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Abstract

Background: Two-sample summary data Mendelian randomization (MR) incor-
porating multiple genetic variants within a meta-analysis framework is a popular
technique for assessing causality in epidemiology. If all genetic variants satisfy the
instrumental variable (IV) and necessary modelling assumptions, then their individ-
ual ratio estimates of causal effect should be homogeneous. Observed heterogeneity
signals that one or more of these assumptions could have been violated.

Methods: Causal estimation and heterogeneity assessment in MR requires an ap-
proximation for the variance, or equivalently the inverse-variance weight, of each ratio
estimate. We show that the most popular ‘1st order’ weights can lead to an inflation
in the chances of detecting heterogeneity when in fact it is not present. Conversely,
ostensibly more accurate ‘2nd order’ weights can dramatically increase the chances of
failing to detect heterogeneity, when it is truly present. We derive modified weights
to mitigate both of these adverse effects.

Results: Using Monte Carlo simulations, we show that the modified weights out-
perform 1st and 2nd order weights in terms of heterogeneity quantification. Modified
weights are also shown to remove the phenomenon of regression dilution bias in MR
estimates obtained from weak instruments , unlike those obtained using 1st and 2nd
order weights. However, with small numbers of weak instruments, this comes at the
cost of a reduction in estimate precision and power to detect a causal effect compared
to 1st order weighting. Moreover, 1st order weights always furnish unbiased estimates
and preserve the type I error rate under the causal null. We illustrate the utility of
the new method using data from a recent two-sample summary data MR analysis to
assess the causal role of systolic blood pressure on coronary heart disease risk.

Conclusions: We propose the use of modified weights within two-sample summary
data MR studies for accurately quantifying heterogeneity and detecting outliers in the
presence of weak instruments. Modified weights also have an important role to play
in terms of causal estimation (in tandem with 1st order weights) but further research
is required to understand their strengths and weaknesses in specific settings.

Key words: Two-sample summary data Mendelian randomization; Inverse-variance
weighted estimate; Cochran’s () statistic; Outlier detection.

Total words in main body of paper: 4,210.


https://doi.org/10.1101/159442
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/159442; this version posted October 11, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Introduction

Mendelian randomization (MR) [I] is an instrumental variable approach that uses
genetic data, typically in the form of single nucleotide polymorphisms (SNPs), to
assess whether a modifiable exposure exerts a causal effect on a health outcome in
the presence of unmeasured confounding. A particular MR study design gaining in
popularity instead combines publically available summary data on SNP-exposure and
SNP-outcome associations from two separate studies for large numbers of uncorre-
lated variants within the framework of a meta-analysis. These studies should contain
no overlapping individuals (to ensure independence) but should also originate from
the same source population. This is referred to as two-sample summary data MR [2].
Providing the necessary modelling assumptions are met and the chosen set of SNPs
are all valid instrumental variables, an inverse-variance weighted (IVW) average of
their individual causal ratio estimates provides an efficient and consistent estimate
for the causal effect. This is referred to as the IVW estimate (see Box 1). Cochran’s
@ statistic, which is derived from the IVW estimate, should follow a x? distribution
with degrees of freedom equal to the number of SNPs minus 1. Excessive heterogene-
ity is an indication that either the modelling assumptions have been violated, or that
some of the genetic variants violate the IV assumptions - for example, by exerting a
direct effect on the outcome not through the exposure [3]. This is termed ’horizontal
pleiotropy’ [4,5]. For brevity we will refer to problematic horizontal pleiotropy simply
as pleiotropy from now on.

The presence of heterogeneity due to pleiotropy does not necessarily invalidate an
MR study. If across all variants: (i) the amount of pleiotropy is independent of in-
strument strength (the InSIDE assumption [6]) and (ii) it has a zero mean, then a
standard random effects meta-analysis will still yield reliable inferences [0, [7]. Al-
though many MR methods now exist which offer robustness to pleiotropy, in this
paper we focus solely on the standard IVW estimate.

Choice of weights in two-sample summary data MR

Typically, ‘1st order’ inverse-variance weights are used to calculate both the IVW
estimate and Cochran’s ). 1st order weights ignore uncertainty in the denominator
of the ratio estimate, which is equivalent to making the ‘NO Measurement Error’
(NOME) assumption, as defined in [7, [§]. This nomenclature is chosen to remind the
practitioner that the SNP-exposure association estimates are only equal to the true
associations when measured with infinite precision (or without error). The NOME
assumption does not relate to absence of measurement error in the exposure itself,
which can also be problematic for MR studies [9]. Although the NOME assumption is
never completely satisfied, strong violation (via the use of weak genetic instruments)
induces classical regression dilution bias in the IVW estimate towards the null. So
called ‘2nd order” weights, attempt to better acknowledge the full uncertainty in the
ratio estimate of causal effect from each SNP [10] [I1] (see Box 1). It may appear
obvious that 2nd order weights should be used as standard within an MR study to
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calculate the IVW estimate and Cochran’s ). In fact, Thompson et al. [12] showed
that 2nd order weighting produces causal estimates which are generally more biased
than 1st order weighting. The ability of 1st and 2nd order weighting to furnish reliable
() statistics has yet to be fully explored.

Methods

It is possible to view Cochran’s @) statistic not just as a method for quantifying het-
erogeneity, but as a tool for directly estimating the causal effect. That is, the IVW
estimate actually minimises Cochran’s ). We use this fact to derive a generalised
estimating equation based on an extended version of Cochran’s @) statistic (see Box
2), where its weight term is allowed to be a function of the causal effect parameter.
We show that 1st order and 2nd order weighting are special cases of this general
weight function. Using this formulation we propose two new procedures for causal
effect estimation and heterogeneity quantification.

Our first procedure is termed the ‘iterative’ approach. It iteratively updates the
weight term with improved guesses for the causal parameter, using the 1st order IVW
estimate as a starting point. This procedure is closely related to the ‘two-step GMM’
estimator [I3] used in econometrics. Our contribution has been to describe how it
can be implemented using Cochran’s () statistic in the two-sample summary data
MR setting. It will be shown that the iterative IVW approach improves causal ef-
fect estimation and heterogeneity detection compared to 1st and 2nd order weighting.
However, regardless of the number of iterations performed, this procedure will not
in general yield the same results as that obtained from directly minimising a more
general version of Cochran’s (), where in addition the weight term is allowed to be a
proper function of the causal effect parameter 5. We refer to this second procedure as
the ‘exact’ approach. The exact IVW estimate can be viewed as analogous to the lim-
ited information maximum likelihood (LIML) estimate, translated to the two-sample
summary data MR setting [14]. For further details see Box 2.

Estimation and inference after detection of pleiotropy

Box 2 describes how to use () statistics to calculate the IVW estimate under a
fixed effect model and to test for the presence of heterogeneity due to pleiotropy.
If substantial heterogeneity is detected, inferences about the causal effect need to
be adjusted to take this additional uncertainty into account, by assuming a random
effects model [15, [16]. In Appendix 1 of Online Supplementary Material we describe in
detail how to generalise the () statistics to obtain point estimates, standard errors and
confidence intervals for the 1st order, 2nd order, iterative and exact IVW estimate
under both fixed and random effects models (the multiplicative model is currently
preferred for MR studies). This task is straightforward for the 1st order, 2nd order and
iterative weighting approaches because they can be fitted using standard regression
software. Bespoke methods are needed for exact weighting, however, and a short
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summary of this particular approach is provided in Box 3. Specifically, in the fixed
effect case we describe how to invert the exact @ statistic to get a 95% confidence
interval for the exact weighted IVW estimate. In the random effects case, we describe
how to jointly estimate the causal effect and multiplicative over-dispersion parameter
using a system of two estimating equations. A non-parametric bootstrap algorithm is
then proposed to obtain a confidence interval for the causal effect.

Performance of the () statistics under no pleiotropy

We now assess the extent to which @) statistics derived using 1st order, 2nd order,
iterative and exact weighting erroneously detect heterogeneity due to pleiotropy when
it is not present (i.e. its type I error rate). To assess this, two-sample summary data
MR studies comprising 25 SNP-exposure and SNP outcome association estimates were
generated from models with no heterogeneity due to pleiotropy. This furnished a set
of ratio estimates between which no additional variation should exist as their instru-
ment strength grows large (because NOME is satisfied), or if the causal effect (/)
equals zero. To highlight this we simulated MR studies with a range of instrument
strengths - from weak (a mean F-statistic of 10) to strong (a mean F-statistic of 100).
Further details of the simulation study set up are described in Appendix 2 of Online
Supplementary Material.

Table|1] (columns 2-9) show the mean () statistic and the probability of the ) statistic
detecting heterogeneity at the 5% significance level (the type I error rate), when us-
ing 1st order, 2nd order, iterative and exact weights. Five different mean F-statistic
values were considered for 5=0 (no causal effect), 5=0.05 and 5=0.1, giving 15 sce-
narios in total. Four iterations were used for the iterative weighting method, as this
was sufficient to ensure convergence. We note that in the absence of a causal effect
(6=0), 1st order weights are exactly correct. Furthermore, in the presence of a causal
effect, when the mean F-statistic is 100 all weighting methods are near-exact. Under
the causal null, all weighting schemes control the type I error rate for detecting het-
erogeneity. 2nd order weighting is extremely conservative in this respect with weak
instruments, however (e.g. a type I error rate near zero when F'=10).

In the presence of a causal effect, 1st order weights under-estimate the true vari-
ability amongst the ratio estimates as the mean F'-statistic reduces. The associated
() statistics are then too large on average (i.e. positively biased beyond their expected
value of 24). This inflates the type I error rate for detecting pleiotropy beyond nominal
levels (e.g. a type I error rate of &~ 80% when F=10 and $=0.1). 2nd order weight-
ing continues to over-correct the () statistic so that it is negatively biased, thereby
removing any ability to detect heterogeneity at all. In contrast, iterative weights
are much more effective at preserving the type I error rate of the () statistic at its
nominal level, unless the mean F-statistic is very low (indicating weak instruments).
Exact weighting perfectly controls the type I error rate of Cochran’s () across all the
scenarios considered. Appendix 2 of Online Supplementary Material shows equivalent
results for MR studies of 10 and 100 variants, with highly similar results.
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Figure (1| (left and right) shows the distribution of @) statistics using 1st order, 2nd
order and exact weights for f=0.1 and when the mean F-statistic is 100 and 10. This
illustrates how exact weighting ensures Cochran’s @) statistic is faithful to its correct
null distribution.

Power to detect pleiotropy

In Table [1] the type I error rate of Cochran’s @) statistic for detecting heterogeneity
using 2nd order weights was below its nominal level. This is detrimental if it translates
into a low statistical power to detect heterogeneity when it is truly present. Figure
(left) shows the power of Cochran’s @) to detect heterogeneity at the 5% significance
level as a function of 1st order, 2nd order, iterative and exact weights when data
are simulated under a multiplicative random effects model with heterogeneity due to
pleiotropy of increasing magnitude (specifically, equation (2) in Appendix 1 of Online
Supplementary Material was used).

The simulation is repeated for MR analyses with 10, 25 and 100 SNPs. For all
simulations, the causal effect equalled 0.05 and the mean F-statistic equalled 61. We
see that the power of Cochran’s ) to detect heterogeneity approaches 100% for all
weighting schemes as the pleiotropy variance increases. Power also increases with the
number of SNPs. The power of iterative or exact weights is near identical, therefore
we only show results for the exact weights for clarity. The most striking result in this
plot is that the power of 2nd order weighting always lags considerably behind that of
1st order or exact weights.

Figure 2| (right) shows the results of a near identical simulation for the case L=25,
except that the causal effect is set to 0.1 and the mean F-statistic is equal to 25. We
see that the power to detect heterogeneity is always greatest when using 1st order
weights, but only because its power curve starts at a baseline level of 28% when there
is no pleiotropy. This corresponds to the type I error rate observed in row 14 of
Table [ The power of iterative and exact weighting starts at the correct 5% level,
and rapidly increases to 100% as the pleiotropy variance increases. The two imple-
mentations of our modified weights can be differentiated in this simulation, with the
iterative approach being slightly more powerful. The power of 2nd order weighting,
unsurprisingly, lags considerably behind the rest. Equivalent plots for data simulated
under an additive pleiotropy model are shown in Appendix 3 of Online Supplementary
Material, and are highly similar.

Detecting outliers using individual components of @)

When heterogeneity is detected by the IVW model, it is interesting to investigate
whether this is contributed to by all SNPs, or if instead a small number of SNPs
are responsible. Under the null hypothesis of no heterogeneity, ) should follow an
appropriate x7_, distribution, with L being the number of SNPs. Likewise, each
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individual component of ) can be approximated by a x? distribution. If an individual
SNP’s @) contribution is extreme (for example above the 5% threshold of 3.84 or
instead a bonferroni corrected threshold), then it may be desirable to exclude the SNP
in a sensitivity analysis. Although we do not want to advocate a rigid, blanket policy
of outlier removal, in Appendix 4 of Online Supplementary Material we illustrate via
simulation how the reliability of such a procedure depends on the choice of weights.
The simulation (with 26 SNPs and a single larger outlier) is motivated by the real
data example in the following section. In this instance, our simulation suggests that
iterative rather than exact weights are best at correctly identifying outliers due to
pleiotropy.

Estimator performance with and without pleiotropy

Table [2| shows the performance of the 1st order, 2nd order, iterative and exact weigth-
ing in providing accurate point estimates, standard errors and confidence intervals
for the causal effect under a fixed effect (no heterogeneity) model for MR analyses of
25 variants. For exact weighting we show the empirical coverage using two different
methods: A symmetric 95% confidence interval (labelled ‘CF;’) and a 95% confidence
interval obtained from inverting its @ statistic (labelled ‘CFy’), as described in Box
3. Importantly, all methods give reliable unbiased estimates with correct coverages
under the causal null hypothesis. In the presence of a non-zero causal effect 1st or-
der and 2nd order IVW estimates are increasingly affected by regression dilution bias
(and consequently worsening coverage) as the instrument strength decreases. Itera-
tive weights also produce IVW estimates that suffer from regression dilution bias and
sub-optimal coverage, but to a lesser extent than 1st or 2nd order weighting. FExact
weighting perfectly removes the effect of regression dilution bias (although the pre-
cision of the estimate is reduced) and confidence intervals obtained via the inversion
method have the correct coverage. Equivalent results for MR studies with 10 and
100 SNPs are shown in Appendix 5 of Online Supplementary Material. When only
10 SNPs are available and they are all weak, the coverage of the inverted confidence
interval for the exact IVW estimate is slightly conservative (e.g. 96%-98% instead of
95%). As the number of SNPs increases to 100, coverage is very close to the nominal
95% level irrespective of instrument strength.

Table |3 shows equivalent results when summary data sets of 25 SNPs are simulated
under a multiplicative random effects model allowing for pleiotropy. The data are
simulated so that the variability of the ratio estimates is twice that expected in the
absence of pleiotropy (i.e the variance inflation parameter ¢ = 2). The performance
of each approach follows a similar pattern to that presented for the fixed effect case
in Table with 1st order, 2nd order and iterative weights adversely affected by
weak instrument bias and under coverage. The exact IVW estimate and its cor-
responding variance inflation parameter estimate are approximately unbiased. The
non-parametric bootstrap procedure yields confidence intervals with approximately
correct coverage. As before, confidence intervals have a tendency to be slightly con-
servative when the instruments are weak. Equivalent results for MR studies with
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10 and 100 SNPs are shown in Appendix 6 of Online Supplementary Material. As
the number of SNPs increases, the coverage of the exact IVW estimate’s confidence
interval is increasingly closer to the nominal level.

Power to detect a causal effect

In Appendix 7 of Online Supplementary Material, we show the power of 1st order,
2nd order, iterative and exact weighting to detect a causal effect for MR studies of 10,
25 and 100 SNPs when the data are generated from the same multiplicative random
effects model. These simulations highlight a downside of exact weighting for causal
estimation: when there are only a small number of weak instruments, its power can be
considerably lower. For example, when F' = 10 and the causal effect is 0.05 its power
is just under half that of the 1st order IVW estimate (29% vs 13%). However, the
power difference reduces considerably for 25 SNPs (e.g 60% vs 40%) and is effectively
zero for 100 SNPs. The power of iterative weighting is much more comparable to that
of 1st order weighting, but always slightly lower.

Applied example

Figure[3|(top) shows a scatter plot of summary data estimates for the associations of 26
genetic variants with systolic blood pressure (SBP, the exposure) and coronary heart
disease (CHD, the outcome). SNP-exposure association estimates were obtained from
the International Consortium for Blood Pressure consortium (ICBP) [17]. SNP-CHD
association odds ratios were collected from Coronary ARtery Disease Genome-Wide
Replication And Meta-Analysis (CARDIoGRAM) consortium [18], which are plotted
(and subsequently modelled) on the log odds ratio scale by making a normal approx-
imation. These data have previously been used in a two-sample summary data MR
analysis by Ference et al. [19] and Lawlor et al. [20], but we extend their original anal-
ysis here by applying our modified weights and conducting a more in depth inspection
of each variant’s contribution to the overall heterogeneity. The mean F-statistic for
these data is 61. Using 1st order weights the IVW estimate, which represents the
causal effect of a ImmHg increase in SBP on the log-odds ratio of CHD, is 0.053.
This is shown as the slope of a solid black line passing through the origin. Cochran’s
@ statistic based on 1st order weights is equal to 67.1, indicating the presence of
substantial heterogeneity. For this reason, only random effects models were used to
derive point estimates, confidence intervals and p-values for the causal effect.

Table 4] shows the results of further IVW analyses using all weighting schemes. All
schemes detect significant heterogeneity. As expected, the observed heterogeneity is
largest when using 1st order weights, smallest when using 2nd order weights, and in
between the two when using modified weights. Point estimates and standard errors are
in good agreement across the different weights, because the mean instrument strength
is high. Exact weighting gives the largest point estimate 0.054 under a random effects
model. This is followed by 1st order and then 2nd order weights respectively. This
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ordering is as expected, given their relative susceptibility to regression dilution bias.

For comparison, we also report the Weighted Median [21], Bwr, that can identify
the causal effect when up to (but not including) half of the information in the analy-
sis stems from genetic variants that are invalid IVs. Its estimate, which is calculated
using 1st order weights, is 0.063. Although all approaches provide strong evidence in
favour of a non-zero causal effect, the exact random effects IVW estimate is the least
precise of all estimates. Consequently its p-value for testing the causal null hypothesis
is the largest of all.

Figure |3| (bottom-left) shows the individual contribution to Cochran’s @) statistic
under each weighting scheme. Horizontal lines have been drawn to indicate the loca-
tion of the 5th, 1st and 0.19th percentile of a x? in order to help assess the magnitude
of the contributions. The 0.19th percentile is derived as a 0.05 threshold adjusted for
multiple testing using the Bonferroni correction. We see that the eighth SNP in our
list (rs17249754) is responsible for the vast majority of the excess heterogeneity. Its
contribution, (Jg, ranges from approximately 24.5 to 28 depending on weighting. Vari-
ant rs17249754 sits in the ATPase plasma membrane Ca2+ transporting 1 (ATP2B1)
gene, which is involved in intracellular calcium homeostasis, and is strongly associated
with higher SBP. However, in the CARDIoGRAM consortium it is associated with
reduced risk of CHD.

Since rs17249754 is also a strong instrument, and is potentially pleiotropic, its pres-
ence in the data could lead to the InSIDE assumption being violated. We therefore opt
to remove it in a further sensitivity analysis, and Table [4] show the results. All IVW
estimates increase by around 20% (lying between 0.063 and 0.067), but are ordered
as before. Removal of rs17249754 leads to a dramatic reduction in the amount of
heterogeneity present in the data, as referenced by () statistics between 30 and 35 for
all methods. Figure [3| (bottom-right) shows the updated contributions of each SNP
to the various () statistics after removing rs17249754. If only 1st order weighting were
available, it might be tempting to exclude further variants from the analysis, but this
signal is appropriately tempered when using exact weights. The Weighted Median
estimate without rs17249754 is 0.065 (compared to 0.063 with). This highlights its
inherent robustness to outliers, which is a major strength.

Discussion

In this paper we have demonstrated the limitations of 1st and 2nd order weighting
when used for IVW analysis in two-sample summary data Mendelian randomiza-
tion. Most importantly, we highlight the potential for serious type I error inflation
of Cochran’s () statistic when using standard 1st order weights with weak instru-
ments. In recent work, Verbanck et al. [22] also noted this same tendency and pro-
posed a simulation-based alternative to 1st order weighting named ‘MR-PRESSO’.
Our simulations show that modified weights can deliver much more reliable tests for
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heterogeneity than either 1st or 2nd order weighting, and offer a simple alternative to
MR-PRESSO.

Modified weights were also shown to be a more reliable tool for the detection and
removal of outliers in a given data set, as apposed to 1st order weights (which may
detect too many outliers) and 2nd order weights (that may detect too few). Our
simulations suggest that the exact weights should be used when testing for the overall
presence of heterogeneity (referred to as the ‘global’ test by Verbanck et al. [22]) but
that iterative weights are preferable if looking at the individual outliers. We suspect
this is because exact weighting makes a more aggressive correction for regression di-
lution bias than iterative weighting. Its resulting estimate then makes more variants
appear as outliers, because their ratio estimates are further away from the corrected
slope. In effect, exact weighting leads to the detection of SNPs that are weak or
pleiotropic.

An exciting finding of this paper is that the exact weighting also yields causal es-
timates that are remarkably robust to weak instrument bias. This opens up the
potential for the significance threshold used to select SNPs as instruments to be set
at a less stringent level. For example, in a specific analysis there might be four SNPs
that are associated with the exposure with a p-value less than 5x107% (which equates
to an F statistic of approximately 30 and above), but a total of 50 SNPs available
that are associated with the exposure with a p-value less than 5x107% (which equates
to an F statistic of approximately 20 and above). Modified weights would then be
potentially preferable as a tool to more effectively utilize this larger set of SNPs within
an MR analysis.

There are two downsides to the use of exact weights with weak instruments. Firstly,
it can produce causal estimates with a reduced precision compared to simple 1st
order weighting (although this difference disappears as the number of instruments in-
creases). Secondly, if weak instruments are ‘discovered’ and analysed using the same
data, then SNP-exposure estimates are more susceptible to the ‘winner’s curse’ than
strong instruments. In preliminary work conducted in tandem with this paper, Zhao
et al. [I4] investigate the use of exact weighting for causal estimation and attempt to
address both these issues. Specifically, they incorporate a penalized weight function
within the exact weights. This reduces the effect of outliers (as apposed to explicit
outlier removal) and increases the precision of the causal estimate. Sampling splitting
is proposed to remove the affect of winner’s curse. The methods laid out in this paper
differ from that of Zhao et al. [I4] in four important ways. Firstly, we focus on the
case of a multiplicative random effects pleiotropy commonly used in summary data
MR whereas Zhao et al assume an additive random effects model. Secondly, Zhao
et al derive and implement their method using profile-likelihood theory, whereas as
our approach is motivated and implemented using Cochran’s () statistic. Thirdly, we
propose two forms of modified weighting (iterative and exact). Fourthly, we describe
how both iterative and exact weighting can be used to test for heterogeneity as well
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as for causal estimation. For further details on the link between our work and that of
Zhao et al. [I4] see Appendix 1 of Online Supplementary Material.

Limitations

Our conclusions regarding the use of modified weights are limited to the two-sample
summary setting where SNP-outcome and SNP-exposure associations are estimated in
independent but homogeneous samples. Further research would be required to decide
if modified weights should be used in MR analyses of summary data estimates when
there is partial overlap between samples, or in the single sample (total overlap) setting.

When Cochran’s () statistic detects significant amounts of heterogeneity, it is pru-
dent to test whether it is meaningfully biasing the analysis. This would indeed be the
case if the heterogeneity were caused in part by directional pleiotropy with a non-zero
mean. This would lead to bias in the IVW estimate, unless of course it was caused by
a small number of SNPs that could be identified and removed from the analysis. MR-
Egger regression [0, [7] could instead be used to address this. This approach simply
regresses SNP-outcome associations on the SNP-exposure associations, tests for bias
via its intercept, and estimates a bias-adjusted causal effect via its slope. Observed
heterogeneity around the MR-Egger fit can then be quantified using an extended ver-
sion of Cochran’s @ statistic, Riicker’s Q" [7, 23], and each variant’s contribution to
@' can be used as the basis for outlier detection. Currently MR-Egger and Riicker’s
Q' statistic use 1st order weights. Preliminary work suggests that modified weighting
can be applied to MR-Egger regression to improve its performance - both in terms of
causal effect estimation and heterogeneity quantification - just as for an IVW analysis,
but further development and validation of this method is required.

Software to implement all of the methods introduced in this paper can be found

within the RadialMR package to perform two-sample summary data MR, which can
be downloaded from https://github.com/WSpiller/RadialMR.
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Key messages:

Two-sample summary data Mendelian randomization requires the specification
of inverse-variance weights for model fitting, heterogeneity quantification and
outlier detection amongst a set of causal estimates.

Heterogeneity indicates a possible violation of the necessary IV or modelling
assumptions of which pleiotropy is a likely major cause.

1st order weights can inflate the type I error rate of Cochran’s ) statistic for
detecting heterogeneity about the IVW estimate when the NOME assumption
is strongly violated (as judged by a low F-statistic), and the true causal effect
of interest is non-zero.

2nd order weights can reduce the power of Cochran’s () statistic for detecting
heterogeneity about the IVW estimate when the NOME assumption is violated.

Modified weights (developed in this paper) preserve the type I error rate of
Cochran’s () statistic, whilst maintaining its statistical power.

‘Exact’ weights should be used for global tests of heterogeneity. ‘Iterative’
weights should be used to assess the outlier status of individual SNPs.

IVW estimates obtained using exact weights are naturally corrected for
regression dilution bias, and work well with large numbers of instruments, but
can be imprecise relative to other weighting schemes with small numbers of weak
instruments.

Regardless of the number or strength of instruments used, 1st order weights
always furnish unbiased IVW estimates and preserve the type I error rate under
the causal null.
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Box 1: Standard two-sample summary data MR

The IV assumptions: The canonical approach to MR assumes that group of SNPs are valid IVs for
the purposes of inferring the causal effect of an exposure, X, on an outcome, Y. That is they are: associated
with X (IV1); not associated with any confounders of X and Y (IV2); and can only be associated with Y
through X (IV3). The IV assumptions are represented by the solid lines in the causal diagram below for a SNP
G, with unobserved confounding represented by U. Dotted lines represent dependencies between G and U, and
G and Y that are prohibited by the IV assumptions. The causal effect of a unit increase in X on the outcome
Y, denoted by 3, is the quantity we are aiming to estimate.

w2

G V1 Y B Y

The Ratio estimate: Assume that exposure X causally affects outcome Y linearly across all values of X, so
that a hypothetical intervention which induced a 1 unit increase in X would induce a (3 increase in Y. Suppose
also that all L. SNPs predict the exposure via an additive linear model with no interactions. If SNP j is a valid
IV, and the two study samples are homogeneous, then the underlying SNP-outcome association from sample 1,
I'j, should be a scalar multiple of the underlying SNP-exposure association estimate from sample 2, v;, the scalar
multiple being the causal effect 8. That is:

Lj =B

The ratio estimate for the causal effect of X on Y using SNP j (out of L), Bj = I'j/%;, where I'; is the
estimate for SNP j’s association with the outcome (with standard error oy ;) and 4; is the estimate for SNP j’s
association with the exposure (with standard error ox ).

The IVW estimate: The overall inverse-variance weighted (IVW) estimate for the causal effect obtained
across L uncorrelated SNPs is then given by

. R
=1 ;B

Brvw = T )
21wy

where wj; is the inverse-variance of Bj. Cochran’s @ statistic:
L L
Q=>Q; =Y wiBj—Brvw)?, 1)
=1 =1

can then be used to test for the presence of heterogeneity. If heterogeneity is detected, this provides evidence of
horizontal pleiotropy. Two popular choices for the inverse-variance weights used to calculate the IVW estimate
and Cochran’s @) statistic are:

22
’Y "
1st order (fixed effect) weights: w; = TJ
oy
2 2,2 1
oy, TZos.
2nd order (fixed effect) weights: w; = };J + ]A4X]
A2 A

In the two-sample setting, 2nd order weights are simplified because it is not necessary to include terms involving
the covariance of 4; and I'j, since they are obtained from independent samples. For a more detailed description
of the assumptions required by two-sample summary data MR, see Bowden et al. [7].
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Box 2: Accounting for weak instruments under a fixed effect model and testing for pleiotropy

We start by writing down two models: firstly the underlying data generating model for the SNP-outcome
association estimates under the assumption of no pleiotropy, which is a function of the causal effect and the true
SNP-exposure association; and secondly the model that we actually fit to the data, which is a function of the
causal effect and the SNP-exposure association estimate:

Underlying model: T'; = fBv; +oyje;, € ~ N(0,1) (2)
,8'%—&-,/520%(].—1—0%].6]-, e; ~ N(0,1) 3)

Note that the variance of the error term in the fitted model has been inflated by a factor of 5203(]. by virtue

of replacing y; with its estimate in . Dividing both sides of the fitted model through by 4; we can obtain a
model for the jth ratio estimate, and from that an expression for its variance:

Fitted model given : f‘j

(4)

The variance term Var(Bj) in is a function of the true causal effect 8. Let its reciprocal inverse-variance

weight be denoted as w;(8) = 1/Var(3;). Using this weight, we now define the following modfied Q statistic
and IVW estimate:

L
Qmw(B),B) = > wi(B)(B; —B)?, (5)
=1
. S w;(8)B;
7 6
frvw I ©

The IVW estimate using 1st order weights is obtained by replacing w;(8) with w;(0) in @ Likewise, its
associated heterogeneity statistic is Qm (w(0),8). The IVW estimate using 2nd order weights is obtained by
replacing w;(8) with w;(8;) in @ Likewise, its associated heterogeneity statistic is Qm (w(83;), B).

We now introduce two new fixed effect IVW estimates (and associated heterogeneity statistics) obtained
via different weighting schemes.

The ‘iterative’ IVW estimate

Briefly, let ,@’IVW(O) be the IVW estimate obtained using 1st order weights. Now define Blvw(l) as the
IVW estimate obtained from plugging wj(BIVW(O)) into @ Lastly, define BIVW(i) as the IVW estimate
obtained from plugging wj(BIVW(i—l)) into @ We call BIVW(i) the ith ‘iterative’ IVW estimate and
Qm(w(Brvw (i), B) its associated heterogeneity statistic.

The ‘exact’ IVW estimate

Although we obtain the 1st order, 2nd order and iterative IVW estimates directly from formula @, each
one has the property that it minimises its equivalent @ statistic in . Crucially, the weights of these Q) statistics
do not depend on 3 because a value (or estimate) has been substituted in its place.

In contrast, the exact IVW estimate is the value obtained from directly minimising the generalised @
statistic Qm (w(B),8) in equation with respect to B. Here, the weights are now allowed to be a proper
function of 8 and affect the minimisation. Letting BIVW now represent the exact IVW estimate derived in this
manner, Qm(w(,é’lvw), BIVW) is then its associated heterogeneity statistic.
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Box 3: Accounting for weak and pleiotropic instruments using exact weighting

First define the following generalized @ statistic and weight function for the multiplicative random effects
model:

Qw(B, ¢), )

L
> w;(8,8)(B; — B)?, (7
=1
(bo’%/] TQBQU%{j - (8)
v

wi(B,6) = (

Here ¢ (which is greater than or equal to 1) is the multiplicative scale factor that quantifies the degree of
heterogeneity.

Inference for exact weighting under a fixed effect model

When ¢ is set to 1 in equations and this is equivalent to assuming a fixed effect model, and min-
imising (]2[) with respect to 8 gives the fixed effect exact IVW estimate, as described in Box 2. We explore two

ways to calculate the standard error of the fixed exact IVW estimate, denoted by ﬁ[vw. The first method uses
the standard error formula:

SEBrvw ©)

S A —
\/Zfﬂ w;(Brvw, 1)’

to construct symmetric ninety-five percent confidence intervals for the causal effect as BIVW + tors,L—1 X
SE(BIVWl). Here t g75,7,—1 is the 97.5th percentile of student’s t-distribution with L — 1 degrees of freedom.
This same procedure is used to derive confidence intervals for the IVW estimate under 1st order, 2nd order and
iterative weighting.

The second method directly inverts the @ statistic to find the confidence set:

CI(Brvw,0.95) = {8: Q(w(B,1),8) < x7_1(0.95)} (10)

Where XZL_I(O.QS) is the 95th percentile of a chi-squared distribution with L — 1 degrees of freedom. In order
to improve the properties of this approach with few instruments, we additionally replace the value 0.95 in
with the value 2®(z) — 1, where z is the 97.5th percentile of a t-distribution with L — 1 degrees of freedom and
®() is the cumulative distribution function of a standard normal distribution. As L increases, 2®(z) — 1 tends
to 0.95 from above.

Inference for exact weighting under a random effects model

The fixed effect exact IVW estimate, and its associated confidence intervals will only give reliable esti-
mates if the fixed effect model holds. In practice, substantial heterogeneity is generally present in MR studies,
in which case a random effects model should be adopted. The random effects exact IVW estimate is obtained
by finding the joint value of (3,¢) that solves:

Q(w(B,9),8) — (L—-1)=0, (11)

subject to the constraint that

9Q(w(B,9),8)
op

It is not straightforward to obtain a reliable confidence interval for the causal parameter 8 using the inversion
method - as in equation - when over-dispersion is allowed. This is because it ignores uncertainty in the
estimation of ¢. Instead we obtain an estimate for the variance of BIVW using a standard non-parametric
bootstrap algorithm. For further details please see Appendix 1 of Online Supplementary Material.

=0. (12)
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Mean 1st order w; 2nd order w; Modified w;
Iterative Exact

F Q TIEWQ) Q@ TIE(Q) @ TIEQ) Q TIE(Q)

No heterogeneity, 5=0
100 239 0.044 22.8 0.022 239 0.044 239 0.044
61 24.1 0.052 219 0.016 24.1 0.061 24.1 0.051
40 239 0.049 20.3 0.006 239 0.048 239 0.048
25 24.0 0.052 17.7 0.002 239 0.061 239 0.051
10 24.0 0.052 12.3 0.000 23.6 0.047 234 0.042
No heterogeneity, 5=0.05
100 242 0.053 229 0.028 24.0 0.049 24.0 0.049
61 244 0.058 21.9 0.017 24.0 0.0561 24.0 0.051
40 24.7 0.064 20.3 0.007 239 0.050 239 0.049
25 259 0.092 17.8 0.002 24.1 0.052 239 0.048
10 314 0.272 134 0.000 25.6 0.095 23.7 0.043
No heterogeneity, 5/=0.1
100 247 0.065 22.8 0.027 239 0.052 239 0.051
61 25.6 0.084 21.8 0.017 239 0.048 239 0.047
40 27.3 0.132 20.5 0.009 24.1 0.053 24.0 0.050
25 31.7 0.282 18.2 0.003 24.4 0.060 239 0.048
10 539 0.792 15.8 0.004 27.8 0.166 239 0.051

Table 1:  Mean Q statistic and type I error rate (T1E) of 1st order, 2nd order,
iterative (four iterations were performed) and exact weighting. Results are the average
of 10,000 simulated data sets. Type I error rate (T1E(Q)) refers to the proportion of
times Q is greater than the upper 95th percentile of a x3, distribution.
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Mean F statistic = 100 Mean F statistic = 10
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Figure 1: Distribution of Q) statistics (with 25 degrees of freedom) using 1st order,
2nd order and exact weights. The causal effect 5=0.1 and the mean F' statistic equals
100 (left) and 10 (right) respectively.
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Figure 2: Left: Power of Cochran’s () statistic to detect heterogeneity as a function
of the pleiotropy variance and number of SNPs (L) using 1st order, 2nd order and
exact weights. Pleiotropy is simulated under a multiplicative random effects model.
The causal effect is equal to 0.05 and the mean F'-statistic is 61. Right: Equivalent
power plot except the causal effect is equal to 0.1 and the mean F'-statistic is 25.
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Mean 1st order w; 2nd order w; Modified w;
Iterative Exact

F B[vw(SE); CF B[vw(SE); CF B[vw(SE); CF B[vw(SE);CFl CFQ

No Heterogeneity, /=0

100 0.000 (0.011); 0.952 0.000 (0.011); 0.951 0.000 (0.011); 0.952 0.000 (0.011); 0.961 0.948
61 0.000 (0.011); 0.947 0.000 (0.011); 0.947 0.000 (0.011); 0.948 0.000 (0.011); 0.956 0.946
40 0.000 (0.011); 0.954 0.000 (0.010); 0.952 0.000 (0.011); 0.955 0.000 (0.011); 0.957 0.946
25 0.000 (0.011); 0.947 0.000 (0.010); 0.941 0.000 (0.011); 0.949 0.000 (0.011); 0.942 0.949
10 0.000 (0.009); 0.952 0.000 (0.007); 0.928 0.000 (0.009); 0.958 0.000 (0.010); 0.836 0.958

No Heterogeneity, 5=0.05
100 0.049 (0.011); 0.952 0.049 (0.011); 0.951 0.049 (0.011); 0.954 0.050 (0.011); 0.962 0.952
61 0.049 (0.011); 0.948 0.047 (0.011); 0.944 0.049 (0.011); 0.952 0.050 (0.011); 0.961 0.953
40 0.048 (0.011); 0.939 0.045 (0.011); 0.918 0.048 (0.011); 0.943 0.050 (0.012); 0.951 0.946
25 0.046 (0.011); 0.910 0.041 (0.010); 0.819 0.046 (0.011); 0.923 0.050 (0.012); 0.940 0.954
10 0.033 (0.010); 0.589 0.027 (0.008); 0.286 0.034 (0.011); 0.670 0.051 (0.012); 0.868 0.957
No Heterogeneity, 5=0.1

100 0.099 (0.011); 0.945 0.097 (0.011); 0.945 0.099 (0.012); 0.950 0.100 (0.012); 0.963 0.946
61 0.098 (0.011); 0.932 0.095 (0.011); 0.920 0.098 (0.012); 0.944 0.100 (0.012); 0.956 0.947
40 0.097 (0.012); 0.911 0.091 (0.011); 0.859 0.097 (0.012); 0.933 0.100 (0.013); 0.954 0.951
25 0.092 (0.012); 0.844 0.083 (0.011); 0.649 0.092 (0.013); 0.896 0.101 (0.014); 0.947 0.955
10 0.065 (0.013); 0.348 0.055 (0.010); 0.094 0.072 (0.014); 0.518 0.102 (0.016); 0.895 0.964

Table 2:  Mean causal estimate BIVW, standard error (SE) and coverage frequency
(CF) of the 95% confidence interval when using 1st order, 2nd order, iterative and
exact weights. Number of variants L=25. CF; = coverage of a symmetric 95% confi-
dence interval, CFy = coverage of inverted () statistic confidence interval.
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Mean 1st order w; 2nd order w; Modified w;
Iterative Exact

F BIVW(SE); CF BIVW(SE)§ CF BIVW(SE)§ CF BIVW(SE)§CF ¢A)

Heterogeneity, 5=0

100 0.000(0.016); 0.949 0.000 (0.015); 0.950 0.000 (0.016); 0.950 0.000 (0.016); 0.939 2.000
61 0.000 (0.016); 0.950 0.000 (0.015); 0.951 0.000 (0.016); 0.951 0.000 (0.016); 0.940 2.004
40 0.000 (0.016); 0.953 0.000 (0.014); 0.951 0.000 (0.016); 0.955 0.000 (0.016); 0.944 1.999
25 0.000 (0.015); 0.949 0.000 (0.013); 0.945 0.000 (0.015); 0.954 0.000 (0.017); 0.945 2.003
10 0.000 (0.013); 0.952 0.000 (0.009); 0.924 0.000 (0.013); 0.960 0.000 (0.037); 0.970 1.943
Heterogeneity, 5=0.05
100 0.050 (0.016); 0.948 0.048 (0.015); 0.947 0.050 (0.016); 0.949 0.050 (0.016); 0.938 2.002
62 0.049 (0.016); 0.951 0.046 (0.015); 0.943 0.049 (0.016); 0.954 0.050 (0.016); 0.943 1.998
40 0.048 (0.016); 0.949 0.044 (0.014); 0.924 0.048 (0.016); 0.953 0.050 (0.017); 0.943 1.995
25 0.046 (0.015); 0.933 0.039 (0.013); 0.839 0.046 (0.016); 0.940 0.051 (0.018); 0.944 1.987
10 0.033 (0.014); 0.719 0.025 (0.010); 0.378 0.034 (0.015); 0.778 0.051 (0.037); 0.960 1.967
Heterogeneity, 5=0.1
100 0.099 (0.016); 0.947 0.096 (0.016); 0.942 0.099 (0.016); 0.952 0.100 (0.016); 0.942 2.005
61 0.098 (0.016); 0.941 0.092 (0.016); 0.922 0.098 (0.017); 0.951 0.100 (0.017); 0.941 2.004
40 0.097 (0.016); 0.932 0.088 (0.015); 0.862 0.097 (0.017); 0.947 0.101 (0.017); 0.940 2.003
25 0.092 (0.016); 0.888 0.078 (0.015); 0.676 0.093 (0.018); 0.924 0.101 (0.019); 0.942 2.003
10 0.065 (0.016);0.456 0.051 (0.012); 0.131 0.072 (0.018); 0.639 0.101 (0.042); 0.956 2.023

Table 3:  Mean causal estimate BIVW, standard error (SE) and coverage frequency
(CF) of the 95% confidence interval when using 1st order, 2nd order, iterative and
exact weights. L=25. ¢ equals the variance inflation factor estimate (true value =

2).
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Figure 3: Top: Scatter plot of SNP-outcome associations fj versus SNP-exposure
associations v;. IVW estimate shown as a black slope. Bottom-left: @) contribution
plots for the same data. Bottom-right: () contributions after removal of rs17249754.
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Method (weights) Estimate (C.I) S.E.  P-value Het. Stat (p) o)
All 26 SNPs

Causal estimate

IVW (1st -R.E) Brvw: 0.053 (0.032,0.075) 0.010 3.01x10~° Q = 67.1 (1.03x1075) 2.68
IVW (2nd -R.E) Bryw: 0.050 (0.029,0.071) 0.010 4.54><10*5 = 58.8 (1.54x107*) 2.35
IVW (Iterative -R.E) Brw: 0.054 (0.032,0.075) 0.010 2.40x107° Q = 62.7 (4.43x1075) 2.51
IVW (Exact -R.E)  Bryw: 0.054 (0.027,0.082) 0.014 4.60x10~% Q = 62.4 (4.84x1075) 2.61
Weighted median (1st order weights)
Weighted Median Bwar: 0.063 (0.042,0.084) 0.011 4.90x10°6 - -
SNP rs17249754 removed
Causal estimate
IVW (1st - RE) BIVWi 0.066 (0.049,0.083) 0.008 2.63x107% = 35.0 (0.068) 1.46
IVW (2und - RE) Bryw: 0.063 (0.047,0.080) 0.008 4.06x10~8 =30.6 (0.164)  1.27
IVW (Iterative - RE) Bryw: 0.066 (0.049,0.083) 0.008 2.90x 10~ =328 (0.107)  1.37
IVW (Exact - RE)  Bryw: 0.067 (0.049,0.085) 0.009 8.37x10~% =328 (0.108)  1.39

Weighted median (1st order weights)
Weighted Median Bwar: 0.065 (0.044,0.087) 0.011 2.33x107¢ -

Table 4:  IVW and Weighted Median analyses of the causal effect of SBP on CHD
risk for the complete data (top) and with SNP rs17249754 removed (bottom). Bryw is
the IVW estimate. BWM is the Weighted Median estimate. All IVW estimates fitted
under a multiplicative random effects model (R.E), where é refers to the variance
inflation factor estimate. The weighted median naturally accounts for heterogeneity
via a bootstrapped variance.
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