) [Burgess and CHD CRP Genetics Collaboration, 2013].305

Substantial differences between these estimates would still be informative about the causal306

pathway from the risk factor to the outcome.307

Similarly, if there is a non-linear relationship between the risk factor and outcome, the308

causal effects still have an interpretation as population-averaged causal effects, representing309

the average change in the outcome resulting from intervening on the population distribution310

of the risk factor [Burgess et al., 2014]. Again, we would recommend reporting a total effect311

and a direct effect, but not an indirect effect.312

In conclusion, we hope that the methods outlined in this manuscript will be used widely313

in assessing and understanding causal pathways and mechanisms.314
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Supplementary Material

A.1 Technical discussion about estimation of indirect and direct

effects

There are several versions of direct and indirect effects. We present definitions using counter-

factual terminology, using potential values of the outcome Y (x,m), representing the outcome

which would be observed if X were set (by intervention) to x and M were set to m, and

potential values of the mediator M(x), the value taken by the mediator if X were set to x.

All effects are given on the difference scale; with a binary outcome, effects on a relative risk

or odds ratio scale can also be defined, but the decomposition is more complex [VanderWeele

and Vansteelandt, 2010; Kaufman, 2010]. This text is adapted from Burgess et al. [2015].

A total effect is defined as the effect of a change in the exposure from, say, X = x to

X = x + 1. It comprises the effects of the change in the exposure, and the change in the

mediator as a result of the change in the exposure:

TE(x, x+ 1) = Y (x+ 1,M(x+ 1))− Y (x,M(x)) (A1)

A controlled direct effect is defined as the effect of a change in the exposure keeping the

mediator fixed at a given level, say M = m [Robins and Greenland, 1992; Pearl, 2001]. The

controlled direct effect may depend on the choice of m:

CDE(m;x, x+ 1) = Y (x+ 1,m)− Y (x,m) (A2)

A natural direct effect is defined as the effect of a change in the exposure with the

mediator fixed at the level it would naturally take if the exposure were fixed at a given level,

say X = x:

NDE(x;x, x+ 1) = Y (x+ 1,M(x))− Y (x,M(x)) (A3)

A natural indirect effect is defined as the effect of a change in the mediator from the

value it would naturally take if the exposure were unchanged to the level it would take if the

exposure were changed. The exposure itself is kept fixed at a given level, say X = x+ 1:

NIE(x+ 1;x, x+ 1) = Y (x+ 1,M(x+ 1))− Y (x+ 1,M(x)) (A4)
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In the linear case, the natural direct and indirect effects represent a decomposition of the

total effect, in that TE(x, x+1) = NDE(x;x, x+1)+NIE(x+1; x, x+1) (or alternatively

TE(x, x+ 1) = NDE(x+ 1;x, x+ 1) +NIE(x;x, x+ 1)). Under the condition:

Y (x+ 1,m1)− Y (x,m1) = Y (x+ 1,m2)− Y (x,m2) (A5)

for all values of M = m1,m2, and for all individuals, the controlled direct effect is equal

to the natural direct effect [Robins and Greenland, 1992]. The natural direct effect has a

clearer intuitive interpretation as a measure of mediation than the controlled direct effect.

However, it is not possible to conceive of an experiment which would produce the natural

direct effect, as the quantity requires the outcome if the exposure were set at two different

levels (for example, in NDE(x;x, x + 1), Y (x + 1,M(x)) requires X = x + 1 for Y , but

X = x for M). This is known as a “cross-world” quantity, as setting the exposure to two

different values is only possible in two different worlds [Richardson and Robins, 2013].

As we argue in Burgess et al. [2015], we would regard the controlled direct effect as the

quantity that is targeted by mediation analysis with instrumental variables, as this is what

would be obtained if we were to intervene separately on the risk factor and mediator. As we

assume that all relationships between variables are linear and there is no effect heterogeneity,

the natural and controlled direct effects are equal, and hence we refer to a ‘direct effect’

throughout this manuscript without further qualification.
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A.2 Software code

We provide R code to implement the methods discussed in this paper. The associations of

the genetic variants with the risk factor are denoted betaXG with standard errors sebetaXG.

The associations of the genetic variants with the mediator are denoted betaMG with standard

errors sebetaMG. The associations of the genetic variants with the outcome are denoted

betaYG with standard errors sebetaYG. When variables are continuous, these associations

are typically estimated using linear regression.

Estimation of the total causal effect using summarized data:

total.effect = lm(betaYG ~ betaXG - 1, weights = sebetaYG^-2)$coef[1]

resid.std.error = summary(lm(betaYG ~ betaXG - 1, weights = sebetaYG^-2))$sigma

se.total.effect = summary(lm(betaYG ~ betaXG - 1, weights = sebetaYG^-2))$coef[1,2]

ci.upper.total = max(total.effect + qnorm(0.975) * se.total.effect / resid.std.error,

total.effect + qt(0.975, df=length(betaXG)-1) * se.total.effect)

ci.lower.total = min(total.effect - qnorm(0.975) * se.total.effect / resid.std.error,

total.effect - qt(0.975, df=length(betaXG)-1) * se.total.effect)

The weighted regression model for estimating the total effect is equivalent to a meta-

analysis of the variant-specific causal estimates. Setting the residual standard error as 1 is

equivalent to a fixed-effect assumption in the meta-analysis formula [Thompson and Sharp,

1999]. If there is no heterogeneity between the causal estimates identified by the individual

variants, then the residual standard error should tend to 1 asymptotically. If the estimate of

the residual standard error is greater than 1 (overdispersion), then we do not correct for this;

this is equivalent to a (multiplicative) random-effects meta-analysis [Burgess and Thompson,

2017]. This would occur if different genetic variants identify different causal estimates (say,

different variants influence the risk factor via different mechanisms). However, there is no

biological rationale for underdispersion (residual standard error estimate is less than 1).

Hence, we correct for underdispersion by dividing the standard error for the total effect by

the residual standard error.

The multiplicative random-effects analysis fits the following model, with ϕ representing

the residual standard error:

β̂Y j = θT β̂Xj + ϵTj, ϵTj ∼ N (0, ϕ2 se(β̂Y j)
2). (A6)

For a fixed-effect analysis, the residual standard error is assumed to be known; hence

it is appropriate to use a normal distribution for inferences. For a random-effect analysis,
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as the residual standard error (the overdispersion parameter ϕ) is estimated rather than

known, a t-distribution should be used for making inferences. In the confidence intervals,

we take the upper bound to be the maximum of the bounds based on the fixed-effect and

random-effect analyses; similarly for the lower bound as the minimum. This ensures that

confidence intervals are no wider than they would be from a fixed-effect analysis, but that

under-precision is not doubly penalized (by setting the residual standard error to be 1, and

then using a t-distribution for inferences).

Estimation of the direct causal effect using summarized data:

direct.effect = lm(betaYG ~ betaXG + betaMG - 1, weights = sebetaYG^-2)$coef[1]

se.direct.effect = summary(lm(betaYG ~ betaXG + betaMG - 1, weights = sebetaYG^-2))$coef[1,2]/

min(summary(lm(betaYG ~ betaXG + betaMG - 1, weights = sebetaYG^-2))$sigma, 1)

ci.upper.direct = max(direct.effect + qnorm(0.975) * se.direct.effect / resid.std.error,

direct.effect + qt(0.975, df=length(betaXG)-1) * se.direct.effect)

ci.lower.direct = min(direct.effect - qnorm(0.975) * se.direct.effect / resid.std.error,

direct.effect - qt(0.975, df=length(betaXG)-1) * se.direct.effect)

As the additional term in the regression analysis for the estimate of the direct effect

lowers the residual standard error, we take the estimated residual standard error from the

regression model for the total causal effect. This is because we want this term to represent

overdispersion in the genetic associations with the outcome, not the residual associations

after adjustment. Hence the t-distribution for making inferences is still on J − 1 degrees of

freedom.

If the outcome is binary, then genetic associations with the outcome are typically esti-

mated using logistic regression. Beta-coefficients from logistic regression can be used in the

estimation of direct and indirect effects, but the precise magnitude of effect estimates should

not be over-interpreted, as odds ratios suffer from non-collapsibility when the rare disease

assumption is not applicable (instrumental variable estimates represent population-averaged

causal effects, which are not the same as subject-specific causal effects on the odds ratio

scale, hence the indirect and direct effects may not precisely sum to give the total effect).

Therefore in the applied example in this paper, we do not report an indirect effect.

With correlated variants, this correlation can be accounted for by generalized weighted

linear regression [Burgess et al., 2016]. We assume that rho is the matrix of correlations

between genetic variants:

Omega = sebetaYG%o%sebetaYG*rho

total.effect.correl = solve(t(betaXG)%*%solve(Omega)%*%betaXG)*t(betaXG)%*%solve(Omega)%*%betaYG
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se.total.effect.fixed = sqrt(solve(t(betaXG)%*%solve(Omega)%*%betaXG))

resid.total = betaYG-total.effect.correl*betaXG

se.total.effect.random = sqrt(solve(t(betaXG)%*%solve(Omega)%*%betaXG))*

max(sqrt(t(resid.total)%*%solve(Omega)%*%resid.total/(length(betaXG)-1)),1)

direct.effect.correl = solve(t(cbind(betaXG, betaMG))%*%solve(Omega)%*%

cbind(betaXG, betaMG))%*%t(cbind(betaXG, betaMG))%*%solve(Omega)%*%betaYG

se.direct.effect.fixed = sqrt(solve(t(cbind(betaXG, betaMG))%*%solve(Omega)%*%cbind(betaXG, betaMG))[1,1])

resid.direct = betaYG-direct.effect.correl[1]*betaXG-direct.effect.correl[2]*betaMG

se.direct.effect.random = sqrt(solve(t(cbind(betaXG, betaMG))%*%solve(Omega)%*%cbind(betaXG, betaMG))[1,1])*

max(sqrt(t(resid.direct)%*%solve(Omega)%*%resid.direct/(length(betaXG)-2)),1)

Standard errors are given corresponding to both fixed-effect and random-effects assump-

tions.
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A.3 Additional details of simulation study

For the simulation study in the paper, the risk factor X was generated as:

Xi =
10∑
j=1

αjGij + Ui + ϵXi

where Gij is the number of variant alleles for genetic variant j, U is a confounder, ϵXi is

an independent error term. The number of variant alleles for each variant was drawn from

a binomial distribution with 2 trials and probability 0.3, representing a single nucleotide

polymorphism with minor allele frequency 0.3. The genetic effects on the risk factor αj

were generated from a normal distribution with mean 0.2 and variance 0.12. The variants

in total explained on average 5.1% of the variance in the risk factor, corresponding to an

average F statistic of 53.5 with a sample size of 10 000. The confounder U and all error terms

(ϵX , ϵM , ϵY ) were drawn from independent standard normal distributions. The mediator M

was generated as:

Mi = θ1Xi + Ui + ϵMi +
10∑
j=1

ϕjGij

where θ1 is the causal effect of X on M , and ϕj are direct effects of the genetic variants on

the mediator. These effects are included in the simulation model to ensure that the direct

effect is identified, as otherwise genetic associations with the risk factor and mediator would

be perfectly correlated for large sample sizes, leading to unstable estimates of the direct

effect. The ϕj parameters were generated from a normal distribution with mean zero and

variance 0.12. The outcome Y was generated as:

Yi = θ2Xi + θ3Mi + Ui + ϵY i

where θ2 is the direct effect of X on Y , and θ3 is the effect of M on Y . The indirect effect of

X on Y via M is θ1θ3, and the total effect of X on Y is θ2 + θ1θ3. In total, 10 000 simulated

datasets were generated for each choice of parameter values.

We experimented with different values of the variance of the ϕj parameters in the data-

generating model. Results are shown in Supplementary Table A1. When there was low

heterogeneity, estimates were more variable and bias from weak instruments was more pro-

nounced. This is expected, as the associations with the risk factor and mediator are increas-
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ingly collinear as the heterogeneity decreases. To demonstrate that the bias is an artifact

of limited sample size (so called ‘weak instrument bias’), we repeated the simulation with

100 000 participants (100 iterations per scenario only). As expected, bias did not decrease

when there was no heterogeneity, as the collinearity problem does not disappear with in-

creasing sample sizes in this case. However, in all other cases, increasing the sample size

decreased bias sharply.

Sample size: 10 000
θ1 θ2 θ3 var(ϕ) = 0 var(ϕ) = 0.052 var(ϕ) = 0.12 var(ϕ) = 0.22

0.3 0.2 1 0.054 (0.110) 0.165 (0.077) 0.196 (0.055) 0.203 (0.050)
0.3 0.2 −1 0.052 (0.115) 0.165 (0.076) 0.195 (0.056) 0.204 (0.050)
0.3 −0.2 1 −0.343 (0.113) −0.235 (0.071) −0.205 (0.059) −0.194 (0.050)
−0.3 −0.2 1 −0.049 (0.101) −0.153 (0.073) −0.181 (0.058) −0.187 (0.052)
0.0 0.2 1 0.205 (0.041) 0.207 (0.048) 0.208 (0.048) 0.207 (0.048)
0.3 0.2 0 0.053 (0.106) 0.168 (0.074) 0.196 (0.058) 0.203 (0.053)
0.3 0.0 1 −0.146 (0.113) −0.035 (0.071) −0.004 (0.059) 0.003 (0.050)
−0.2 0.2 1 0.302 (0.076) 0.235 (0.057) 0.213 (0.050) 0.210 (0.048)

Sample size: 100 000
θ1 θ2 θ3 var(ϕ) = 0 var(ϕ) = 0.052 var(ϕ) = 0.12 var(ϕ) = 0.22

0.3 0.2 1 0.053 (0.092) 0.191 (0.027) 0.200 (0.019) 0.201 (0.016)
0.3 0.2 −1 0.051 (0.114) 0.194 (0.030) 0.195 (0.019) 0.202 (0.016)
0.3 −0.2 1 −0.341 (0.098) −0.206 (0.028) −0.197 (0.016) −0.198 (0.015)
−0.3 −0.2 1 −0.049 (0.087) −0.191 (0.027) −0.197 (0.020) −0.202 (0.017)
0.0 0.2 1 0.199 (0.012) 0.202 (0.016) 0.199 (0.016) 0.200 (0.016)
0.3 0.2 0 0.055 (0.106) 0.196 (0.027) 0.199 (0.019) 0.200 (0.017)
0.3 0.0 1 −0.136 (0.099) −0.005 (0.027) 0.003 (0.018) 0.000 (0.017)
−0.2 0.2 1 0.296 (0.072) 0.206 (0.018) 0.200 (0.018) 0.200 (0.016)

Supplementary Table A1: Mean (standard deviation) of multivariable Mendelian random-
ization estimates of the direct effect θ2 across 10 000 simulated datasets (100 datasets for
larger sample size) for different values of the variance of the heterogeneity parameters ϕ.
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A.4 Additional simulation scenario: bidirectional causal effects

between risk factor and mediator

In the applied example, it may be that as well as the risk factor having a causal effect on

the mediator, that the mediator also has a causal effect on the risk factor. To consider this

scenario, we simulate causal effects in both directions and consider Mendelian randomization

and multivariable Mendelian randomization estimates. The data-generating model is:

X0i =
10∑
j=1

αjGij + Ui + ϵXi

Mi = θ1X0i + Ui + ϵMi +
10∑
j=1

ϕjGij

X1i = X0i ±Mi

Yi = θ2X1i + θ3Mi + Ui + ϵY i

This is the same as the previous data-generating model, except that we first generate X0i and

then generate a second risk factor variable X1i that has a causal effect from the mediator.

These could be thought of as values of the risk factor at different time points. We consider

cases where the mediator has a positive and a negative effect on the risk factor. All other

aspects of this simulation are the same as the original.

Results are shown in Supplementary Table A2. The total effect varies depending on

whether the effect of the mediator on the risk factor is positive or negative, and is not simply

an estimate of θ2 + θ1θ3 (as there are additional components of the total effect via the effect

of the mediator on the risk factor). However, the direct effect as estimated by multivariable

Mendelian randomization is invariant to any bidirectional effect. Therefore the direct effect

of age at menarche on breast cancer risk not via BMI can be estimated using multivariable

Mendelian randomization whether or not there is a bidirectional relationship between age at

menarche and BMI.

26

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2017. ; https://doi.org/10.1101/160663doi: bioRxiv preprint 

https://doi.org/10.1101/160663
http://creativecommons.org/licenses/by/4.0/


Positive effect Negative effect
θ1 θ2 θ3 Univariable Multivariable Univariable Multivariable
0.3 0.2 1 0.525 0.195 0.222 0.195
0.3 0.2 −1 −0.103 0.194 0.173 0.194
0.3 −0.2 1 0.123 −0.204 −0.169 −0.204
−0.3 −0.2 1 −0.195 −0.180 −0.504 −0.180
0.0 0.2 1 0.381 0.208 0.045 0.208
0.3 0.2 0 0.209 0.195 0.197 0.195
0.3 0.0 1 0.323 −0.005 0.017 −0.005
−0.2 0.2 1 0.273 0.217 −0.060 0.217

Supplementary Table A2: Mean of univariable and multivariable Mendelian randomization
estimates across 10 000 simulated datasets for different mediation scenarios with positive and
negative bidirectional effect of the mediator on the risk factor.
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Figure titles and legends

Figure 1. Title: Graphical representation of mediation scenario. Caption: Total effect

of risk factor on outcome comprises an indirect effect (hollow arrows) via mediator, and a

direct effect (solid arrow) via other pathways.

Figure 2. Title: Graphical representation of relationships between variables. Caption:

Graphical diagram of relationships between risk factor (X), mediator (M), outcome (Y )

and genetic variant (Gj). Causal relationships between variables are indicated by solid lines.

Associations of the genetic variant are indicated by dashed lines. The direct effect θD = θ2.

The indirect effect θI = θ1θ3. The total effect θT = θD + θI = θ2 + θ1θ3.

Table title and legend

Table 1. Title: Simulation study results. Caption: Mean, bias, standard deviation (SD),

and coverage of 95% confidence interval (%) of univariable and multivariable Mendelian

randomization estimates across 10 000 simulated datasets for different mediation scenarios

(X = risk factor, M = mediator, Y = outcome).
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θ1 θ2 θ3 Total effect Direct effect Univariable (total effect) Multivariable (direct effect)
(X → M) (X → Y ) (M → Y ) (θ2 + θ1θ3) (θ2) Mean Bias SD Coverage Mean Bias SD Coverage

0.3 0.2 1 0.5 0.2 0.518 0.018 0.166 94.5 0.194 −0.006 0.059 94.4
0.3 0.2 −1 −0.1 0.2 −0.098 0.012 0.154 94.6 0.195 −0.005 0.058 94.6
0.3 −0.2 1 0.1 −0.2 0.114 0.014 0.165 94.7 −0.206 −0.006 0.057 95.0
−0.3 −0.2 1 −0.5 −0.2 −0.480 0.020 0.167 94.8 −0.179 0.021 0.057 93.2
0.0 0.2 1 0.2 0.2 0.217 0.017 0.167 94.6 0.208 0.008 0.047 94.2
0.3 0.2 0 0.2 0.2 0.208 0.008 0.045 94.4 0.195 −0.005 0.057 97.3
0.3 0.0 1 0.3 0.0 0.318 0.018 0.167 94.6 −0.005 −0.005 0.058 95.1
−0.2 0.2 1 0.0 0.2 0.015 0.015 0.166 94.8 0.216 0.016 0.051 93.7

Table 1: Mean, bias, standard deviation (SD), and coverage of 95% confidence interval (%) of
univariable and multivariable Mendelian randomization estimates across 10 000 simulated datasets
for different mediation scenarios (X = risk factor, M = mediator, Y = outcome).
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Figure 1: Total effect of risk factor on outcome comprises an indirect effect (hollow arrows)
via mediator, and a direct effect (solid arrow) via other pathways.
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Figure 2: Graphical diagram of relationships between risk factor (X), mediator (M), outcome
(Y ) and genetic variant (Gj). Causal relationships between variables are indicated by solid
lines. Associations of the genetic variant are indicated by dashed lines. The direct effect
θD = θ2. The indirect effect θI = θ1θ3. The total effect θT = θD + θI = θ2 + θ1θ3.
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