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Abstract10

Pseudotime algorithms can be employed to extract latent temporal information from cross-11

sectional data sets allowing dynamic biological processes to be studied in situations where the12

collection of genuine time series data is challenging or prohibitive. Computational techniques13

have arisen from areas such as single-cell ’omics and in cancer modelling where pseudotime can14

be used to learn about cellular differentiation or tumour progression. However, methods to date15

typically assume homogenous genetic and environmental backgrounds, which becomes particu-16

larly limiting as datasets grow in size and complexity. As a solution to this we describe a novel17

statistical framework that learns pseudotime trajectories in the presence of non-homogeneous18

genetic, phenotypic, or environmental backgrounds. We demonstrate that this enables us to19

identify interactions between such factors and the underlying genomic trajectory. By applying20

this model to both single-cell gene expression data and population level cancer studies we show21

that it uncovers known and novel interaction effects between genetic and enironmental factors22

and the expression of genes in pathways. We provide an R implementation of our method23

PhenoPath at https://github.com/kieranrcampbell/phenopath.24
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Introduction25

Dynamic or progressive biological behaviours are ideally studied within a longitudinal framework26

that allows for monitoring of individuals over time leading to direct time course data. However,27

longitudinal studies are often challenging to conduct and cohort sizes limited by logistical and28

resource availability. In contrast, cross-sectional surveys of a population are often relatively easier to29

conduct in large numbers and are more prevalent for molecular ’omics based studies. Cross-sectional30

studies do not directly capture the changes in disease characteristics in patients but it maybe possible31

to recapitulate aspects of temporal variation by applying “pseudotime” computational analysis.32

The objective of pseudotime analysis is to take a collection of high-dimensional molecular data33

from a cross-sectional cohort of individuals and to map these on to a series of one-dimensional34

quantities, that are called pseudotimes. These pseudotimes measure the relative progression of35

each of the individuals along the biological process of interest, e.g. disease progression, cellular36

development, etc., allowing us to understand the (pseudo)temporal behaviour of measured features37

without explicit time series data (Figure 1A). This analysis is possible when individuals in the cross-38

sectional cohort behave asynchronously and each is at a different stage of progression. Therefore,39

by creating a relative ordering of the individuals, we can define a series of molecular states that40

constitute a trajectory for the process of interest.41

Pseudotime methods generally rely on the assumption that any two individuals with similar42

observations should carry correspondingly similar pseudotimes and algorithms will attempt to find43

some ordering of the individuals that satisfies some overall global measure that best adheres to44

this assumption (Figure 1A). Exact implementations and specifications differ between pseudotime45

approaches particularly in the way “similarity” is defined and modelled. When applied to molecular46

data, pseudotime analysis typically captures some dominant mode of variation that corresponds to47

the continuous (de)activation of a set of biological pathways [Fan et al., 2016].48

Pseudotime analysis has gained great popularity in the domain of single cell gene expression49

analysis (where each “individual” is now a single cell) in which it has been applied to model the50

differentiation of single-cells [Trapnell et al., 2014, Reid and Wernisch, 2016, Haghverdi et al., 2016,51

Campbell and Yau, 2016, Setty et al., 2016]. Using advanced machine learning techniques, these52

methods can be applied to characterise complex, nonlinear behaviours, such as cell cycle, and mod-53

elling branching behaviours to allow, for example, the possibility of cell fate decision making. His-54

torically, single cell applications were pre-dated by more general applications in modelling cancer55

progression from gene expression profiling of tumours [Qiu et al., 2011, Magwene et al., 2003, Gupta56

and Bar-Joseph, 2008] as well as in other progressive disease contexts such as glaucoma [Tucker and57

Garway-Heath, 2010, Tucker et al., 2017, Tucker and Li, 2015, Tucker et al., 2015]. However, to58

date, there has been little cross-over between these domains in terms of methodological development59

due to the differing contexts in which methods are applied.60
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Figure 1: Pseudotemporal analysis. A High-dimensional molecular data from a cross-sectional
cohort is mapped on to a one-dimensional pseudotemporal progression scale allowing pseudotemporal
behaviour of individual features to be analysed. B If the cohort contains sub-populations we may
want each sub-population to be associated to distinct trajectories. C PhenoPath models observed
expression as a combination of standard differential expression and pseudotime/pathway effects,
including covariate-pathway interactions. D PCA representation of a simulated dataset coloured by
pseudotime shows a clear splitting of trajectories between covariate status x = (−1, 1). E Simulation
results showing the absolute value of the effect size reported by limma voom and the interaction
coefficients β reported by PhenoPath under the four different simulation regimes and coloured by
significance at 5% FDR.
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For instance, a limitation of pre-existing pseudotime approaches is that they generally do not61

provide a mechanism to account for known genetic, phenotypic and environmental information that62

might allow us to answer questions related to the interaction between heterogeneity in these factors63

and pseudotime progression. For example, do immune cells exposed to different stimuli progress64

differently in their response? Do the transcriptional programmes of tumours differ based on mutation65

status of a known cancer gene? Whilst pseudotime methods exist for unsupervised identification of66

multiple or branching pseudotime trajectories, these can only be retrospectively examined for their67

association with external factors of interest and do not provide an explicit approach for identifying68

associations.69

In this paper, we describe a novel Bayesian statistical framework for pseudotime trajectory70

modelling to address these limitations. Our framework models global pseudotemporal progression71

but incorporates covariates that can modulate the pseudotemporal progression allowing sub-groups72

within the cross-sectional population to each develop their own trajectory (Figure 1B). Our approach73

combines linear regression and latent variable modelling approaches and allows for interactions be-74

tween the covariate and temporally driven components of the model. We believe our method to75

be the first integrated statistical approach for modelling pseudotime trajectories against heteroge-76

neous genetic and environmental backgrounds allowing its utility in both single and non-single cell77

applications.78

Results79

PhenoPath: a Bayesian statistical framework for learning continuous path-80

way or pseudotemporal with covariates81

We first give an overview of our statistical method which we call “PhenoPath”. For simplicity, our82

descriptions will assume that the observed data are high-dimensional gene expression measurements83

which are used throughout our empirical experiments but we stress that the model would be appli-84

cable to a wider range of data modalities. PhenoPath uses a Bayesian statistical framework that85

combines linear regression and latent variable modelling. The observed data (yn) for the n-th indi-86

vidual is a linear function of both measured covariates (xn) and an unobserved latent variable (zn)87

corresponding to pseudotime. We will also refer to this latter quantity more generically as a path-88

way score since, as we will explore further, pseudotime progression will be driven by the activities89

of certain biological pathways. Figure 1C shows a schematic of the model. The covariate-dependent90

component (Axn) models differential expression whilst the pseudotime component involves both a91

pathway-only component (λ). The key novelty is an interaction term (BxTnzn) that allows the the92

covariates to modulate the pathway or pseudotemporal trajectory. We devise a Bayesian hypothesis93

test for the model to test for these interaction effects (see Methods for details). An attractive fea-94
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ture of the framework is that, in the absence of pseudotemporal variation, the model reduces to a95

standard differential expression model. Whilst, in the absence of measured covariates, it is a factor96

analysis latent variable model for pseudotime.97

In our investigations, the covariates will be discrete, binary quantities but this is not a necessary98

restriction. Sparse Bayesian prior probability distributions are used to constrain the parameters99

(A,B,λ) so that covariates only drive the emergence of distinct trajectories only if there is sufficient100

information within the data to do so. Computational inference within PhenoPath is handled by101

a fast and highly scalable variational Bayesian inference framework that can handle thousands of102

features and samples in minutes using a standard personal computer making it readily applicable to103

large data sets without the use of high-performance computing (see Methods for details).104

Simulation study105

We first demonstrate the utility of our model by performing a simulation study to demonstrate106

the value of modelling covariate-pathway interactions. We simulated RNAseq-based gene expres-107

sion data [Frazee et al., 2015] where genes were either (1) differentially expressed only, (2) exhibiting108

pseudotime progression only, (3) driven by covariate-modulated pseudotime progression, or (4) differ-109

entially expressed with covariate-modulated pseudotime progression (see Methods for details, Figure110

1D, Supplementary Fig. 1). PhenoPath exhibited high specificity and sensitivity by classifying only111

a small number of simulated genes (2%) as exhibiting interaction effects in cases 1-2 where there112

are no covariate-pseudotime interactions but identifies 78% and 63% of genes as exhibiting signif-113

icant covariate-pseudotime interactions in cases 3 and 4 respectively (Fig. 1E). For comparison, a114

standard differential expression analysis using limma-voom identified 47% and 59% of genes as dif-115

ferentially expressed in cases 1 and 4 respectively. In case 2 only 2% of genes are identified as DE as116

expected but, in case 3, 22% of genes are identified as DE where limma-voom would not be expected117

to report any differentially expressed genes. e sought to compare the performance of Limma Voom118

and PhenoPath in detecting differential expression and pathway interaction effects respectively, and119

show that there are pathway interaction effects not evident from differential expression analyses120

alone. We found that PhenoPath identifies such interactions with high precision (Supplementary121

Table 1).122

Single-cell RNA-seq perturbation analysis123

We next examined a time-series single-cell RNA-seq (scRNA-seq) data set of bone marrow derived124

dendritic cells responding to particular stimuli [Shalek et al., 2014]. Cells were exposed to LPS,125

a component of Gram-negative bacteria, and PAM, a synthetic mimic of bacterial lipopeptides,126

and scRNA-seq performed at 0, 1, 2, 4 and 6 hours after stimulation. Despite the time-series127

measurement, previous studies have suggested this dataset is more suited to a “pseudotime” analysis128
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as the cells respond asynchronously and heterogeneity exists within the cellular populations at each129

time point [Reid and Wernisch, 2016]. To-date pseudotime inference algorithms would typically130

assume a common trajectory across all experimental conditions or a pseudotime analysis performed131

separately for each stimulant. This might give a loss of statistical power and artefacts introduced by132

confounding effects. Using our model we can encode the stimulant to which the cells were exposed as133

a covariate and allow gene expression to evolve along pseudotime differently for either LPS or PAM134

exposure. This allows us to learn a single trajectory for all cells regardless of stimulant applied yet135

simultaneously infer which genes are differentially regulated in response. We applied this to the 820136

cells exposed to LPS and PAM in the time points 1, 2, 4, and 6 hours after stimulation using the137

7,533 genes whose variance in normalised log-expression exceeded a pre-set threshold (see Methods138

for details).139

We inferred a covariate-perturbed trajectory and uncovered a landscape of pseudotime-stimulant140

interactions (Fig. 2A), unveiling genes whose regulation along pseudotime is modulated by the appli-141

cation of LPS or PAM. The trajectory inferred largely recapitulated the true time-series measurement142

(Fig. 2B, R2 = 0.64), despite no explicit temporal information being provided to the algorithm,143

though transcriptional heterogeneity at each time point is still evident. We also compared this to two144

commonly-used pseudotime algorithms and found that the pseudotimes inferred using PhenoPath145

had the best agreement with the capture times (Supplementary Fig. 2), possibly due to the ability146

to integrate the confounding effect of differential stimulant exposure.147

Using PhenoPath we discovered a large number of stimulant-modulated interactions masked by148

standard differential-expression analysis (Fig. 2C). A GO analysis revealed genes whose upregulation149

along the common trajectory was increased by LPS exposure (as opposed to PAM) were highly150

enriched for interferon-beta and immune response (Fig. 2D), which recapitulates previous results151

[Shalek et al., 2014, Reid and Wernisch, 2016] that suggest a “core” module of antiviral genes152

upregulated at later timepoints in LPS cells but in an entirely unsupervised, integrated manner.153

We finally examined the individual genes most perturbed by LPS or PAM along the trajectory154

(Fig. 2E), which identifies as yet uncharacterised expression patterns associated with LPS and155

PAM. Most notably, the tumour necrosis factor Tnf had around twice the interaction effect size156

of any other gene, and decreases under LPS stimulation but increases under PAM. Further genes157

exhibit differential regulation according to stimulant, such as Mef2c that has constant expression158

over pseudotime under LPS stimulation yet shows downregulation under PAM stimulation. These159

results complement previously discovered gene differences such as that of Tnf, but in a systematic,160

transcriptome-wide approach.161
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Figure 2: Stimulant-immune reactions in single-cell RNA-sequencing data. A PhenoPath applied
to the Shalek et al. dataset uncovers genes differentially regulated along pseudotime depending
on the stimulant (LPS or PAM) applied. B The inferred pseudotimes (z) consistent with the
physical capture times. C A comparison of p-values obtained through a nonparametric statistical
test for differential expression between LPS and PAM stimulation shows no particular relation
with the interaction parameters β inferred with PhenoPath. D A GO enrichment analysis of the
genes upregulated along pseudotime whose upregulation was increased by LPS stimulation showed
enrichment for immune system processes. E Expression of the four genes with the largest interaction
effect sizes along over pseudotime, stratified by stimulant applied. Strikingly, Tnf is upregulated
under PAM exposure yet downregulated under LPS stimulation.
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Identifying microsatellite instability associated gene expression hetero-162

geneity in colorectal cancer163

We next applied our model to a non-single cell setting by examining RNA-seq gene expression data164

from the TCGA colorectal adenocarcinoma (COAD) cohort [Network et al., 2012]. We used mi-165

crosatellite instability status (MSI) as a phenotypic covariate and wanted to identify pseudotemporal166

expression patterns associated with MSI status. MSI is genetic hypermutability that is present in167

around 15% of colorectal tumours and is associated with differential response to chemotherapeutics168

and marginally improved prognosis [Boland and Goel, 2010].169

We applied PhenoPath to 4,801 highly variable genes across 284 samples to identify a pseu-170

dotemporal trajectory through these tumours (see Methods for details). This analysis uncovered a171

landscape of 92 pathway-MSI interactions including known tumour suppressor genes (Fig. 3A &172

Supplementary Data 1). Patients further advanced along the trajectory exhibited higher expres-173

sion of T regulatory cell (Tregs) immune markers (Fig. 3B) likely due to increasing T regulatory174

cell infiltration of the tumour. This led us to hypothesise that the inferred pseudotime trajectory175

corresponds to immune response pathway activation in the tumours, further supported by a Gene176

Ontology (GO) enrichment analysis for genes upregulated along the trajectory (Fig. 3C). Tumour-177

infiltrating Tregs are potent immunosuppressive cells of the immune system that promote progression178

of cancer through their ability to limit antitumuor immunity and promote angiogenesis and often179

associated with a poor clinical outcome [Facciabene et al., 2012]. A standard differential expression180

analysis using limma voom [Law et al., 2014] (Fig. 3D) demonstrates that PhenoPath is required181

to uncover such interactions as a gene being differentially expressed does not imply a pathway-MSI182

interaction, while such interactions do not require differential expression.183

The most striking interaction discovered for this dataset was the MLH1 gene whose interaction184

effect size was far larger than any other gene. This association provided a positive control since185

MLH1 is a DNA mismatch repair gene and germline mutations of which are causal for hereditary186

non-polyposis colorectal cancer [Bonadona et al., 2011, Gille et al., 2002]. By applying PhenoPath we187

correctly identified that in patients, with low or absent levels of microsatellite instability, there is no188

relationship between MLH1 expression and immune pathway interaction, with MLH1 expressed at189

an approximately constant level (Fig. 3E). However, when MSI occurs in a tumour, MLH1 expression190

is highly correlated with immune response, showing almost no expression when the immune pathway191

is inactive and gradually being upregulated with immune pathway response [Michel et al., 2008].192

Tracking ER modulated angiogenesis driven progression in breast cancer193

We next performed a pseudotemporal analysis of the TCGA breast cancer cohort using estrogen194

receptor (ER) status as a phenotypic covariate. Approximately 60% of breast cancers are estrogen195
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Figure 3: Immune-microsatellite instability interactions uncovered in colorectal adenocarcinoma.
A PhenoPath applied to colorectal adenocarcinoma (COAD) RNA-seq expression data uncovers
a landscape of interactions between the inferred immune trajectory and microsatellite instability
status (MSI). B Expression of three T regulatory cell markers demonstrates that our pseudotime
corresponds to activation of immune response pathways. C A comparison to the FDR-corrected
q-values reported by Limma Voom demonstrates genes found interacting with MSI status and the
immune pathway are found to be both DE and non-DE in standard analyses. D A GO enrichment
analysis of upregulated genes implies the latent trajectory encodes immune pathway activation in
each tumour. E The tumour suppressor genes MLH1 and TGFBR2 were identified by our method
as being significantly perturbed along the immune trajectory by MSI status. MLH1 shows no
interaction with immune pathway activation in the MSI-low regime yet is highly correlated with
immune pathway activation in the MSI-high regime.
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receptor positive [Early Breast Cancer Trialists’ Collaborative Group (EBCTCG)], which is typically196

associated with improved prognosis and a longer time to recurrence [Parl et al., 1984]. We applied197

PhenoPath to 1,135 samples post-QC and 4,579 highly variable genes (see Methods for details).198

Using stringent significance testing threshold we found 1,932 genes (42%) affected by an interaction199

between the pseudotemporal trajectory and ER receptor status (Fig. 4E & Supplementary Data 2).200

There was a correlation between the pathway interaction strength and the p-value reported through201

standard differential expression (Fig. 4B), though there remained some genes that exhibited pathway202

interaction and no differential expression.203

A GO enrichment analysis indicated that the inferred pseudotemporal trajectory corresponded204

to vascular growth pathways or angiogenesis (Fig. 4F) – a well-known and uncontroversial hallmark205

of cancer development [Ferrara, 2002, Welti et al., 2013]. We confirmed this finding by specifically206

examining the expression of known angiogenesis inducing genes (Supplementary Fig. 4). We found207

increasing fibroblast growth factor-2 (FGF-2 ) and vascular endothelial growth factors C and D208

(VEGF-C/D) expression along the trajectory whose behaviours were independent of ER status.209

We finally sought to examine the genes identified as being most affected by the interaction210

between angiogenesis and estrogen receptor status. Importantly, this set included the Estrogen211

Receptor 1 (ESR1 ) gene as well as the forkhead transcription factors FOXA1 and FOXC1 which212

are known to be involved with ERα mediated action in breast cancer [Lam et al., 2013, Yu-Rice213

et al., 2016] (Fig. 4D and Supplementary Fig. 3). Fig. 4D shows how the fructose-1,6-biphosphatase214

(FBP1 ) and FOXC1 genes evolve along the angiogenesis pathway dependent on ER status. In the215

ER- regime, FBP1 is upregulated along the trajectory while in the ER+ regime it is downregulated.216

Intriguingly, FBP1 has been identified as a marker to distinguish ER+ from ER- subtypes and its217

expression has been shown to be negatively correlated with SNAIL as the Snail-G9a-Dnmt1 complex,218

is critical for E-cadherin promoter silencing, and required for the promoter methylation of FBP1 in219

basal-like breast cancer [Dong et al., 2013] (Supplementary Fig. 5). Similarly, FOXC1 shows no220

regulation in the ER- regime yet is strongly upregulated in the ER+ case.221

We noted that these genes exhibit a convergence - they have markedly different expression at222

the beginning of the trajectory based on ER status yet converge towards the end. We derived a223

mathematical formula to infer such convergence points and calculated these for all genes showing224

significant interactions (see Methods for details). Remarkably, the vast majority converge towards225

the end of the trajectory (Fig. 4E), implying a common end-point in vascular development for226

both ER+ and ER- cancer subtypes (Supplementary Fig. 6). This effect can be seen in the example227

expression plots in Figure 4D, where the vertical dashed line represents the convergence point always228

at the end of the trajectory. This suggests that while there exists low levels of angiogenesis pathway229

activation, ER status dominates gene expression while as angiogenesis pathway activation increases230

it comes to dominate expression patterns over ER status. This finding might have implications for231
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Figure 4: Vascular growth-ER status interactions uncovered by PhenoPath in breast cancer. A
PhenoPath applied to Breast Cancer (BRCA) RNA-seq expression data uncovers a landscape of
interactions between the inferred angiogenesis trajectory and estrogen receptor (ER) status. B A
comparison to the FDR-corrected q-values reported by Limma Voom identifies a significant number
of DE genes display an interaction with ER status and the angiogenic pathway. C A GO enrichment
analysis of upregulated genes implies the latent trajectory encodes angiogenesis pathway activation
in each tumour. D Four example genes ESR1, FBP1, and FOXC1 were identified by PhenoPath
as significantly perturbed along the angiogenesis trajectory by ER status. The vertical dashed
line signifies the calculated crossover point, demonstrating the expression profiles of these genes
converge towards the end of the trajectory. E A histogram of the crossover points of all genes whose
trajectory-covariate interactions were significant. The vast majority of crossover points are at the
end of the trajectory (around 0.5, where the “middle” pathway score is 0) implying a convergence
of gene expression as the trajectory progresses.
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the application of angiogenesis inhibitors in breast cancer treatment.232

Discussion233

PhenoPath provides a novel contribution to the pre-existing arsenal of pseudotemporal analysis234

algorithms developed across a range of application areas including single cell ’omics and cancer. Us-235

ing a statistical model that allows for covariate-modulated pseudotemporal trajectories, PhenoPath236

generalises pseudotime analysis to a wider range of applications where genetic, phenotypic or en-237

vironmental contexts may vary between samples and be influential in the trajectories. We have238

demonstrated its utility in an application to single cell transcriptomics involving external stimuli239

and there is potential usage in high-throughput single cell CRISPR experiments that are as yet240

unexplored [Adamson et al., 2016, Datlinger et al., 2017]. We also demonstrated applications to The241

Cancer Genome Atlas using PhenoPath to model disease trajectories in colorectal and breast can-242

cer. The trajectories identified were consistent are consistent with pre-existing knowledge concerning243

tumorigenesis in these disease. Importantly, PhenoPath was able to identify covariate-pathway in-244

teractions that might be driving specific trajectory differences recovering known associations as well245

as novel genes. We showed that these behaviours cannot be readily determine with standard differ-246

ential expression analyses without taking into account the latent disease progression. In summary,247

PhenoPath provides a powerful and scalable pseudotime analysis algorithm for modelling latent pro-248

gression in a variety of experimental settings. Future work will expand the ability of PhenoPath to249

handle complex mixtures of continuous and discrete covariates in high-dimensional settings.250

Methods251

Statistical model252

We begin with an N × G data matrix Y where yng denotes the nth entry in the gth column for

n ∈ 1, . . . , N samples and g ∈ 1, . . . , G features. Such a matrix would correspond to the measurement

of a dynamic molecular process that we might reasonably expect to show continuous evolution such

as gene expression corresponding to a particular pathway. It is then trivial to learn a one-dimensional

linear embedding that would be our “best guess” of such progression via a factor analysis model:

yng = λgzn + εng, εng ∼ N(0, τ−1
g ) (1)

where zn is the latent measure of progression for sample n and λg is the factor loading for feature253

g which essentially describes the evolution of g along the trajectory.254

However, it is conceivable that the evolution of feature g along the trajectory is not identical for255
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all samples but is instead affected by a set of external covariates. Note that we expect such features256

to be “static” and should not correlate with the trajectory itself.257

Introducing the N × P covariate matrix X with the entry in the nth row and pth column given

by xnp, we allow such measurements to perturb the factor loading matrix

λg → λng = λg +
P∑
p=1

βpgxnp (2)

where βpg quantifies the effect of covariate p on the evolution of feature g. Despite Y being column-

centred we need to reintroduce gene and covariate specific intercepts to satisfy the model assump-

tions, giving a generative model of the form

yng = ηg +

P∑
p=1

αpgxnp +

(
λg +

P∑
p=1

βpgxnp

)
zn + εng, εng ∼ N(0, τ−1

g ) (3)

Our goal is inference of zn that encodes progression along with βpg which is informative of novel

interactions between continuous trajectories and external covariates. Consequently we place a sparse

Bayesian prior on βpg of the form βpg ∼ N(0, χ−1
pg ) where the posterior of χpg is informative of the

model’s belief that βpg is non-zero. The complete generative model is therefore given by

αpg ∼ N(0, τ−1
α )

λg ∼ N(0, τ−1
λ )

zn ∼ N(qn, τ
−1
q )

βpg ∼ N(0, χ−1
pg )

χ−1
pg ∼ Gamma(aβ , bβ)

τ−1
g ∼ Gamma(a, b)

µg ∼ N(0, τ−1
µ )

εng ∼ N(0, τ−1
g )

yng = µg +
∑
p

αpgxnp +

(
λg +

∑
p

βpgxnp

)
zn + εng

(4)

where τα, τλ, a, b, aβ , bβ , τq are fixed hyperparameters and qn encodes prior information about zn258

if available but typically qn = 0 ∀i in the uninformative case.259

To understand this model it helps to consider the distribution of Y marginalised over the mapping

{λg, αpg, βpg} ∀ p, g with priors λg ∼ N(0, τ−1
λ ) and αpg ∼ N(0, τ−1

α ). If yg denotes the column

vectors of Y and similarly xp for X, [z]n = zn, 1N is the column vector of ones and � denotes the
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element-wise product, then

p(yg|X, z, ηg, τg, τλ, τα, χpg) ∼ N
(
ηg1N ,Σ

(g)
)

(5)

where

Σ(g) = τ−1
g 1N + τ−1

α XXT + τ−1
λ zzT +

∑
p

χ−1
pg (xp � z)(xp � z)T . (6)

We therefore see that the addition of the covariates adds extra terms to the covariance matrix260

corresponding to perturbations of the latent variables with the covariates. Consequently, the scale261

on which xp is defined needs carefully calibrated. Furthermore, it is possible to extend the latent262

variable matrix to have dimension larger than 1 giving a novel dimensionality reduction technique263

for visualisation, though additional rotation issues arise.264

Inference265

We perform co-ordinate ascent mean field variational inference (see e.g. [Blei et al., 2016]) with an

approximating distribution of the form

q
(
{zn}Nn=1, {µg}Gg=1, {τg}Gg=1, {λg}Gg=1, {αpg}

G,P
g=1,p=1{βpg}

G,P
g=1,p=1{χpg}

G,P
g=1,p=1

)
=

N∏
n=1

qz(zn)︸ ︷︷ ︸
Normal

G∏
g=1

qµ(µg)︸ ︷︷ ︸
Normal

qτ (τg)︸ ︷︷ ︸
Gamma

qλ(λg)︸ ︷︷ ︸
Normal

P∏
p=1

qα(αpg)︸ ︷︷ ︸
Normal

qβ(βpg)︸ ︷︷ ︸
Normal

qχ(χpg)︸ ︷︷ ︸
Gamma

(7)

Due to the model’s conjugacy the optimal update for each parameter θj given all other parameters

θ−j can easily be computed via

q∗j (θj) ∝ exp {E−j [log p(θj |θ−j ,X,Y)]} (8)

where the expectation is taken with respect to the variational density over θ−j .266

Identifying significant interactions267

For each gene g and covariate p we have βpg that encodes the effect of p on the evolution of g along268

the trajectory z. We would like to identify interesting or significant interactions for further analysis269

and follow up.270

The variational approximation for βpg is given by

qβpg ∼ N(mβpg , s
2
βpg

). (9)

We therefore define an interaction as significant if 0 falls outside the posterior nσ interval of
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mβpg . In other words, the interaction between p and g is significant if

mβpg
− nsβpg

> 0 (10)

or

mβpg + nsβpg < 0 (11)

Note that variational inference typically underestimates posterior variances [Blei et al., 2016] so271

such a designation of significant will be under-conservative. For all analyses we select n = 3, which272

would loosely correspond to 0 being outside the 99.7% posterior interval of βpg.273

Synthetic data study274

We performed a small simulation study to identify effects uncovered by PhenoPath that are missed by

standard differential expression analyses. Specifically, we sought to compare differentially expressed

genes identified by limma voom [Law et al., 2014], one of the leading RNA-seq differential expression

methods, to the β interactions from PhenoPath. For N = 200 samples we assigned each to one of

two categories given by the x values x = −1, 1, and assigned a pseudotime z through draws from a

standard normal distribution. For each sample i = 1, . . . , N and gene g = 1, . . . , G we then generated

a mean value through the PhenoPath mean function

µig = αgxi + (cg + βgxi)zi (12)

The gene-specific parameters (αg, cg, βg) were sampled in equal proportions from one of four275

classes:276

1. Differential expression only where αg = 1 or -1 with equal probability and cg = βg = 0277

2. Pseudotime regulation only where cg = 1 or -1 with equal probability and αg = βg = 0278

3. Pseudotime and covariate interactions where cg and βg are set to 1 or -1 with equal probability279

and αg = 0280

4. Differential expression, pseudotime and covariate interactions where all parameters take on281

values of -1 or 1 with equal probabilities282

In order to generate RNA-seq reads we need positive count values. In the spirit of general linear

models, we then used g(x) = 2x as a link function and generated a matrix of positive means

µ̃ig = 2µig (13)
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We subsequently simulated a count matrix cig by sampling for each entry from a negative bi-283

nomial distribution with mean µ̃ig and size parameter µ̃ig/3. While this could be used as input284

to PhenoPath (suitable log transformed), we sought to make our simulation as realistic as possible285

including quantification errors. We subsequently simulated FASTA files using the Bioconductor286

package polyester [Frazee et al., 2015] using the first 400 transcripts of the reference transcriptome287

of the 22nd human chromosome. FASTA files were then converted to FASTQ files using a script288

copied from StackOverflow and quantified into TPM and count estimates using Kallisto [Bray et al.,289

2016]. The log2(TPM + 1) values were then used for input to PhenoPath while the raw count values290

were used for input to limma voom.291

In our simulation study, Limma Voom “only” detects 47% of the genes simulated as differentially292

expressed. Such power to detect differential expression is dependent on effect sizes and measurement293

noise, and so such a figure is in no way unreasonable given the parameters used. While a more294

comprehensive simulation study could examine detection rates across entire distributions over effect295

sizes and measurement noise, we simply sought to perform a simulation that demonstrated that296

PhenoPath identifies a subset of differential expression and that standard differential expression297

misses some interactions across a consistent effect size and noise regime.298

Fitting pseudotimes to Shalek et al. dataset299

The Shalek et al. dataset of time-series dendritic cells was previously used in a pseudotime analysis300

where the capture times were explicitly used as priors on the latent space [Reid and Wernisch, 2016].301

However, in PhenoPath we provide no explicit temporal information, so sought to perform a brief302

comparison to two popular pseudotime algorithms, Monocle 2 [Qiu et al., 2017] and DPT [Haghverdi303

et al., 2016]. For both methods we provided the same normalised log expression (see section below)304

and ran the algorithms with the default parameters. Performance of each algorithm was assessed305

by regressing the inferred pseudotimes on the capture times using the R function lm and computing306

the R2.307

Data retrieval and processing308

Shalek et al.309

Preprocessed TPM values for all cells were retrieved from the Gene Expression Omnibus (GSE48968).310

We retained cells treated by LPS and PAM at time points 1h, 2h, 4h, and 6h, resulting in 820 cells311

(479 LPS and 341 PAM). We retained the 7533 genes whose variance in log2(TPM + 1) expression312

was greater than 2. The first principal component of the data showed a strong dependency on the313

number of features expressed - previously been implicated in technical effects [Hicks et al., 2015]314

- which we subsequently removed using the normalizeExprs function in Scater [McCarthy et al.,315
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2017].316

TCGA studies317

For both COAD and BRCA studies, TPM matrices were retrieved from a recent transcript-level318

quantification of the entire TCGA study [Tatlow and Piccolo, 2016]. Clinical metadata, including319

the phenotypic covariates used in PhenoPath, were retrieved using the RTCGA R package [Kosinski320

and Biecek, 2016]. Transcript level expression estimates were combined to gene level expression321

estimates using Scater [McCarthy et al., 2017].322

Quality control and removal of samples323

COAD. A PCA visualisation of the COAD dataset showed two distinct clusters based on the plate324

of sequencing. Rather than try to correct such a large batch effect, we retained samples with a PC1325

score of less than 0 and a PC3 score greater than -10, and removed any “normal” tumour types.326

For input to PhenoPath we used the 4801 genes whose median absolute deviation in log(TPM + 1)327

expression was greater than
√

1
2 .328

BRCA. A PCA visualisation of the BRCA daatset showed a loosely dispersed outlier population329

that separated on the first and third principal components. We performed Gaussian mixture model330

clustering using the R package mclust[Fraley et al.], and removed samples designated as cluster 2331

in the PCA plot, giving 1135 samples for analysis. For input to PhenoPath we used the 4579 genes332

whose variance in log(TPM+1) expression was greater than 1 and whose median absolute deviation333

was greater than 0.334

Identifying crossover points in BRCA335

In PhenoPath we model gene expression evolving along the trajectories separately for each phenotype336

(or covariate) considered. Unless the gradient of change along the trajectory is exactly equal for both337

phenotypes (i.e. β = 0 exactly), the gene expression will cross at a given point in the trajectory.338

Inference of this point would allow us to identify sections of the trajectory not affected by the339

covariate and consequently sections of the trajectory that are. This is important as if the crossover340

point occurs towards the beginning of the trajectory, it would mean gene expression is similar at341

the beginning but diverges as we move along the trajectory. Similarly, if the crossover points occur342

towards the end of the trajectory, it would imply the expression profiles for the two phenotypes343

are different at the beginning of the trajectory, but converge as the trajectory progresses. An344

interpretation of this would be that the effect on expression from the trajectory slowly dominates345

over the effect of phenotypes on the trajectory.346

It is important to note that the latent trajectory values loosely follow a N(0, 1) distribution.347
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This means the ‘middle’ of the trajectory is any value around zero, values of -1 or less could be348

thought of as the ‘beginning’ while values greater than 1 may be thought of as the ‘end’. Crucially,349

we can derive an analytical expression from the PhenoPath parameters for the crossover point z∗350

(see below).351

We fitted the crossover points z∗ for all significant genes in the BRCA dataset. We find that352

the vast majority of the crossover times z∗ occur towards the end of the trajectory, with a median353

value of around 0.4. In other words, at the beginning of the trajectory most genes are differentially354

expressed based on ER status, while as the trajectory progresses it comes to dominate at the gene355

expression converges.356

Inference of convergence point357

The condition for the crossover point is that the predicted expression for each phenotype is identical.

Therefore (in the context of BRCA cancer)

yER+
g (z∗g) = yER-

g (z∗g) (14)

which leads to the condition

αgxER+ + (cg + βgxER+) z∗g = αgxER- + (cg + βgxER-) z
∗
g (15)

which is in turn solved by

z∗g = −αg
βg
. (16)
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Valérie Bonadona, Bernard Bonäıti, Sylviane Olschwang, Sophie Grandjouan, Laetitia Huiart,367

Michel Longy, Rosine Guimbaud, Bruno Buecher, Yves-Jean Bignon, Olivier Caron, Chrystelle368

18

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 6, 2017. ; https://doi.org/10.1101/159913doi: bioRxiv preprint 

https://doi.org/10.1101/159913
http://creativecommons.org/licenses/by-nc/4.0/


Colas, Catherine Noguès, Sophie Lejeune-Dumoulin, Laurence Olivier-Faivre, Florence Polycarpe-369

Osaer, Tan Dat Nguyen, Françoise Desseigne, Jean-Christophe Saurin, Pascaline Berthet, Do-370

minique Leroux, Jacqueline Duffour, Sylvie Manouvrier, Thierry Frébourg, Hagay Sobol, Christine371
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Supplementary Table 1: A comparison of true positive, false positive, and false discovery rates
for Limma Voom detecting differential expression and PhenoPath detecting covariate-pseudotime
interactions on synthetic data.

Algorithm True positive rate False positive rate False discovery rate
Limma Voom 0.82 0.09 0.18
PhenoPath 0.97 0.02 0.03
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Supplementary Figure 1: Four gene expression simulation scenarios were used: (1) differential ex-
pression only where the overall expression level for groups -1 and 1 differed but there is no dependence
on pseudotime or pathway score, (2) pseudotime regulation only where the overall marginal distri-
bution of expression values is identical between groups but expression changes with latent pathway
score, (3) pseduotime and covariate interactions where the trajectory for each group differs over
pathway score and (4) a complex scenario where differential expression and covariate-pseudotime
interactions all exist.

Supplementary Figure 2: Performance of DPT and Monocle 2 on Shalek et al dataset. A Sorted
DPT pseudotimes by index identifies three outlier cells. B Comparison of DPT pseudotimes to
PhenoPath pathway score z. C Comparison of Monocle 2 pseudotimes to PhenoPath pathway score
z.
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Supplementary Figure 3: Pseudotemporally ordered gene expression trajectories for the TCGA
Breast Cancer data for 12 breast cancer-associated genes.
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Supplementary Figure 4: Pseudotemporally ordered gene expression trajectories for the TCGA
Breast Cancer data for six angiogenesis-associated genes.

Supplementary Figure 5: FBP1 expression is inversely correlated with Snail in ER- breast cancers
but shows no dependence in ER+ breast cancers.
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Supplementary Figure 6: Expression of 20 genes with the largest interaction effects along the inferred
pseudotemporal trajectory coloured by estrogen receptor status with linear fits as solid lines. The
vertical dashed line indicates the crossover point.
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