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10 Abstract

11 Pseudotime algorithms can be employed to extract latent temporal information from cross-
12 sectional data sets allowing dynamic biological processes to be studied in situations where the
13 collection of genuine time series data is challenging or prohibitive. Computational techniques
14 have arisen from areas such as single-cell ’omics and in cancer modelling where pseudotime can
15 be used to learn about cellular differentiation or tumour progression. However, methods to date
16 typically assume homogenous genetic and environmental backgrounds, which becomes particu-
17 larly limiting as datasets grow in size and complexity. As a solution to this we describe a novel
18 statistical framework that learns pseudotime trajectories in the presence of non-homogeneous
10 genetic, phenotypic, or environmental backgrounds. We demonstrate that this enables us to
20 identify interactions between such factors and the underlying genomic trajectory. By applying
21 this model to both single-cell gene expression data and population level cancer studies we show
2 that it uncovers known and novel interaction effects between genetic and enironmental factors
23 and the expression of genes in pathways. We provide an R implementation of our method
2% PhenoPath at https://github.com/kieranrcampbell/phenopath.
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» Introduction

s Dynamic or progressive biological behaviours are ideally studied within a longitudinal framework
27 that allows for monitoring of individuals over time leading to direct time course data. However,
s longitudinal studies are often challenging to conduct and cohort sizes limited by logistical and
2 resource availability. In contrast, cross-sectional surveys of a population are often relatively easier to
s conduct in large numbers and are more prevalent for molecular omics based studies. Cross-sectional
a1 studies do not directly capture the changes in disease characteristics in patients but it maybe possible
» to recapitulate aspects of temporal variation by applying “pseudotime” computational analysis.

3 The objective of pseudotime analysis is to take a collection of high-dimensional molecular data
u from a cross-sectional cohort of individuals and to map these on to a series of one-dimensional
35 quantities, that are called pseudotimes. These pseudotimes measure the relative progression of
3% each of the individuals along the biological process of interest, e.g. disease progression, cellular
s development, etc., allowing us to understand the (pseudo)temporal behaviour of measured features
33 without explicit time series data (Figure 1A). This analysis is possible when individuals in the cross-
3 sectional cohort behave asynchronously and each is at a different stage of progression. Therefore,
o by creating a relative ordering of the individuals, we can define a series of molecular states that
a constitute a trajectory for the process of interest.

» Pseudotime methods generally rely on the assumption that any two individuals with similar
»s observations should carry correspondingly similar pseudotimes and algorithms will attempt to find
a some ordering of the individuals that satisfies some overall global measure that best adheres to
s this assumption (Figure 1A). Exact implementations and specifications differ between pseudotime
s approaches particularly in the way “similarity” is defined and modelled. When applied to molecular
« data, pseudotime analysis typically captures some dominant mode of variation that corresponds to
s the continuous (de)activation of a set of biological pathways [Fan et al., 2016].

29 Pseudotime analysis has gained great popularity in the domain of single cell gene expression
so analysis (where each “individual” is now a single cell) in which it has been applied to model the
si differentiation of single-cells [Trapnell et al., 2014, Reid and Wernisch, 2016, Haghverdi et al., 2016,
52 Campbell and Yau, 2016, Setty et al., 2016]. Using advanced machine learning techniques, these
53 methods can be applied to characterise complex, nonlinear behaviours, such as cell cycle, and mod-
s« elling branching behaviours to allow, for example, the possibility of cell fate decision making. His-
ss  torically, single cell applications were pre-dated by more general applications in modelling cancer
ss  progression from gene expression profiling of tumours [Qiu et al., 2011, Magwene et al., 2003, Gupta
5w and Bar-Joseph, 2008] as well as in other progressive disease contexts such as glaucoma [Tucker and
s Garway-Heath, 2010, Tucker et al., 2017, Tucker and Li, 2015, Tucker et al., 2015]. However, to
s date, there has been little cross-over between these domains in terms of methodological development

e due to the differing contexts in which methods are applied.
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Figure 1: Pseudotemporal analysis. A High-dimensional molecular data from a cross-sectional
cohort is mapped on to a one-dimensional pseudotemporal progression scale allowing pseudotemporal
behaviour of individual features to be analysed. B If the cohort contains sub-populations we may
want each sub-population to be associated to distinct trajectories. C PhenoPath models observed
expression as a combination of standard differential expression and pseudotime/pathway effects,
including covariate-pathway interactions. D PCA representation of a simulated dataset coloured by
pseudotime shows a clear splitting of trajectories between covariate status « = (—1,1). E Simulation
results showing the absolute value of the effect size reported by limma voom and the interaction
coefficients 3 reported by PhenoPath under the four different simulation regimes and coloured by
significance at 5% FDR.
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61 For instance, a limitation of pre-existing pseudotime approaches is that they generally do not
62 provide a mechanism to account for known genetic, phenotypic and environmental information that
6 might allow us to answer questions related to the interaction between heterogeneity in these factors
e and pseudotime progression. For example, do immune cells exposed to different stimuli progress
e differently in their response? Do the transcriptional programmes of tumours differ based on mutation
6 status of a known cancer gene? Whilst pseudotime methods exist for unsupervised identification of
ez multiple or branching pseudotime trajectories, these can only be retrospectively examined for their
e association with external factors of interest and do not provide an explicit approach for identifying
e associations.

70 In this paper, we describe a novel Bayesian statistical framework for pseudotime trajectory
n modelling to address these limitations. Our framework models global pseudotemporal progression
7= but incorporates covariates that can modulate the pseudotemporal progression allowing sub-groups
7z within the cross-sectional population to each develop their own trajectory (Figure 1B). Our approach
= combines linear regression and latent variable modelling approaches and allows for interactions be-
7 tween the covariate and temporally driven components of the model. We believe our method to
% be the first integrated statistical approach for modelling pseudotime trajectories against heteroge-
77 neous genetic and environmental backgrounds allowing its utility in both single and non-single cell

s applications.

» Results

» PhenoPath: a Bayesian statistical framework for learning continuous path-

s way or pseudotemporal with covariates

& We first give an overview of our statistical method which we call “PhenoPath”. For simplicity, our
s descriptions will assume that the observed data are high-dimensional gene expression measurements
s which are used throughout our empirical experiments but we stress that the model would be appli-
s cable to a wider range of data modalities. PhenoPath uses a Bayesian statistical framework that
s combines linear regression and latent variable modelling. The observed data (y,) for the n-th indi-
e vidual is a linear function of both measured covariates (x,) and an unobserved latent variable (z,,)
s corresponding to pseudotime. We will also refer to this latter quantity more generically as a path-
s way score since, as we will explore further, pseudotime progression will be driven by the activities
o of certain biological pathways. Figure 1C shows a schematic of the model. The covariate-dependent
o component (Ax,) models differential expression whilst the pseudotime component involves both a
» pathway-only component (A). The key novelty is an interaction term (BxZ z,) that allows the the
o3 covariates to modulate the pathway or pseudotemporal trajectory. We devise a Bayesian hypothesis

u test for the model to test for these interaction effects (see Methods for details). An attractive fea-
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os ture of the framework is that, in the absence of pseudotemporal variation, the model reduces to a
o standard differential expression model. Whilst, in the absence of measured covariates, it is a factor
o7 analysis latent variable model for pseudotime.

08 In our investigations, the covariates will be discrete, binary quantities but this is not a necessary
o restriction. Sparse Bayesian prior probability distributions are used to constrain the parameters
w (A, B, A) so that covariates only drive the emergence of distinct trajectories only if there is sufficient
1w information within the data to do so. Computational inference within PhenoPath is handled by
102 a fast and highly scalable variational Bayesian inference framework that can handle thousands of
103 features and samples in minutes using a standard personal computer making it readily applicable to

e large data sets without the use of high-performance computing (see Methods for details).

ws  Simulation study

10s  We first demonstrate the utility of our model by performing a simulation study to demonstrate
w7 the value of modelling covariate-pathway interactions. We simulated RNAseq-based gene expres-
s sion data [Frazee et al., 2015] where genes were either (1) differentially expressed only, (2) exhibiting
100 pseudotime progression only, (3) driven by covariate-modulated pseudotime progression, or (4) differ-
uo entially expressed with covariate-modulated pseudotime progression (see Methods for details, Figure
w 1D, Supplementary Fig. 1). PhenoPath exhibited high specificity and sensitivity by classifying only
12 a small number of simulated genes (2%) as exhibiting interaction effects in cases 1-2 where there
us are no covariate-pseudotime interactions but identifies 78% and 63% of genes as exhibiting signif-
us icant covariate-pseudotime interactions in cases 3 and 4 respectively (Fig. 1E). For comparison, a
us  standard differential expression analysis using limma-voom identified 47% and 59% of genes as dif-
ue ferentially expressed in cases 1 and 4 respectively. In case 2 only 2% of genes are identified as DE as
7 expected but, in case 3, 22% of genes are identified as DE where limma-voom would not be expected
us  to report any differentially expressed genes. e sought to compare the performance of Limma Voom
ne and PhenoPath in detecting differential expression and pathway interaction effects respectively, and
120 show that there are pathway interaction effects not evident from differential expression analyses
1 alone. We found that PhenoPath identifies such interactions with high precision (Supplementary

122 Table 1) .

s Single-cell RN A-seq perturbation analysis

122 We next examined a time-series single-cell RNA-seq (scRNA-seq) data set of bone marrow derived
s dendritic cells responding to particular stimuli [Shalek et al., 2014]. Cells were exposed to LPS,
s a component of Gram-negative bacteria, and PAM, a synthetic mimic of bacterial lipopeptides,
127 and scRNA-seq performed at 0, 1, 2, 4 and 6 hours after stimulation. Despite the time-series

128 measurement, previous studies have suggested this dataset is more suited to a “pseudotime” analysis
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129 as the cells respond asynchronously and heterogeneity exists within the cellular populations at each
1w time point [Reid and Wernisch, 2016]. To-date pseudotime inference algorithms would typically
131 assume a common trajectory across all experimental conditions or a pseudotime analysis performed
12 separately for each stimulant. This might give a loss of statistical power and artefacts introduced by
133 confounding effects. Using our model we can encode the stimulant to which the cells were exposed as
134 a covariate and allow gene expression to evolve along pseudotime differently for either LPS or PAM
135 exposure. This allows us to learn a single trajectory for all cells regardless of stimulant applied yet
136 simultaneously infer which genes are differentially regulated in response. We applied this to the 820
17 cells exposed to LPS and PAM in the time points 1, 2, 4, and 6 hours after stimulation using the
138 7,533 genes whose variance in normalised log-expression exceeded a pre-set threshold (see Methods
1o for details).

140 We inferred a covariate-perturbed trajectory and uncovered a landscape of pseudotime-stimulant
w interactions (Fig. 2A), unveiling genes whose regulation along pseudotime is modulated by the appli-
12 cation of LPS or PAM. The trajectory inferred largely recapitulated the true time-series measurement
w  (Fig. 2B, R? = 0.64), despite no explicit temporal information being provided to the algorithm,
s though transcriptional heterogeneity at each time point is still evident. We also compared this to two
15 commonly-used pseudotime algorithms and found that the pseudotimes inferred using PhenoPath
us had the best agreement with the capture times (Supplementary Fig. 2), possibly due to the ability
w  to integrate the confounding effect of differential stimulant exposure.

148 Using PhenoPath we discovered a large number of stimulant-modulated interactions masked by
1o standard differential-expression analysis (Fig. 2C). A GO analysis revealed genes whose upregulation
150 along the common trajectory was increased by LPS exposure (as opposed to PAM) were highly
1 enriched for interferon-beta and immune response (Fig. 2D), which recapitulates previous results
152 [Shalek et al., 2014, Reid and Wernisch, 2016] that suggest a “core” module of antiviral genes
153 upregulated at later timepoints in LPS cells but in an entirely unsupervised, integrated manner.
15« We finally examined the individual genes most perturbed by LPS or PAM along the trajectory
55 (Fig. 2E), which identifies as yet uncharacterised expression patterns associated with LPS and
156 PAM. Most notably, the tumour necrosis factor Tnf had around twice the interaction effect size
157 of any other gene, and decreases under LPS stimulation but increases under PAM. Further genes
158 exhibit differential regulation according to stimulant, such as Mef2c that has constant expression
159 over pseudotime under LPS stimulation yet shows downregulation under PAM stimulation. These
wo results complement previously discovered gene differences such as that of Tnf, but in a systematic,

161 transcriptome-wide approach.
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Figure 2: Stimulant-immune reactions in single-cell RNA-sequencing data. A PhenoPath applied
to the Shalek et al. dataset uncovers genes differentially regulated along pseudotime depending
on the stimulant (LPS or PAM) applied. B The inferred pseudotimes (z) consistent with the
physical capture times. C A comparison of p-values obtained through a nonparametric statistical
test for differential expression between LPS and PAM stimulation shows no particular relation
with the interaction parameters /8 inferred with PhenoPath. D A GO enrichment analysis of the
genes upregulated along pseudotime whose upregulation was increased by LPS stimulation showed
enrichment for immune system processes. E Expression of the four genes with the largest interaction
effect sizes along over pseudotime, stratified by stimulant applied. Strikingly, Tnf is upregulated
under PAM exposure yet downregulated under LPS stimulation.
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i ldentifying microsatellite instability associated gene expression hetero-

s geneity in colorectal cancer

s We next applied our model to a non-single cell setting by examining RNA-seq gene expression data
s from the TCGA colorectal adenocarcinoma (COAD) cohort [Network et al., 2012]. We used mi-
166 crosatellite instability status (MSI) as a phenotypic covariate and wanted to identify pseudotemporal
17 expression patterns associated with MSI status. MSI is genetic hypermutability that is present in
s around 15% of colorectal tumours and is associated with differential response to chemotherapeutics
10 and marginally improved prognosis [Boland and Goel, 2010].

170 We applied PhenoPath to 4,801 highly variable genes across 284 samples to identify a pseu-
m  dotemporal trajectory through these tumours (see Methods for details). This analysis uncovered a
w2 landscape of 92 pathway-MSI interactions including known tumour suppressor genes (Fig. 3A &
w3 Supplementary Data 1). Patients further advanced along the trajectory exhibited higher expres-
e sion of T regulatory cell (Tregs) immune markers (Fig. 3B) likely due to increasing T regulatory
s cell infiltration of the tumour. This led us to hypothesise that the inferred pseudotime trajectory
e corresponds to immune response pathway activation in the tumours, further supported by a Gene
w7 Ontology (GO) enrichment analysis for genes upregulated along the trajectory (Fig. 3C). Tumour-
e infiltrating Tregs are potent immunosuppressive cells of the immune system that promote progression
w9 of cancer through their ability to limit antitumuor immunity and promote angiogenesis and often
10 associated with a poor clinical outcome [Facciabene et al., 2012]. A standard differential expression
w1 analysis using limma voom [Law et al., 2014] (Fig. 3D) demonstrates that PhenoPath is required
122 to uncover such interactions as a gene being differentially expressed does not imply a pathway-MSI
183 interaction, while such interactions do not require differential expression.

184 The most striking interaction discovered for this dataset was the MLH1 gene whose interaction
185 effect size was far larger than any other gene. This association provided a positive control since
s MLHI1 is a DNA mismatch repair gene and germline mutations of which are causal for hereditary
17 non-polyposis colorectal cancer [Bonadona et al., 2011, Gille et al., 2002]. By applying PhenoPath we
188 correctly identified that in patients, with low or absent levels of microsatellite instability, there is no
19 relationship between MLH1 expression and immune pathway interaction, with MLH1 expressed at
100 an approximately constant level (Fig. 3E). However, when MSI occurs in a tumour, MLH1 expression
11 is highly correlated with immune response, showing almost no expression when the immune pathway

12 is inactive and gradually being upregulated with immune pathway response [Michel et al., 2008].

s Tracking ER modulated angiogenesis driven progression in breast cancer

1s We next performed a pseudotemporal analysis of the TCGA breast cancer cohort using estrogen

105 receptor (ER) status as a phenotypic covariate. Approximately 60% of breast cancers are estrogen
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Figure 3: Immune-microsatellite instability interactions uncovered in colorectal adenocarcinoma.
A PhenoPath applied to colorectal adenocarcinoma (COAD) RNA-seq expression data uncovers
a landscape of interactions between the inferred immune trajectory and microsatellite instability
status (MSI). B Expression of three T regulatory cell markers demonstrates that our pseudotime
corresponds to activation of immune response pathways. C A comparison to the FDR-corrected
g-values reported by Limma Voom demonstrates genes found interacting with MSI status and the
immune pathway are found to be both DE and non-DE in standard analyses. D A GO enrichment
analysis of upregulated genes implies the latent trajectory encodes immune pathway activation in
each tumour. E The tumour suppressor genes MLH1 and TGFBR2 were identified by our method
as being significantly perturbed along the immune trajectory by MSI status. MLH1 shows no
interaction with immune pathway activation in the MSI-low regime yet is highly correlated with
immune pathway activation in the MSI-high regime.
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s receptor positive [Early Breast Cancer Trialists’ Collaborative Group (EBCTCG)], which is typically
w7 associated with improved prognosis and a longer time to recurrence [Parl et al., 1984]. We applied
105 PhenoPath to 1,135 samples post-QC and 4,579 highly variable genes (see Methods for details).
190 Using stringent significance testing threshold we found 1,932 genes (42%) affected by an interaction
20 between the pseudotemporal trajectory and ER receptor status (Fig. 4E & Supplementary Data 2).
o1 There was a correlation between the pathway interaction strength and the p-value reported through
22 standard differential expression (Fig. 4B), though there remained some genes that exhibited pathway
203 interaction and no differential expression.

204 A GO enrichment analysis indicated that the inferred pseudotemporal trajectory corresponded
25 to vascular growth pathways or angiogenesis (Fig. 4F) — a well-known and uncontroversial hallmark
25 of cancer development [Ferrara, 2002, Welti et al., 2013]. We confirmed this finding by specifically
27 examining the expression of known angiogenesis inducing genes (Supplementary Fig. 4). We found
28 increasing fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factors C and D
20 (VEGF-C/D) expression along the trajectory whose behaviours were independent of ER status.

210 We finally sought to examine the genes identified as being most affected by the interaction
a1 between angiogenesis and estrogen receptor status. Importantly, this set included the Estrogen
22 Receptor 1 (ESR1) gene as well as the forkhead transcription factors FOXA1 and FOXC1 which
a3 are known to be involved with ERa mediated action in breast cancer [Lam et al., 2013, Yu-Rice
ae et al., 2016] (Fig. 4D and Supplementary Fig. 3). Fig. 4D shows how the fructose-1,6-biphosphatase
a5 (FBPI1) and FOXC1 genes evolve along the angiogenesis pathway dependent on ER status. In the
26 ER- regime, FBP1 is upregulated along the trajectory while in the ER+ regime it is downregulated.
a7 Intriguingly, FBP1 has been identified as a marker to distinguish ER+ from ER- subtypes and its
a8 expression has been shown to be negatively correlated with SNAIL as the Snail-G9a-Dnmt1 complex,
a9 is critical for E-cadherin promoter silencing, and required for the promoter methylation of FBP1 in
20 basal-like breast cancer [Dong et al., 2013] (Supplementary Fig. 5). Similarly, FOXC1 shows no
a1 regulation in the ER- regime yet is strongly upregulated in the ER+ case.

2 We noted that these genes exhibit a convergence - they have markedly different expression at
23 the beginning of the trajectory based on ER status yet converge towards the end. We derived a
24 mathematical formula to infer such convergence points and calculated these for all genes showing
25 significant interactions (see Methods for details). Remarkably, the vast majority converge towards
26 the end of the trajectory (Fig. 4E), implying a common end-point in vascular development for
2z both ER+ and ER- cancer subtypes (Supplementary Fig. 6). This effect can be seen in the example
»g  expression plots in Figure 4D, where the vertical dashed line represents the convergence point always
29 at the end of the trajectory. This suggests that while there exists low levels of angiogenesis pathway
20 activation, ER status dominates gene expression while as angiogenesis pathway activation increases

2 it comes to dominate expression patterns over ER status. This finding might have implications for
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Figure 4: Vascular growth-ER status interactions uncovered by PhenoPath in breast cancer. A
PhenoPath applied to Breast Cancer (BRCA) RNA-seq expression data uncovers a landscape of
interactions between the inferred angiogenesis trajectory and estrogen receptor (ER) status. B A
comparison to the FDR-corrected g-values reported by Limma Voom identifies a significant number
of DE genes display an interaction with ER status and the angiogenic pathway. C A GO enrichment
analysis of upregulated genes implies the latent trajectory encodes angiogenesis pathway activation
in each tumour. D Four example genes ESR1, FBP1, and FOXC1 were identified by PhenoPath
as significantly perturbed along the angiogenesis trajectory by ER status. The vertical dashed
line signifies the calculated crossover point, demonstrating the expression profiles of these genes
converge towards the end of the trajectory. E A histogram of the crossover points of all genes whose
trajectory-covariate interactions were significant. The vast majority of crossover points are at the
end of the trajectory (around 0.5, where the “middle” pathway score is 0) implying a convergence
of gene expression as the trajectory progresses.
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22 the application of angiogenesis inhibitors in breast cancer treatment.

» 1iscussion

2 PhenoPath provides a novel contribution to the pre-existing arsenal of pseudotemporal analysis
25 algorithms developed across a range of application areas including single cell ’omics and cancer. Us-
236 ing a statistical model that allows for covariate-modulated pseudotemporal trajectories, PhenoPath
27 generalises pseudotime analysis to a wider range of applications where genetic, phenotypic or en-
28 vironmental contexts may vary between samples and be influential in the trajectories. We have
20 demonstrated its utility in an application to single cell transcriptomics involving external stimuli
20 and there is potential usage in high-throughput single cell CRISPR experiments that are as yet
2a unexplored [Adamson et al., 2016, Datlinger et al., 2017]. We also demonstrated applications to The
a2 Cancer Genome Atlas using PhenoPath to model disease trajectories in colorectal and breast can-
23 cer. The trajectories identified were consistent are consistent with pre-existing knowledge concerning
2a tumorigenesis in these disease. Importantly, PhenoPath was able to identify covariate-pathway in-
us  teractions that might be driving specific trajectory differences recovering known associations as well
xs  as novel genes. We showed that these behaviours cannot be readily determine with standard differ-
27 ential expression analyses without taking into account the latent disease progression. In summary,
28 PhenoPath provides a powerful and scalable pseudotime analysis algorithm for modelling latent pro-
xu9  gression in a variety of experimental settings. Future work will expand the ability of PhenoPath to

»0 handle complex mixtures of continuous and discrete covariates in high-dimensional settings.

» Methods

»  Statistical model

th entry in the ¢** column for

We begin with an N x G data matrix Y where y,, denotes the n
ne€l,...,Nsamplesand g € 1,...,G features. Such a matrix would correspond to the measurement
of a dynamic molecular process that we might reasonably expect to show continuous evolution such
as gene expression corresponding to a particular pathway. It is then trivial to learn a one-dimensional

linear embedding that would be our “best guess” of such progression via a factor analysis model:
Yng = AgZn + €ng, €ng ~ N(O,T;l) (1)

3 where z, is the latent measure of progression for sample n and A, is the factor loading for feature
»s g which essentially describes the evolution of g along the trajectory.

255 However, it is conceivable that the evolution of feature g along the trajectory is not identical for
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all samples but is instead affected by a set of external covariates. Note that we expect such features
to be “static” and should not correlate with the trajectory itself.
Introducing the N x P covariate matrix X with the entry in the n'” row and p!* column given

by %y, we allow such measurements to perturb the factor loading matrix

P
Ag = Ang = Ag + Zﬁpgznp

p=1

(2)

where 3,4, quantifies the effect of covariate p on the evolution of feature g. Despite Y being column-
centred we need to reintroduce gene and covariate specific intercepts to satisfy the model assump-

tions, giving a generative model of the form

P P
Yng = Mg + Z QpgTnp + (Ag + Zﬁpgxnp> Zn + €ng, €ng ~ N(0, 7'_(;_1) (3)

p=1 p=1

Our goal is inference of z, that encodes progression along with 8,4, which is informative of novel
interactions between continuous trajectories and external covariates. Consequently we place a sparse
Bayesian prior on 3,4 of the form 3,, ~ N(0, X;gl) where the posterior of x,, is informative of the

model’s belief that 3,4 is non-zero. The complete generative model is therefore given by

apg ~ N 0,7_1)

Ag ~ N(0,7571)

zZn ~ N n, T, )
0, Xpg )
~ Gammal(ag, bg)
7. ~ Gamma(a, b)
Hg ~ N(0, T,u_l)
€ng ™~ N(Ong;l)

Yng = Pg T Z QApgTnp + (Ag + Z 5pg$np> Zn t €ng

p p

where 7,, Tx, a, b, ag, bg, 74 are fixed hyperparameters and g,, encodes prior information about z,
if available but typically ¢, = 0 Vi in the uninformative case.

To understand this model it helps to consider the distribution of Y marginalised over the mapping
{Ags apg, Bpg} V p,g with priors Ay ~ N(O77')\_1) and a,y ~ N(0,7,1). If y, denotes the column

vectors of Y and similarly x, for X, [z],, = z,, 1 is the column vector of ones and ® denotes the
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element-wise product, then

(Y41 X, 2,9, Tgs T Tas Xpg) ~ N (nglN’E(g)) %)
where
2@ =My + XX 7 2+ ZX;_ql(Xp ©2)(x, 02)7. ©
P
260 We therefore see that the addition of the covariates adds extra terms to the covariance matrix

ss1  corresponding to perturbations of the latent variables with the covariates. Consequently, the scale
%2 on which x, is defined needs carefully calibrated. Furthermore, it is possible to extend the latent
%3 variable matrix to have dimension larger than 1 giving a novel dimensionality reduction technique

% for visualisation, though additional rotation issues arise.

» Inference

We perform co-ordinate ascent mean field variational inference (see e.g. [Blei et al., 2016]) with an

approximating distribution of the form

({zn}n 1,{ug}g AT} DYt (a8 e (B0} 528 e DX Yo )

L (7)
= H q=(2n) H qu 1ig) 4 Tg) q>\ H da(apg) 45(Bpg) dx (Xpg)
S~ — ——
Norrnal Normal Gamma Normal Normal Normal Gamma

Due to the model’s conjugacy the optimal update for each parameter §; given all other parameters

0_; can easily be computed via

q;(0;) o< exp{E_; [log p(6,|0—;, X, Y)[} (8)

26 where the expectation is taken with respect to the variational density over 6_;.

»w ldentifying significant interactions

28 For each gene g and covariate p we have 3,4 that encodes the effect of p on the evolution of g along
20 the trajectory z. We would like to identify interesting or significant interactions for further analysis
oo and follow up.

The variational approximation for §,4 is given by

qrgpg ~ N(mﬂpg ? S%pg). (9)

We therefore define an interaction as significant if 0 falls outside the posterior no interval of
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myg,,- In other words, the interaction between p and g is significant if

mg,, —nsg,, >0 (10)

or
mg,, +nsg,, <0 (11)
o Note that variational inference typically underestimates posterior variances [Blei et al., 2016] so

a2 such a designation of significant will be under-conservative. For all analyses we select n = 3, which

zs - would loosely correspond to 0 being outside the 99.7% posterior interval of Bp,.

- Synthetic data study

We performed a small simulation study to identify effects uncovered by PhenoPath that are missed by
standard differential expression analyses. Specifically, we sought to compare differentially expressed
genes identified by limma voom [Law et al., 2014], one of the leading RN A-seq differential expression
methods, to the § interactions from PhenoPath. For N = 200 samples we assigned each to one of
two categories given by the x values x = —1, 1, and assigned a pseudotime z through draws from a
standard normal distribution. For each sample: =1,..., N and gene g = 1, ..., G we then generated

a mean value through the PhenoPath mean function

Lig = 0gTi + (g + Byi)2; (12)
215 The gene-specific parameters (ag,cq, 34) were sampled in equal proportions from one of four
a6 classes:
277 1. Differential expression only where ay = 1 or -1 with equal probability and ¢, = 8, =0
278 2. Pseudotime regulation only where ¢, = 1 or -1 with equal probability and ay = 3, = 0
279 3. Pseudotime and covariate interactions where ¢, and 3, are set to 1 or -1 with equal probability
280 and Qg = 0
281 4. Differential expression, pseudotime and covariate interactions where all parameters take on
282 values of -1 or 1 with equal probabilities

In order to generate RNA-seq reads we need positive count values. In the spirit of general linear

models, we then used g(z) = 2% as a link function and generated a matrix of positive means

fiig = 2Mis (13)
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283 We subsequently simulated a count matrix c;; by sampling for each entry from a negative bi-
2+ nomial distribution with mean fi;, and size parameter fi;z/3. While this could be used as input
285 to PhenoPath (suitable log transformed), we sought to make our simulation as realistic as possible
26 including quantification errors. We subsequently simulated FASTA files using the Bioconductor
7 package polyester [Frazee et al., 2015] using the first 400 transcripts of the reference transcriptome
28 of the 22nd human chromosome. FASTA files were then converted to FASTQ files using a script
20 copied from StackOverflow and quantified into TPM and count estimates using Kallisto [Bray et al.,
20 2016]. The log,(TPM + 1) values were then used for input to PhenoPath while the raw count values
21 were used for input to limma voom.

202 In our simulation study, Limma Voom “only” detects 47% of the genes simulated as differentially
203 expressed. Such power to detect differential expression is dependent on effect sizes and measurement
2 moise, and so such a figure is in no way unreasonable given the parameters used. While a more
25 comprehensive simulation study could examine detection rates across entire distributions over effect
26 Sizes and measurement noise, we simply sought to perform a simulation that demonstrated that
27 PhenoPath identifies a subset of differential expression and that standard differential expression

208 misses some interactions across a consistent effect size and noise regime.

» Fitting pseudotimes to Shalek et al. dataset

o  The Shalek et al. dataset of time-series dendritic cells was previously used in a pseudotime analysis
sn  where the capture times were explicitly used as priors on the latent space [Reid and Wernisch, 2016].
2 However, in PhenoPath we provide no explicit temporal information, so sought to perform a brief
33 comparison to two popular pseudotime algorithms, Monocle 2 [Qiu et al., 2017] and DPT [Haghverdi
s et al., 2016]. For both methods we provided the same normalised log expression (see section below)
s and ran the algorithms with the default parameters. Performance of each algorithm was assessed
s by regressing the inferred pseudotimes on the capture times using the R function 1m and computing

s the R2.

ws Data retrieval and processing
w  Shalek et al.

a0 Preprocessed TPM values for all cells were retrieved from the Gene Expression Omnibus (GSE48968).
s We retained cells treated by LPS and PAM at time points 1h, 2h, 4h, and 6h, resulting in 820 cells
sz (479 LPS and 341 PAM). We retained the 7533 genes whose variance in log,(TPM + 1) expression
a3 was greater than 2. The first principal component of the data showed a strong dependency on the
su number of features expressed - previously been implicated in technical effects [Hicks et al., 2015]

as - which we subsequently removed using the normalizeExprs function in Scater [McCarthy et al.,
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ne 2017).

v TCGA studies

ss For both COAD and BRCA studies, TPM matrices were retrieved from a recent transcript-level
a0 quantification of the entire TCGA study [Tatlow and Piccolo, 2016]. Clinical metadata, including
20 the phenotypic covariates used in PhenoPath, were retrieved using the RTCGA R package [Kosinski
s and Biecek, 2016]. Transcript level expression estimates were combined to gene level expression

a2 estimates using Scater [McCarthy et al., 2017].

»  Quality control and removal of samples

22 COAD. A PCA visualisation of the COAD dataset showed two distinct clusters based on the plate
s of sequencing. Rather than try to correct such a large batch effect, we retained samples with a PC1
a6 score of less than 0 and a PC3 score greater than -10, and removed any “normal” tumour types.
sz For input to PhenoPath we used the 4801 genes whose median absolute deviation in log(TPM + 1)
s expression was greater than %

320 BRCA. A PCA visualisation of the BRCA daatset showed a loosely dispersed outlier population
s that separated on the first and third principal components. We performed Gaussian mixture model
s clustering using the R package mclust[Fraley et al.], and removed samples designated as cluster 2
s in the PCA plot, giving 1135 samples for analysis. For input to PhenoPath we used the 4579 genes

133 whose variance in log(TPM + 1) expression was greater than 1 and whose median absolute deviation

3 was greater than 0.

s Identifying crossover points in BRCA

35 In PhenoPath we model gene expression evolving along the trajectories separately for each phenotype
s (or covariate) considered. Unless the gradient of change along the trajectory is exactly equal for both
18 phenotypes (i.e. 5 =0 exactly), the gene expression will cross at a given point in the trajectory.

339 Inference of this point would allow us to identify sections of the trajectory not affected by the
uo covariate and consequently sections of the trajectory that are. This is important as if the crossover
s point occurs towards the beginning of the trajectory, it would mean gene expression is similar at
s the beginning but diverges as we move along the trajectory. Similarly, if the crossover points occur
w3 towards the end of the trajectory, it would imply the expression profiles for the two phenotypes
us are different at the beginning of the trajectory, but converge as the trajectory progresses. An
us interpretation of this would be that the effect on expression from the trajectory slowly dominates
us over the effect of phenotypes on the trajectory.

37 It is important to note that the latent trajectory values loosely follow a N(0,1) distribution.
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us This means the ‘middle’ of the trajectory is any value around zero, values of -1 or less could be
uo  thought of as the ‘beginning’ while values greater than 1 may be thought of as the ‘end’. Crucially,
0 we can derive an analytical expression from the PhenoPath parameters for the crossover point z*
s (see below).

35 We fitted the crossover points z* for all significant genes in the BRCA dataset. We find that
3 the vast majority of the crossover times z* occur towards the end of the trajectory, with a median
s value of around 0.4. In other words, at the beginning of the trajectory most genes are differentially
s expressed based on ER status, while as the trajectory progresses it comes to dominate at the gene

356 eXpression converges.

s7  Inference of convergence point

The condition for the crossover point is that the predicted expression for each phenotype is identical.

Therefore (in the context of BRCA cancer)

g (zg) = g (2) (14)
which leads to the condition
QgTER+ + (Cg + ByTER+) 25 = agTER- + (¢g + BgTER.) 24 (15)
which is in turn solved by
2 —%j. (16)
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Supplementary Table 1: A comparison of true positive, false positive, and false discovery rates
for Limma Voom detecting differential expression and PhenoPath detecting covariate-pseudotime
interactions on synthetic data.
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PhenoPath 0.97 0.02 0.03
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Supplementary Figure 1: Four gene expression simulation scenarios were used: (1) differential ex-
pression only where the overall expression level for groups -1 and 1 differed but there is no dependence
on pseudotime or pathway score, (2) pseudotime regulation only where the overall marginal distri-
bution of expression values is identical between groups but expression changes with latent pathway
score, (3) pseduotime and covariate interactions where the trajectory for each group differs over
pathway score and (4) a complex scenario where differential expression and covariate-pseudotime
interactions all exist.
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Supplementary Figure 2: Performance of DPT and Monocle 2 on Shalek et al dataset. A Sorted
DPT pseudotimes by index identifies three outlier cells. B Comparison of DPT pseudotimes to
PhenoPath pathway score z. C Comparison of Monocle 2 pseudotimes to PhenoPath pathway score
zZ.
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Supplementary Figure 3: Pseudotemporally ordered gene expression trajectories for the TCGA
Breast Cancer data for 12 breast cancer-associated genes.
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Supplementary Figure 4: Pseudotemporally ordered gene expression trajectories for the TCGA
Breast Cancer data for six angiogenesis-associated genes.
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Supplementary Figure 5: FBP1 expression is inversely correlated with Snail in ER- breast cancers
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Supplementary Figure 6: Expression of 20 genes with the largest interaction effects along the inferred
pseudotemporal trajectory coloured by estrogen receptor status with linear fits as solid lines. The
vertical dashed line indicates the crossover point.
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