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Abstract

Mendelian randomization is the use of genetic variants as instrumental variables to estimate
causal effects of risk factors on outcomes. The total causal effect of a risk factor is the change
in the outcome resulting from intervening on the risk factor. This total causal effect may
potentially encompass multiple mediating mechanisms. For a proposed mediator, the direct
effect of the risk factor is the change in the outcome resulting from a change in the risk factor
keeping the mediator constant. A difference between the total effect and the direct effect
indicates that the causal pathway from the risk factor to the outcome acts at least in part via
the mediator (an indirect effect). Here, we show that Mendelian randomization estimates of
total and direct effects can be obtained using summarized data on genetic associations with
the risk factor, mediator, and outcome, potentially from different data sources. We perform
simulations to test the validity of this approach when there is unmeasured confounding
and/or bidirectional effects between the risk factor and mediator. We illustrate this method
using the relationship between age at menarche and risk of breast cancer, with body mass
index (BMI) as a potential mediator. We show an inverse direct causal effect of age at
menarche on risk of breast cancer (independent of BMI) and a positive indirect effect via
BMI. In conclusion, multivariable Mendelian randomization using summarized genetic data
provides a rapid and accessible analytic strategy that can be undertaken using publicly-

available data to better understand causal mechanisms. (250 words)
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Introduction

Mendelian randomization is the use of genetic variants as instrumental variables to assess and
estimate the causal effect of a risk factor on an outcome [Davey Smith and Ebrahim, 2003;
Burgess and Thompson, 2015b]. A risk factor has a causal effect on an outcome if intervening
on the risk factor leads to changes in the outcome. Correlation between a risk factor and an
outcome may arise because the risk factor is a cause of the outcome. However, it may also
reflect confounding (the risk factor and outcome have common causes) or reverse causation
(the outcome is a cause of the risk factor). Instrumental variable analysis represents one way
of assessing whether there is a causal effect of the risk factor on the outcome under certain
assumptions using observational data.

For a genetic variant to be a valid instrumental variable, it must satisfy three assumptions.
First, the genetic variant must be associated with the risk factor. Secondly, the genetic
variant must not be associated with confounders of the risk factor-to-outcome association.
Thirdly, the genetic variant must not affect the outcome except via the risk factor of interest
(no direct effect on the outcome) [Greenland, 2000; Lawlor et al., 2008]. Whereas phenotypic
variables tend to display widespread correlations with other phenotypes, genetic variants are
often more specific in their associations [Davey Smith et al., 2007], meaning that Mendelian
randomization investigations are less susceptible to biases from confounding that adversely
affect observational studies. Additionally, as the genetic code is fixed at conception, genetic
associations are less susceptible to reverse causation or confounding due to environmental
factors.

The instrumental variable assumptions can be assessed to some extent by testing for as-
sociations between the genetic variants and potential measured confounders [Burgess et al.,
2015b]. However, it is possible that a covariate associated with a genetic variant is not a
confounder, but rather a mediator on the causal pathway from the risk factor to the outcome
[Haycock et al., 2016]. This is particularly likely if several variants all have directionally con-
cordant associations with the same covariate. Genetic associations with a mediator may not
represent pleiotropic effects of the variants, but rather represent downstream consequences
of intervening on the risk factor. In such a case, the genetic variants are still valid instru-
ments, as the only causal pathway from the variants to the outcome is via the risk factor

(and potentially also via the mediator).
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In many scenarios, it is relevant not only whether the risk factor is a cause of the outcome,
but also via what mechanism this causal effect acts. Mediation analysis can be used to dissect
the total causal effect of the risk factor on the outcome into an indirect effect of the risk
factor on the outcome via the mediator, and a direct effect of the risk factor on the outcome
not via the mediator (possibly via other causal pathways or other mediators) [VanderWeele
and Vansteelandt, 2009]. This is illustrated in Figure 1. The total effect is defined as the
change in the outcome resulting from intervening on the risk factor (say, increasing its value
by 1 unit). The direct effect is the change in the outcome resulting from intervening on
the risk factor but holding the mediator constant. The indirect effect is the change in the
outcome resulting from manipulating the value of the mediator as if we had intervened on
the risk factor, but in fact holding the risk factor constant. If all variables are continuous and
all relationships between variables are linear, then the total effect is equal to the direct effect
plus the indirect effect. Formally, a direct effect defined by intervening on the risk factor and
mediator separately is a controlled direct effect, which does not have a counterpart indirect
effect. If all relationships are linear, then the controlled direct effect is equal to the natural
direct effect, which does have a counterpart, the natural indirect effect. Full details are

provided in the Supplementary Material A.1.
[Figure 1 should appear about here.]

Mendelian randomization analyses using summarized data have recently become widespread
due to the increasing public availability of suitable data in large sample sizes from GWAS
consortia, and the possibility of ‘two-sample’ Mendelian randomization in which genetic as-
sociations with the risk factor and outcome are estimated in different samples [Burgess et al.,
2015b]. It has previously been demonstrated that a (univariable) Mendelian randomization
estimate can be obtained from summarized data (beta-coefficients and standard errors) by
regressing genetic associations with the outcome on genetic associations with the risk factor
[Burgess et al., 2016]. This represents the total effect of the risk factor on the outcome. It
has also been demonstrated that direct causal effects of related risk factors can be estimated
by regressing genetic associations with the outcome on genetic associations with each of the
risk factors in a multivariable regression model; this is referred to as multivariable Mendelian
randomization [Burgess and Thompson, 2015a].

In this report, we demonstrate how the total effect and the direct effect of the risk
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factor on the outcome can be estimated from summarized data, we consider the assumptions
necessary for genetic variants to satisfy for consistent estimation, and we exemplify how
these estimates can be used to interrogate causal mechanisms with an applied example of
the effect of age at menarche on breast cancer risk, with body mass index (BMI) as a potential

mediator.

Methods

Assumed framework of summarized data and genetic associations

We initially assume that all variables are continuous, and relationships between variables
(in particular, the genetic associations with the risk factor X, mediator M, and outcome Y,
and the causal effects of the risk factor and mediator on the outcome, and of the risk factor
on the mediator) are linear with no effect modification (that is, they are the same for all
individuals in the population and do not vary for different values of the independent variable).
For each genetic variant G, (j = 1,2,...,J), we assume that we have an estimate BX]- of
the association of the genetic variant with the risk factor obtained from linear regression.
Similar association estimates are assumed to be available for the mediator ( g ;) and outcome
(By;). The standard error of the association estimate with the outcome is se(fy;). If any
of the variables is binary, then these summarized association estimates may be replaced
with association estimates from logistic regression; more detail on the binary outcome case
is provided later in the paper. The relationships between these variables are illustrated in

Figure 2.
[Figure 2 should appear about here.]

We also assume that all genetic variants are uncorrelated (that is, not in linkage disequi-
librium). Although conventional instrumental variable methods for analysing summarized
data from correlated variants have been developed [Burgess et al., 2016] and software code
for analysing correlated variants is provided in the Supplementary Material, as we shall see
later there are problems of identification in the mediation setting that may be accentuated
by the use of correlated variants. Although this is a strict assumption, often genetic variants
in Mendelian randomization investigations are chosen to be the top hits from different gene

regions identified by a genome-wide association study, and so the assumption is naturally
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92 satisfied. The method makes no specific requirements for the level of statistical significance of
93 the associations between the genetic variants and the risk factor, but variants with robustly

o4 verified associations represent more informative instrumental variables.

os Weighted regression for estimation of total and direct effects

o6 If BX]-, BM]-, and BYJ‘ are the genetic associations of variant G; (j = 1,2,...,J) with the
o7 risk factor (X), mediator (M) and outcome (), and se(fy;) are the standard errors of the

98 genetic associations with the outcome, then the weighted regression:

BYj = QTBX]' + €rj, €15~ N0, Se(BYj)Q) (1)

99 provides an estimate of the total effect of the risk factor on the outcome 67, known as
100 the inverse-variance weighted estimate [Burgess et al., 2013]. This regression model does
101 not take into account uncertainty in the genetic associations with the risk factor; however,
102 these associations are typically more precisely estimated than those with the outcome, and
103 ignoring this uncertainty does not lead to inflated Type 1 error rates in realistic scenarios

104 [Burgess et al., 2013].

105 The inverse-variance weighted estimate can be motivated as the fixed-effect meta-analysis

106 pooled estimate of the variant-specific causal estimates Zﬁ with standard errors taken as
~ XJ

107 % (the leading order term from the delta expansion for the standard error of the ratio of
X

108 two variables). This meta-analysis estimate can also be obtained by the weighted regression
100 model in equation 1 [Thompson and Sharp, 1999]. The weighted regression model can be

110 expanded by including genetic associations with the mediator:
Byj = 0pBx; + OnbBurj + €nj,  €pj ~ N(0,se(By;)?) (2)

111 to provide an estimate of the direct effect . The weighted regression method for calculating
112 the total effect (equation 1) is equivalent to the two-stage least squares (2SLS) method with
113 individual-level data, in which the first stage of the method regresses the risk factor on
114 the genetic variants, and the second stage regresses the outcome on fitted values of risk
115 factor [Burgess et al., 2016]. The weighted regression method for calculating the direct

116 effect (equation 2) is also equivalent to a two-stage regression method, except that the first
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117 stage also regresses the mediator on the genetic variants, and the second stage regresses the
118 outcome on fitted values of the risk factor and fitted values of the mediator [Burgess et al.,
119 2015a]. Software code to implement these analyses is provided in Supplementary Material
120 A.2. With a continuous outcome, the indirect effect of the risk factor on the outcome can
121 be calculated as 8; = 67 — 0p.

122 For consistent estimation, it is required that all genetic variants used to estimate the
123 total effect of the risk factor on the outcome satisfy the standard assumptions of Mendelian
124 randomization: they are associated with the risk factor, not associated with confounders,
125 and there is no pathway from any genetic variant to the outcome except via the risk factor.
126 All variants used to estimate the direct effect of the risk factor on the outcome must satisfy
127 the assumptions of multivariable Mendelian randomization: they are associated with the
128 risk factor and/or mediator, not associated with confounders, and there is no pathway from
129 any genetic variant to the outcome except via the risk factor and/or the mediator [Burgess

130 and Thompson, 2015a.

131 Identification of the direct effect

132 If the genetic associations with the mediator are entirely determined by their associations
133 with the risk factor, then with an infinite sample size (if associations are perfectly linear with
134 1o heterogeneity) the direct effect would not be identified, as the genetic associations with
135 the risk factor and mediator would be perfectly correlated. Hence, it is necessary for there to
136 be some heterogeneity in the genetic associations or the relationships between the variables.
137 This may occur for a complex variable such as BMI, where different genetic variants may
138 influence BMI in different ways or via different biological pathways, potentially leading to
139 different magnitudes of causal effect on the mediator and/or outcome. Alternatively, if
140 there are genetic variants that are instrumental variables for the mediator only, then these
141 variants could be included in the multivariable Mendelian randomization analysis. However,
142 such variants are not valid instrumental variables for the risk factor, and so should not be

143 used to estimate the total causal effect of the risk factor on the outcome.
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e Applied example

145 As an illustrative example, we consider the causal effect of age at menarche on breast cancer
146 risk. Numerous genetic variants have been discovered that influence age at menarche. Later
147 puberty reduces the total number of ovulatory cycles and hence the life-time sex-hormone
148 exposure, thus we expect later menarche to be protective for breast cancer. This is in line
149 with observational epidemiological findings [Collaborative Group on Hormonal Factors in
150 Breast Cancer, 2012]. However, later menarche is also associated with lower BMI, and it
151 is known that genetically predicted BMI (and also adolescent BMI) is inversely associated
152 with breast cancer risk [Guo et al., 2016; Baer et al., 2010]. Therefore age at menarche will
153 likely have an indirect effect on breast cancer risk via BMI as well as a direct effect (in the
154 opposite direction) not via BMI.

155 We have taken 375 genetic variants demonstrated to be associated with age at menarche
156 at a genome-wide level of significance [Day et al., 2017]. Genetic associations with age
157 at menarche (measured in years) were obtained from the Reprogen consortium based on
158 329,000 women of European descent. Genetic associations with BMI were obtained from the
150 GIANT consortium, based on 339,000 individuals, 95% of whom are of European descent
160 [Locke et al., 2015]. Genetic associations with breast cancer risk were obtained from the
161 Breast Cancer Association Consortium (BCAC) on 47,000 cases and 43,000 controls (all
162 female) of European descent [Michailidou et al., 2015]. Although genetic associations with
163 BMI were estimated at different timepoints for different studies in the GIANT consortium,
164 as genetic variants typically influence variables across the whole life-course, it is not crucial
165 when these associations are measured, provided that they are measured in individuals before
166 they have disease events (to prevent reverse causation, see Discussion for more detail). A
167 more detailed analysis of these same data (although based on the individual-level data) was
168 previously reported by Day et al. [2017]; further details relating to applied aspects of the
169 analysis are provided in that paper.

170 Univariable Mendelian randomization suggested a null effect of age at menarche on breast
171 cancer risk (odds ratio per 1 year later menarche 1.00, 95% confidence interval 0.96, 1.05).
172 However, a multivariable Mendelian randomization analysis adjusting for genetic associations
173 with BMI suggested a protective direct effect of later age at menarche (odds ratio 0.94, 95%

174 confidence interval 0.89, 0.98). This suggests that an intervention to delay menarche would
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175 have no net effect on breast cancer risk if it also had the expected consequence of lowering
176 adolescent BMI (or, similarly, if the delay in menarche was achieved by reducing pre-pubertal
177 BMI). However, an intervention which had an effect on post-pubertal sex-hormone exposure
178 equivalent to a later menarche would be likely to have a protective effect on breast cancer
179 risk, as such an intervention could not affect pubertal timing and hence would not alter BMI;
180 hence only the direct effect of age at menarche on breast cancer risk would apply here. We
181 note that the results presented here using the summary statistics method are, to 2 decimal
182 places, identical to those computed using individual-level BCAC data and reported in Day
183 et al. [2017]. As the outcome is binary, we do not provide an estimate of an indirect causal

184 effect (see Discussion).

155 Simulation study

186 'To validate the utility of the multivariable Mendelian randomization method for estimating
187 a direct causal effect, we performed a simulation analysis. We generated data on 10 genetic
188 variants, a risk factor (X), mediator (M), and outcome (Y") for 10000 individuals in a one-
189 sample Mendelian randomization context. Full details of the simulation setup are provided
190 in Supplementary Material A.3. Briefly, we considered eight different sets of values of the
1901 parameters 07 (the causal effect of X on M), 0y (the direct effect of X on Y'), and 05 (the
192 effect of M on Y) — see Figure 2. The indirect effect of X on Y via M is 6,03, and the total
193 effect of X on Y is 05+6,65. We included scenarios where there is no direct effect, no indirect
194 effect, a direct effect and a directionally concordant indirect effect, and a direct effect and
195 a directionally discordant indirect effect. Parameters were chosen to take realistic values
196 and cover a range of scenarios. 10000 simulated datasets were generated for each choice
197 of parameter values. Heterogeneity to ensure identification of the model was generated by
198 additionally allowing the genetic variants to affect the mediator directly; these effects were
199 drawn from a normal distribution with mean zero. Although this formally leads to pleiotropy
200 and violation of the instrumental variable assumptions, it has been shown that such ‘balanced
201 pleiotropy’ does not lead to bias in causal estimates [Bowden et al., 2015].

202 For each simulated dataset, we performed univariable Mendelian randomization analyses
203 to estimate the total causal effect of the risk factor on the outcome, and multivariable

204 Mendelian randomization for the direct causal effect not via the mediator. Each analysis was
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205 performed by weighted regression using the summarized data only (genetic associations with
206 the risk factor, mediator, and outcome: beta-coefficients plus standard errors). We assumed
207 that all genetic variants were uncorrelated (no linkage disequilibrium); their distributions
208 in the data-generating model were independent. This assumption can be relaxed using
209 generalized weighted linear regression as described elsewhere [Burgess et al., 2016].

210 Table 1 shows mean estimates of the total and direct effects, mean bias and standard
211 deviations of the estimates, and coverage of the 95% confidence interval (the proportion of
212 confidence intervals that include the true value of the parameter). The standard errors for
213 the causal estimates were adjusted for underdispersion (residual standard error in the regres-
214 sion model less than 1) as described in the software code. No correction for overdispersion
215 was applied [Burgess and Thompson, 2017]. The Monte Carlo error (uncertainty due to
216 the limited number of simulations) was around 0.001 for each mean estimate, and 0.2% for
217 the coverage proportion. We see that mean univariable Mendelian randomization estimates
218 are similar to the total causal effect, whereas mean multivariable Mendelian randomization
219 estimates are similar to the direct causal effect in each scenario considered. Bias in the mean
220 estimates is small throughout, and is likely to be due to weak instrument bias arising from
221 the limited strength of the genetic variants [Burgess et al., 2011] (no bias was observed on
222 repeating the simulation study with a sample size of 1000000 for a small number of simu-
223 lated datasets). Bias was consistent in direction for the total effect, but varied in direction
224 for the direct effect. Coverage rates were close to nominal levels (95%) throughout, except
225 for when there was substantial weak instrument bias in estimates of the direct effect. There
226 was no noticeable undercoverage resulting from the regression models failing to account for
227 uncertainty in the genetic associations with the risk factor or mediator. Further results in
228 Supplementary Material A.4 indicate that these findings hold even when there are bidirec-
229 tional effects of the risk factor on the mediator and vice versa (as may be the case for age

230 at menarche and BMI).

231 [Table 1 should appear around here]

»3 DDiscussion

233 In this paper, we have demonstrated how summarized data on genetic associations can be

234 used to investigate causal mechanisms, in particular whether the causal effect of a complex

10
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235 risk factor on an outcome acts via a given mediator. Although the assumptions required
236 for a genetic variant to be an instrumental variable are very stringent, in other ways, the
237 requirements necessary to perform this analysis are quite flexible — only summarized data
238 on genetic associations are required. This allows for the leverage of data from large-scale
239 GWAS consortia. As with two-sample Mendelian randomization [Pierce and Burgess, 2013,
240 the summarized data methods described here do not require the genetic associations with
241 the risk factor, mediator and outcome to be measured in the same individuals. For exam-
242 ple, Eppinga et al. used genetic variants to investigate the effect of resting heart rate on
243 mortality in UK Biobank [Eppinga et al., 2016]. As a sensitivity analysis, they adjusted
244 the genetic associations with the outcome for some covariates using individual-level data
245 to assess whether the effect of resting heart rate was mediated via any of those variables.
246 Additionally, they adjusted for genetic associations with lipid fractions using the multivari-
247 able Mendelian randomization approach outlined here, as lipid measurements are currently
248 mnot available in the dataset. Combining summary statistics from different sources is also
249 important in the example of age at menarche and breast cancer here, as BMI measurements
250 for breast cancer cases were only available post-diagnosis. These measurements would likely
251 be influenced by the disease process, as well as by treatment and lifestyle changes. It is
252 therefore preferable here to estimate the effects of the genetic variants on BMI in a separate

253 dataset.

54 Compatibility of datasets

255 When using genetic associations from multiple datasets in a two-sample Mendelian ran-
256 domization setting, ideally the associations should be estimated on samples from the same
257 underlying population. This is particularly important with regard to ethnicity, as different
258 linkage disequilibrium structures can mean that genetic variants may be associated with the
259 risk factor in one population and not in another, or be valid instruments in one population
260 but not in another. Ideally, genetic associations should not be adjusted for covariates apart
261 from principal components of ancestry, particularly if these covariates may be on causal
262 pathways relating to the risk factor, mediator or outcome. It is also important to ensure
263 that genetic associations with the risk factor and mediator are estimated in individuals who
264 have not had disease events, so that these associations are not influenced by reverse causa-

265 tion. However, even if associations are estimated in different datasets (say, associations with

11
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266 the risk factor are measured in 20-year olds and associations with the mediator in 50-year
267 olds, or vice versa), as genetic variants typically influence variables across the whole life-
268 course, inferences from Mendelian randomization for the causal null hypothesis should still
260 be qualitatively valid, even if the parametric assumptions necessary for causal estimation
270 are not satisfied [Burgess et al., 2016]. In any case, as Mendelian randomization estimates
271 represent the effect of changing people’s genetic variants at conception, causal estimates from
272 Mendelian randomization should not be interpreted too literally as the expected impact of
273 intervening on the risk factor in practice [Burgess et al., 2012]. These issues are discussed in
274 greater detail in Burgess et al. [2016] and Bowden et al. [2017].

275 In the context of mediation, potential inconsistencies in genetic association estimates
276 from different sources are more important. In univariable Mendelian randomization, if the
277 genetic associations with the risk factor are misspecified, then the inverse-variance weighted
278 estimate is still a weighted sum of the genetic associations with the outcome, and should
279 differ from zero when the instrumental variable assumptions are satisfied if and only if there
280 is a causal effect of the risk factor on the outcome. However in multivariable Mendelian
281 randomization, if genetic associations with the mediator are misspecified, then adjustment
282 for genetic associations with the mediator may not fully attenuate the coefficient in the
283 weighted regression for the effect of the risk factor even in the case of complete mediation.
284  Multiplying genetic associations by a constant would not affect the significance of coefficients
285 in the weighted regression, hence any differences between populations that would lead to
286 consistent over- or underestimation of genetic associations for all variants should not influence
287 inferences from the methods presented here. However, differences that lead to inconsistent
288 over- or underestimation of genetic associations would adversely affect causal inferences.

280 Therefore, genetic associations should be estimated in as similar populations as possible.

200 Binary variables and non-linear relationships

201 It is common for the outcome in a Mendelian randomization investigation to be a binary
292 variable, such as disease status. In this case, typically genetic associations are obtained from
203 logistic regression, and represent log odds ratios. Odds ratios are non-collapsible, meaning
204 that they do not average intuitively, and they depend on the choice of covariate adjust-
205 ment even in the absence of confounding (so conditional odds ratios differ in magnitude to

206 marginal odds ratios) [Greenland et al., 1999]. This means that differences between causal

12


https://doi.org/10.1101/160663
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/160663; this version posted July 10, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

207 estimates from equations (1) and (2) may arise due to non-collapsibility rather than media-
208 tion. However, these differences are likely to be slight [Burgess, 2017]. In practice, as in the
299 applied example considered in this paper, we would recommend providing estimates of the
300 total and direct effects, but not the indirect effect, as calculation of the indirect effect relies
301 on the linearity of the relationships that cannot occur with a binary outcome. The total and
302 direct effects still have interpretations as population-averaged causal effects (conditional on
303 the mediator for the direct effect), representing the average change in the outcome resulting
304 from intervening on the population distribution of the risk factor (while keeping the medi-
305 ator constant for the direct effect) [Burgess and CHD CRP Genetics Collaboration, 2013].
306 Substantial differences between these estimates would still be informative about the causal
307 pathway from the risk factor to the outcome.

308 Similarly, if there is a non-linear relationship between the risk factor and outcome, the
300 causal effects still have an interpretation as population-averaged causal effects, representing
310 the average change in the outcome resulting from intervening on the population distribution
311 of the risk factor [Burgess et al., 2014]. Again, we would recommend reporting a total effect

312 and a direct effect, but not an indirect effect.

313 In conclusion, we hope that the methods outlined in this manuscript will be used widely

314 in assessing and understanding causal pathways and mechanisms.
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Supplementary Material

A.1 Technical discussion about estimation of indirect and direct

effects

There are several versions of direct and indirect effects. We present definitions using counter-
factual terminology, using potential values of the outcome Y (x, m), representing the outcome
which would be observed if X were set (by intervention) to z and M were set to m, and
potential values of the mediator M (z), the value taken by the mediator if X were set to x.
All effects are given on the difference scale; with a binary outcome, effects on a relative risk
or odds ratio scale can also be defined, but the decomposition is more complex [VanderWeele
and Vansteelandt, 2010; Kaufman, 2010]. This text is adapted from Burgess et al. [2015].
A total effect is defined as the effect of a change in the exposure from, say, X = x to
X = x+ 1. It comprises the effects of the change in the exposure, and the change in the

mediator as a result of the change in the exposure:
TE(xz,x2+1)=Y(@+1,M(x+1)) —Y(x, M(zx)) (A1)

A controlled direct effect is defined as the effect of a change in the exposure keeping the
mediator fixed at a given level, say M = m [Robins and Greenland, 1992; Pearl, 2001]. The

controlled direct effect may depend on the choice of m:
CDE(m;z,x+1)=Y(x+1,m) —Y(z,m) (A2)

A natural direct effect is defined as the effect of a change in the exposure with the
mediator fixed at the level it would naturally take if the exposure were fixed at a given level,
say X = x:

NDE(z;z,x+1)=Y(x +1,M(z)) = Y (x, M(x)) (A3)

A natural indirect effect is defined as the effect of a change in the mediator from the
value it would naturally take if the exposure were unchanged to the level it would take if the

exposure were changed. The exposure itself is kept fixed at a given level, say X =z + 1:
NIE@z+ Liz,e+1)=Y(@+1,M(z+1) - Y(z+ 1, M(x)) (A4)
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In the linear case, the natural direct and indirect effects represent a decomposition of the
total effect, in that TE(x,x+1) = NDE(z;z,2+ 1)+ NIE(z+1;2,2+ 1) (or alternatively
TE(x,x+1)=NDE(x+ l;z,2+ 1)+ NIE(z;z, 2 + 1)). Under the condition:

Y(z+1,m) =Y (z,m) =Y (x+1,my) — Y (x,ms) (A5)

for all values of M = mq,ms, and for all individuals, the controlled direct effect is equal
to the natural direct effect [Robins and Greenland, 1992]. The natural direct effect has a
clearer intuitive interpretation as a measure of mediation than the controlled direct effect.
However, it is not possible to conceive of an experiment which would produce the natural
direct effect, as the quantity requires the outcome if the exposure were set at two different
levels (for example, in NDE(z;x,x + 1), Y(xz + 1, M(z)) requires X = = + 1 for Y, but
X =z for M). This is known as a “cross-world” quantity, as setting the exposure to two
different values is only possible in two different worlds [Richardson and Robins, 2013].

As we argue in Burgess et al. [2015], we would regard the controlled direct effect as the
quantity that is targeted by mediation analysis with instrumental variables, as this is what
would be obtained if we were to intervene separately on the risk factor and mediator. As we
assume that all relationships between variables are linear and there is no effect heterogeneity;,
the natural and controlled direct effects are equal, and hence we refer to a ‘direct effect’

throughout this manuscript without further qualification.
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A.2 Software code

We provide R code to implement the methods discussed in this paper. The associations of
the genetic variants with the risk factor are denoted betaXG with standard errors sebetaXG.
The associations of the genetic variants with the mediator are denoted betaMG with standard
errors sebetaMG. The associations of the genetic variants with the outcome are denoted
betaYG with standard errors sebetaYG. When variables are continuous, these associations
are typically estimated using linear regression.

Estimation of the total causal effect using summarized data:

total.effect = Im(betaYG ~ betaXG - 1, weights = sebeta¥G"-2)$coef[1]
resid.std.error = summary(lm(betaYG ~ betaXG - 1, weights = sebeta¥G"-2))$sigma
se.total.effect = summary(lm(betaYG ~ betaXG - 1, weights = sebeta¥G"-2))$coef[1,2]
ci.upper.total = max(total.effect + qnorm(0.975) * se.total.effect / resid.std.error,
total.effect + qt(0.975, df=length(betaXG)-1) * se.total.effect)
ci.lower.total = min(total.effect - qnorm(0.975) * se.total.effect / resid.std.error,
total.effect - qt(0.975, df=length(betaXG)-1) * se.total.effect)

The weighted regression model for estimating the total effect is equivalent to a meta-
analysis of the variant-specific causal estimates. Setting the residual standard error as 1 is
equivalent to a fixed-effect assumption in the meta-analysis formula [Thompson and Sharp,
1999]. If there is no heterogeneity between the causal estimates identified by the individual
variants, then the residual standard error should tend to 1 asymptotically. If the estimate of
the residual standard error is greater than 1 (overdispersion), then we do not correct for this;
this is equivalent to a (multiplicative) random-effects meta-analysis [Burgess and Thompson,
2017]. This would occur if different genetic variants identify different causal estimates (say,
different variants influence the risk factor via different mechanisms). However, there is no
biological rationale for underdispersion (residual standard error estimate is less than 1).
Hence, we correct for underdispersion by dividing the standard error for the total effect by
the residual standard error.

The multiplicative random-effects analysis fits the following model, with ¢ representing

the residual standard error:
BYj = QTBX]' + ey, erj ~N(0, ¢° Se(BYj)z)- (A6)

For a fixed-effect analysis, the residual standard error is assumed to be known; hence

it is appropriate to use a normal distribution for inferences. For a random-effect analysis,
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as the residual standard error (the overdispersion parameter ¢) is estimated rather than
known, a t-distribution should be used for making inferences. In the confidence intervals,
we take the upper bound to be the maximum of the bounds based on the fixed-effect and
random-effect analyses; similarly for the lower bound as the minimum. This ensures that
confidence intervals are no wider than they would be from a fixed-effect analysis, but that
under-precision is not doubly penalized (by setting the residual standard error to be 1, and
then using a t-distribution for inferences).

Estimation of the direct causal effect using summarized data:

direct.effect

Im(betaYG ~ betaXG + betaMG - 1, weights = sebetaYG~-2)$coef [1]
se.direct.effect = summary(lm(betaYG ~ betaXG + betaMG - 1, weights = sebeta¥G"-2))$coef[1,2]/
min(summary(lm(beta¥YG ~ betaXG + betaMG - 1, weights = sebeta¥G"-2))$sigma, 1)
ci.upper.direct = max(direct.effect + qnorm(0.975) * se.direct.effect / resid.std.error,
direct.effect + qt(0.975, df=length(betaXG)-1) * se.direct.effect)

ci.lower.direct = min(direct.effect - gqnorm(0.975) * se.direct.effect / resid.std.error,

direct.effect - qt(0.975, df=length(betaXG)-1) * se.direct.effect)

As the additional term in the regression analysis for the estimate of the direct effect
lowers the residual standard error, we take the estimated residual standard error from the
regression model for the total causal effect. This is because we want this term to represent
overdispersion in the genetic associations with the outcome, not the residual associations
after adjustment. Hence the t-distribution for making inferences is still on J — 1 degrees of
freedom.

If the outcome is binary, then genetic associations with the outcome are typically esti-
mated using logistic regression. Beta-coefficients from logistic regression can be used in the
estimation of direct and indirect effects, but the precise magnitude of effect estimates should
not be over-interpreted, as odds ratios suffer from non-collapsibility when the rare disease
assumption is not applicable (instrumental variable estimates represent population-averaged
causal effects, which are not the same as subject-specific causal effects on the odds ratio
scale, hence the indirect and direct effects may not precisely sum to give the total effect).
Therefore in the applied example in this paper, we do not report an indirect effect.

With correlated variants, this correlation can be accounted for by generalized weighted
linear regression [Burgess et al., 2016]. We assume that rho is the matrix of correlations

between genetic variants:

Omega sebetaYGl,0%sebeta¥YG*rho

total.effect.correl solve (t (betaXG)%*%solve (Omega) %*/betaXG) *t (betaXG) %*%solve (Omega) %*/beta¥G
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se.total.effect.fixed = sqrt(solve(t(betaXG)%*)solve(Omega)’*%betaXG))
resid.total = betaYG-total.effect.correl*betaXG
se.total.effect.random = sqrt(solve(t(betaXG)%*%solve(Omega)*%betaXG))*

max (sqrt (t (resid.total)’*%solve (Omega)%*/resid.total/(length(betaXG)-1)),1)
direct.effect.correl = solve(t(cbind(betaXG, betaMG))%*}solve(Omega)%*%

cbind(betaXG, betaMG))%*%t (cbind (betaXG, betaMG))%*%solve (Omega)%*%beta¥G
se.direct.effect.fixed = sqrt(solve(t(cbind(betaXG, betaMG))%*%solve (Omega)%*%cbind(betaXG, betaMG)) [1,1])

beta¥YG-direct.effect.correl[1]*betaXG-direct.effect.correl[2]*betaMG

resid.direct
se.direct.effect.random = sqrt(solve(t(cbind(betaXG, betaMG))J*%solve(Omega)’*jcbind(betaXG, betaMG)) [1,1])*

max (sqrt (t(resid.direct)*%solve (Omega)%*)resid.direct/(length(betaXG)-2)),1)

Standard errors are given corresponding to both fixed-effect and random-effects assump-

tions.
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A.3 Additional details of simulation study

For the simulation study in the paper, the risk factor X was generated as:

10
Xi = Z a;Gij + U + €x;
j=1
where G;; is the number of variant alleles for genetic variant j, U is a confounder, ex; is
an independent error term. The number of variant alleles for each variant was drawn from
a binomial distribution with 2 trials and probability 0.3, representing a single nucleotide
polymorphism with minor allele frequency 0.3. The genetic effects on the risk factor «;
were generated from a normal distribution with mean 0.2 and variance 0.12. The variants
in total explained on average 5.1% of the variance in the risk factor, corresponding to an
average F statistic of 53.5 with a sample size of 10000. The confounder U and all error terms
(ex, €nr, €y) were drawn from independent standard normal distributions. The mediator M

was generated as:
10

MZ* = QlXi + UZ + €M + Z §Z5jGij

j=1
where 0, is the causal effect of X on M, and ¢; are direct effects of the genetic variants on
the mediator. These effects are included in the simulation model to ensure that the direct
effect is identified, as otherwise genetic associations with the risk factor and mediator would
be perfectly correlated for large sample sizes, leading to unstable estimates of the direct
effect. The ¢; parameters were generated from a normal distribution with mean zero and

variance 0.12. The outcome Y was generated as:
Y; = QQXZ + 03Mz -+ Ul -+ €y

where 65 is the direct effect of X on Y, and 65 is the effect of M on Y. The indirect effect of
X on Y via M is 0,63, and the total effect of X on Y is 0 + #,03. In total, 10000 simulated
datasets were generated for each choice of parameter values.

We experimented with different values of the variance of the ¢; parameters in the data-
generating model. Results are shown in Supplementary Table Al. When there was low
heterogeneity, estimates were more variable and bias from weak instruments was more pro-

nounced. This is expected, as the associations with the risk factor and mediator are increas-
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ingly collinear as the heterogeneity decreases. To demonstrate that the bias is an artifact
of limited sample size (so called ‘weak instrument bias’), we repeated the simulation with
100000 participants (100 iterations per scenario only). As expected, bias did not decrease
when there was no heterogeneity, as the collinearity problem does not disappear with in-
creasing sample sizes in this case. However, in all other cases, increasing the sample size

decreased bias sharply.

Sample size: 10000
01 02 03 var(¢) = var(¢) = 0.052  var(¢) = 0.12  var(¢) = 0.22
03 02 1 | 0.054(0. 110 0.165 (0.077) _ 0.196 (0.055)  0.203 (0.050)
0.3 02 -1 0.052 (0. 115) 0.165 (0.076) 0.195 (0.056) 0.204 (0.050)

03 —02 1 | —0.343(0.113) —0.235(0.071) —0.205 (0.059) —0.194 (0.050)
—03 —02 1 | —0.049 (0.101) —0.153 (0.073) —0.181 (0.058) —0.187 (0.052)
00 02 1 | 0205(0.041)  0.207 (0.048)  0.208 (0.048)  0.207 (0.048)
03 02 0 | 0053(0.106) 0.168 (0.074)  0.196 (0.058)  0.203 (0.053)
03 00 1 | —0.146(0.113) —0.035 (0.071) —0.004 (0.059)  0.003 (0.050)
—02 02 1 | 0302(0.076)  0.235(0.057)  0.213 (0.050)  0.210 (0.048)

Sample size: 100000

01 02 03 var(¢) = var(¢) = 0.052  var(¢) = 0.12  var(¢) = 0.22
0.3 0.2 1 0.053 (0. 092 0.191 (0.027) 0.200 (0.019) 0.201 (0.016)
03 02 -1/ 0.051 (0. 114) 0.194 (0.030)  0.195 (0.019)  0.202 (0.016)

03 —02 1 | —0.341(0.098) —0.206 (0.028) —0.197 (0.016) —0.198 (0.015)
—03 —02 1 | —0.049 (0.087) —0.191 (0.027) —0.197 (0.020) —0.202 (0.017)
00 02 1 | 0199 (0.012)  0.202 (0.016)  0.199 (0.016)  0.200 (0.016)
03 02 0 | 0055(0.106)  0.196 (0.027)  0.199 (0.019)  0.200 (0.017)
03 00 1 | —0.136(0.099) —0.005(0.027) 0.003 (0.018)  0.000 (0.017)
—02 02 1 | 0.296(0.072)  0.206 (0.018)  0.200 (0.018)  0.200 (0.016)

Supplementary Table Al: Mean (standard deviation) of multivariable Mendelian random-
ization estimates of the direct effect #y across 10000 simulated datasets (100 datasets for
larger sample size) for different values of the variance of the heterogeneity parameters ¢.
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A.4 Additional simulation scenario: bidirectional causal effects

between risk factor and mediator

In the applied example, it may be that as well as the risk factor having a causal effect on
the mediator, that the mediator also has a causal effect on the risk factor. To consider this
scenario, we simulate causal effects in both directions and consider Mendelian randomization

and multivariable Mendelian randomization estimates. The data-generating model is:

10
XOi = Z OéjGij + Ul + €X;

=1
10

M; = 0:X0; + Ui+ eari + Y 6,6y
=

X1 = Xo; = M;

Y; = 02X1i + 93M1 + UZ + €y

This is the same as the previous data-generating model, except that we first generate Xy; and
then generate a second risk factor variable Xi; that has a causal effect from the mediator.
These could be thought of as values of the risk factor at different time points. We consider
cases where the mediator has a positive and a negative effect on the risk factor. All other
aspects of this simulation are the same as the original.

Results are shown in Supplementary Table A2. The total effect varies depending on
whether the effect of the mediator on the risk factor is positive or negative, and is not simply
an estimate of 05 + 0105 (as there are additional components of the total effect via the effect
of the mediator on the risk factor). However, the direct effect as estimated by multivariable
Mendelian randomization is invariant to any bidirectional effect. Therefore the direct effect
of age at menarche on breast cancer risk not via BMI can be estimated using multivariable
Mendelian randomization whether or not there is a bidirectional relationship between age at

menarche and BMI.
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Positive effect Negative effect
01 02 03 | Univariable Multivariable | Univariable Multivariable
0.3 0.2 1 0.525 0.195 0.222 0.195
0.3 0.2 -1 —0.103 0.194 0.173 0.194
03 -02 1 0.123 —0.204 —0.169 —0.204
-03 =02 1 —0.195 —0.180 —0.504 —0.180
0.0 0.2 1 0.381 0.208 0.045 0.208
0.3 0.2 0 0.209 0.195 0.197 0.195
0.3 0.0 1 0.323 —0.005 0.017 —0.005
-0.2 0.2 1 0.273 0.217 —0.060 0.217

Supplementary Table A2: Mean of univariable and multivariable Mendelian randomization
estimates across 10 000 simulated datasets for different mediation scenarios with positive and
negative bidirectional effect of the mediator on the risk factor.
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Figure titles and legends

Figure 1. Title: Graphical representation of mediation scenario. Caption: Total effect
of risk factor on outcome comprises an indirect effect (hollow arrows) via mediator, and a
direct effect (solid arrow) via other pathways.

Figure 2. Title: Graphical representation of relationships between variables. Caption:
Graphical diagram of relationships between risk factor (X), mediator (M), outcome (V)
and genetic variant (G;). Causal relationships between variables are indicated by solid lines.
Associations of the genetic variant are indicated by dashed lines. The direct effect 0p = 65.

The indirect effect 67 = 6,05. The total effect O = 0p + 0; = 05 + 6,05.

Table title and legend

Table 1. Title: Simulation study results. Caption: Mean, bias, standard deviation (SD),
and coverage of 95% confidence interval (%) of univariable and multivariable Mendelian
randomization estimates across 10000 simulated datasets for different mediation scenarios

(X = risk factor, M = mediator, Y = outcome).
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01 02 03 Total effect Direct effect Univariable (total effect) Multivariable (direct effect)
(X—=>M) (X—=>Y) (M—=Y)| (02+6:1603) (62) Mean Bias SD  Coverage | Mean Bias SD  Coverage
0.3 0.2 1 0.5 0.2 0.518 0.018 0.166 94.5 0.194 —0.006 0.059 94.4
0.3 0.2 -1 —-0.1 0.2 —0.098 0.012 0.154 94.6 0.195 —0.005 0.058 94.6
0.3 —-0.2 1 0.1 —-0.2 0.114 0.014 0.165 94.7 —0.206 —0.006 0.057 95.0
—-0.3 -0.2 1 —-0.5 -0.2 —0.480 0.020 0.167 94.8 —0.179  0.021  0.057 93.2
0.0 0.2 1 0.2 0.2 0.217 0.017 0.167 94.6 0.208 0.008 0.047 94.2
0.3 0.2 0 0.2 0.2 0.208 0.008 0.045 94.4 0.195 —0.005 0.057 97.3
0.3 0.0 1 0.3 0.0 0.318 0.018 0.167 94.6 —0.005 —0.005 0.058 95.1
—-0.2 0.2 1 0.0 0.2 0.015 0.015 0.166 94.8 0.216 0.016  0.051 93.7

Table 1: Mean, bias, standard deviation (SD), and coverage of 95% confidence interval (%) of
univariable and multivariable Mendelian randomization estimates across 10000 simulated datasets
for different mediation scenarios (X = risk factor, M = mediator, Y = outcome).
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Mediator

Risk ) Outcome

factor

Figure 1: Total effect of risk factor on outcome comprises an indirect effect (hollow arrows)
via mediator, and a direct effect (solid arrow) via other pathways.
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Figure 2: Graphical diagram of relationships between risk factor (X'), mediator (M), outcome
(Y) and genetic variant (G;). Causal relationships between variables are indicated by solid
lines. Associations of the genetic variant are indicated by dashed lines. The direct effect
0p = 65. The indirect effect 8y = 6,605. The total effect 0 = 0p + 0; = 05 + 0,05.
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