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Abstract  
 
Differentiating risk-conferring from benign missense variants, and therefore 
optimal calculation of gene-variant burden, represent a major challenge in 
particular for rare and genetic heterogeneous disorders. While orthologous gene 
conservation is commonly employed in variant annotation, approximately 80% of 
known disease-associated genes are paralogs and belong to gene families. It 
has not been thoroughly investigated how gene family information can be utilized 
for disease gene discovery and variant interpretation. We developed a paralog 
conservation score to empirically evaluate whether paralog conserved or non-
conserved sites of in-human paralogs are important for protein function. Using 
this score, we demonstrate that disease-associated missense variants are 
significantly enriched at paralog conserved sites across all disease groups and 
disease inheritance models tested. Next, we assessed whether gene family 
information could assist in discovering novel disease-associated genes. We 
subsequently developed a gene family de novo enrichment framework that 
identified 43 exome-wide enriched gene families including 98 de novo variant 
carrying genes in more than 10k neurodevelopmental disorder patients. 33 gene 
family enriched genes represent novel candidate genes which are brain 
expressed and variant constrained in neurodevelopmental disorders. 
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Identifying disease-causing mutations from the vast sea of benign rare variants in 
a genome continues to be an important challenge in both clinical and research 
settings despite the availability of large-scale population sequence references1,2. 
While functional studies would be the gold standard for determining causality, 
they are expensive, time consuming, and require extensive expert knowledge. 
Even in the case of coding variants, appropriate assays testing the disease-
relevant impact of a variant on gene function are not readily available for the 
majority of genes and variants. Because of these limitations, in silico prediction 
tools have become the method of choice. These tools predict the deleteriousness 
of variants by assessing sequence conservation between species, structural 
constraints, amino acid physiochemical properties, and/or known annotations3–5. 
Sequence conservation, in which mammalian or vertebrate genomes are aligned 
to identify conserved segments among orthologs has been a component of 
nearly every such method, under the sensible premise that since genes often 
retain function through evolution, those genic elements that remain constant 
throughout evolution are more likely essential to gene function. The high average 
sequence similarity of homologs of disease-associated genes often translates 
into high conservation and therefore higher pathogenicity scores for in silico 
prediction tools based on vertical conservation profiles (Fig. 1 left).  
 
Frequently overlooked, however, is the sequence conservation within species 
available from paralogous genes. Paralogs are defined as genes related via 
ancient duplication events6–8. Paralogous sequences are often utilized in 
alignments together with orthologous sequences in several variant prediction 
methods. However, the contribution of human paralogous sequences in variant 
annotation has not been thoroughly explored. Moreover, most of these methods 
rely on trained multi-feature classifier, which do not allow biological interpretation 
of results. Paralogs within gene families show often a relatively high sequence 
divergence. This greater variance among paralogs in comparison to orthologs, 
reflecting deeper evolutionary roots of some duplication events, suggests an 
unexplored opportunity that might aid in classifying residues as more or less 
functionally important (Fig. 1 right) based on their horizontal conservation profiles 
within gene families. The human genome harbors 3,348 protein-coding gene 
families, ranging from 2 to 46 paralog members and accounting for 72% of all 
human protein-coding genes (ENSEMBL v20150512). It has been shown that 
approximately 80% of disease-associated genes have paralogs in human9.  
	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159780doi: bioRxiv preprint 

https://doi.org/10.1101/159780
http://creativecommons.org/licenses/by/4.0/


 
Figure 1: Vertical (ortholog) vs. horizontal (paralog) conservation. Top: Protein sequence 
alignment of voltage-gated sodium channels. Top left: Alignment of Homo sapiens 
(NP_001159435.1), Bos taurus (NP_001180147.1) and Mus musculus (NP_001300926.1) 
SCN1A protein sequences. High sequence similarity is depicted by violet amino acid coloring and 
yellow conservation bars below the alignment using Jalview. Top right: Protein alignment in 
Jalview of all members of the human voltage-gated sodium channel gene family (SCN1A, SCN2A, 
SCN3A, SCN4A, SCN5A, SCN7A, SCN8A, SCN9A, SCN10A, SCN11A). This alignment of 
paralogues shows less conservation compared to the SCN1A vertical cross species alignment on 
the left. Bottom left: GERP score analysis over all genes within gene families (homolog 
conservation is measured by % of all nucleotides per gene with GERP scores >2). Bottom right: 
Distribution % nucleotides per gene within gene families having para_zscores >0. Homolog 
conservation is generally much more uniform and homogeneous than paralog conservation. 
 
The association of diseases with gene families has been well established in the 
last two decades. For example, protein kinases comprise one of the largest 
families of evolutionarily related proteins and >500 distinct kinases are encoded 
by ~2% of all human genes. Variants in kinase genes have been found to 
underlie many human diseases, particularly developmental and metabolic 
disorders, as well as certain cancers10. Another example represents the family of 
keratin genes. Variants in these genes alter the structure of keratins, which 
prevent them from forming an effective network of keratin intermediate filaments. 
Without this network, cells become fragile and are easily damaged, making 
tissues less resistant to friction and minor trauma11. More recent large scale 
sequencing studies on neurodevelopmental disorders (NDDs) have 
independently identified multiple paralogous genes associated with the same or 
related NDD (e.g., the family of voltage-gated sodium channel genes: SCN1A, 
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SCN2A, SCN8A; the family of chromodomain-helicase-DNA-binding proteins: 
CHD2, CHD4, CHD812–15. This raises the question whether other genes within 
the same gene family are also associated with NDDs. Since in these studies 
truncating variants in paralogs often show consistent associations to NDDs, we 
sought to explore whether paralog information could refine our interpretation of 
missense variation. Paralogs often have similar, but not identical, protein 
sequences (Fig. 1 right) and amino acids conserved across all paralogs might 
well be pointing to essential residues critical for protein function. As such, 
variants changing paralog conserved amino acids may plausibly be more 
deleterious than variants changing amino acids in paralog non-conserved sites 
and therefore be more likely to confer risk to disease. Two previous studies have 
highlighted the utility of systematic functional annotation of disease-causing 
residues across human paralogs for genes associated with Long-QT-syndrome, 
Brugada syndrome, and catecholaminergic polymorphic ventricular 
tachycardia16,17. Both studies showed improved variant interpretation by 
comparing corresponding mutations in paralogs in different patients with the 
same phenotype. To our knowledge, it has not been empirically investigated on 
genome-wide scale whether disease associated missense variants reside in 
paralog conserved or non-conserved sites. 
 
Statistical power for the discovery of disease associated genes is the greatest in 
genetically homogeneous patient groups. NDDs are phenotypically and 
genetically heterogeneous. Several of the NDD disease-associated genes are 
pleiotropic and appear in clinically distinct NDDs (sub-NDDs) indicating a shared 
molecular pathology. Even in NDD cohorts with >1000 trios, the majority of 
disease-associated genes have fewer than 10 de novo variants12–15. To increase 
the statistical power in genetic studies, gene set enrichment analysis is often 
applied to discover pathways associated with diseases of the same or a similar 
phenotype18,19. To date, the utility of gene families as gene sets for large-scale 
mutational burden analyses and candidate gene identification has not been 
systematically conducted. 
 
In this manuscript, we evaluate and develop the use of ‘paralog conservation’ 
and provide evidence that this offers powerful addition to variant annotation over 
and above conventional conservation metrics and other annotations as follows: 
(1) We develop a novel paralog-based conservation score (“para_zscore”, see 
Online Methods and Supplementary Fig. 1) and demonstrate that paralogs 
highlight a smaller, more refined set of conserved residues than conventional 
ortholog conservation. (2) We further empirically demonstrate that disease-
associated missense variants across all genetic disorders are strongly enriched 
at paralog-conserved sites. (3) We demonstrate that restricting analysis to 
missense variants at only paralog conserved sites increases the power to 
discover novel disease associated genes. (4) Leveraging these observations, we 
create a novel gene-family burden test of association and identify, using a cohort 
of 10,068 NDD trios, gene families with de novo variant burden including novel 
candidate disease genes. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159780doi: bioRxiv preprint 

https://doi.org/10.1101/159780
http://creativecommons.org/licenses/by/4.0/


 
 
Results 
 
Allele frequency of paralog conserved and non-conserved sites in the 
general population 
 
We first sought to test whether paralog conserved amino acids were more likely 
to confer strong disease risk when altered in comparison to sites not conserved 
in paralogs. As an initial test, we correlated the allele frequency of 1.3 million 
missense variants affecting genes with paralogous family members in 60,706 
reference individuals from the Exome Aggregation Consortium2 (ExAC) with their 
paralog conservation measured by para_zscore. Testing 1,213,427 amino acids 
across all human gene families, we found that allele frequency decreases with 
increasing paralog conservation, indicating stronger evolutionary selection 
against variation in paralog conserved sites overall (Fig. 2 top left panel).  
 
To further compare the utility of paralog versus ortholog amino acid conservation, 
we analyzed de novo missense variants identified in 10,068 NDD patients and 
2,078 controls. Using the GERP score we measured the (vertical) divergence 
across 35 mammalian species20. Given that only a small fraction of patient 
variants is expected to be associated with disease, we did not expect a major 
shift between the patient and control variant distributions. We did however 
observe a more significant difference between variant scores in patients 
compared to controls using the para_zscore (p<10-5) than we saw for GERP 
(p=.006; Fig. 2 top right panel).  
 
Paralog conservation of missense de novo mutations in NDD patients and 
controls 
 
To investigate the degree to which de novo mutations (DNMs) in NDDs are 
enriched in paralog-conserved segments, we compared the variant distribution of 
DNMs in 10,068 NDD patients to 2,078 individuals without NDDs. To increase 
the signal, we excluded those DNMs present in ExAC2,21. We compared the 
distributions of para_zscores for synonymous and missense variants (Fig. 2 
bottom left) expecting only an enrichment for missense variants due to the 
fraction of variants associated with disease. We observe a significant shift 
towards paralog-conserved (P= 2.5 x 10-6) sites for missense DNM variants in 
NDD patients but not in controls (P=0.87). 
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Figure 2: Assessment of paralog conservation. Top left: ExAC allele frequency vs. gene 
family (paralog) conservation (given as Z-score). The allele frequency of 1,213,427 missense 
variants decreases with increasing para_zscores for the tested variants. Top right: Ortholog vs. 
paralog conservation of missense variants. Ortholog conservation is measured by GERP scores, 
paralog conservation by para_zscores. Para_zscores better separate patient from control variants 
compared to GERP scores. Higher para_zscores are only slightly enriched in NDD patient 
variants compared to controls, which is in line with the expectation that not all patient de novo 
missense variants contribute to disease.	 Bottom left: Distribution of NDD patient and control 
missense and synonymous para_zscores depicted by density plots. Patient, but not control, 
missense variants are enriched at paralog conserved sites relative to the synonymous variant 
distribution. P-values were calculated using a Wilcoxon test. Bottom right: Identification of 
missense variant gene family enrichment in NDD patients for paralog conserved missense 
variants but not for the paralog non-conserved variants. NDD associated missense variants are 
enriched in paralog conserved sites. Y-axis: Missense variant enrichment analysis considering 
only paralog non-conserved sites across genes of each gene family (para_zcore ≤0). X-axis: 
Missense variant enrichment analysis considering only paralog conserved sites (para_zcore >0). 
None of the gene families show exome-wide significant enrichment for paralog non-conserved 
sites. 26 gene families (depicted by circles) show exome-wide significant de novo missense 
variant burden at paralog conserved sites. The significance threshold was calculated by 
Bonferroni correction for testing 5 x 2871 gene families (P = 3.48 x 10-6) and is depicted by the 
blue dotted line.  
 
 
We evaluated the contribution of paralog conserved and non-conserved 
missense variants to NDDs. Considering 2,871 gene families encapsulating 
9,991 genes, we observed 27 significantly enriched (p < 3.48 x 10-6) gene 
families in the patient cohort identified in an analysis of paralog conserved 
missense variants only, but none in the parallel, comparably powered, analysis of 
only non-conserved sites (Fig. 2 bottom right, Supplementary Fig. 1B). 
Although many of these genes also show burden for protein truncating variants 
(PTVs), the paralog enrichment is specific for missense variants since we did not 
identify a shift towards paralog conserved sites for nonsense variants 
(Supplementary Fig. 2). This is in line with expectations because nonsense-
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mediated-decay is the expected disease mechanism. Furthermore, missense 
variant enrichment at paralog conserved sites is not detectable in genes without 
DNM burden in this study (Supplementary Fig. 2).  
 
Enrichment of missense variants at paralog conserved sites across all 
diseases and associated genes. 
 
To investigate whether the enrichment for disease variants at paralog conserved 
sites is specific to our NDD cohort or can be generally observed across other 
disease categories, we extracted all missense variants from the ClinVar 
database (accessed June 2016) and classified the disorders into ICD chapters 
and sub-groups. We compared the paralog conservation for all gene families 
harboring disease variants against the missense variants in the same genes from 
ExAC. Overall, we detect a strong enrichment for disease variants at paralog-
conserved sites compared to ExAC missense variants (P = 2.2 x 10-287, shift in 
para_zscore = 0.92, CI=0.87-0.98; Fig. 3). Our analyses indicate that disease-
associated variants more often affect amino acids that are conserved across all 
members of the gene family. The shift towards paralog conserved sites for 
patient variants in comparison holds true for almost all disease groups tested.  
 

 
Figure 3: ClinVar disease vs. ExAC missense variant para_zscore distribution. We scored 
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ClinVar variants and variants in a reference population (ExAC) for the same genes in a range of 
disorders and grouped these into ICD10 code defined disorder classes (see Online Methods). 
The distribution of ClinVar variants is shifted towards paralog conserved sites compared to 
missense variants in ExAC as depicted by estimated differences in location plotted in the x-axis 
for the vast majority of disorders tested. The shift to paralog conserved sites is depicted by 
estimates greater zero. P-values were calculated using a Wilcoxon test. 
 
Gene family enrichment in NDDs and sub-phenotypes 
 
After establishing that disease-associated missense variants are enriched at 
paralog conserved sites (Fig. 2 bottom right, Fig. 3), we assessed the degree to 
which gene family information could assist in discovering novel disease-
associated genes. We analyzed again our heterogeneous cohort of 10,068 NDD 
patients with autism spectrum disorder (ASD; N=3982), developmental delay 
(DD; N=5226) and epilepsy (EPI; N=822). We extended the approach of 
Samocha et al., 201422, to gene families to identified gene families with 
significant enrichment of mutations in NDD patients. We included protein 
truncating variants (PTVs) across the whole sequence as well as missense 
variants at paralog conserved protein sites absent from ExAC in the analysis. 
 

Gene families DNMs 
expected 

DNMs 
observed P 5264 DD 

patients 

3982 
ASD 

patients 

822 EPI 
patients 

2087 
controls 

ARID1B (40), ARID1A (5) 0.96 45 4.28E-58 39 6 0 0 

SCN2A (38), SCN1A (18), SCN8A (11), SCN3A (4), 
SCN11A (2), SCN9A (1), SCN5A, SCN7A, SCN4A, 

SCN10A 
6.16 74 1.77E-52 36 16 22 0 

DDX3X (35), DDX3Y 0.49 35 8.94E-52 34 1 0 0 

DYRK1A (26), DYRK1B (1) 0.37 27 1.89E-40 21 5 1 0 

EP300 (20), CREBBP (16) 1.39 36 8.81E-38 30 5 1 1 

KCNQ2 (23), KCNQ3 (7), KCNQ5 (3) 1.14 33 3.09E-36 27 2 4 0 

SYNGAP1 (24), DAB2IP, RASAL2 1.33 24 4.35E-22 17 6 1 0 

STXBP1 (20), STXBP3 (1), STXBP2 0.88 21 5.93E-22 14 2 5 0 

GRIN2B (16), GRIN2A (6), GRIN2C (1), GRIN2D 1.89 23 1.46E-17 17 3 3 0 

CTNNB1 (16), JUP (1) 0.79 17 2.27E-17 15 2 0 0 

CHD2 (16), CHD1 (3) 1.15 19 4.00E-17 10 8 1 0 

PURA (13), PURB 0.41 13 1.13E-15 12 0 1 0 

CHD3 (10), CHD4 (6), CHD5 (5) 1.94 21 3.45E-15 19 2 0 0 

TCF4 (11), TCF12 (3), TCF3 (2) 0.93 16 5.76E-15 14 2 0 1 

CDK13 (14), CDK12 0.66 14 1.71E-14 13 1 0 0 

PPP2R5D (16), PPP2R5A (1), PPP2R5B, 
PPP2R5C, PPP2R5E 1.25 17 3.62E-14 16 1 0 1 

WDR45 (11), WDR45B 0.32 11 7.60E-14 9 0 2 0 

MEF2C (11), MEF2D (2), MEF2A 0.58 13 7.77E-14 9 2 2 0 

EHMT1 (13), EHMT2 0.66 13 3.93E-13 13 0 0 0 
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FOXP1 (10), FOXP2 (4), FOXP4 0.86 14 6.02E-13 12 2 0 0 

FOXG1 (11), FOXQ1, FOXN3, FOXN2 0.39 11 6.36E-13 7 1 3 0 

CHD8 (12), CHD7 (7), CHD9 (1) 2.30 20 7.73E-13 11 9 0 0 

CSNK2A1 (12), CSNK2A3, CSNK2A2 0.63 12 5.00E-12 10 1 1 0 

CACNA1E (10), CACNA1A (9), CACNA1B (1) 2.72 20 1.53E-11 13 1 6 0 

HDAC8 (9), HDAC3 (2), HDAC1 (1), HDAC2  0.83 12 1.06E-10 11 0 1 0 

GNAO1 (7), GNAI1 (7), GNAZ (1), GNA11 (1), 
GNA14, GNAI3, GNAT2, GNAT3, GNAT1, GNAI2, 

GNA15, GNAQ 
1.82 16 1.31E-10 13 2 1 0 

CASK (8), DLG4 (6), DLG2 (1), DLG1, DLG3 1.58 15 1.67E-10 12 1 2 0 

GATAD2B (10), GATAD2A 0.65 10 2.10E-09 10 0 0 0 

MED13L (12), MED13 (2) 1.68 14 3.47E-09 10 4 0 0 

TBL1XR1 (9), TBL1Y, TBL1X 0.52 9 5.01E-09 7 2 0 0 

PHIP (10), BRWD3 (2) 1.46 13 5.64E-09 10 2 1 0 

CTCF (9), CTCFL 0.56 9 9.00E-09 7 2 0 0 

RAB11A (3), RAB2A (2), RAB11B (2), RAB14 (2), 
RAB19 (1), RAB43 (1), RAB39A, RAB25, RAB4B, 

RAB39B, RAB4A, RAB30, RAB2B 
1.01 11 1.14E-08 9 2 0 0 

GABRB3 (8), GABRB2 (3), GLRA2 (1), GABRB1 
(2), GLRB (1), GLRA1, GABRR1, GABRD, 

GABRR3, GABRP, GLRA4, GABRQ, GABRR2, 
GLRA3 

2.35 15 3.15E-08 7 4 4 0 

TCF20 (9), RAI1 (3) 1.40 12 3.33E-08 11 1 0 1 

NFIX (6), NFIA (2), NFIB (2), NFIC, 0.90 10 4.31E-08 8 2 0 1 

USP9X (10), USP24 (1), USP9Y 1.18 11 5.29E-08 9 2 0 0 

SATB2 (9), SATB1 0.75 9 1.04E-07 9 0 0 0 

HECW2 (9), HECW1 (1) 1.04 10 1.61E-07 8 1 1 0 

SOX11 (4), SOX4 (3), SOX9 (1), SOX10 (1), SOX17, 
SOX1, SOX8, SOX7 0.82 9 2.21E-07 9 0 0 0 

ZBTB18 (6), ZBTB3 0.28 6 5.43E-07 6 0 0 0 

TCF7L2 (6), TCF7L1 (1) 0.53 7 1.48E-06 4 3 0 0 

TBR1 (6), EOMES 0.35 6 2.01E-06 1 5 0 0 

Table 1: 43 significantly enriched gene families in the combined de novo paralog 
conserved missense and PTV analysis for 10,068 NDD trios. Only enriched gene families 
significant after applying the Bonferroni significance threshold for testing 5 x 2,871 gene families 
(3.48 x 10-6) are included. Bold-highlighted genes are affected by DNM and the number of DNM 
is indicated inside the soft-brackets. Genes in red have not previously been reported as 
significantly enriched in exome-wide ASD, DD or EPI studies. The full list gene families with 
variants can be found in Supplementary Table 1. 
 
We identified 43 gene families (1.49% of all gene families) enriched for de novo 
paralog-conserved missense and PTVs (Bonferroni correction significance 
threshold for testing 5 x 2871 gene families = 3.48 x 10-6; Table 1). In all 43 gene 
families, the most frequently mutated gene and often additional genes harboring 
de novo variants are brain-expressed (Supplementary Fig. 3). Within the 
enriched gene families, 94 gene family members (paralogs) carried at least one 
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DNM vs. 59 gene family members without DNMs. In total, 7.47% of all NDD 
patients carried a de novo paralog conserved missense or PTV in the 43 
enriched gene families. In the NDD patients, we found 753 DNMs in 43 gene 
families while only 49.92 DNMs were expected (P << 1.0 x 10-100). The paralog 
conserved missense variant enrichment signal of these genes was 7.8-fold 
(observed DNMs: 261, expected DNMs: 33.01). There was no signal if we 
examine paralog non-conserved missense variants in this group of genes 
(observed DNMs: 41, expected DNMs: 31.03, Supplementary Table 2). No 
enrichment was observed in the 2,078 individuals without a NDD (observed 
DNMs: 5, expected DNMs: 10.34, P = 1.0). The majority of the frequently 
mutated genes have previously been established as disease-associated genes 
by demonstrating an exome-wide significant DNM burden in disease-specific 
single gene enrichment studies12–15,23 (Table 1, highlighted in black and bold). 
When removing all the established disease genes (Table 1, bold and black, 
N=42) from the analysis, we still observe a 4.72-fold enrichment (observed: 162 
DNMs in the 43 enriched genes families, expected 34.27, P = 6.10 x 10-56). This 
enrichment increases to 5.28-fold when we removed all non-brain-expressed 
genes from the 43 enriched genes families (28.71 DNM expected vs. 149 DM 
observed, P = 3.72 x 10-57). 
 
Several of these genes, previously not associated with any disease, represent 
likely NDD-associated genes. First, in one out of the 43 enriched gene families, 
we observe that the novel gene harbors more DNM variants than the established 
disease-associated gene of the same gene family (CHD3 vs. CHD4; Table 1). 
Second, four families show genome-wide gene family enrichment without prior 
evidence for any gene on the genome-wide level, even though some individual 
genes are known disease genes, such as CACNA1A (Supplementary Table 3). 
These gene families include the (CACNA1[E/A/B] - family, 
RAB[2(A/B)/4(A/B)/11(A/B)/14/19/25/30/39(A/B)/43] - family, the HECW[1/2] - 
family, the SOX[1/4/7/8/9/10/11], TCF7L[1/2] – family and the TBR1/EOMES - 
family). To find further evidence of disease association for less frequently 
mutated gene family members, we systematically investigated the evolutionary 
variant intolerance22 (”constraint”) and brain expression levels for all mutated 
paralog genes within the enriched gene families (Supplementary Fig. 3). We 
observed that 33 paralog genes of the enriched gene families with DNMs are 
under evolutionary constraint and brain expressed (Supplementary Table 3), 
showing the same signature as the known disease genes in the same families 
(Supplementary Fig. 3). Although none of these genes have previously been 
reported to be significant on an exome-wide level, 57.57% (19/33) of the novel 
disease-associated genes have been previously reported in the literature as 
carrying a rare single nucleotide or copy number variant affecting the gene 
(Supplementary Table 3). For 63.63% (21/33) of the genes, available mice 
models show neurological and/or behavioral phenotypes supporting the disease 
association (Supplementary Table 3). Given these multiple lines of evidence, in 
addition to the sequence and expression pattern similarity to the known disease 
genes in the same families, we consider this list of 33 genes as highly promising 
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candidate disease genes (Supplementary Table 3). 
 
Sub-disorder specificity of DNM enriched gene families 
 
While the initial analysis considered all NDDs as a single group, we next 
explored whether the NDD sub-phenotypes (ASD, DD and EPI) contributed 
equally to the enrichment of the 43 gene families (Table 1) or if a specific sub-
NDD contributes more to the enrichment and subsequently carries larger 
mutational burden than the other NDDs. Compared to single gene enrichment 
studies, DNM enriched gene families harbor larger numbers of variants due to 
the sum of mutations in several mutated paralogous genes, which increases 
testing power for investigating disease specificity. The increased number of 
variants per family permits frequency comparisons of likely functional related 
proteins across NDDs. We tested the 43 PTV and paralog-conserved missense 
enriched gene families (Table 1) to evaluate gene family specific sub-NDD 
burden. To avoid introducing a bias, we included all mutated genes of each gene 
family in the analysis, regardless of the PTV or missense intolerance and gene 
tissue expression analysis in Supplementary Fig. 3. 
 
Overall, 31.91% of all de novo variants in patients with DD affected one gene in 
the 43 gene families, compared to 13.53% in the ASD cohort and 26.03% in the 
EPI cohort. Only two out of the 43 enriched gene families (Table 1) showed 
significant sub-disorder enrichment (either ASD, DD or EPI) after multiple testing 
correction. The DDX3[X/Y]-family is 20.55-fold enriched in DD patients in 
comparison with mutation frequencies in ASD and EPI patients combined 
(P=3.17 x 10-6). The voltage-gated sodium channels 
(SCN[1/2/3/4/5/7/8/9/10/11]A), have significantly higher mutational burden in the  
EPI cohort compared to variant frequencies in the ASD and DD cohorts 
combined (OR=4.96, P=6.06 x 10-8,) while representing the most frequent gene 
family with de novo mutations in all sub-NDDs (EPI=2.67%, DD=0.68%, 
ASD=0.40% carrier rate). Post-hoc phenotype analysis of the ASD cohort 
revealed that ASD patients with voltage-gated sodium channel mutations have a 
5.08-fold higher frequency of seizures and 8.5-fold higher rate of low IQ 
compared to ASD patients without mutations in this gene family.  
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Variant interpretation and correlation of para_zscore with an experimentally 
derived mutation intolerance score 
 
The vast majority of current variant prediction methods are nucleotide based and 
do not allow visualization of scores across the protein sequence. Paralog 
conservation can identify stretches of conserved amino acids which can overlap 
functional domains; however not all annotated domains are paralog conserved 
and harbor disease variants (Fig. 4). The para_zscore is able to identify paralog 
conserved and non-conserved amino acid residues within known functional 
domains (Fig. 4) and thus is an illustrative tool to visualize the predicted mutation 
tolerance of a protein sequence across the amino acid sequence. As an example, 
we wanted to visualize para_zscore amino acid conservation alongside 
functionally derived data. Variants in PPARG cause Mendelian lipodystrophy and 
increase risk of type 2 diabetes (T2D). Recently, a complete prospective 
functional assessment of all possible 9,595 amino acid exchanges in PPARG 
was conducted24. The authors developed a pooled functional assay in human 
macrophages, experimentally evaluated all protein variants, and used the 
experimental data to train a variant classifier by supervised machine learning 
(“mut_tol”, Fig. 5). Comparing the experimental derived data with the PPARG 
para_zscores, we observed high correlation (r2=0.71, P = 4.08 x 10-77, Pearson's 
product-moment correlation), supporting the usefulness of the para_zscore as a 
biological interpretable pathogenicity metric. In comparison, averaged mutation 
tolerance scores (see Online Methods) for Polyphen5, CADD4, SIFT3 and 
GERP20 show less correlation (r2= 0.28-0.56) with mut_tol (Fig. 5). 
 

 
Figure 4: Visualization of para_zscores of proteins encoded by KCNQ2, STXBP1, 
CACNA1A, and GRIN2B. Protein sequence is plotted from left to right. Each bar and dot 
represents one amino acid. Amino acids affected by a missense mutation in the NDD cohort are 
colored blue, patient PTVs are depicted in pink, and synonymous variants in orange. Amino acid 
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residues with no mutations are colored grey. Y-axis: Positive values indicate paralog conservation 
and the highest score indicates that these amino acids are identical over all gene family members. 
The red dotted lines indicate the mean paralog conservation of each protein sequence and bars 
below the mean indicate regions of low paralog conservation, thus higher sequence variability 
over all members of the gene family. 
 
 

 
Figure 5: Comparison of experimentally derived mutation tolerance scores and 
para_zscores for PPARG. Raw PPARG function scores for each of the 9,595 amino acid 
exchanges plotted according to the amino acid position along the PPARG sequence. Functional 
scores summed by amino acid position are plotted to the right, showing the level of tolerance for 
any amino acid substitution differing from the human reference genome (derived from Majithia et 
al., 201624). PPARG functionally generated mut_tol scores (blue), para_zscores and averaged 
mutation tolerance scores (amt) for PolyPhen2, CADD, and SIFT. All scores were correlated with 
the experimentally derived mut_tol score and r2 and p-values are shown next to the score 
distribution.  
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Discussion 
 
Sequence conservation across gene families has been extensively discussed in 
the literature. On the one hand, orthologous domain pairs tend to be significantly 
more structurally similar than paralogous pairs at the same level of sequence 
identity25. On the other hand, it has been shown that paralogs are functionally not 
necessarily redundant and the average fitness cost of loss of a paralogous gene 
is at least equal deleting single non-paralogous genes in yeast26. In addition, 
protein complexes have been documented to use paralog switching as a 
mechanism for the regulation of complex stoichiometry27. For example, many 
receptors in the human brain consist of multiple protein subunits, many of which 
have multiple paralogs and are differentially expressed across brain regions and 
developmental stages. The brain can tune the electrophysiological properties of 
synapses to regulate plasticity and information processing by switching from one 
protein variant to another. Such condition-dependent variant switch during 
development has been demonstrated in several neurotransmitter systems 
including NMDA and GABA28. Naturally, the question arises whether paralog 
conserved or non-conserved sites of the protein sequence are essential for 
function. Across multiple analyses in this study, we empirically demonstrate that 
disease-associated missense variants are enriched at paralog conserved sites 
and that this information can offer substantial value in mutation annotation on top 
of widely-used annotation methods. 
 
We developed a gene family DNM enrichment framework and computed a novel 
amino acid paralog conservation score, the “para_zscore”, applicable to 42% of 
all genes in the human genome. Application of the genome-wide paralog 
conservation score demonstrates that NDD and pathogenic variants in ClinVar 
affect paralog conserved, but not non-conserved, sites when compared to 
mutations in controls and missense variants in ExAC2, the vast majority of which 
are presumed benign. It has recently been proposed that conserved residues 
within gene family members (paralogs) are under evolutionary constraint and that 
in silico annotations of known disease associated residues across families of 
related proteins can guide variant interpretation17. Our results support the idea 
that paralogs share a similar “core” molecular function of the ancestral gene, 
since variants in these sites are enriched for patient missense variants indicating 
hereby a reduction in evolutionary fitness. Evolutionary younger paralogs show 
higher functional redundancy29. To control the functional diversity within gene 
families and to increase within family sequence similarity, we built sub-groups for 
each gene family using pairwise alignment length cut-offs of >80% aligned amino 
acids30. 
 
NDDs represent a genetic and phenotypic heterogeneous group of diseases for 
which pathogenic variants in individual disease genes are rare. Using a gene 
family version of a recently established DNM enrichment framework22 for 10,068 
NDD patients, we identified 43 PTV and paralog conserved missense DNM 
enriched gene families. Besides highlighting four gene families with genome-wide 
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gene family enrichment without carrying any previously exome-wide established 
disease gene (CACNA1[E/A/B] - family, 
RAB[2(A/B)/4(A/B)/11(A/B)/14/19/25/30/39(A/B)/43] - family, HECW[1/2] - family, 
SOX[1/4/7/8/9/10/11], TCF7L[1/2] - family, TBR1/EOMES - family), we 
additionally report 33 with first time statistical support as disease genes. 
Pathogenic variants in all of these genes are too rare to reach individual exome-
wide significant enrichment. However, the individual genes belong to a gene 
family with an exome-wide significant enrichment, are brain expressed, and are 
under evolutionary constraint in the general population2. Notably, three of the 43 
enriched genes belong to chromatin helicase DNA-binding proteins gene families. 
Besides the established genes, we observe also five novel candidate disease 
genes in this group (CHD1, CHD3, CHD5, CHD7, CHD9) with DNM in 20 
patients in this study. All five genes represent valid candidates for association of 
NDDs based on our detailed analysis (for details see Supplementary Table 3). 
Chromatin remodeling is one of the mechanisms by which gene expression is 
regulated developmentally31, perhaps explaining the susceptibility to NDDs when 
mutated.  
 
Given the larger number of DNMs in gene families compared to single genes, we 
investigated if any of the 43 enriched gene families are specifically enriched in 
patients within the EPI, ASD, or DD sub-cohorts. The vast majority of gene 
families did not show significant sub-NDD specificity. This phenomenon can be 
explained in several ways. Most importantly, there are overlapping phenotypes in 
the different studies. Patients within the developmental delay cohort include 
patients with ASD15. For NDD phenotype definitions overlap significantly, 
allowing for including of patients with combined phenotypes into either of the DD, 
ASD, or EPI cohort. However, we showed that paralog conserved missense and 
PTVs affecting the voltage-gated sodium alpha channel family are clearly 
enriched in patient within the EPI cohort, but the same class of variants can also 
be found at lower frequency in DD, and rarely in ASD. Analysis of the ASD 
patients with variants in voltage-gated sodium alpha channels indicated that the 
majority of the ASD patients with such variants had seizures. However, we were 
not able to investigate the DD patients for the seizure phenotype due to the lack 
of available phenotypic data. A higher degree of specificity of pathogenic variants 
in voltage-gated sodium channels in patients with epilepsy is supported 
biologically by the function of the channels. Lack of the sodium channel on 
inhibitory neurons leads to decreased inhibition and net excitation. This 
molecular pathology resembles the long-standing idea that epilepsy is a disorder 
based on imbalances between synaptic excitation and inhibition32. 
 
The para_zscore has single value for each position; it is therefore possible to plot 
the score along the entire protein sequence (see Fig. 4). We propose that 
plotting the para_zscore is a useful tool as it visualizes likely essential protein 
regions of high paralog conservation, and thus intuitively supports decision 
making for variant prioritization (e.g., functional testing or drug target 
development). The scores are available at https://git-
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r3lab.uni.lu/genomeanalysis/paralogs. Supporting this utility, we demonstrated 
that the para_zscore exhibits high correlation (r2=0.71) with experimentally 
derived mutation tolerance scores across the entire PPARG protein sequence. 
Other generated averaged mutation tolerance scores for commonly used 
classifiers showed less correlation. Notably, the other prediction tools are not 
made for protein conservation scoring. We suggest that our protein wide paralog 
conservation score could potentially also be used in targeted drug development 
to improve the efficacy of therapy. Paralogs share similar protein sequences or 
structural features, e.g. similar binding pockets, e.g. a given compound may 
show an increased affinity to bind its paralogs, possibly resulting in unexpected 
cross-reactivity and undesired side effects. Using the paralog conservation score 
in drug target design could therefore rule out or reduce such cross-reactivity 
effects. 
 
Although our results demonstrate the utility of paralog conservation, the ideal 
composition of the gene family and choice of protein isoform may differ 
depending on the individual research question. In addition, while conservation 
across orthologs or paralogs can be indicative of the necessary function of a 
given domain, absence of conservation does not a priori exclude functionally 
important domains within a protein. This consideration may be particularly 
relevant for diseases with a later onset that are less under evolutionary selection. 
 
Overall, we provide extensive empirical evidence using multiple data sets (the 
entire ClinVar resource and published de novo variants from more than 10k NDD 
cases) that disease associated missense variants are enriched at paralog 
conserved sites. We demonstrate that integration of paralog conservation can be 
leveraged as powerful method for variant interpretation and discovery of new 
disease-associated genes. We provide a genome-wide "para_zscore" annotation 
file and pre-computed para_zscores for all human paralogs as individual files. 
This resource should enable data and molecular scientists to score and visualize 
variants/genes/proteins of interest and to integrate paralog conservation with 
existing variant annotation tools. 
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Online Methods  
 
Patient and genetic data. 
 
We analyzed 10,068 neurodevelopmental disorder (NDD) trios (probands and 
their unaffected parents) including 3,982 autism (ASD), 5,226 developmental 
delay (DD) and 822 severe epilepsy (EPI) patients. The ASD cohort was derived 
from published studies13,33. The DD cohort combined published de novo variants 
from previous DD and ID studies due to overlap in cohort 
ascertainment14,15,23,34,35. The EPI cohort included published trio data sets 
(356/822 trios; 43%)12,36 as well as 466 (56% of the 822 trios) unpublished 
exome-wide de novo data. New exome sequencing trio data were collected in 
multiple centers, companies and consortia, including the University Clinic of Kiel, 
Germany, the University Clinic of Tübingen, Germany, the Boston Children’s 
Hospital, USA, the University of Antwerp, the RES consortia, the ESES consortia 
and the DESIRE Consortia, Ambry Genetics and CeGat. 
 
As control data in several analyses in the study, we used 2,078 trios sequenced 
with the same technology as the ASD patient cohort. These controls are 
unaffected siblings of the ASD patients13,33. 
 
To ensure uniformity in variant representation and annotation across published 
datasets and with respect to the ExAC reference database2, we created a 
standardized variant representation using a Python implementation of vt37 and re-
annotated all variants from the different datasets with ANNOVAR38 using the 
RefSeq and Ensembl gene annotations (2016Feb01), ClinVar39 (v20160302) and 
the dbNSFP v3.040 databases for various functional prediction tools and 
conservation scores such as GERP20, CADD4, Polyphen241, and SIFT3. 
 
 
Construction of the paralog conservation score. 

We restricted the analysis to within human paralogs to identify gene family 
burden and amino acids in proteins which are essential for function in humans. It 
has previously been shown that the human genome harbors essential genes for 
normal development which are not present in great apes. Such an example 
represents SRGAP2, which is essential for neocortex expansion42. Ensembl 
defines gene families based on maximum likelihood phylogenetic gene trees43 
based on the longest translation annotated in CCDS44 for each gene. Paralogs 
are then defined as genes of the same species related by a duplication event (as 
an inner tree node). First, we downloaded the human paralog definitions using 
the Ensembl BioMart system45 representing each gene with an Ensembl gene 
identifier. The paralogs could be grouped into 3,584 gene families. Ensembl IDs 
were then converted to HGNC gene names (http://www.genenames.org). Non-
coding genes and genes without a HGNC symbol were excluded and only gene 
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families with at least two HGNC genes were used for further analysis. CCDS 
data were downloaded the same day as HGNC and Ensembl data (v20150512). 

In total, 3,348 gene families were defined with 13,570 HGNC genes. 1,815 
families contained three or more paralogs. Next, we extracted the longest 
transcript from CCDS for each HGNC gene and constructed for each gene family 
a FASTA formatted file for multiple sequence alignment with MUSCLE46 including 
all paralog protein sequences. Evolutionary younger paralogs show higher 
functional redundancy29. To avoid alignments of strongly diverging sequences 
and to increase overall similarity, we built sub-groups for each gene family using 
pairwise alignment length cut-offs of >80% aligned amino acids30. The clusters 
(sub-groups) were defined by connected components within an alignment 
similarity graph in which two genes with >80% aligned residues were connected 
through an edge. Clusters were then defined as connected components within 
the graph. Only clusters with at least two proteins were further processed. In total, 
we generated 2,871 (sub) gene families comprising 8,233 genes. Each subgroup 
was re-aligned using MUSCLE. The MUSCLE output was then processed as 
input for Jalview47 to generate and extract conservation scores for each 
alignment position. The conservation score calculation in Jalview is based on the 
AMAS method of multiple sequence alignment analysis48. Conservation is 
measured here as a numerical index reflecting the conservation of physico-
chemical properties in the alignment. Identities score highest, and the next most 
conserved group contains substitutions to amino acids lying in the same physico-
chemical class. For each HGNC CCDS gene, the conservation scores at each 
position were extracted from the Jalview. Finally, to identify amino acids of high 
and low paralog conservation and make scores comparable between genes, the 
mean and the standard deviation conservation score over all amino acids per 
gene were calculated to compute a paralog conservation z-score (“para_zscore”) 
per amino acid position by subtracting the mean from the original score dividing 
the difference by the standard deviation. (Supplementary Fig. 4). 

Gene family enrichment analysis. 
 

To identify gene families with significant mutational burden, we adopted a de 
novo expectation model22 to assess mutation rates for nonsense, frameshift, or 
canonical splice disruptions (collectively termed protein truncating variants 
‘PTVs’) and missense variants for gene families (missense+PTV). We derived 
gene-based rates of de novo mutation from local sequence context and summed 
the expectations and the observed counts for all members within each gene 
family2. The expected and observed numbers of de novo mutations in each 
variant class for NDD combined were compared using a Poisson distribution. 
Notably, the discovery of de novo burden in a gene family is more challenging 
compared to the single gene analysis because of larger amount of expected 
mutations due combining the expectations from all gene family members 
(including those which are not expressed in the tissue of interest, e.g., brain). We 
used a Bonferroni corrected significance threshold for the 2,871 gene families 
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tested (<0.05). Furthermore, to exclude “passenger” variants and enrich for true 
disease variants we excluded de novo variants also seen in adult individuals 
without early onset NDDs in ExAC2 (n=60,706 exomes) prior to the enrichment 
analysis. Variants absent from this reference panel, which is a proxy for standing 
variation in the human population, are more likely to be deleterious. This 
conservative filter reduces the power for gene association discovery changes, 
but increases the plausibility for association for the identified variant with severe 
sporadic disorders.   
 
Sub-NDD enrichment analysis. 

 
Sub-NDD enrichment was calculated for the significantly enriched gene families 
in the paralog conserved missense and PTV combined analysis. We used 
Fisher’s exact test to compare the sub-NDD of interest (e.g., EPI) with the other 
sub-NDDs (e.g., ASD+DD). 
 
Paralog conserved site vs. paralog non-conserved sites missense 
enrichment analysis. 
 
Similar to the missense+PTV enrichment analysis, we adopted the de novo 
expectation model22 to assess mutation rates for missense variants only. In the 
missense enrichment analysis, we consider only missense variants and 
missense expectations for each gene family. We classified every amino acid 
position within each gene into ‘conserved sites’ with paralog conservation 
(para_zscore > 0, amino acids with higher paralog conservation than gene-
specific mean) and ‘non-conserved sites’ without paralog conservation 
(para_zscore ≤ 0) and summed the observations for both groups independently 
across the family. The expected missense mutation rates were adjusted for the 
size of the paralog conserved sites and non-conserved sites, respectively. The 
observed variant counts were assigned to either of these two groups depending 
on the paralog conservation state of the mutated amino acid residue for all 
members within each gene family (Supplementary Figure 1). The expected and 
observed numbers of de novo mutations in each variant class for NDD combined 
was compared using a Poisson distribution. To exclude “passenger” variants and 
enrich for disease variants, we excluded de novo variants present as standing 
variation in the 60,706 individuals in ExAC2 prior to the enrichment analysis.  
 

Identification of brain expressed genes and evolutionary constraint. 

We extracted brain expression data from the Genotype-Tissue Expression 
consortia49 (GTEx) data and considered genes with >1 read per kilobase of 
transcript per million mapped reads (RPKM) in brain tissues as“ brain-
expressed”. Gene loss-of-function intolerance (pLI) scores and gene missense 
intolerance scores were derived from ExAC2. We considered genes with 
missense Z scores > 3.09 or pLI scores ≥ 0.9 as intolerant of variants. Genes 
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were classified as plausible novel disease genes for NDD if they were present in 
an exome-wide enriched gene family, brain expressed, and under constraint 
(either missense or PTV). 

Paralog conservation analysis of ClinVar variants vs. ExAC variants. 

The ClinVar database (v20160302)39 was filtered for missense variants that were 
classified as pathogenic. We excluded variants that were classified as 
pathogenic by one submitter and not pathogenic by another submitter. Next, we 
homogenized disease names by removing ambiguous subtype classifications. 
We removed variants present in ExAC2 to increase the quality of truly disease 
associated variants. Finally, we counted the number of variants in genes 
associated with a specific disease, and kept only disease-gene association 
supported by at least ten variants. 67 disorders remained in the analysis. For 
each disorder-gene combination, missense variants in the same gene were 
included as comparison in the data set. Next, we classified and grouped all 67 
disorders by ICD10 codes, scored ClinVar and ExAC variants with the paralog 
score, and compared the paralog variant distribution using the Wilcoxon test 
(wilcox.test implemented in R). Notably, in nearly every ICD-10-CM category 
there is a sub-category named “other specified” condition 
(http://www.icd10monitor.com). 	 Codes titled “other” or “other specified” are for 
use when the information in the medical record provides detail for which a 
specific code does not exist (https://www.cdc.gov). Due to the limited definition 
and corresponding limited interpretation of these heterogeneous groups of 
disorders we removed these from the analysis. 

 
PPARG mutation tolerance scores for para_zscore, GERP, CADD, 
PolyPhen2, and SIFT. 
 
The mutation tolerance score (see Figure 5) as defined in Majithia et al., 201624, 
is given for every position of the protein sequence. Since the para_zscore is 
defined for every position of the protein, it can directly be used as a mutation 
tolerance score. For PolyPhen241 and SIFT3 we used the matrix of all possible 
amino acid exchanges represented as a nx20 matrix (n=protein length; n=505 for 
PPARG). The exchange matrices for both scores were generated using the 
respective webtools (see URLs) using all amino acid changes as input. Then, for 
every possible amino acid substitution in hg19 the average score of all possible 
amino acid exchanges at a given position was calculated, e.g., if for a given 
codon n missense mutations could cause m different amino acid exchanges, we 
calculated the average score over the m possible amino acid exchanges as the 
mutation tolerance score at a given position. Since CADD4 and GERP20 scores 
are defined for every genomic position, we used for every possible amino acid 
exchange the average respective score over all possible nucleotide exchanges 
within a given codon resulting into the same amino acid exchange.  
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Correlation between para_zscore and PPARG mut_tolerance score. 
 
The authors provided us with the experimentally derived and trained mutational 
tolerance score (“mut_tol”) for PPARG. A detailed description of the score can be 
found in Majithia et al., 201624. In short, the authors used highly parallel 
oligonucleotide synthesis to construct a library encoding all 9,595 (505 positions 
x 19 amino acid changes at each position) possible single amino acid 
substitutions to prospectively characterize PPARG variants. They developed a 
pooled functional assay in human macrophages, experimentally evaluated all 
protein variants, and used the experimental data to train a variant classifier by 
supervised machine learning. We used the cor {stats} function in R50 for the 
correlation analysis of both scores. 
 
Data availability . 
The code for generating the underlying alignments and the para_zscore, 
additional code and examples are available under https://git-
r3lab.uni.lu/genomeanalysis/paralogs. Additional data and annotations for the 
hg19 missense variants are available from: https://zenodo.org/record/817898. All 
de novo variants used in the analysis are listed in Supplementary Table 4. 
 
URLs. 
PolyPhen2, http://	http://genetics.bwh.harvard.edu/pph2/; SIFT, 
http://sift.jcvi.org/www/SIFT_seq_submit2.html; GTEx portal, 
http://www.gtexportal.org/home/; ExAC, http://exac.broadinstitute.org; ANNOVAR, 
http://annovar.openbioinformatics.org; ClinVar,  
https://www.ncbi.nlm.nih.gov/clinvar; Ensembl biomart, 
www.ensembl.org/biomart; Ensembl compara, 
www.ensembl.org/info/genome/compara; HGNC, http://www.genenames.org; 
CCDS, https://www.ncbi.nlm.nih.gov/projects/CCDS. 
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