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Abstract

Differentiating risk-conferring from benign missense variants, and therefore
optimal calculation of gene-variant burden, represent a major challenge in
particular for rare and genetic heterogeneous disorders. While orthologous gene
conservation is commonly employed in variant annotation, approximately 80% of
known disease-associated genes are paralogs and belong to gene families. It
has not been thoroughly investigated how gene family information can be utilized
for disease gene discovery and variant interpretation. We developed a paralog
conservation score to empirically evaluate whether paralog conserved or non-
conserved sites of in-human paralogs are important for protein function. Using
this score, we demonstrate that disease-associated missense variants are
significantly enriched at paralog conserved sites across all disease groups and
disease inheritance models tested. Next, we assessed whether gene family
information could assist in discovering novel disease-associated genes. We
subsequently developed a gene family de novo enrichment framework that
identified 43 exome-wide enriched gene families including 98 de novo variant
carrying genes in more than 10k neurodevelopmental disorder patients. 33 gene
family enriched genes represent novel candidate genes which are brain
expressed and variant constrained in neurodevelopmental disorders.
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Identifying disease-causing mutations from the vast sea of benign rare variants in
a genome continues to be an important challenge in both clinical and research
settings despite the availability of large-scale population sequence references’?.
While functional studies would be the gold standard for determining causality,
they are expensive, time consuming, and require extensive expert knowledge.
Even in the case of coding variants, appropriate assays testing the disease-
relevant impact of a variant on gene function are not readily available for the
majority of genes and variants. Because of these limitations, in silico prediction
tools have become the method of choice. These tools predict the deleteriousness
of variants by assessing sequence conservation between species, structural
constraints, amino acid physiochemical properties, and/or known annotations™>™.
Sequence conservation, in which mammalian or vertebrate genomes are aligned
to identify conserved segments among orthologs has been a component of
nearly every such method, under the sensible premise that since genes often
retain function through evolution, those genic elements that remain constant
throughout evolution are more likely essential to gene function. The high average
sequence similarity of homologs of disease-associated genes often translates
into high conservation and therefore higher pathogenicity scores for in silico
prediction tools based on vertical conservation profiles (Fig. 1 left).

Frequently overlooked, however, is the sequence conservation within species
available from paralogous genes. Paralogs are defined as genes related via
ancient duplication events®®. Paralogous sequences are often utilized in
alignments together with orthologous sequences in several variant prediction
methods. However, the contribution of human paralogous sequences in variant
annotation has not been thoroughly explored. Moreover, most of these methods
rely on trained multi-feature classifier, which do not allow biological interpretation
of results. Paralogs within gene families show often a relatively high sequence
divergence. This greater variance among paralogs in comparison to orthologs,
reflecting deeper evolutionary roots of some duplication events, suggests an
unexplored opportunity that might aid in classifying residues as more or less
functionally important (Fig. 1 right) based on their horizontal conservation profiles
within gene families. The human genome harbors 3,348 protein-coding gene
families, ranging from 2 to 46 paralog members and accounting for 72% of all
human protein-coding genes (ENSEMBL v20150512). It has been shown that
approximately 80% of disease-associated genes have paralogs in human®.
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Figure 1: Vertical (ortholog) vs. horizontal (paralog) conservation. Top: Protein sequence
alignment of voltage-gated sodium channels. Top left: Alignment of Homo sapiens
(NP_001159435.1), Bos taurus (NP_001180147.1) and Mus musculus (NP_001300926.1)
SCN1A protein sequences. High sequence similarity is depicted by violet amino acid coloring and
yellow conservation bars below the alignment using Jalview. Top right: Protein alignment in
Jalview of all members of the human voltage-gated sodium channel gene family (SCN1A, SCN2A,
SCN3A, SCN4A, SCN5A, SCN7A, SCN8BA, SCN9A, SCN10A, SCN11A). This alignment of
paralogues shows less conservation compared to the SCN1A vertical cross species alignment on
the left. Bottom left: GERP score analysis over all genes within gene families (homolog
conservation is measured by % of all nucleotides per gene with GERP scores >2). Bottom right:
Distribution % nucleotides per gene within gene families having para_zscores >0. Homolog
conservation is generally much more uniform and homogeneous than paralog conservation.

The association of diseases with gene families has been well established in the
last two decades. For example, protein kinases comprise one of the largest
families of evolutionarily related proteins and >500 distinct kinases are encoded
by ~2% of all human genes. Variants in kinase genes have been found to
underlie many human diseases, particularly developmental and metabolic
disorders, as well as certain cancers'®. Another example represents the family of
keratin genes. Variants in these genes alter the structure of keratins, which
prevent them from forming an effective network of keratin intermediate filaments.
Without this network, cells become fragile and are easily damaged, making
tissues less resistant to friction and minor trauma''. More recent large scale
sequencing studies on neurodevelopmental disorders (NDDs) have
independently identified multiple paralogous genes associated with the same or
related NDD (e.g., the family of voltage-gated sodium channel genes: SCN1A,
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SCN2A, SCN8A; the family of chromodomain-helicase-DNA-binding proteins:
CHD2, CHD4, CHD8'*"°. This raises the question whether other genes within
the same gene family are also associated with NDDs. Since in these studies
truncating variants in paralogs often show consistent associations to NDDs, we
sought to explore whether paralog information could refine our interpretation of
missense variation. Paralogs often have similar, but not identical, protein
sequences (Fig. 1 right) and amino acids conserved across all paralogs might
well be pointing to essential residues critical for protein function. As such,
variants changing paralog conserved amino acids may plausibly be more
deleterious than variants changing amino acids in paralog non-conserved sites
and therefore be more likely to confer risk to disease. Two previous studies have
highlighted the utility of systematic functional annotation of disease-causing
residues across human paralogs for genes associated with Long-QT-syndrome,
Brugada syndrome, and catecholaminergic  polymorphic  ventricular
tachycardia'®'’. Both studies showed improved variant interpretation by
comparing corresponding mutations in paralogs in different patients with the
same phenotype. To our knowledge, it has not been empirically investigated on
genome-wide scale whether disease associated missense variants reside in
paralog conserved or non-conserved sites.

Statistical power for the discovery of disease associated genes is the greatest in
genetically homogeneous patient groups. NDDs are phenotypically and
genetically heterogeneous. Several of the NDD disease-associated genes are
pleiotropic and appear in clinically distinct NDDs (sub-NDDs) indicating a shared
molecular pathology. Even in NDD cohorts with >1000 trios, the majority of
disease-associated genes have fewer than 10 de novo variants'®"°. To increase
the statistical power in genetic studies, gene set enrichment analysis is often
applied to discover pathways associated with diseases of the same or a similar
phenotype''®. To date, the utility of gene families as gene sets for large-scale
mutational burden analyses and candidate gene identification has not been
systematically conducted.

In this manuscript, we evaluate and develop the use of ‘paralog conservation’
and provide evidence that this offers powerful addition to variant annotation over
and above conventional conservation metrics and other annotations as follows:
(1) We develop a novel paralog-based conservation score (“para_zscore”, see
Online Methods and Supplementary Fig. 1) and demonstrate that paralogs
highlight a smaller, more refined set of conserved residues than conventional
ortholog conservation. (2) We further empirically demonstrate that disease-
associated missense variants across all genetic disorders are strongly enriched
at paralog-conserved sites. (3) We demonstrate that restricting analysis to
missense variants at only paralog conserved sites increases the power to
discover novel disease associated genes. (4) Leveraging these observations, we
create a novel gene-family burden test of association and identify, using a cohort
of 10,068 NDD trios, gene families with de novo variant burden including novel
candidate disease genes.
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Results

Allele frequency of paralog conserved and non-conserved sites in the
general population

We first sought to test whether paralog conserved amino acids were more likely
to confer strong disease risk when altered in comparison to sites not conserved
in paralogs. As an initial test, we correlated the allele frequency of 1.3 million
missense variants affecting genes with paralogous family members in 60,706
reference individuals from the Exome Aggregation Consortium? (ExAC) with their
paralog conservation measured by para_zscore. Testing 1,213,427 amino acids
across all human gene families, we found that allele frequency decreases with
increasing paralog conservation, indicating stronger evolutionary selection
against variation in paralog conserved sites overall (Fig. 2 top left panel).

To further compare the utility of paralog versus ortholog amino acid conservation,
we analyzed de novo missense variants identified in 10,068 NDD patients and
2,078 controls. Using the GERP score we measured the (vertical) divergence
across 35 mammalian species®. Given that only a small fraction of patient
variants is expected to be associated with disease, we did not expect a major
shift between the patient and control variant distributions. We did however
observe a more significant difference between variant scores in patients
compared to controls using the para_zscore (p<10?) than we saw for GERP
(p=.006; Fig. 2 top right panel).

Paralog conservation of missense de novo mutations in NDD patients and
controls

To investigate the degree to which de novo mutations (DNMs) in NDDs are
enriched in paralog-conserved segments, we compared the variant distribution of
DNMs in 10,068 NDD patients to 2,078 individuals without NDDs. To increase
the signal, we excluded those DNMs present in ExAC*?'. We compared the
distributions of para_zscores for synonymous and missense variants (Fig. 2
bottom left) expecting only an enrichment for missense variants due to the
fraction of variants associated with disease. We observe a significant shift
towards paralog-conserved (P= 2.5 x 10®) sites for missense DNM variants in
NDD patients but not in controls (P=0.87).
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Figure 2: Assessment of paralog conservation. Top left: EXAC allele frequency vs. gene
family (paralog) conservation (given as Z-score). The allele frequency of 1,213,427 missense
variants decreases with increasing para_zscores for the tested variants. Top right: Ortholog vs.
paralog conservation of missense variants. Ortholog conservation is measured by GERP scores,
paralog conservation by para_zscores. Para_zscores better separate patient from control variants
compared to GERP scores. Higher para_zscores are only slightly enriched in NDD patient
variants compared to controls, which is in line with the expectation that not all patient de novo
missense variants contribute to disease. Bottom left: Distribution of NDD patient and control
missense and synonymous para_zscores depicted by density plots. Patient, but not control,
missense variants are enriched at paralog conserved sites relative to the synonymous variant
distribution. P-values were calculated using a Wilcoxon test. Bottom right: Identification of
missense variant gene family enrichment in NDD patients for paralog conserved missense
variants but not for the paralog non-conserved variants. NDD associated missense variants are
enriched in paralog conserved sites. Y-axis: Missense variant enrichment analysis considering
only paralog non-conserved sites across genes of each gene family (para_zcore <0). X-axis:
Missense variant enrichment analysis considering only paralog conserved sites (para_zcore >0).
None of the gene families show exome-wide significant enrichment for paralog non-conserved
sites. 26 gene families (depicted by circles) show exome-wide significant de novo missense
variant burden at paralog conserved sites. The significance threshold was calculated by
Bonferroni correction for testing 5 x 2871 gene families (P = 3.48 x 10'6) and is depicted by the
blue dotted line.

We evaluated the contribution of paralog conserved and non-conserved
missense variants to NDDs. Considering 2,871 gene families encapsulating
9,991 genes, we observed 27 significantly enriched (p < 3.48 x 10°) gene
families in the patient cohort identified in an analysis of paralog conserved
missense variants only, but none in the parallel, comparably powered, analysis of
only non-conserved sites (Fig. 2 bottom right, Supplementary Fig. 1B).
Although many of these genes also show burden for protein truncating variants
(PTVs), the paralog enrichment is specific for missense variants since we did not
identify a shift towards paralog conserved sites for nonsense variants
(Supplementary Fig. 2). This is in line with expectations because nonsense-
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mediated-decay is the expected disease mechanism. Furthermore, missense
variant enrichment at paralog conserved sites is not detectable in genes without
DNM burden in this study (Supplementary Fig. 2).

Enrichment of missense variants at paralog conserved sites across all
diseases and associated genes.

To investigate whether the enrichment for disease variants at paralog conserved
sites is specific to our NDD cohort or can be generally observed across other
disease categories, we extracted all missense variants from the ClinVar
database (accessed June 2016) and classified the disorders into ICD chapters
and sub-groups. We compared the paralog conservation for all gene families
harboring disease variants against the missense variants in the same genes from
ExXAC. Overall, we detect a strong enrichment for disease variants at paralog-
conserved sites compared to EXAC missense variants (P = 2.2 x 102 shift in
para_zscore = 0.92, CI=0.87-0.98; Fig. 3). Our analyses indicate that disease-
associated variants more often affect amino acids that are conserved across all
members of the gene family. The shift towards paralog conserved sites for
patient variants in comparison holds true for almost all disease groups tested.

ClinVar vs. EXAC variants
by Parascore

L4. Congenital malformations and deformations of the musculoskeletal system - 1.7x1071"%,
L2. Congenital malformations of the nervous system - 0.001,
L1. Chromosomal abnormalities, not elsewhere classified - 0.019,
K2. Certain disorders involving the immune mechanism - 9.5x107"
J4. Diseases of arteries, arterioles and capillaries - 5.5x10%,
J3. Metabolic disorders - 0.00067 »
J1. Cerebrovascular diseases - -0-566
G3. Glaucoma - -~ 0.0134
G2. Disorders of choroid and retina - 0.0052,
G1. Disorders of ocular muscles, binocular movement, accommodation and refraction - 0.0224
E8. Episodic and paroxysmal disorders - 22x107%,
E7. Extrapyramidal and movement disorders - 0.00064 4
E6. Systemic atrophies primarily affecting the central nervous system - 1.9x107%
E5. Diseases of myoneural junction and muscle - 1.6x107 ¢
E2. Demyelinating diseases of the central nervous system - 0.19¢
DO. Bullous disorders - 0.00244
C3. Metabolic disorders - 1.1x107%,
C1. Disorders of thyroid gland - 0.14
A3. X-linked - 1.8x107°,
A2. Dominant - 1.6x1072%
A1l. Recessive - 52x107%,
AO. ClinVar vs. EXAC - 22x10%7,

0.0 05 10 15 2.0
Difference in gene family
conservation distribution

of missense variants

Figure 3: ClinVar disease vs. EXAC missense variant para_zscore distribution. We scored
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ClinVar variants and variants in a reference population (ExAC) for the same genes in a range of
disorders and grouped these into ICD10 code defined disorder classes (see Online Methods).
The distribution of ClinVar variants is shifted towards paralog conserved sites compared to
missense variants in EXAC as depicted by estimated differences in location plotted in the x-axis
for the vast majority of disorders tested. The shift to paralog conserved sites is depicted by
estimates greater zero. P-values were calculated using a Wilcoxon test.

Gene family enrichment in NDDs and sub-phenotypes

After establishing that disease-associated missense variants are enriched at
paralog conserved sites (Fig. 2 bottom right, Fig. 3), we assessed the degree to
which gene family information could assist in discovering novel disease-
associated genes. We analyzed again our heterogeneous cohort of 10,068 NDD
patients with autism spectrum disorder (ASD; N=3982), developmental delay
(DD; N=5226) and epilepsy (EPI; N=822). We extended the approach of
Samocha et al., 2014?2, to gene families to identified gene families with
significant enrichment of mutations in NDD patients. We included protein
truncating variants (PTVs) across the whole sequence as well as missense
variants at paralog conserved protein sites absent from ExXAC in the analysis.

Gene families DNMs DNMs b 52640D | 5oz | 822EPI | 2087
expected || observed patients patients patients controls
ARID1B (40), ARID1A (5) 0.96 45 4.28E-58 39 6 0 0
SCN2A (38), SCN1A (18), SCN8A (11), SCN3A (4),
SCN11A (2), SCNA (1), SCN5A, SCN7A, SCN4A, || 6.16 74 1.77E-52 36 16 22 0
SCN10A
DDX3X (35), DDX3Y 0.49 35 8.94E-52 34 1 0 0
DYRK1A (26), DYRK1B (1) 0.37 27 1.89E-40 21 5 1 0
EP300 (20), CREBBP (16) 1.39 36 8.81E-38 30 5 1 1
KCNQ2 (23), KCNQ3 (7), KCNQ5 (3) 114 33 3.09E-36 27 2 4 0
SYNGAP1 (24), DAB2IP, RASAL2 1.33 24 4.35E-22 17 6 1 0
STXBP1 (20), STXBP3 (1), STXBP2 0.88 21 5.93E-22 14 2 5 0
GRIN2B (16), GRIN2A (6), GRIN2C (1), GRIN2D 1.89 23 1.46E-17 17 3 3 0
CTNNB1 (16), JUP (1) 0.79 17 2.27E-17 15 2 0 0
CHD2 (16), CHD1 (3) 1.5 19 4.00E-17 10 8 1 0
PURA (13), PURB 0.41 13 1.13E-15 12 0 1 0
CHD3 (10), CHD4 (6), CHD5 (5) 1.94 21 3.45E-15 19 2 0 0
TCF4 (11), TCF12 (3), TCF3 (2) 0.93 16 5.76E-15 14 2 0 1
CDK13 (14), CDK12 0.66 14 171E-14 13 1 0 0
PPPZRE’DFS;%;gg’zslfgz%lzpppzRSB' 1.25 17 3.62E-14 16 1 0 1
WDR45 (11), WDR45B 0.32 11 7.60E-14 9 0 2 0
MEF2C (11), MEF2D (2), MEF2A 0.58 13 7.77E-14 9 2 2 0
EHMT1 (13), EHMT2 0.66 13 3.93E-13 13 0 0 0
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FOXP1 (10), FOXP2 (4), FOXP4 0.86 14 6.02E-13 12 2 0 0
FOXG1 (11), FOXQ1, FOXN3, FOXN2 0.39 1 6.36E-13 7 1 3 0
CHD8 (12), CHD7 (7), CHD9 (1) 2.30 20 7.73E-13 1 9 0 0
CSNK2A1 (12), CSNK2A3, CSNK2A2 0.63 12 5.00E-12 10 1 1 0
CACNA1E (10), CACNA1A (9), CACNA1B (1) 2.72 20 1.53E-11 13 1 6 0
HDACS (9), HDAC3 (2), HDAC1 (1), HDAC2 0.83 12 1.06E-10 1 0 1 0
GNAO1 (7), GNAH (7), GNAZ (1), GNA11 (1),
GNA14, GNAI3, GNAT2, GNAT3, GNAT1, GNAI2, 1.82 16 1.31E-10 13 2 1 0
GNA15, GNAQ
CASK (8), DLG4 (6), DLG2 (1), DLG1, DLG3 1.58 15 1.67E-10 12 1 2 0
GATAD2B (10), GATAD2A 0.65 10 2.10E-09 10 0 0 0
MED13L (12), MED13 (2) 1.68 14 3.47E-09 10 4 0 0
TBL1XR1 (9), TBL1Y, TBL1X 0.52 9 5.01E-09 7 2 0 0
PHIP (10), BRWD3 (2) 1.46 13 5.64E-09 10 2 1 0
CTCF (9), CTCFL 0.56 9 9.00E-09 7 2 0 0
RAB11A (3), RAB2A (2), RAB11B (2), RAB14 (2),
RAB19 (1), RAB43 (1), RAB39A, RAB25, RAB4B, 1.01 1 1.14E-08 9 2 0 0
RAB39B, RAB4A, RAB30, RAB2B
GABRB3 (8), GABRB2 (3), GLRA2 (1), GABRB1
S | oi | s fawess| 7 | s [ 4 |
GLRA3
TCF20 (9), RAI (3) 1.40 12 3.33E-08 1 1 0 1
NFIX (6), NFIA (2), NFIB (2), NFIC, 0.90 10 4.31E-08 8 2 0 1
USP9X (10), USP24 (1), USP9Y 1.18 1 5.29E-08 9 2 0 0
SATB2 (9), SATB1 0.75 9 1.04E-07 9 0 0 0
HECW2 (9), HECW1 (1) 1.04 10 1.61E-07 8 1 1 0
SOX11 (4), soxg é?;()a ’355()38{1 5); osxo7x1o (1), SOX17, 0.82 9 9 21E-07 9 0 0 0
ZBTB18 (6), ZBTB3 0.28 6 5.43E-07 6 0 0 0
TCF7L2 (6), TCF7L1 (1) 0.53 7 1.48E-06 4 3 0 0
TBR1 (6), EOMES 0.35 6 2.01E-06 1 5 0 0

Table 1: 43 significantly enriched gene families in the combined de novo paralog
conserved missense and PTV analysis for 10,068 NDD trios. Only enriched gene families
significant after applying the Bonferroni significance threshold for testing 5 x 2,871 gene families
(3.48 x 10'6) are included. Bold-highlighted genes are affected by DNM and the number of DNM
is indicated inside the soft-brackets. Genes in red have not previously been reported as
significantly enriched in exome-wide ASD, DD or EPI studies. The full list gene families with
variants can be found in Supplementary Table 1.

We identified 43 gene families (1.49% of all gene families) enriched for de novo
paralog-conserved missense and PTVs (Bonferroni correction significance
threshold for testing 5 x 2871 gene families = 3.48 x 10°°; Table 1). In all 43 gene
families, the most frequently mutated gene and often additional genes harboring
de novo variants are brain-expressed (Supplementary Fig. 3). Within the
enriched gene families, 94 gene family members (paralogs) carried at least one
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DNM vs. 59 gene family members without DNMs. In total, 7.47% of all NDD
patients carried a de novo paralog conserved missense or PTV in the 43
enriched gene families. In the NDD patients, we found 753 DNMs in 43 gene
families while only 49.92 DNMs were expected (P << 1.0 x 107%°). The paralog
conserved missense variant enrichment signal of these genes was 7.8-fold
(observed DNMs: 261, expected DNMs: 33.01). There was no signal if we
examine paralog non-conserved missense variants in this group of genes
(observed DNMs: 41, expected DNMs: 31.03, Supplementary Table 2). No
enrichment was observed in the 2,078 individuals without a NDD (observed
DNMs: 5, expected DNMs: 10.34, P = 1.0). The majority of the frequently
mutated genes have previously been established as disease-associated genes
by demonstrating an exome-wide significant DNM burden in disease-specific
single gene enrichment studies'>'># (Table 1, highlighted in black and bold).
When removing all the established disease genes (Table 1, bold and black,
N=42) from the analysis, we still observe a 4.72-fold enrichment (observed: 162
DNMs in the 43 enriched genes families, expected 34.27, P = 6.10 x 10™°°). This
enrichment increases to 5.28-fold when we removed all non-brain-expressed
genes from the 43 enriched genes families (28.71 DNM expected vs. 149 DM
observed, P = 3.72 x 10°7).

Several of these genes, previously not associated with any disease, represent
likely NDD-associated genes. First, in one out of the 43 enriched gene families,
we observe that the novel gene harbors more DNM variants than the established
disease-associated gene of the same gene family (CHD3 vs. CHD4; Table 1).
Second, four families show genome-wide gene family enrichment without prior
evidence for any gene on the genome-wide level, even though some individual
genes are known disease genes, such as CACNA7A (Supplementary Table 3).
These gene families include the (CACNA1[E/A/B] -  family,
RAB[2(A/B)/4(A/B)/11(A/B)/14/19/25/30/39(A/B)/43] - family, the HECW[1/2] -
family, the SOX[1/4/7/8/9/10/11], TCF7L[1/2] — family and the TBR1/EOMES -
family). To find further evidence of disease association for less frequently
mutated gene family members, we systematically investigated the evolutionary
variant intolerance® (’constraint’) and brain expression levels for all mutated
paralog genes within the enriched gene families (Supplementary Fig. 3). We
observed that 33 paralog genes of the enriched gene families with DNMs are
under evolutionary constraint and brain expressed (Supplementary Table 3),
showing the same signature as the known disease genes in the same families
(Supplementary Fig. 3). Although none of these genes have previously been
reported to be significant on an exome-wide level, 57.57% (19/33) of the novel
disease-associated genes have been previously reported in the literature as
carrying a rare single nucleotide or copy number variant affecting the gene
(Supplementary Table 3). For 63.63% (21/33) of the genes, available mice
models show neurological and/or behavioral phenotypes supporting the disease
association (Supplementary Table 3). Given these multiple lines of evidence, in
addition to the sequence and expression pattern similarity to the known disease
genes in the same families, we consider this list of 33 genes as highly promising


https://doi.org/10.1101/159780
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/159780; this version posted July 5, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

candidate disease genes (Supplementary Table 3).
Sub-disorder specificity of DNM enriched gene families

While the initial analysis considered all NDDs as a single group, we next
explored whether the NDD sub-phenotypes (ASD, DD and EPI) contributed
equally to the enrichment of the 43 gene families (Table 1) or if a specific sub-
NDD contributes more to the enrichment and subsequently carries larger
mutational burden than the other NDDs. Compared to single gene enrichment
studies, DNM enriched gene families harbor larger numbers of variants due to
the sum of mutations in several mutated paralogous genes, which increases
testing power for investigating disease specificity. The increased number of
variants per family permits frequency comparisons of likely functional related
proteins across NDDs. We tested the 43 PTV and paralog-conserved missense
enriched gene families (Table 1) to evaluate gene family specific sub-NDD
burden. To avoid introducing a bias, we included all mutated genes of each gene
family in the analysis, regardless of the PTV or missense intolerance and gene
tissue expression analysis in Supplementary Fig. 3.

Overall, 31.91% of all de novo variants in patients with DD affected one gene in
the 43 gene families, compared to 13.53% in the ASD cohort and 26.03% in the
EPI cohort. Only two out of the 43 enriched gene families (Table 1) showed
significant sub-disorder enrichment (either ASD, DD or EPI) after multiple testing
correction. The DDX3[X/Y]-family is 20.55-fold enriched in DD patients in
comparison with mutation frequencies in ASD and EPI patients combined
(P=3.17 X 10). The voltage-gated sodium channels
(SCN[1/2/3/415/7/8/9/10/11]A), have significantly higher mutational burden in the
EPI cohort compared to variant frequencies in the ASD and DD cohorts
combined (OR=4.96, P=6.06 x 10®)) while representing the most frequent gene
family with de novo mutations in all sub-NDDs (EPI=2.67%, DD=0.68%,
ASD=0.40% carrier rate). Post-hoc phenotype analysis of the ASD cohort
revealed that ASD patients with voltage-gated sodium channel mutations have a
5.08-fold higher frequency of seizures and 8.5-fold higher rate of low 1Q
compared to ASD patients without mutations in this gene family.
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Variant interpretation and correlation of para_zscore with an experimentally
derived mutation intolerance score

The vast majority of current variant prediction methods are nucleotide based and
do not allow visualization of scores across the protein sequence. Paralog
conservation can identify stretches of conserved amino acids which can overlap
functional domains; however not all annotated domains are paralog conserved
and harbor disease variants (Fig. 4). The para_zscore is able to identify paralog
conserved and non-conserved amino acid residues within known functional
domains (Fig. 4) and thus is an illustrative tool to visualize the predicted mutation
tolerance of a protein sequence across the amino acid sequence. As an example,
we wanted to visualize para_zscore amino acid conservation alongside
functionally derived data. Variants in PPARG cause Mendelian lipodystrophy and
increase risk of type 2 diabetes (T2D). Recently, a complete prospective
functional assessment of all possible 9,595 amino acid exchanges in PPARG
was conducted®®. The authors developed a pooled functional assay in human
macrophages, experimentally evaluated all protein variants, and used the
experimental data to train a variant classifier by supervised machine learning
(“mut_tol”, Fig. 5). Comparing the experimental derived data with the PPARG
para_zscores, we observed high correlation (*=0.71, P =4.08 x 107", Pearson's
product-moment correlation), supporting the usefulness of the para_zscore as a
biological interpretable pathogenicity metric. In comparison, averaged mutation
tolerance scores (see Online Methods) for Polyphen®, CADD* SIFT® and
GERP? show less correlation (r*= 0.28-0.56) with mut_tol (Fig. 5).

KCNQ2 protein sequence: STXBP1 protein sequence:
De novo variant affected amino acids in blue De novo variant affected amino acids in blue
YT BT (T T

25

Gene family conservation
Gene family conservation

GRIN2B protein sequence: CACNA1A protein sequence:
De novo variant affected amino acids in blue De novo variant affected amino acids in blue
[ avcopor BRG] i =

e ®® ©

Gene family conservation
IS o

Gene family conservation

Figure 4: Visualization of para_zscores of proteins encoded by KCNQ2, STXBP1,
CACNA1A, and GRIN2B. Protein sequence is plotted from left to right. Each bar and dot
represents one amino acid. Amino acids affected by a missense mutation in the NDD cohort are
colored blue, patient PTVs are depicted in pink, and synonymous variants in orange. Amino acid
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residues with no mutations are colored grey. Y-axis: Positive values indicate paralog conservation
and the highest score indicates that these amino acids are identical over all gene family members.
The red dotted lines indicate the mean paralog conservation of each protein sequence and bars
below the mean indicate regions of low paralog conservation, thus higher sequence variability
over all members of the gene family.

muttol e UM A

para_zscore 1 I Wb i A, =71 080
amt.Ponphen2MWWWWWWWW r?=.56, p=2.32x1042
amt.GADD. raw I WM, o IV Aty AT AR o o5 g 010
amt.SIFT WWWWWWWMW’VWW r2=46, p= 4.08x1027
amt.GERP WWWMMWMWWWW 2226, p= 1.08X10°0

Figure 5: Comparison of experimentally derived mutation tolerance scores and
para_zscores for PPARG. Raw PPARG function scores for each of the 9,595 amino acid
exchanges plotted according to the amino acid position along the PPARG sequence. Functional
scores summed by amino acid position are plotted to the right, showing the level of tolerance for
any amino acid substitution differing from the human reference genome (derived from Majithia et
al., 201624). PPARG functionally generated mut_tol scores (blue), para_zscores and averaged
mutation tolerance scores (amt) for PolyPhen2, CADD, and SIFT. All scores were correlated with
the experimentally derived mut_tol score and 7 and p-values are shown next to the score
distribution.
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Discussion

Sequence conservation across gene families has been extensively discussed in
the literature. On the one hand, orthologous domain pairs tend to be significantly
more structurally similar than paralogous pairs at the same level of sequence
identity?®. On the other hand, it has been shown that paralogs are functionally not
necessarily redundant and the average fitness cost of loss of a paralogous gene
is at least equal deleting single non-paralogous genes in yeast®. In addition,
protein complexes have been documented to use paralog switching as a
mechanism for the regulation of complex stoichiometry?”. For example, many
receptors in the human brain consist of multiple protein subunits, many of which
have multiple paralogs and are differentially expressed across brain regions and
developmental stages. The brain can tune the electrophysiological properties of
synapses to regulate plasticity and information processing by switching from one
protein variant to another. Such condition-dependent variant switch during
development has been demonstrated in several neurotransmitter systems
including NMDA and GABA?®. Naturally, the question arises whether paralog
conserved or non-conserved sites of the protein sequence are essential for
function. Across multiple analyses in this study, we empirically demonstrate that
disease-associated missense variants are enriched at paralog conserved sites
and that this information can offer substantial value in mutation annotation on top
of widely-used annotation methods.

We developed a gene family DNM enrichment framework and computed a novel
amino acid paralog conservation score, the “para_zscore”, applicable to 42% of
all genes in the human genome. Application of the genome-wide paralog
conservation score demonstrates that NDD and pathogenic variants in ClinVar
affect paralog conserved, but not non-conserved, sites when compared to
mutations in controls and missense variants in ExAC?, the vast majority of which
are presumed benign. It has recently been proposed that conserved residues
within gene family members (paralogs) are under evolutionary constraint and that
in silico annotations of known disease associated residues across families of
related proteins can guide variant interpretation’’. Our results support the idea
that paralogs share a similar “core” molecular function of the ancestral gene,
since variants in these sites are enriched for patient missense variants indicating
hereby a reduction in evolutionary fitness. Evolutionary younger paralogs show
higher functional redundancy®. To control the functional diversity within gene
families and to increase within family sequence similarity, we built sub-groups for
each 3%ene family using pairwise alignment length cut-offs of >80% aligned amino
acids™.

NDDs represent a genetic and phenotypic heterogeneous group of diseases for
which pathogenic variants in individual disease genes are rare. Using a gene
family version of a recently established DNM enrichment framework? for 10,068
NDD patients, we identified 43 PTV and paralog conserved missense DNM
enriched gene families. Besides highlighting four gene families with genome-wide
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gene family enrichment without carrying any previously exome-wide established
disease gene (CACNA1[E/A/B] - family,
RAB[2(A/B)/4(A/B)/11(A/B)/14/19/25/30/39(A/B)/43] - family, HECW[1/2] - family,
SOX[1/4/7/8/9/10/11], TCF7L[1/2] - family, TBR1/EOMES - family), we
additionally report 33 with first time statistical support as disease genes.
Pathogenic variants in all of these genes are too rare to reach individual exome-
wide significant enrichment. However, the individual genes belong to a gene
family with an exome-wide significant enrichment, are brain expressed, and are
under evolutionary constraint in the general population®. Notably, three of the 43
enriched genes belong to chromatin helicase DNA-binding proteins gene families.
Besides the established genes, we observe also five novel candidate disease
genes in this group (CHD1, CHD3, CHDS5, CHD7, CHD9) with DNM in 20
patients in this study. All five genes represent valid candidates for association of
NDDs based on our detailed analysis (for details see Supplementary Table 3).
Chromatin remodeling is one of the mechanisms by which gene expression is
regulated developmentally?”, perhaps explaining the susceptibility to NDDs when
mutated.

Given the larger number of DNMs in gene families compared to single genes, we
investigated if any of the 43 enriched gene families are specifically enriched in
patients within the EPI, ASD, or DD sub-cohorts. The vast majority of gene
families did not show significant sub-NDD specificity. This phenomenon can be
explained in several ways. Most importantly, there are overlapping phenotypes in
the different studies. Patients within the developmental delay cohort include
patients with ASD'®. For NDD phenotype definitions overlap significantly,
allowing for including of patients with combined phenotypes into either of the DD,
ASD, or EPI cohort. However, we showed that paralog conserved missense and
PTVs affecting the voltage-gated sodium alpha channel family are clearly
enriched in patient within the EPI cohort, but the same class of variants can also
be found at lower frequency in DD, and rarely in ASD. Analysis of the ASD
patients with variants in voltage-gated sodium alpha channels indicated that the
majority of the ASD patients with such variants had seizures. However, we were
not able to investigate the DD patients for the seizure phenotype due to the lack
of available phenotypic data. A higher degree of specificity of pathogenic variants
in voltage-gated sodium channels in patients with epilepsy is supported
biologically by the function of the channels. Lack of the sodium channel on
inhibitory neurons leads to decreased inhibition and net excitation. This
molecular pathology resembles the long-standing idea that epilepsy is a disorder
based on imbalances between synaptic excitation and inhibition?.

The para_zscore has single value for each position; it is therefore possible to plot
the score along the entire protein sequence (see Fig. 4). We propose that
plotting the para_zscore is a useful tool as it visualizes likely essential protein
regions of high paralog conservation, and thus intuitively supports decision
making for variant prioritization (e.g., functional testing or drug target
development). The scores are available at https://git-
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r3lab.uni.lu/genomeanalysis/paralogs. Supporting this utility, we demonstrated
that the para_zscore exhibits high correlation (r?=0.71) with experimentally
derived mutation tolerance scores across the entire PPARG protein sequence.
Other generated averaged mutation tolerance scores for commonly used
classifiers showed less correlation. Notably, the other prediction tools are not
made for protein conservation scoring. We suggest that our protein wide paralog
conservation score could potentially also be used in targeted drug development
to improve the efficacy of therapy. Paralogs share similar protein sequences or
structural features, e.g. similar binding pockets, e.g. a given compound may
show an increased affinity to bind its paralogs, possibly resulting in unexpected
cross-reactivity and undesired side effects. Using the paralog conservation score
in drug target design could therefore rule out or reduce such cross-reactivity
effects.

Although our results demonstrate the utility of paralog conservation, the ideal
composition of the gene family and choice of protein isoform may differ
depending on the individual research question. In addition, while conservation
across orthologs or paralogs can be indicative of the necessary function of a
given domain, absence of conservation does not a priori exclude functionally
important domains within a protein. This consideration may be particularly
relevant for diseases with a later onset that are less under evolutionary selection.

Overall, we provide extensive empirical evidence using multiple data sets (the
entire ClinVar resource and published de novo variants from more than 10k NDD
cases) that disease associated missense variants are enriched at paralog
conserved sites. We demonstrate that integration of paralog conservation can be
leveraged as powerful method for variant interpretation and discovery of new
disease-associated genes. We provide a genome-wide "para_zscore" annotation
file and pre-computed para_zscores for all human paralogs as individual files.
This resource should enable data and molecular scientists to score and visualize
variants/genes/proteins of interest and to integrate paralog conservation with
existing variant annotation tools.
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Online Methods

Patient and genetic data.

We analyzed 10,068 neurodevelopmental disorder (NDD) trios (probands and
their unaffected parents) including 3,982 autism (ASD), 5,226 developmental
delay (DD) and 822 severe epilepsy (EPI) patients. The ASD cohort was derived
from published studies'3. The DD cohort combined published de novo variants
from previous DD and ID studies due to overlap in cohort
ascertainment'1>%3343%  The EP| cohort included published trio data sets
(356/822 trios; 43%)'?>*® as well as 466 (56% of the 822 trios) unpublished
exome-wide de novo data. New exome sequencing trio data were collected in
multiple centers, companies and consortia, including the University Clinic of Kiel,
Germany, the University Clinic of Tubingen, Germany, the Boston Children’s
Hospital, USA, the University of Antwerp, the RES consortia, the ESES consortia
and the DESIRE Consortia, Ambry Genetics and CeGat.

As control data in several analyses in the study, we used 2,078 trios sequenced
with the same technology as the ASD patient cohort. These controls are
unaffected siblings of the ASD patients'>°.

To ensure uniformity in variant representation and annotation across published
datasets and with respect to the EXAC reference database®, we created a
standardized variant representation using a Python implementation of vt*” and re-
annotated all variants from the different datasets with ANNOVAR® using the
RefSeq and Ensembl gene annotations (2016Feb01), ClinVar®® (v20160302) and
the dbNSFP v3.0*° databases for various functional prediction tools and
conservation scores such as GERP?, CADD*, Polyphen2*!, and SIFT®.

Construction of the paralog conservation score.

We restricted the analysis to within human paralogs to identify gene family
burden and amino acids in proteins which are essential for function in humans. It
has previously been shown that the human genome harbors essential genes for
normal development which are not present in great apes. Such an example
represents SRGAP2, which is essential for neocortex expansion*’. Ensembl
defines gene families based on maximum likelihood phylogenetic gene trees*
based on the longest translation annotated in CCDS** for each gene. Paralogs
are then defined as genes of the same species related by a duplication event (as
an inner tree node). First, we downloaded the human paralog definitions using
the Ensembl BioMart system® representing each gene with an Ensembl gene
identifier. The paralogs could be grouped into 3,584 gene families. Ensembl IDs
were then converted to HGNC gene names (http://www.genenames.org). Non-
coding genes and genes without a HGNC symbol were excluded and only gene
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families with at least two HGNC genes were used for further analysis. CCDS
data were downloaded the same day as HGNC and Ensembl data (v20150512).

In total, 3,348 gene families were defined with 13,570 HGNC genes. 1,815
families contained three or more paralogs. Next, we extracted the longest
transcript from CCDS for each HGNC gene and constructed for each gene family
a FASTA formatted file for multiple sequence alignment with MUSCLE*® including
all paralog protein sequences. Evolutionary younger paralogs show higher
functional redundancy?®. To avoid alignments of strongly diverging sequences
and to increase overall similarity, we built sub-groups for each gene family using
pairwise alignment length cut-offs of >80% aligned amino acids®. The clusters
(sub-groups) were defined by connected components within an alignment
similarity graph in which two genes with >80% aligned residues were connected
through an edge. Clusters were then defined as connected components within
the graph. Only clusters with at least two proteins were further processed. In total,
we generated 2,871 (sub) gene families comprising 8,233 genes. Each subgroup
was re-aligned using MUSCLE. The MUSCLE output was then processed as
input for Jalview*’ to generate and extract conservation scores for each
alignment position. The conservation score calculation in Jalview is based on the
AMAS method of multiple sequence alignment analysis*®. Conservation is
measured here as a numerical index reflecting the conservation of physico-
chemical properties in the alignment. Identities score highest, and the next most
conserved group contains substitutions to amino acids lying in the same physico-
chemical class. For each HGNC CCDS gene, the conservation scores at each
position were extracted from the Jalview. Finally, to identify amino acids of high
and low paralog conservation and make scores comparable between genes, the
mean and the standard deviation conservation score over all amino acids per
gene were calculated to compute a paralog conservation z-score (“para_zscore”)
per amino acid position by subtracting the mean from the original score dividing
the difference by the standard deviation. (Supplementary Fig. 4).

Gene family enrichment analysis.

To identify gene families with significant mutational burden, we adopted a de
novo expectation model®? to assess mutation rates for nonsense, frameshift, or
canonical splice disruptions (collectively termed protein truncating variants
‘PTVs’) and missense variants for gene families (missense+PTV). We derived
gene-based rates of de novo mutation from local sequence context and summed
the expectations and the observed counts for all members within each gene
family?. The expected and observed numbers of de novo mutations in each
variant class for NDD combined were compared using a Poisson distribution.
Notably, the discovery of de novo burden in a gene family is more challenging
compared to the single gene analysis because of larger amount of expected
mutations due combining the expectations from all gene family members
(including those which are not expressed in the tissue of interest, e.g., brain). We
used a Bonferroni corrected significance threshold for the 2,871 gene families
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tested (<0.05). Furthermore, to exclude “passenger” variants and enrich for true
disease variants we excluded de novo variants also seen in adult individuals
without early onset NDDs in EXAC? (n=60,706 exomes) prior to the enrichment
analysis. Variants absent from this reference panel, which is a proxy for standing
variation in the human population, are more likely to be deleterious. This
conservative filter reduces the power for gene association discovery changes,
but increases the plausibility for association for the identified variant with severe
sporadic disorders.

Sub-NDD enrichment analysis.

Sub-NDD enrichment was calculated for the significantly enriched gene families
in the paralog conserved missense and PTV combined analysis. We used
Fisher’s exact test to compare the sub-NDD of interest (e.g., EPI) with the other
sub-NDDs (e.g., ASD+DD).

Paralog conserved site vs. paralog non-conserved sites missense
enrichment analysis.

Similar to the missense+PTV enrichment analysis, we adopted the de novo
expectation model?? to assess mutation rates for missense variants only. In the
missense enrichment analysis, we consider only missense variants and
missense expectations for each gene family. We classified every amino acid
position within each gene into ‘conserved sites’ with paralog conservation
(para_zscore > 0, amino acids with higher paralog conservation than gene-
specific mean) and ‘non-conserved sites’ without paralog conservation
(para_zscore < 0) and summed the observations for both groups independently
across the family. The expected missense mutation rates were adjusted for the
size of the paralog conserved sites and non-conserved sites, respectively. The
observed variant counts were assigned to either of these two groups depending
on the paralog conservation state of the mutated amino acid residue for all
members within each gene family (Supplementary Figure 1). The expected and
observed numbers of de novo mutations in each variant class for NDD combined
was compared using a Poisson distribution. To exclude “passenger” variants and
enrich for disease variants, we excluded de novo variants present as standing
variation in the 60,706 individuals in EXAC? prior to the enrichment analysis.

Identification of brain expressed genes and evolutionary constraint.

We extracted brain expression data from the Genotype-Tissue Expression
consortia*® (GTEx) data and considered genes with >1 read per kilobase of
transcript per million mapped reads (RPKM) in brain tissues as “ brain-
expressed”. Gene loss-of-function intolerance (pLl) scores and gene missense
intolerance scores were derived from ExXAC? We considered genes with
missense Z scores > 3.09 or pLI scores = 0.9 as intolerant of variants. Genes
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were classified as plausible novel disease genes for NDD if they were present in
an exome-wide enriched gene family, brain expressed, and under constraint
(either missense or PTV).

Paralog conservation analysis of ClinVar variants vs. ExAC variants.

The ClinVar database (v20160302)*° was filtered for missense variants that were
classified as pathogenic. We excluded variants that were classified as
pathogenic by one submitter and not pathogenic by another submitter. Next, we
homogenized disease names by removing ambiguous subtype classifications.
We removed variants present in ExAC? to increase the quality of truly disease
associated variants. Finally, we counted the number of variants in genes
associated with a specific disease, and kept only disease-gene association
supported by at least ten variants. 67 disorders remained in the analysis. For
each disorder-gene combination, missense variants in the same gene were
included as comparison in the data set. Next, we classified and grouped all 67
disorders by ICD10 codes, scored ClinVar and EXAC variants with the paralog
score, and compared the paralog variant distribution using the Wilcoxon test
(wilcox.test implemented in R). Notably, in nearly every ICD-10-CM category
there is a sub-category = named ‘other  specified” condition
(http://www.icd10monitor.com). Codes titled “other” or “other specified” are for
use when the information in the medical record provides detail for which a
specific code does not exist (https://www.cdc.gov). Due to the limited definition
and corresponding limited interpretation of these heterogeneous groups of
disorders we removed these from the analysis.

PPARG mutation tolerance scores for para_zscore, GERP, CADD,
PolyPhen2, and SIFT.

The mutation tolerance score (see Figure 5) as defined in Majithia et al., 2016%*,
is given for every position of the protein sequence. Since the para_zscore is
defined for every position of the protein, it can directly be used as a mutation
tolerance score. For PolyPhen2*' and SIFT® we used the matrix of all possible
amino acid exchanges represented as a nx20 matrix (n=protein length; n=505 for
PPARG). The exchange matrices for both scores were generated using the
respective webtools (see URLS) using all amino acid changes as input. Then, for
every possible amino acid substitution in hg19 the average score of all possible
amino acid exchanges at a given position was calculated, e.g., if for a given
codon n missense mutations could cause m different amino acid exchanges, we
calculated the average score over the m possible amino acid exchanges as the
mutation tolerance score at a given position. Since CADD* and GERP? scores
are defined for every genomic position, we used for every possible amino acid
exchange the average respective score over all possible nucleotide exchanges
within a given codon resulting into the same amino acid exchange.
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Correlation between para_zscore and PPARG mut_tolerance score.

The authors provided us with the experimentally derived and trained mutational
tolerance score (“mut_tol”) for PPARG. A detailed description of the score can be
found in Majithia et al., 2016%*. In short, the authors used highly parallel
oligonucleotide synthesis to construct a library encoding all 9,595 (505 positions
x 19 amino acid changes at each position) possible single amino acid
substitutions to prospectively characterize PPARG variants. They developed a
pooled functional assay in human macrophages, experimentally evaluated all
protein variants, and used the experimental data to train a variant classifier by
supervised machine learning. We used the cor {stats} function in R* for the
correlation analysis of both scores.

Data availability

The code for generating the underlying alignments and the para_zscore,
additional code and examples are available under https:/qit-
r3lab.uni.lu/genomeanalysis/paralogs. Additional data and annotations for the
hg19 missense variants are available from: https://zenodo.org/record/817898. All
de novo variants used in the analysis are listed in Supplementary Table 4.

URLs.

PolyPhen2, http:// http://genetics.bwh.harvard.edu/pph2/; SIFT,
http://sift.jcvi.org/www/SIFT_seq_submit2.html; GTEx portal,
http://www.gtexportal.org/home/; EXAC, http://exac.broadinstitute.org; ANNOVAR,
http://annovar.openbioinformatics.org; ClinVar,
https://www.ncbi.nlm.nih.gov/clinvar; Ensembl biomart,
www.ensembl.org/biomart; Ensembl compara,
www.ensembl.org/info/genome/compara; HGNC, http://www.genenames.org;
CCDS, https://www.ncbi.nlm.nih.gov/projects/CCDS.
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