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Summary

Pathophysiological explanations of epilepsy typically focus on either the micro/mesoscale (e.g.
excitation-inhibition imbalance), or on the macroscale (e.g. network architecture). Linking abnormalities
across spatial scales remains difficult, partly because of technical limitations in measuring neuronal
signatures concurrently at the scales involved. Here we use light sheet imaging of the larval zebrafish
brain during acute epileptic seizure induced with pentylenetetrazole. Empirically measured spectral
changes of spontaneous neuronal activity during the seizure are then modelled using neural mass
models, allowing Bayesian inference on changes in effective network connectivity and their underlying
synaptic dynamics. This dynamic causal modelling of seizures in the zebrafish brain reveals concurrent
changes in synaptic coupling at macro- and mesoscale. Fluctuations of synaptic connection strength
and their temporal dynamics are both required to explain observed seizure patterns. These findings
challenge a simple excitation-inhibition account of seizures, and highlight changes in synaptic
transmission dynamics as a possible seizure generation pathomechanism.

Abbreviations:

LFP — local field potential

PTZ — pentylenetetrazole

DCM — dynamic causal modelling
CSD - cross spectral densities

PEB — Parametric Empirical Bayes
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Introduction

Epileptic seizures are characterised by transient disturbances in the brain’s electrical activity that result
in changes of patients’ behaviours or perceptions. When recorded through electroencephalography
(EEG), the appearance of these paroxysmal electrical discharges often falls within recognisable
categories (e.g. spike and wave complexes, paroxysmal fast activity, rhythmic slow waves). Yet even
strikingly similar EEG patterns may be caused by different pathological mechanisms ranging from acute
exposure to toxins, to genetic mutations as part of a neurodevelopmental syndrome (Shorvon, 2011).
Understanding the link between the wide range of particular neurological disturbances and the small
set of generic epileptic dynamics visible on EEG, holds the potential for identifying common
pathophysiological mechanisms and ultimately develop novel treatment strategies.

One way to identify the effects of particular pathologies on neuronal systems is the use of animal
models, where the effects of different interventions (such as drug treatments, or genetic mutations) can
be evaluated in vivo (Depaulis et al., 2015; Parker et al., 2011; Seo and Leitch, 2014). Zebrafish in
particular have been of recent interest for epilepsy research because they (i) are a vertebrate model
organism with basic neuroanatomic similarities to the mammalian brain, (ii) allow relatively easily the
introduction of novel genetic mutations (Dhindsa and Goldstein, 2015), or large-scale screening of
different drug interventions (Baraban et al., 2013; Griffin et al., 2017) and (iii) allow a range of functional
recordings at different observational scales ranging from single neurons (Kibat et al., 2016) to the entire
brain (Ahrens et al., 2013). The recent emergence of light-sheet microscopy as a way to functionally
record from the whole larval zebrafish brain at single-neuron resolution offers the potential for detailed
insights into both the microcircuitry and whole brain dynamics underlying many neurological conditions
that can be replicated in this model (Keller et al., 2014).

Insights into the generic nature of seizure dynamics have largely been derived from computational
modelling of EEG dynamics (Jansen and Rit, 1995; Lopes da Silva et al., 1974; Lytton, 2008). Dynamic
systems theory reveals that there is a small number of mathematically defined transitions in and out of
stable oscillatory states that can replicate the transitions between interictal and seizure-like activity
(Breakspear, 2005; lzkhikevich, 2000; Robinson et al., 2002). These transitions, or bifurcations,
describe mathematically how a system can suddenly change its output from one type of oscillation to
another, even with very small changes in the system’s setup. Using simple models of neuronal
populations and exploring effects of different model parameters on the occurrence of bifurcations (Jirsa
et al.,, 2014) is a powerful method to identify the relationship between particular neurobiological changes
(i.e. parameter changes in the model), and observable features (i.e. bifurcations in oscillatory patterns
produced by the model).

Combining the power of in vivo models of epileptic seizures (in light of available whole-brain functional
imaging techniques) and in silico models of seizure dynamics has the potential to lead to an in-depth
understanding of how specific disruptions at the microscale lead to whole brain phenotypes
recognisable as epilepsy. One strategy to combine computational modelling with novel imaging
techniques is the use of dynamic causal modelling (DCM, Friston et al., 2003). Here, a Bayesian model
inversion approach is used to fit neuronal models to existing data, allowing inference on which of a
number of possible models best explains the empirical observations (Friston et al., 2007; Penny et al.,
2010; Stephan et al., 2010). This approach has been successfully applied to a range of differentimaging
techniques including EEG, magnetoencephalography (MEG), functional magnetic resonance imaging
(fMRI), functional near-infrared spectroscopy (fNIRS) and local field potential (LFP) recordings
(Daunizeau et al., 2011; Kiebel et al., 2008; Moran et al., 2011a; Razi et al., 2014; Tak et al., 2015).
DCM has been applied to test mechanisms underlying seizure generation and spread in scalp EEG
(Cooray et al., 2016), invasive recordings in patients (Papadopoulou et al., 2015), and in invasive
recordings from in vivo animal models (Papadopoulou et al., 2016). However, these approaches remain
limited by their limited spatial resolution and resultant difficulty in identifying regionally localised
dynamics across a whole-brain network.
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Fig 1. Dynamic causal modelling results of simulated calcium imaging time traces. (A) Calcium imaging dynamics were modelled by convolving
LFP-traces (top) with a calcium imaging kernel (middle), resulting in a CAl time trace. The CAl trace follows slow LFP dynamics, whilst attenuating
faster components of the original signal. In frequency space (right), the convolution differentially scales low and high frequency components, but
preserves most frequency features. (B) LFP-like traces from a three-population neural mass model with increasing values of a single parameter, H; -
also shown in (C). In the time domain, these were then convolved with the CAl kernel, resulting in six different traces (three examples shown). (C) The
same neural mass model is subsequently fitted to the CAl traces. Bayesian model comparison (Bayes factor 2.6, not shown) between hierarchical
(PEB) model inversion identifies correctly that differences between simulated CAl traces were caused by (D) the effects of variations in the H, parameter
on the synthetic LFP traces. (E) The DCM approach identifies the increase of H, across the six model inversions from the CAl traces, shown here with
a Bayesian 95% confidence interval. Whilst the group mean parameter value and the effect size are different, this inversion correctly identifies the
linear increase in the parameter from the simulated CAl dataset.

LFP — local field potential, CAl— calcium imaging, DCM — dynamic causal model, PEB — parametric empirical Bayes
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Here we present a novel application of DCM on calcium imaging data from the larval zebrafish brain
during epileptic seizures. In this acute chemoconvulsant model, seizures were induced with
pentylenetetrazole (PTZ) in healthy larval zebrafish and seizures recorded using brain wide expression
of the genetically encoded reporter of neural activity (GCaMP6F) and light sheetimaging across a single
slice capturing five main bilateral brain regions. The DCM analysis rests on the notion that these acute
seizures are associated both with changes in localised microcircuit dynamics that result in a phase
transition between resting activity and the pathological seizure state (Breakspear, 2005; Jirsa et al.,
2014), and with measureable changes in whole-brain connectivity (Nehlig, 1998; Omidvarnia et al.,
2017; Sinha et al., 2016). DCM allows concurrent testing of the following emerging hypotheses across
these different spatial scales: (1) seizures lead to a measureable reorganisation of effective connectivity
between regions (Burns et al.,, 2014), (2) local excitation-inhibition imbalance explains associated
regional spectral changes (Netoff et al., 2004), (3) in addition to changes in connection strengths,
seizures are also associated with changes in synaptic transmission dynamics (Papadopoulou et al.,
2016).

These hypotheses are tested using regional averages of the light-sheet imaging traces and estimating
their spectral composition (i.e. cross spectral density) changes over time using a sliding window
approach (Papadopoulou et al., 2016) — DCMs are fitted to each of the separate time windows, and
hierarchical modelling using parametric empirical Bayes (PEB) (Friston et al., 2015) is used to identify
slow fluctuations in synaptic (model) parameters induced by PTZ. The analysis described below
comprises the following components: (a) assessment of construct validity of the model using
synthetically generated data, (b) identification of an appropriate network architecture using Bayesian
model comparison of DCMs estimated for the baseline, pre-seizure data, (c¢) applying PEB to
successive data epochs to identify synaptic changes underlying PTZ-induced seizure activity and test
the hypotheses above, (d) using the specified electromagnetic models to describe the transitions
through parameter space the zebrafish brain undergoes during a seizure. Our findings suggest that
changes in both synaptic connection strength and their dynamics underlie the generation of seizures,
challenging the notion that seizures arise from a simple disruption in excitation-inhibition balance.
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Results
Simulations

In the analysis presented here, we used electromagnetic neuronal mass models originally designed to
explain data features observed in LFP recordings. First, we confirmed the construct validity of this
approach —i.e. applying DCM for local field potentials to time traces derived from light sheet imaging —
by applying the analysis to synthetic data. These were derived from a neural mass undergoing
predefined parameter changes: Using a single ‘source’ consisting of three coupled neuronal
populations, we generate noisy LFP-like data. These are then convolved with a composite exponential
decay kernel modelling calcium probe dynamics (Chen et al., 2013). These surrogate fluorescence time
traces are then downsampled to the sampling frequency achieved in the single-slice light sheet imaging
(20Hz). This linear convolution equates to a simple addition of the signals in (log) frequency space.
Because of the simple frequency composition of the calcium imaging kernel, this linear transformation
preserves much of the spectral features in the underlying LFP like signal (Fig 1A).
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Fig 2: PTZ-induced seizures recorded in the zebrafish larvae using light sheet imaging. (A) This image shows heat maps of fluorescence
in a single slice of the intact larval zebrafish brain. Seizure activity () is visually apparent as an overall increase in synchronous neuronal
activity compared to baseline state (t1). (B) An average of the fluorescence signal across 5 bilateral anatomically defined regions disclose
seizures as an inrease in generalised high amplitude activity. (C) Time frequency analysis using Fourier transforms on sliding window data
segemnts shows that PTZ causes an increase largely in low frequencies (<2Hz), with intermittent bursts of more broadband activity (the figure
shown is an average over n=3 animals). (D) A correlation matrix showing correlation indices of the power-distribution patterns across different
time points (delay-delay matrix). This reveals three distinct time periods, corresponding to baseline (<30min), ictal (30-70min) and late ictal
(>70min) phases with distinct spectral signatures and temporal dynamics.

Tect - Tectum, Crbl - Cerebellum, RHbr - Rostral Hindbrain, MHbr - Mid-Hindbrain, CHbr/RSc - Caudal Hindbrain/Rostral Spinal Cord

The variations in the single neural mass model parameter introduces spectral changes in both the
surrogate LFP and fluorescence time traces (Fig 1B). We now fitted a three-population neural mass
model (of the kind used to generate the LFP traces, Fig 1C) separately to each of the fluorescence time
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traces. This yielded six separate dynamic causal models (DCMs), one each fitted to the six time series
generated using with variations in a single parameter as shown in Fig 1D. Using a hierarchical
parametric empirical Bayesian model, we then identified which parameter could best explain the
differences in these DCMs (fitted to fluorescence signals). This successfully identified variations in the
correct parameter (H;) as the most likely cause for the differences in time series. Furthermore, the
estimated between-DCM differences in H; values also captures the direction of the linear change

introduced in the original LFP time series.
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Fig 3. Model comparison of network architecture and first level model predictions. (A) DCMs were inverted for cross-spectral density
summaries of baseline data. Bayesian model reduction was used to estimate the model evidence across a number of reduced models that
were characterised by the presence or absence of sets of between-region reciprocal connections (neighbouring, homotopic, and hub
connections). Each region was modelled as a set of three coupled neural masses including projection neuronal populations, and locally
connected excitatory and inhibitory interneurons (B) Bayesian model selection identifies the model with neighbouring, and homotopic
connections as well as the optic tectum with hub-like connectivity as the best explanation for the observed dynamics at baseline. (C) Using this
model architecture to fit individual DCMs to the sequence of sliding-window cross spectral density estimates provides excellent model fits
capturing the fluctuating spectral composition of the raw calcium imaging trace.

Seizure recordings

In order to elicit epileptic seizures, PTZ was infused in the bath of n=3 zebrafish. The resultant seizure
activity was recorded with light sheet imaging utilising a genetically encoded calcium sensor
(GCaMP6F). Neural activity was were recorded from single slices in vivo in agarose immobilised larvae.
The activity within the whole imaged slice was readily apparent in the fluorescence images (Fig 2A).
We divided the slice into 5 bilateral regions of interest to extract fluorescence time series from the
recording. These showing distinctive features consistent with highly correlated epileptic seizure activity
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( ). Using a sliding window (length: 60s, step: 10s) we could estimate the time-changing frequency
content using a Fourier transform, which demonstrate a particular increase in low frequency power after
PTZ infusion ( ), with additional intermittent bursts of broadband activity seen. Estimating
correlations between the regional power-frequency distributions across different time windows reveals
apparently distinct phases of PTZ induced seizures ( ): A baseline that is stable over time (0-30
minutes), an initial ictal period that differs most from the baseline state (30-70 minutes), and a late ictal
period where time periods of apparent similarity (i.e. high correlation) to the baseline are interrupted by
intermittent different (i.e. low correlation) segments (70 — 150 minutes).

Functional network architecture at baseline

We employed Bayesian model comparison to identify the effective connectivity network that best
explains the baseline data. In brief, baseline activity was modelled as spontaneous activity arising from
a coupled network of neuronal sources. Each source is made up of a three-population neuronal
microcircuit (excitatory, inhibitory interneuron populations, and additional projection neuron) that is fitted
to a cross-spectral density summary of the fluorescence signal at baseline. A single fully connected
network was fitted as a single dynamic causal model (DCM) inversion. Using Bayesian model reduction
and Bayesian model selection we compared models, where specific sets of between-region reciprocal
effective connections were either present or absent. These sets of connections were (1) hub-like
connectivity between a specific region and all other regions; (2) short range connection between
neighbouring, and homotopic brain regions ( ). Bayesian model comparison across the reduced
models in this model space provided evidence that the baseline configuration can best be described as
a network of neighbouring connected nodes with the tectum acting as a network-wide hub ( ).

Hierarchical dynamic model of seizure activity

Using this model architecture, individual DCMs are fitted to the sequence of sliding-window derived
cross-spectral density summaries of the original data. At this stage (i.e. first level models), each time
window is modelled as independent DCM. The model fits show that these independently inverted
models recreate the dynamic fluctuations of spectral composition observed during a seizure very well
and thus provide a good representation of the original data features ( ).

Parametric empirical Bayes (PEB) can be employed to identify parameters across individual DCMs that
vary systematically with specified experimental variables. In brief, PEB allows one to invert hierarchical
models where, in this instance, the first level of the model corresponds to a sequence of time windows.
The second level of the model then uses the posterior densities over the first level parameters to model
changes (here fluctuations) in the first level parameters. We modelled PTZ induced changes as a
mixture of four effects: (1) a simple model of PTZ bioavailability as first order pharmacokinetics with a
maximum effect achieved at 30 minutes, (2) a tonic effect switched on for the duration of PTZ exposure,
(3) a monotonically increasing effect representing the influence of prolonged seizure activity, (4)
oscillatory effects at different slow frequencies represented by a set of discrete cosine transforms
(Cooray et al., 2015). This approach provides a single model at the group level (i.e. across all time
windows, and all individual fish) and parameter changes are modelled as a mixture of experimental and
random effects. These second level inversions also provide an estimate of the model evidence, so that
different models can be tested against each other.

In the first instance, we compared models where only subsets of between region connections were
allowed to vary between time points. Bayesian model comparison shows that only changes in the
forward connections to the network hub (i.e. bilateral tectum) are required to explain the spectral
changes during seizure activity ( ). Model comparison was also used to test for PTZ induced
changes in the intrinsic coupling parameters in individual regions. There was strong evidence for an
involvement of all measured brain regions ( ). The estimated parameter changes induced by PTZ
were varied between different brain regions, but overall showed a relative reduction in excitatory time
constants (suggesting faster responses), reduction in inhibitory intrinsic connections, and a reduction
the influence of other regions on the optic tectum (i.e. a reduction in forward connections) ( )
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Fig 4. Synaptic coupling changes associated with PTZ-induced seizures. (A) DCMs fitted to individual time windows capture the spectral
changes measured during seizure activity. Shown is a frequency-power plot of a single eigenmode of cross-spectral density summaries
fluorescence time series of a single animal for the duration of the experiment. (B) Bayesian model comparison across several model families at the
second (between time-window) level was performed to compare reduced models with a limited set of fluctuating parameters. For extrinsic (between-
region) connections, we compared models with seizure-induced changes in Fforward, Bbackward, FBboth, 0 or neither connections. Only changes
in connections from other brain regions to the hub region showed evidence of being modulated by the seizure activity. (C) We compared models
with intrinsic connectivity changes in none of the brain regions, single brain regions, or all brain regions. There was strong evidence for intrinsic
connection changes in all brain regions. (D) Individual parameter changes induced by PTZ varied between brain regions. The dot plots show
individual parameter estimates, colour-coded by region with the size encoding the certainty of the estimate (i.e. the inverse covariance). Lines
indicate the median, with whiskers showing 25" and 75" centiles respectively.

To further explore the relationship between specific parameter changes and the spectral output, we
simulated the spectral output of a single three-population source for a range of different parameter
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values informed by the PEB analysis above. We extracted the parameter estimates for time constants
and intrinsic connectivity within the right tectum (Fig 5A) over time across all components of the PEB
model (i.e. tonic seizure effects, monophasic PTZ effect, prolonged seizure effect, discrete cosine
transforms, random between-subject effects). We then extracted the first principal component of the
intrinsic connectivity changes, and the time constant changes over time (Fig 5B).
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Fig 5. Seizures unfold as path through parameter space. (A) In this simulation a single source consisting of three population is analysed
along variations in seven parameters: 5 intrinsic connectivity parameters, and 2 time constants. (B) The coefficients for the first principal
component of intrinsic connections (left) and time constants (right) are shown. (C) Individual time windows are plotted onto a two-dimensional
parameter space consisting of the 1* component of time constant changes, and the first component of connection strength changes. For each
point in this parameter space, simulations of a single source with that particular parameterisation yield an estimate of predicted delta- (black
and white heat map) and gamma-power (purple isoclines) respectively.

Plotting each time window onto this reduced parameter space containing most of the variance in the
coupling parameters represents the seizures as a spiral path through parameter space. We can apply
the parameter combinations at each point in the parameter space to a microcircuit model and predict
the spectral output. Here we show log delta band power as a heat map, with log gamma band power
superimposed as isoclines (Fig 5C). This forward modelling approach shows that during the seizure,
the model enters a section of parameter space characterised by both high delta and gamma power
components, which is also seen in LFP recordings during seizures in zebrafish reported in previous
studies (Baraban et al., 2013).
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Discussion

In this report we combine light-sheet imaging of the intact larval zebrafish brain during PTZ-induced
seizures with dynamic causal modelling in order to identify network-wide connectivity changes induced
by the pharmacological intervention. Even well studied pharmacological interventions, such as PTZ
show multi-scale effects across the nervous system (Baraban et al., 2005; Huang et al., 2001; Kalueff,
2007; Nehlig, 1998). Thus linking membrane-level changes with the whole-brain seizure phenotype
remains challenging. The approach illustrated here allows the comparison of different mechanistic
hypotheses and identification of neuronal changes caused by PTZ.

Validity of DCM for calcium imaging traces of seizure activity

Time series derived from calcium imaging have previously been demonstrated to be highly correlated
with underlying LFP changes (Chan et al., 2015). Whilst LFP generally allows measuring of neuronal
population activity at a higher temporal resolution (including activity >100Hz), the temporal resolution
of the calcium imaging approaches is more limited due to both the sampling frequency (Keller et al.,
2014), and the fluorescence decay dynamics of the calcium-sensitive probe (Chen et al., 2013).

The predominant frequency components of both resting brain activity and seizure activity in the larval
zebrafish brain are in the delta (<4Hz) and theta (4-8Hz) band (Afrikanova et al., 2013). LFP fluctuations
in these frequency bands are largely preserved in calcium imaging, and apparent even at sampling
frequencies as low as 20Hz. This is in keeping with the obvious signatures of PTZ-induced seizures
both in the raw calcium imaging data, the regional averages, and the frequency domain. Modelling of
changes in these low frequency ranges using electromagnetic neuronal models designed for LFPs may
therefore be appropriate. Here we have further confirmed this by our construct validity testing using
synthetic data: Even after convolving a synthetic LFP-like trace (generated with known parameter
values) with a calcium imaging kernel, adding noise, and down sampling to a lower sampling frequency,
the DCM analysis correctly identifies the originally manipulated parameter.

This approach does not fully exploit the spatial resolution offered by the calcium imaging data, which
will need to be addressed with custom approaches to modelling of individual neurons (Rahmati et al.,
2016). However there are specific advantages to using the regionally averaged calcium traces: The
average calcium imaging trace is spatially less biased than an LFP trace - whilst LFP recordings pick
up on population signal, they are heavily biased towards signals close to the recording site. Light-sheet
imaging samples the entire slice in a spatially unbiased fashion and provides a conceptually closer
approximation to the assumptions made for the neural mass models used in DCM (Moran et al., 2013).
Heuristically, this spatial averaging suppresses local fluctuations very much in the same way that
averaging over time in the event related potential studies (in electrophysiology) reveals dynamics that
are conserved over multiple realisations. Furthermore epileptic seizures are an emergent property at
the level of neuronal populations, and computational models specifically addressing this ‘mesoscale’
may yield important insights about emergent population-wide features that is less readily apparent from
microscale modelling of individual neurons (Kuhimann et al., 2015).

Network organisation in the larval zebrafish brain

DCM allows for the estimation of network coupling parameters underlying neurophysiological
recordings. Early during zebrafish development, retino-tectal connections develop and stereotyped but
effective visuomotor behaviour is established (Meyer, 2006; Niell and Smith, 2005; Niell et al., 2004;
Portugues and Engert, 2009). This is associated with distributed network activity involving information
flow from the optic tectum to other brain areas. This visually-dominated early network activity is also
apparent in the DCM analysis, where the tectum has been identified as a hub with widespread
connectivity to the rest of the larval zebrafish brain from resting state light sheet recordings at baseline.


https://doi.org/10.1101/160259
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/160259; this version posted July 7, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

This network organisation is modulated during seizure activity, where the modelling approach identifies
a reduction of the effective forward connections from other brain areas to the optic tectum. This
asymmetric shift in connectivity (with only forward, but not backward connections affected), may be
indicative of a key role of the optic tectum - as a central network hub at baseline - in driving network-
wide synchronisations during an epileptic seizure. The selective reduction in effective connectivity
corresponds to previously reported seizure-related changes in functional connectivity estimated from
human EEG recordings, where increased clustering during a seizure has been described (Schindler et
al., 2008).

Fluctuations in effective connectivity between regions is usually thought of as resulting from changes in
direct synaptic connectivity (Nam et al., 2004). However, the asymmetric involvement of a single brain
region — where only effective connectivity fo (and not from) the optic tectum is reduced — suggests that
local microcircuitry changes may underlie the macroscale changes. This phenomenon has been
formally described in other modelling work through a slow local permittivity variable that governs
synchronisation between different brain regions and represents different slowly unfolding changes in
local energy and metabolic milieu (Proix et al., 2014). The relationship between local and macroscale
network changes in epilepsy in the context of hierarchically coupled brain areas is discussed elsewhere
(Omidvarnia et al., 2017). In our approach here, slow local changes may appear as the sort of changes
in directed effective connectivity estimated for the optic tectum, linking local microcircuitry abnormality
with pathological brain-wide reorganisation during the epileptic seizure.

Intrinsic coupling changes disrupt excitation-inhibition balance in the temporal domain

PTZ acts as an acute chemoconvulsant in a range of different model organisms, likely due to allosteric
inhibition of GABA-A receptors (Huang et al., 2001). Previous work on a PTZ rat model showed dose-
dependent regionally specific cellular activation (Nehlig, 1998), suggesting differential susceptibility of
different brain regions to PTZ effects. Bayesian model comparison of seizures recorded from the
zebrafish in this report indicate that changes of intrinsic neuronal population coupling were required in
each of the brain region to explain the observed seizure patterns, suggesting that direct effects of PTZ
changes in all brain regions are required, rather than pathological changes in a single brain region
driving all of the observed seizure effects.

These effects varied widely between different brain regions. This in part reflects different baseline
configurations of the regional source models, which in turn require different shifts in coupling parameters
in order to achieve the sort of spectral output observed across all brain regions during the seizure.
However, overall, the PTZ-related changes are broadly consistent with our current understanding of
PTZ effects at the neuronal membrane. Specifically, PTZ is expected to cause a relative decrease of
inhibitory connectivity compared to excitatory connectivity; and preferential blockade of fast GABA-A
(and not GABA-B) mediated transmission would be expected to cause an increase in the relative
inhibitory transmission time constants (i.e. slowing down), compared to excitatory synaptic dynamics —
both of these effects are observed in the parameters estimated across the whole brain slice here.
Changes in these population-level time constants may relate to the relative contributions of GABA-A
and GABA-B transmission, changes in single channel kinetics induced by PTZ (Huang et al., 2001), but
are also affected by current input load (Koch et al., 1996), and within-population recurrent connections
that are not otherwise explicitly modelled in the neural mass approach presented here (Chaudhuri et
al., 2014).

Further exploration of individual parameter effects at a single brain region supports the notion that
seizure dynamics in this recording are largely caused by two main effects: a relative disturbance in
excitation / inhibition balance with increased excitation and decreased inhibition, and a reciprocal
disturbance in the dynamics of excitatory and inhibitory connectivity with slower inhibition and faster
excitation. Because we are have fitted fully generative neural mass models, we can make predictions
about the spectral output caused by particular parameter combinations beyond the measured <10Hz
frequency range. This approach reveals that particularly the time points where both connectivity and
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time effects changes reach their respective extremes, the typical seizure spectral output containing high
amplitudes in both low (i.e. delta) and high (i.e. gamma) frequency components emerges.

Recurrent neuronal loops with a close balance of overall excitation and inhibition underlie spontaneous
brain activity. The brain is believed to operate near a transitional state from which both subcritical,
random dynamics and supercritical, ordered dynamics can emerge (i.e. self-organised criticality, cf.
Rubinov et al., 2011). Blocking of the largely GABA-A mediated local recurrent inhibition shifts this
balance and allows ordered, seizure-like activity to occur (Shu et al., 2003). In our model the emergence
of seizure dynamics requires changes in both connection strengths and their temporal dynamics.

Conclusion

The analysis presented here illustrates the use of computational modelling to explain neuronal
dynamics in the larval zebrafish brain during acutely induced seizures. This approach exploits the
spatial independence of light-sheet recordings of brain regions and uses dynamic causal modelling to
identify the mechanisms underlying seizure dynamics. This approach allows translating observations
from whole-network novel light sheet imaging to the concepts and models used to explain
electrophysiological abnormalities observed during seizures.

Seizures in this model are associated with an asymmetric decoupling of the network hub, and changes
in excitation/inhibition balance that crucially also involve the temporal dynamics of excitatory and
inhibitory synaptic transmission. Mapping the expected spectral changes along both the connection
strength and time constant domains of the model within the pathophysiological range estimated from
acute seizures allows us the independent contribution of changes in either type of parameter to the
overall dynamics. This is the first step to establishing network-wide mechanisms that underlie seizures
and may be targeted with novel treatments for epilepsy.
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Methods

Contact for Reagent and Resource Sharing

Please contact R.E.R. (r.rosch@ucl.ac.uk) for reagents and resources generated in this study.

Experimental Model and Subject Details
Zebrafish Maintenance

Zebrafish were maintained at 28.5°C on a 14 h ON/10 h OFF light cycle. Transgenic line used:
Tg(elavi3b:GCaMP6F) (Dunn et al., 2016). This work was approved by the local Animal Care and Use
Committee (King’s College London) and was performed in accordance with the Animals Experimental
Procedures Act, 1986, under license from the United Kingdom Home Office.

Method Details
Construction of Light-sheet microscope

The light-sheet design was based on that described in (Wolf et al., 2015). Briefly, excitation was
provided by a 488nm laser (488 OBIS, Coherent) which was scanned over 800um in the Y direction by
a galvanometer mirror (6215H/8315K, Cambridge Technology) creating an illumination sheet in the XY-
plane. The sheet was associated with two pairs of scan and tube lenses, scanned along the z-axis
using a second galvanometer mirror (6215H/8315K, Cambridge Technology) and focused onto the
specimen via a low NA illumination objective (5 x 0.16NA, Zeiss EC Plan-Neofluar). The detection arm
consisted of a water-immersion objective (20 x 1 NA, XLUMPIlanFL, Olympus) mounted vertically onto
a piezo nanopositioner (Piezosystem Jena MIPOS 500) allowing alignment of the focus plane with the
light sheet. The fluorescence light was collected by a tube lens (150 mm focal length, Thorlabs AC254-
150-A) and passed through a notch filter (NF488-15, Thorlabs) to eliminate 488 nm photons. The image
was formed on a sCMOS sensor (PCO.edge 4.2, PCO). The 20x magnification yielded a field of view
of 0.8 x 0.8 mm?® with a pixel dimension of 0.39ym2. The detection arm and specimen chamber were
mounted on two independent XY translation stages to allow precise alignment of the specimen,
detection axis and light sheet.

Imaging

Nonanesthetized Tg(elavi3b:GCaMPG6F) larvae, 5 days post fertilisation, were immobilized at in 2.5%
low melting point agarose (Sigma-Aldrich) prepared in Danieau solution and mounted dorsal side up on
a raised glass platform that was placed in a custom-made Danieau-filled chamber. Pentylenetetrazole
(Sigma-Aldrich) was added to the Danieau-filled chamber after 30 minutes of baseline imaging to a final
concentration of 20 mM. Functional time-series were acquired at a rate of 20 Hz, 4x4 pixel binning (1.6
pm x 1.6 ym resolution). Time-series were aligned to a mean image of the functional imaging data for
each fish (rigid body transformation as implemented in: SPM12,
http://www.fil.ion.ucl.ac.uk/spm/software/spm12). Mean fluorescence traces were then extracted from
ten anatomically defined regions of interest for further analyses.

Quantification and Statistical Analysis
Estimation of spectral data features

Mean fluorescence traces from the regions of interest were treated as multichannel time series for
subsequent analysis. Short segments derived from a sliding window (length: 60s, step size: 10s) were
used to estimate time-varying changes in the spectral composition of the time series: For each step of
the sliding window the real component of the Fourier spectrum was calculated. A correlation matrix of
region-specific mean Fourier amplitude across all time point was used to visualise slow fluctuations in
distributed activity (Betzel et al., 2012; Rosch et al., 2017a). Averages of the windowed Fourier spectra
and the power correlation matrix across the studied animals are shown.

Simulated calcium imaging traces
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To test the construct validity of the inversion approach, we used a neural mass model with known
parameterisation to generate an LFP output, convolved this output with a calcium-imaging kernel, and
inverted a DCM on those synthetic calcium-imaging traces to test whether the original parameterisation
can be reconstructed.

The model was a standard prior three-source neural mass model implemented as ‘LFP’ model in the
SPM12 model library (Moran et al., 2013). We generated 6 segments of LFP-like model output with
linear variation of a single parameter (H;) from -1 to +1. The convolution kernel was constructed from a
fast inverted quadratic rise lasting t,,, = 250ms of the form: y(t) = 2t * t,,, — t2. This is followed by an

1
exponential decay function of the form: y(t) = e 000", Both functions were normalised so that y(tu,,) =
1. Parameters of these functions were chosen to approximate the reported dynamics of GCaMP6F
(Chen et al., 2013).

Inversion of simulated calcium imaging fraces

Each individual synthetic calcium imaging trace was inverted using a DCM for cross spectral densities
approach with a single three-population neural mass model (Moran et al., 2011b). Using a parametric
empirical Bayes approach, we then compared the evidence for models, where changes in a single one
of the parameter explain the difference between segments (Friston et al., 2016; Rosch et al., 2017b).
Parameter estimates for the winning parameter are then compared to the ‘ground truth’ parameter
changes originally introduced into the generative model, therefore providing evidence for which
parameter is changed, and how that parameter is changed to achieve the spectral changes contained
in the time series.

Dynamic causal modelling of empirical calcium imaging traces

Baseline architecture: To characterise functional network architecture at rest, in an initial step only
baseline data were analysed using a DCM approach. Specifically, 4-minute segments prior to PTZ were
inverted using a single fully connected DCM containing 10 standard prior ‘LFP’ type sources (Moran et
al., 2013). Based on the full model inversion, smaller subsets of models were then compared with
computational efficiency using Bayesian model reduction, which allows Bayesian model selection for
the network architecture that best explains the baseline data (Friston et al., 2016). Model space was
designed around three main features: the presence or absence of hierarchical connections between
neighbouring brain regions; the presence or absence of homologous connections between bilateral
brain regions; and the presence of absence of hub-like connections from one set of brain regions to all
other regions (Fig 3).

Seizure data inversion: Based on the dynamic network architecture identified in the step above, an
additional DCM analysis was performed to identify slow fluctuations of synaptic parameters within this
architecture that could explain seizure activity. For this, data were again divided into segments using a
sliding window approach (60s, 50s steps) for each animal separately. DCMs with the architecture
derived from the step above were inverted separately for each individual time window.

We then constructed a second level model to estimate between-time window variations in parameters
using a parametric empirical Bayesian approach (Friston et al., 2016; Papadopoulou et al., 2016). This
contained several temporal basis functions that in combination can explain a majority of possible
parameter trajectories: (1) an ‘on/off’ tonic seizure effect step function with onset at PTZ injection; (2) a
monophasic seizure effect function with onset at PTZ injection; (3) a linear increase with onset at PTZ
injection; (4) a set of three discrete cosine basis functions to model; (5) a set of three regressors
modelling random between-fish effects.

This approach provides estimates for how between-time window parameter changes can be modelled
as a linear combination of the basis sets provided, as well as a free energy estimate for the model
evidence. We can thus perform Bayesian model reduction and selection at this second level, comparing
competing model families where only subsets of parameters are free to vary between time windows,
and thus select a subset of parameters that best explain the observed changes over time. We broadly
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divided the model space of these between time-window (i.e. between individual DCM) effects into (a)
models with variations in hierarchical coupling, (b) models with variations in hub coupling, and (c)
models with variations in intrinsic synaptic coupling parameters as outlined in Fig 4. Family-wise
Bayesian model selection was used to select relevant parameters, which were freed in a single model
to provide parameter estimates at time window with the estimated maximum PTZ effect.

Forward modelling: To further explore the effects of specific parameter changes, the optic tectum with
its hub-like position in the network was analysed further. Parameter changes derived from the linear
combination of the temporal basis sets were collated and grouped into time constant and connection
strength changes. The first principal component of each of these categories was then used to project
the parameter changes into a two dimensional plane. Because the DCM provides a fully parameterised
model, we can estimate the predicted spectral output for each point across this plane, by adding the
respective principal component values to the baseline parameterisation of the model and simulating its
output. We plotted the resultant low frequency (delta-range), and high frequency (gamma-range) power
across the parameter space, to indicate how movement in parameter space affects the spectral output.

Data and Software Availability
Software

Analysis in this study was built on tools available as part of the academic freeware package ‘Statistical
Parametric Mapping 12’ (www.fil.ion.ucl.ac.uk/spm). This toolbox and all custom code runs on
Mathworks© Matlab (https://uk.mathworks.com/products/matlab.html). Custom code is freely available
as a github repository (http://github.com/roschkoenig/Zebrafish Seizure)

Data Resources

Extracted time series from manually defined brain regions; windowed data used for DCM analysis
(http://github.com/roschkoenig/Zebrafish_Seizure).
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