

1 **Selection in response to community diversity alters plant performance and
2 functional traits**

3 Sofia J. van Moorsel^{*}, Marc W. Schmid, Terhi Hahl, Debra Zuppinger-Dingley and Bernhard
4 Schmid^{*}

5

6 Department of Evolutionary Biology and Environmental Studies, University of Zurich,
7 Winterthurerstrasse 190, CH-8057, Switzerland

8 ^{*}Corresponding authors.

9

10 *Email addresses:*

11 sofia.vanmoorsel@ieu.uzh.ch

12 contact@mwschmid.ch

13 terhi.hahl@ieu.uzh.ch

14 debra.zuppinger@ieu.uzh.ch

15 bernhard.schmid@ieu.uzh.ch

16

17 Type of contribution: Original research article

18

19 *Keywords:*

20 Biodiversity effects, Grassland, Plant productivity, Selection, Trait variation

21 *Article information:*

22 5107 words (main text excl. references and figure captions), 7 figures, 2 tables

23

24 **ABSTRACT**

25 In grassland biodiversity experiments the positive biodiversity–ecosystem functioning
26 relationship generally increases over time. However, we know little about the underlying
27 short-term evolutionary processes. Using five plant species selected for twelve years in a
28 biodiversity experiment in mixture or monoculture and plants without such a selection
29 history, we assessed whether differential selection altered productivity, biodiversity effects,
30 and functional trait differences within newly assembled monocultures and 2-species
31 mixtures. Plants without past community selection history produced the lowest assemblage
32 biomass and showed the weakest biodiversity effects. In newly assembled mixtures, plants
33 with a selection history in mixtures produced more biomass than plants with a monoculture
34 selection history. Biodiversity effects were generally positive and differed significantly
35 between selection histories. However, contrary to our expectations, biodiversity effects were
36 not stronger for mixture-type plants. Biodiversity effects were influenced by both trait
37 differences between plants and community-weighted means, but these relationships were
38 mostly independent of selection history. Our findings suggest that twelve years of selection
39 history in monocultures or species mixtures differentiated plants of each species into
40 monoculture- and mixture-types. Such rapid evolution of different community-types within
41 grassland species and its effect on ecosystem services and functioning are likely to be
42 important for species conservation practice.

43

44 **1. Introduction**

45 The importance of biodiversity for maintaining ecosystem functions such as
46 productivity or nutrient cycling is now well established (Cardinale et al., 2012). The
47 biodiversity–productivity relationship is positive in grassland ecosystems (e.g. Isbell et al.,
48 2011; Tilman et al., 2001), with biodiversity increasing multiple ecosystem functions
49 (Soliveres et al., 2016). The positive effect of biodiversity strengthens with time (Cardinale
50 et al., 2007; Reich et al., 2012), suggesting that complementarity between the co-occurring
51 species can increase over time (Fargione et al., 2007).

52 Despite more than a decade of research on the biodiversity–productivity relationship
53 (e.g. Reich et al., 2012), we know little about the evolutionary mechanisms that potentially
54 affect species interactions (Thorpe et al., 2011). Selection acting on traits may increase
55 ecological combining ability (Aarssen, 1983; Harper, 1977) via niche differentiation in plant
56 mixtures (Zuppinger-Dingley et al., 2014). Such adaptation occurs when there is either
57 sufficient standing genetic variation in a population and a sorting out of the most suitable
58 genotypes (Fakheran et al., 2010) or by recombination and novel mutations (Anderson et al.,
59 2011). Furthermore, plants may adapt to a novel environment by phenotypic plasticity (Price
60 et al., 2003; Turcotte and Levine, 2016), thus changing their morphology without genotypic
61 changes. Epigenetic variation may contribute to phenotypic variation and thus provides a
62 further source for selection and adaptation (Bossdorf et al., 2008).

63 Whereas the influence of environmental factors on adaptive responses of plant
64 populations is well studied (e.g., Joshi et al., 2001; Schmid, 1985), much less effort has been
65 devoted to studying the influence of community diversity on a species' performance (but see
66 Kleynhans et al., 2016; Lipowsky et al., 2011). Based on previous observations in
67 experimental ecosystems suggesting a “division of labor” among species in plant mixtures, it
68 is likely that community diversity plays a role in the evolution of plant functional trait

69 variation. For example, in forests more diverse tree communities express greater crown
70 complementarity (Niklaus et al., 2017; Williams et al., 2017). In diverse grassland
71 communities increased complementarity effects, as estimated by the additive partitioning
72 method of Loreau and Hector (2001), promote community productivity via diversification of
73 the canopy structure and hence light and space use (Allan et al., 2011; Spehn et al., 2000),
74 soil resource partitioning (Fornara and Tilman, 2008; Roscher et al., 2008; von Felten et al.,
75 2009), root depth distribution (Mueller et al., 2013) and distribution of leaf mass (Wacker et
76 al., 2009). However, these *in situ* observations do not allow separating the contribution of
77 phenotypic plasticity from potential underlying shifts in the population structure due to
78 selection of different community-types. To understand to which extent evolutionary
79 processes drive these differences, it is thus important to assess biodiversity effects in a
80 common environment.

81 Using the additive partitioning method (Loreau and Hector, 2001), the net
82 biodiversity effect (NE) can be partitioned into complementarity (CE) and sampling effects
83 (SE). When the CE drives over-yielding, most species are expected to contribute to higher
84 productivity in more diverse communities. In contrast, when the SE drives over-yielding, a
85 few dominant species increase community productivity in species mixtures. The CE is
86 therefore related to coexistence and trait variation between species as it inherently suggests a
87 differentiation in functional traits (Cadotte et al., 2009; Flynn et al., 2011). Conversely, the
88 SE should be driven by traits of the dominant species and thus by community-weighted trait
89 means (CWMs); an increase in CWMs (e.g., taller plants) should increase biodiversity
90 effects (Cadotte, 2017; Roscher et al., 2012).

91 The use of functional traits to define species' niches has a long history in
92 evolutionary ecology (Roughgarden, 1974; Schoener and Gorman, 1968; van Valen, 1965).
93 Recently it has become a popular approach in functional ecology (Violle et al., 2007) to

94 explain mechanisms of species coexistence and ecosystem functioning (Hart et al., 2016;
95 Kraft et al., 2015). However, we do not know how such trait-based niches and the associated
96 functional traits may evolve (Roscher et al., 2015; Sterck et al., 2011).

97 We tested whether community diversity can act as a selective environment shaping
98 biodiversity effects and functional traits. To test for the heritability of these effects and traits,
99 we grew offspring of plants grown for twelve years in a biodiversity experiment in
100 monocultures and two-species mixtures in a common environment. We measured biomass
101 production and traits of individual plants in monocultures and mixtures established with
102 seedlings from either a selection history of experimental monoculture or mixture
103 communities in a biodiversity field experiment (Jena Experiment, see Roscher et al., (2004)
104 for details) or in monoculture fields from the commercial seed supplier which provided the
105 original seeds for the Jena Experiment in 2002. We refer to the plants growing in Jena since
106 2002 in mixture or monoculture as mixture- and monoculture-type plants, respectively. The
107 plants derived from seeds obtained from the commercial supplier in 2014 are referred to as
108 naïve plants.

109 We previously assessed selection outcomes in the Jena Experiment after eight years
110 and one controlled sexual reproduction cycle (Zuppinger-Dingley et al., 2014). Here, we
111 prolonged the selection treatment by four more years, added a second controlled sexual
112 reproduction cycle, and refined our insights by measuring all individuals in test communities,
113 thus also allowing us to assess intra-specific variation within communities. We included
114 naïve plants as a control treatment without selection. We hypothesized that during the twelve
115 years of selection in the experimental field, mixture-type plants may have evolved increased
116 mixture performance. In turn, this may be associated with a larger NE, in particular CE, and
117 larger between-species trait variations. Conversely, we expected monoculture-type plants to
118 have evolved increased monoculture performance, which should be related to larger within-

119 species trait variation.

120

121 **2. Materials and methods**

122 *2.1 Plant selection histories*

123 To test whether plant types selected over twelve years in mixtures outperform those
124 types selected in monocultures when assembled in mixture test communities, we chose five
125 species grown in monoculture and mixture plots in the Jena Experiment (Jena, Thuringia,
126 Germany, 51°N, 11°E, 135 m a.s.l., see Roscher et al., (2004) for experimental details):
127 *Plantago lanceolata* L., *Prunella vulgaris* L., *Veronica chamaedrys* L., *Galium mollugo* L.
128 and *Lathyrus pratensis* L. The study species had previously been classified into the following
129 functional groups (Roscher et al. 2004): small herbs (*V. chamaedrys*, *P. vulgaris*, and *P.
130 lanceolata*), tall herb (*G. mollugo*) and legumes (*L. pratensis*). Plants with Jena Experiment
131 selection history were sown in either mixture or monoculture in 2002 (selection history
132 “mixture” and “monoculture”, respectively) and had undergone twelve years of selection
133 from 2002 until 2014 in either plant monocultures or species mixtures. The species
134 compositions in the experimental plots in Jena were maintained by weeding three times per
135 year in spring, summer and autumn and by mowing twice per year at peak biomass in spring
136 and summer.

137 We used plant progeny from three different selection histories for the experiment.
138 Plants without selection history in the Jena Experiment (selection history “naïve”) were
139 obtained from a commercial seed supplier (Rieger Hoffmann GmbH, Blaufelden-
140 Raboldshausen, Germany).

141

142 2.2 *First controlled seed production*

143 In spring 2010, plant communities of 48 plots (12 monocultures, 12 two-species
144 mixtures, 12 four-species mixtures and 12 eight-species mixtures) of the Jena Experiment
145 (Roscher et al., 2004) were collected as cuttings and transplanted into an experimental
146 garden in slug-exclosure compartments at the University of Zurich, Switzerland Switzerland
147 (47°33'N, °37'E, 534 m a.s.l.), in the identical plant composition as the original experimental
148 plots for the first controlled sexual reproduction among co-selected plants (Zuppinger-
149 Dingley et al., 2014). In spring 2011, the seedlings produced from the seeds of the first
150 controlled sexual reproduction in Zurich were transplanted back into those plots of the Jena
151 Experiment from where the parents had originally been collected. In these newly established
152 plots, plant communities with an identical composition to the original communities were
153 maintained for three years until 2014.

154

155 2.3 *Second controlled seed production*

156 To ensure a second sexual reproductive event for the collection of seed material, entire
157 plant communities from the experimental plots replanted in Jena in 2011 were excavated in
158 March 2014. As for the first controlled seed production, the plants from Jena were used to
159 establish plots with an identical plant composition in the experimental garden at the
160 University of Zurich,. We added a 30 cm layer of soil (1:1 mixture of garden compost and
161 field soil, pH 7.4, commercial name Gartenhumus, RICOTER Erdaufbereitung AG, Aarberg,
162 Switzerland), to each plot to ensure the plants established well. Mesh fabric netting around
163 each plot minimized the possibility of cross-pollination between the same species from
164 different experimental plots. We collected seeds from seven monoculture plots, one 4-
165 species mixture plot and six 8-species mixture plots in the experimental garden. We did not
166 include seeds from 2-species mixtures as we expected that the community diversity selection

167 pressure may not be different enough from monocultures. Seeds from different mother plants
168 were pooled together and cleaned manually for three species and mechanically for two
169 species (*P. lanceolata* and *P. vulgaris*). The dry seeds were stored for 5 months at 5° C for
170 cold stratification.

171

172 *2.4 Experimental set up*

173 All seeds were germinated in germination soil (“Anzuchterde”, Ökohum,
174 Herbertingen, Germany) under constant conditions in the glasshouse without additional light
175 in December 2014. From 25 February to 13 March 2015, seedlings were planted in
176 monocultures of four individuals or 2-species mixtures of two plus two individuals into pots
177 (two liters) filled with neutral agricultural soil (50% agricultural sugar beet soil, 25% perlite,
178 25% sand; Ricoter AG, Aarberg, Switzerland). At the beginning of the experiment the
179 studied plants were infested by fungus gnats (*Bradysia* spp.), which caused seedling
180 mortality during the experiment. Seedlings that died in the first two weeks were replaced
181 with seedlings of the same species and age.

182 We planted species assemblages in six blocks (replicates); each block included the full
183 experimental design. Species pairs were chosen according to seedling availability. The full
184 design (every possible species combination) was intended but could not be realized due to
185 seedling mortality and low germination rates for some species (e.g. *G. mollugo*). Within each
186 block, pots were placed on three different tables in the glasshouse in a randomized fashion
187 without reference to selection history or assembly treatment. During the timeframe of the
188 experiment we did not move pots but noted their position in the glasshouse. Single pots
189 always contained four plants of the same selection history. Each selection history × species
190 assembly combination was replicated five to six times depending on plant availability. We
191 planted 30 monoculture and 42 mixture assemblages with mixture selection history, 30

192 monoculture and 60 mixture assemblages with monoculture selection history and 24
193 monoculture and 35 mixture assemblages with naïve selection history, a total of 221 pots and
194 884 plants (Appendix S2 for monoculture identities and species combinations).

195 During the experiment, the plants were initially kept at day temperatures of 17–20°C
196 and night temperatures of 13–17°C without supplemental light. To compensate for
197 overheating in summer, an adiabatic cooling system (Airwatech; Bern, Switzerland) was
198 used to keep inside temperatures constant with outside air temperatures. The plants were not
199 fertilized. Due to an infestation of white flies (*Trialeurodes vaporariorum*, Westwood 1856)
200 and spider mites (*Tetranychidae* spp., Donnadieu 1875), we applied the insecticide
201 SanoPlant Neem (1% Azadirachtin A (10 g/l); Maag AG) three times. The fungicide Fenicur
202 (*Oleum foeniculi*, Andermatt Biocontrol) against powdery mildew (*Podosphaera* spp.) was
203 applied twice. Plant height, leaf thickness, specific leaf area (SLA) and individual
204 aboveground biomass were measured after twelve weeks of the experiment from 18 May to 4
205 June 2015. Leaf thickness was measured for three representative leaves using a thickness
206 gauge. Specific leaf area (SLA) of up to 20 representative leaves (depending on the leaf size
207 of the species) of each species in a pot was measured by scanning fresh leaves with a Li-
208 3100 Area Meter (Li-cor Inc., Lincoln, Nebraska, USA) immediately after harvest and
209 determining the mass of the same leaves after drying. Plant height and individual
210 aboveground biomass were measured a second time after 24 weeks from 18–25 August 2015
211 at the end of the experiment. All four individuals in a pot were sampled. Research assistants,
212 who were not informed of the specific experimental treatments, assisted in the regular
213 measurements and harvesting of plants at the end of the experiment.

214

215

216

217 2.5 Data analysis

218 We calculated pot-wise aboveground community biomass (plant community
219 production) as the sum of the biomass of the four individual plants. Because the first measure
220 assessed growth and the second regrowth, the harvests were analyzed separately. Relative
221 between-species differences (RDs, absolute difference between two species divided by the
222 mean of the two) in plant height (first and second harvest), leaf thickness (first harvest) and
223 SLA (first harvest) were calculated for mixture assemblages. Relative differences within
224 species were calculated for both mixture and monoculture assemblages taking the relative
225 difference between two individuals of the same species per pot. SLA outliers (> 99%
226 percentile) were replaced with a maximum value (the 99% percentile, n = 6). Furthermore,
227 we calculated community-weighted means (CWMs) and pot standard deviation (SDs) for the
228 same traits (R package “FD”, Laliberté and Legendre 2010; Laliberté et al., 2014). Pots with
229 dead plant individuals were excluded from the calculation of community-weighted means,
230 but were included for the other data analyses. Net biodiversity effects (NE) were calculated
231 by comparing the 2-species mixtures with the average monoculture and partitioned according
232 to Loreau and Hector (2001) into complementary (CE) and sampling (selection) effects (SE).
233 This partitioning approach allows assessing how CE and SE contribute to the NE (Loreau
234 and Hector 2001). To avoid confusion with the term selection used for the selection-history
235 treatment, we here use the term “sampling effect” for the SE (see Zuppinger-Dingley et al.,
236 2014). Additive partitioning calculations were based on the difference between the observed
237 yield of each species in the mixture and the monoculture yield for that species and selection
238 history averaged across blocks. Absolute values of CE and SE were square root-transformed
239 and the original signs put back on the transformed values for analysis (Loreau and Hector
240 2001). Differences in these measures between mixtures assembled from plants with
241 monoculture selection history and mixtures assembled from plants with mixture selection

242 history would suggest differential evolution of trait-based niches between species as a
243 potential mechanism underlying biodiversity effects.

244 All statistical analyses were done in R (Version 3.2.3, R Core team 2016). Mixed-
245 model analysis was done using the R-package asreml (VSNI international, 2016) and results
246 were assembled in ANOVA tables. Selection-history treatment (naïve, monoculture,
247 mixture), assembly treatment (monoculture vs. 2-species mixture assemblages), species
248 identity of monoculture assemblages and of mixture assemblages (in short “species
249 assembly”) and interactions of these were fixed-effects terms in the model. Table (including
250 blocks) was a random-effects term in the model. CWMs, RDs, within-species differences
251 and SDs of plant height, SLA and leaf thickness were added as covariates to determine the
252 influence of these covariates on community biomass and biodiversity effects.

253

254 **3. Results**

255 *3.1 Plant selection history and community productivity*

256 Assemblages consisting of plants with naïve selection history produced the lowest
257 community biomass at both harvests (Fig. 1; Table 1). At the second harvest, such higher
258 productivity of selected plants was stronger in 2-species mixtures than in monocultures (Fig.
259 1; Table 1). At the second harvest, mixture-type plant assemblages outperformed
260 monoculture-type plant assemblages and this effect was marginally more pronounced in the
261 2-species mixtures (Fig. 1; Table 1).

262 Species identity in monoculture or mixture assemblages strongly influenced
263 community productivity and, especially at the first harvest, the interaction terms with
264 selection history were significant (Table 1). For example, at the first harvest, mixture-type
265 plants performed better than monoculture-type plants in newly assembled monocultures of *P.*
266 *vulgaris* and in mixtures of *G. mollugo* and *P. vulgaris* (Fig. 1a). However, in the two

267 mixtures with the small herbs *V. chamaedrys* and *P. vulgaris* and *P. lanceolata* and *P.*
268 *vulgaris*, monoculture-type plants performed better than mixture-type plants (see Fig. 1a).

269

270 *3.2 Plant selection history and biodiversity effects*

271 Overall, biodiversity effects were positive at both harvests (Fig. 2, Table 2).

272 Communities of naïve plants at the first harvest showed larger SEs and at the second harvest
273 showed smaller NEs and CEs than communities of selected plants.

274 At the first harvest, NEs, CEs and SEs were also larger for communities assembled
275 from monoculture-type plants than for communities assembled from mixture-type plants
276 (Fig. 2a, Table 2a). In contrast, at the second harvest NEs, CEs and SEs were non-
277 significantly larger for communities assembled from mixture-type plants for most species
278 assemblages (Fig. 2b; Table 2b). As with the results obtained for community productivity,
279 the influence of selection history on biodiversity effects also depended on the specific
280 species combination in mixture assemblages (Table 2). NEs were larger for mixture-type
281 plants for the combinations of *G. mollugo* with either *P. vulgaris* or *P. lanceolata* at the first
282 harvest (Fig. A2 in Supplementary material; Table 2). At the second harvest, NEs and CEs
283 were generally more similar between selection histories across different combinations and
284 variation between the specific community compositions was mainly due to different SEs.

285 The much larger NE for mixture-type plants in the combination *G. mollugo* + *P. vulgaris*
286 was an exception (Fig. A2). For both harvests communities which included the legume *L.*
287 *pratensis* or the small herb *P. lanceolata* showed positive biodiversity effects (Fig. A2). Four
288 species combinations shifted between harvests from stronger CEs for monoculture-type
289 plants to stronger biodiversity effects for mixture-type plants (Fig. A2). The *G. mollugo* + *P.*
290 *vulgaris* combination showed a consistently larger CE for mixture-type plants. At the second

291 harvest the different species combinations varied strongly in SEs, but not in CEs (Table 2).

292 SEs were often larger for mixture- than for monoculture-type plants (Fig. 2).

293

294 *3.3 Plant selection history and within- and between-species trait variance*

295 Whereas interspecific differences in plant height were marginally larger in mixture-
296 type plants, interspecific differences in leaf thickness were larger in monoculture-type plants
297 at the first harvest (Fig. 3). Intraspecific differences in SLA were larger for monoculture-type
298 plants. Furthermore, pot-level SDs in monoculture or mixture assemblages were non-
299 significantly larger for assemblages with monoculture- than with mixture-type plants (left
300 two columns in Fig. 3).

301

302 *3.4 Relationship between biodiversity effects and trait variation*

303 At the first harvest, the NE was negatively correlated with the RD of plant height but
304 positively correlated with the RD of leaf thickness (Fig. 4). Selection history had a
305 significant effect on the relationship between SE and the RD of plant height but no or only
306 marginal effects on all other relationships. SEs were more negatively correlated with the RDs
307 of plant height for mixture- than for monoculture-type or naïve plants. In contrast, the RDs
308 of leaf thickness were positively correlated with NEs and CEs for both monoculture- and
309 mixture-type plants, but not for naïve plants (Fig. 4c). At the second harvest, NEs and SEs
310 were significantly negatively correlated with the RD of plant height (Fig. 5). CEs were not
311 influenced by interspecific variation in plant height.

312

313 *3.5 Relationship between biodiversity effects and trait means*

314 Whereas the CE was negatively correlated with the CWM of SLA (Fig. 6b), the SE
315 was positively correlated with the CWM of SLA (Fig. 6b, right panel). Consequently, the

316 NE, driven by the CE, decreased with increasing SLA. Leaf thickness had a marginally
317 significant effect on SE, but the directionality depended on selection history. Plant height did
318 not have a significant effect on the biodiversity effects at the first harvest. However, the
319 interaction between trait means and selection history was significant for the relationship
320 between the CWM of plant height and the SE at the first harvest. Selection history was not
321 significant for the relationship between biodiversity effects and CWMs for the other two
322 traits. At the second harvest, CWM of plant height had a significantly positive effect on NE,
323 CE and SE (Fig. 7), the biodiversity effects were therefore stronger for taller plants.
324 However, in contrast to the first harvest, at the second harvest no effect of selection history
325 on the relationship between the CWM of plant height and the SE was observed (Fig. 7).

326

327 **4. Discussion**

328 *4.1 Influence of plant selection history on community productivity*

329 Plant community productivity may be influenced by selection for increased niche
330 differentiation in plants grown for eight years in mixtures (mixture-type plants) compared
331 with plants grown in monocultures (monoculture-type plants, Zuppinger-Dingley et al.,
332 2014). We hypothesized that 2-species mixtures comprised of mixture-type plants should
333 have greater community productivity than the same mixtures comprised of monoculture-type
334 plants. Conversely, we expected monocultures with monoculture-type plants to have greater
335 community productivity than the same monocultures with mixture-type plants. For naïve
336 plants, we expected intermediate community productivity in both monocultures and
337 mixtures.

338 Our results provide mixed evidence for these hypotheses, in part depending on the
339 particular species and species combinations. Plant assemblages consisting of naïve plants,
340 without a selection history in the Jena Experiment, generally produced the lowest community

341 biomass, especially in 2-species mixtures, in the pots in the glasshouse in Zurich.
342 Evolutionary processes in the field plots likely led to the increased performance of selected
343 plants, because these plants were grown for a longer time without re-sowing. In contrast, the
344 naïve plants were re-sown every year in the commercial propagation cultures, thereby “re-
345 setting” any local adaptation with every generation.

346 Within the selected plants, mixture-type plants produced higher community biomass
347 than monoculture-type plants in 2-species mixtures. But mixture-type plants also produced
348 more biomass than monoculture-type plants when grown in monoculture, which reduced
349 biodiversity effects. The generally lower performance of monoculture-type plants may have
350 been due to selection for increased defense against pathogens that are known to accumulate
351 in monocultures (Schnitzer et al., 2011). Increased resource allocation to defense
352 mechanisms would result in reduced allocation to growth (Coley et al., 1985; Herms and
353 Mattson, 1992). However, during the 24 weeks of growth in the experiment, species-specific
354 pathogens may not have been present, removing the need for increased defense. Such
355 species-specific pathogens might have needed more time to accumulate and to render
356 increased pathogen resistance advantageous.

357 Selection-history effects varied strongly among species in monocultures and among
358 species compositions in 2-species mixtures. These findings emphasized that such studies
359 should include multiple species but at the same time sufficient replication in monoculture
360 and their combinations in mixture. High replication can more easily be achieved in
361 experiments with one focal species (e.g. Kleynhans et al., 2016; Rottstock et al., 2017), but
362 extrapolating results from such experiments might under- or overestimate overall effects of
363 selection on the response of plants to different biotic conditions. We used five focal species
364 and observed strong differences regarding their selection response to community diversity.

365

366 4.2 Influence of plant selection history on biodiversity effects

367 Net biodiversity effects can be partitioned into CEs and SEs. When CEs drive over-
368 yielding, most species contribute similarly to greater community productivity in mixtures,
369 presumably due to niche differentiation among them. Conversely, SEs are large when few
370 dominant species are driving positive diversity–productivity relationships, because they
371 benefit from growing in mixtures (Loreau and Hector 2001).

372 Naïve plants exhibited weak biodiversity effects, confirming findings from a field
373 experiment, where biodiversity effects were weaker for assemblages of naïve plants,
374 especially at low diversity levels (van Moorsel et al., 2017). Such naïve plants, in contrast to
375 plants with a common selection history, did not experience continued selection in field plots
376 without re-sowing and did not previously experience interspecific competition. In contrast to
377 our expectations, not only NEs and SEs but also CEs were larger for monoculture- than for
378 mixture-type plant communities at the first harvest. However, the lower CEs of mixture-type
379 communities could be attributed to a higher performance of mixture-type plants in
380 monoculture assemblages and not to a lower performance in mixed assemblages. At second
381 harvest, NEs, CEs and SEs were similar for mixture- and monoculture-type communities.
382 Nevertheless, at least in four 2-species combinations — *L. pratensis* + *V. chamaedrys*, *G.*
383 *mollugo* + *V. chamaedrys*, *V. chamaedrys* + *P. vulgaris* and *P. lanceolata* + *P. vulgaris* —
384 the directionality changed, i.e. CEs at the second harvest were larger for mixture- than for
385 monoculture-type communities. Over longer timespans, CEs often increase and SEs often
386 decrease (Fargione et al., 2007; Isbell et al., 2009; Marquard et al., 2009; Montès et al., 2008;
387 van Ruijven and Berendse, 2005). Possibly this would have occurred in our experiment if we
388 had continued beyond the 24-weeks of the study.

389

390

391 4.3 Influence of plant selection history on trait variation

392 Because community-level trait variation can reflect niche differentiation (Roscher et
393 al., 2015; Violle et al., 2012), we measured intra- and interspecific trait variation among
394 individual plants in all assemblages. We expected larger interspecific trait variation for
395 mixture-type plants undergoing possible selection for increased complementarity during
396 twelve years in the experimental field plots. Conversely, we expected stronger within-species
397 trait variation in monoculture-type plants with twelve years of strong intraspecific
398 competition in the experimental field plots. However, monoculture-type plants tended to
399 show higher intra and inter-specific trait variation (see Fig. 3). The relative extent of
400 intraspecific trait variation may depend on species richness (Hulshof et al., 2013; Lamanna et
401 al., 2014; Le Bagousse-Pinguet et al., 2014; Siefert et al., 2015) and in monocultures a large
402 intraspecific variation is advantageous for a more efficient use of resources. Thus, the trend
403 for increased trait variation in monoculture-type plants is consistent with potential selection
404 for intraspecific niche widening by within-species character displacement during prolonged
405 growth in monocultures.

406 However, less interspecific trait variation in mixture- compared with monoculture-
407 type plants was in accordance with the lower CEs for mixture-type plants. These findings
408 contrast with an earlier study in which larger CEs were observed for mixture- than for
409 monoculture type plants and where mixture-type plants showed increased interspecific trait
410 variation (Zuppinger et al., 2014). This earlier study included more species that were
411 functionally different from each other, namely grasses, legumes, small herbs and tall herbs,
412 which could potentially explain the contrasting results. More similar species, such as those
413 used in the present study, may not be able to further increase trait differences in such a short
414 time frame (Allan et al., 2013). Such species may have evolved “parallel” character
415 displacement in response to species of the other functional groups also present in the

416 mixtures in which they were selected in the Jena Experiment.

417

418 *4.4 Influence of trait variation and community-weighted means on biodiversity effects*

419 Selection for niche differentiation (Zuppinger-Dingley et al., 2014) could explain the
420 increase of biodiversity effects over time in field experiments (Cardinale et al., 2007, Reich
421 et al., 2012). Not all trait variation, however, corresponds to niche differentiation (Turcotte
422 and Levine 2016). In particular, traits related to light availability may behave differently
423 because of the asymmetric nature of competition for light, i.e. being tall is generally better
424 than being small. Thus, variation in plant height could be expected to decrease when species
425 are grown in mixtures rather than monocultures (Roscher et al., 2015; Vermeulen et al.,
426 2008). In the present study, the relationship between functional traits in 2-species mixtures
427 and biodiversity effects did not consistently differ between plants selected in monocultures
428 vs. mixtures and this was consistent with the absence of increased CEs and between-species
429 trait variations in mixture-type plants. Nevertheless, we did test for such relationships —
430 independent of selection treatments — between functional traits and biodiversity effects in
431 our 2-species mixtures. Specifically, we tested whether relative trait differences (RD) were
432 positively correlated with CEs and community-weighted trait means (CWMs) were
433 positively correlated with SEs.

434 RDs in plant height were negatively rather than positively correlated with CEs and
435 consequently NEs (see Fig. 4a, 5). This discrepancy between our expectation and
436 observation suggests that RDs in plant height may reflect competitive hierarchies rather than
437 complementary of plants with respect to light use, as discussed above with regard to the
438 asymmetry of light competition. At the second harvest, CWMs of plant height had a positive
439 impact on all biodiversity effects (Fig. 7), i.e. not only as has been previously observed on
440 SEs (Cadotte 2017; Roscher et al., 2015; Vermeulen et al., 2008).

441 Functional diversity in SLA within a community should increase complementary light
442 use (Roscher et al., 2011). Leaf thickness is inherently related to SLA (White and Montes-R,
443 2005) and might act similarly to SLA. Here, RDs in leaf thickness, but not RDs in SLA,
444 were positively correlated with all biodiversity effects, especially for mixture-type plants.
445 Trait plasticity in leaf thickness was therefore advantageous for species growing in mixtures.
446 However, SEs increased as much as CEs, contrary to our expectation that positive
447 correlations between trait differences may mainly involve CEs. Furthermore, CWMs of SLA
448 had a positive effect on SEs, but also a negative effect on CEs, adding up to a negative effect
449 on NEs, suggesting that a smaller leaf area per unit mass for species growing in mixtures has
450 a positive effect on productivity.

451

452 **5. Conclusions**

453 Here, we demonstrated that community diversity had the selective potential to alter
454 species performances, which may in part explain the strengthening of biodiversity–
455 ecosystem functioning relationship observed in field experiments (e.g. Reich et al., 2012).
456 Selection in a biodiversity experiment increased community productivity in newly assembled
457 test assemblages compared to assemblages composed of naïve plants without such selection
458 history. Moreover, previous selection in mixtures increased community productivity in
459 newly assembled mixtures and monocultures compared with previous selection in
460 monocultures. These findings imply that co-evolutionary processes occurred in the 12-year
461 selection period in the experimental plots of the biodiversity experiment and involving at
462 least two sexual reproduction cycles. Such rapid evolutionary processes in grassland plant
463 communities have implications for conservation strategies. Thus, it may not be sufficient to
464 only conserve species in isolation but rather in communities or populations of species with
465 co-evolved interactions.

466

467 **Acknowledgements**

468 We are grateful to T. Zwimpfer, M. Furler, D. Trujillo and D. Topalovic for technical
469 assistance and E. de Luca, N. Castro and M. Brezzi for help with data measurements. This
470 study was supported by the Swiss National Science Foundation (grants number 147092 and
471 166457 to B. Schmid) and the University Research Priority Program Global Change and
472 Biodiversity of the University of Zurich. The Jena Experiment is supported by the German
473 Science Foundation (FOR 1451, SCHM 1628/5-2). S.J. van Moorsel, B. Schmid and D.
474 Zuppinger-Dingley conceived the study, S.J. van Moorsel and T. Hahl carried out the
475 experiment and S.J. van Moorsel, M.W. Schmid and B. Schmid analyzed the data. S.J. van
476 Moorsel and B. Schmid wrote the manuscript with all other authors contributing to revisions.

477

478 **Supplementary data**

479 Supplementary data associated with this article can be found in the online version.

480 **References**

481 Aarssen, L.W., 1983. Ecological Combining Ability and Competitive Combining Ability in
482 Plants: Toward a General Evolutionary Theory of Coexistence in Systems of
483 Competition. *Am. Nat.* 122, 707–731.

484 Allan, E., Jenkins, T., Fergus, A.J., Roscher, C., Fischer, M., Petermann, J., Weisser, W.W.,
485 Schmid, B., 2013. Experimental plant communities develop phylogenetically
486 overdispersed abundance distributions during assembly. *Ecology* 94, 465–477.

487 Allan, E., Weisser, W., Weigelt, A., Roscher, C., Fischer, M., Hillebrand, H., 2011. More
488 diverse plant communities have higher functioning over time due to turnover in
489 complementary dominant species. *Proc. Natl. Acad. Sci.* 108, 17034–17039.

490 Anderson, J.T., Willis, J.H., Mitchell-Olds, T., 2011. Evolutionary genetics of plant
491 adaptation. *Trends Genet.* 27, 258–266.

492 Bossdorf, O., Richards, C.L., Pigliucci, M., 2008. Epigenetics for ecologists. *Ecol. Lett.* 11,
493 106–115.

494 Cadotte, M.W., 2017. Functional traits explain ecosystem function through opposing
495 mechanisms. *Ecol. Lett.* 20, 989–996.

496 Cadotte, M.W., Cavender-Bares, J., Tilman, D., Oakley, T.H., 2009. Using Phylogenetic,
497 Functional and Trait Diversity to Understand Patterns of Plant Community
498 Productivity. *PLoS ONE* 4, e5695.

499 Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani,
500 A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M.,
501 Grace, J.B., Larigauderie, A., Srivastava, D.S., Naeem, S., 2012. Biodiversity loss
502 and its impact on humanity. *Nature* 486, 59–67.

503 Cardinale, B.J., Wright, J.P., Cadotte, M.W., Carroll, I.T., Hector, A., Srivastava, D.S.,
504 Loreau, M., Weis, J.J., 2007. Impacts of plant diversity on biomass production

505 increase through time because of species complementarity. *Proc. Natl. Acad. Sci.*
506 104, 18123–18128.

507 Coley, P.D., Bryant, John P., Chapin, F. Stuart, 1985. Resource availability and plant
508 antiherbivore defense. *Science* 230, 895–899.

509 Fakheran, S., Paul-Victor, C., Heichinger, C., Schmid, B., Grossniklaus, U., Turnbull, L.A.,
510 2010. Adaptation and extinction in experimentally fragmented landscapes. *Proc. Natl.*
511 *Acad. Sci.* 107, 19120–19125.

512 Fargione, J., Tilman, D., Dybzinski, R., Lambers, J.H.R., Clark, C., Harpole, W.S., Knops,
513 J.M., Reich, P.B., Loreau, M., 2007. From selection to complementarity: shifts in the
514 causes of biodiversity-productivity relationships in a long-term biodiversity
515 experiment. *Proc. R. Soc. B Biol. Sci.* 274, 871–876.

516 Flynn, D.F., Mirochnick, N., Jain, M., Palmer, M.I., Naeem, S., 2011. Functional and
517 phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships.
518 *Ecology* 92, 1573–1581.

519 Fornara, D.A., Tilman, D., 2008. Plant functional composition influences rates of soil carbon
520 and nitrogen accumulation. *J. Ecol.* 96, 314–322.

521 Harper, J.L., 1977. *Population biology of plants*. London: Academic Press.

522 Hart, S.P., Schreiber, S.J., Levine, J.M., 2016. How variation between individuals affects
523 species coexistence. *Ecol. Lett.* 19, 825–838.

524 Herms, D.A., Mattson, W.J., 1992. The Dilemma of Plants: To Grow or Defend. *Q. Rev.*
525 *Biol.* 67, 283–335.

526 Hulshof, C.M., Violle, C., Spasojevic, M.J., McGill, B., Damschen, E., Harrison, S., Enquist,
527 B.J., 2013. Intra-specific and inter-specific variation in specific leaf area reveal the
528 importance of abiotic and biotic drivers of species diversity across elevation and
529 latitude. *J. Veg. Sci.* 24, 921–931.

530 Isbell, F., Calcagno, V., Hector, A., Connolly, J., Harpole, W.S., Reich, P.B., Scherer-
531 Lorenzen, M., Schmid, B., Tilman, D., van Ruijven, J., Weigelt, A., Wilsey, B.J.,
532 Zavaleta, E.S., Loreau, M., 2011. High plant diversity is needed to maintain
533 ecosystem services. *Nature* 477, 199–202.

534 Isbell, F.I., Polley, H.W., Wilsey, B.J., 2009. Species interaction mechanisms maintain
535 grassland plant species diversity. *Ecology* 90, 1821–1830.

536 Joshi, J., Schmid, B., Caldeira, M.C., Dimitrakopoulos, P.G., Good, J., Harris, R., Hector, A.,
537 Huss-Danell, K., Jumpponen, A., Minns, A., others, 2001. Local adaptation enhances
538 performance of common plant species. *Ecol. Lett.* 4, 536–544.

539 Kleynhans, E.J., Otto, S.P., Reich, P.B., Vellend, M., 2016. Adaptation to elevated CO₂ in
540 different biodiversity contexts. *Nat. Commun.* 7, 12358.

541 Kraft, N.J.B., Godoy, O., Levine, J.M., 2015. Plant functional traits and the
542 multidimensional nature of species coexistence. *Proc. Natl. Acad. Sci.* 112, 797–802.

543 Laliberté, E., Legendre, P., 2010. A distance-based framework for measuring functional
544 diversity from multiple traits. *Ecology* 91, 299–305.

545 Laliberté, E., Legendre, P., Shipley, B., 2014. FD: measuring functional diversity from
546 multiple traits, and other tools for functional ecology. R package version 1.0-12.

547 Lamanna, C., Blonder, B., Violle, C., Kraft, N.J.B., Sandel, B., imova, I., Donoghue, J.C.,
548 Svenning, J.-C., McGill, B.J., Boyle, B., Buzzard, V., Dolins, S., Jorgensen, P.M.,
549 Marcuse-Kubitz, A., Morueta-Holme, N., Peet, R.K., Piel, W.H., Regetz, J.,
550 Schildhauer, M., Spencer, N., Thiers, B., Wiser, S.K., Enquist, B.J., 2014. Functional
551 trait space and the latitudinal diversity gradient. *Proc. Natl. Acad. Sci.* 111, 13745–
552 13750.

553 Le Bagousse-Pinguet, Y., Xiao, S., Brooker, R.W., Gross, N., Liancourt, P., Straile, D.,
554 Michalet, R., 2014. Facilitation displaces hotspots of diversity and allows

555 communities to persist in heavily stressed and disturbed environments. *J. Veg. Sci.*
556 25, 66–76.

557 Lipowsky, A., Schmid, B., Roscher, C., 2011. Selection for monoculture and mixture
558 genotypes in a biodiversity experiment. *Basic Appl. Ecol.* 12, 360–371.

559 Loreau, M., Hector, A., 2001. Partitioning selection and complementarity in biodiversity
560 experiments. *Nature* 72–76.

561 Marquard, E., Weigelt, A., Roscher, C., Gubsch, M., Lipowsky, A., Schmid, B., 2009.
562 Positive biodiversity–productivity relationship due to increased plant density. *J. Ecol.*
563 97, 696–704.

564 Montès, N., Maestre, F.T., Ballini, C., Baldy, V., Gauquelin, T., Planquette, M., Greff, S.,
565 Dupouyet, S., Perret, J.-B., 2008. On the Relative Importance of the Effects of
566 Selection and Complementarity as Drivers of Diversity-Productivity Relationships in
567 Mediterranean Shrublands. *Oikos* 117, 1345–1350.

568 Mueller, K.E., Tilman, D., Fornara, D.A., Hobbie, S.E., 2013. Root depth distribution and
569 the diversity–productivity relationship in a long-term grassland experiment. *Ecology*
570 94, 787–793.

571 Niklaus, P.A., Baruffol, M., He, J.-S., Ma, K., Schmid, B., 2017. Can niche plasticity
572 promote biodiversity–productivity relationships through increased complementarity?
573 Ecology.

574 Price, T.D., Qvarnstrom, A., Irwin, D.E., 2003. The role of phenotypic plasticity in driving
575 genetic evolution. *Proc. R. Soc. B Biol. Sci.* 270, 1433–1440.

576 Reich, P.B., Tilman, D., Isbell, F., Mueller, K., Hobbie, S.E., Flynn, D.F.B., Eisenhauer, N.,
577 2012. Impacts of biodiversity loss escalate through time as redundancy fades. *Science*
578 336, 589–592

579 Roscher, C., Kutsch, W.L., Schulze, E.-D., 2011. Light and nitrogen competition limit
580 *Lolium perenne* in experimental grasslands of increasing plant diversity. *Plant Biol.*
581 13, 134–144.

582 Roscher, C., Schumacher, J., Baade, J., Wilcke, W., Gleixner, G., Weisser, W.W., Schmid,
583 B., Schulze, E.-D., 2004. The role of biodiversity for element cycling and trophic
584 interactions: an experimental approach in a grassland community. *Basic Appl. Ecol.*
585 5, 107–121.

586 Roscher, C., Schumacher, J., Gubsch, M., Lipowsky, A., Weigelt, A., Buchmann, N.,
587 Schmid, B., Schulze, E.-D., 2012. Using Plant Functional Traits to Explain
588 Diversity–Productivity Relationships. *PLoS ONE* 7, e36760.

589 Roscher, C., Schumacher, J., Schmid, B., Schulze, E.-D., 2015. Contrasting effects of
590 intraspecific trait variation on trait-based niches and performance of legumes in plant
591 mixtures. *PloS One* 10, e0119786.

592 Roscher, C., Thein, S., Schmid, B., Scherer-Lorenzen, M., 2008. Complementary nitrogen
593 use among potentially dominant species in a biodiversity experiment varies between
594 two years. *J. Ecol.* 96, 477–488.

595 Rottstock, T., Kummer, V., Fischer, M., Joshi, J., 2017. Rapid transgenerational effects in
596 *Knautia arvensis* in response to plant community diversity. *J. Ecol.* 105, 714–725.

597 Roughgarden, J., 1974. Niche width: biogeographic patterns among *Anolis* lizard
598 populations. *Am. Nat.* 108, 429–442.

599 Schmid, B., 1985. Clonal Growth in Grassland Perennials: III. Genetic Variation and
600 Plasticity Between and Within Populations of *Bellis Perennis* and *Prunella Vulgaris*.
601 *J. Ecol.* 73, 819–830.

602 Schnitzer, S.A., Klironomos, J.N., HilleRisLambers, J., Kinkel, L.L., Reich, P.B., Xiao, K.,
603 Rillig, M.C., Sikes, B.A., Callaway, R.M., Mangan, S.A., others, 2011. Soil microbes
604 drive the classic plant diversity–productivity pattern. *Ecology* 92, 296–303.

605 Schoener, T.W., Gorman, G.C., 1968. Some niche differences in three lesser antillean lizards
606 of the genus *Anolis*. *Ecology* 49, 819–830.

607 Siefert, A., et al., 2015. A global meta-analysis of the relative extent of intraspecific trait
608 variation in plant communities. *Ecol. Lett.* 18, 1406–1419.

609 Soliveres, S. et al., 2016. Biodiversity at multiple trophic levels is needed for ecosystem
610 multifunctionality. *Nature* 536, 456–459.

611 Spehn, E.M., Joshi, J., Schmid, B., Diemer, M., Körner, C., 2000. Above-Ground Resource
612 Use Increases with Plant Species Richness in Experimental Grassland Ecosystems.
613 *Funct. Ecol.* 14, 326–337.

614 Sterck, F., Markesteijn, L., Schieving, F., Poorter, L., 2011. Functional traits determine
615 trade-offs and niches in a tropical forest community. *Proc. Natl. Acad. Sci.* 108,
616 20627–20632.

617 Thorpe, A.S., Aschehoug, E.T., Atwater, D.Z., Callaway, R.M., 2011. Plant interactions and
618 evolution. *J. Ecol.* 99, 729–740.

619 Tilman, D., Reich, P.B., Knops, J., Wedin, D., Mielke, T., Lehman, C., 2001. Diversity and
620 productivity in a long-term grassland experiment. *Science* 294, 843–845.

621 Turcotte, M.M., Levine, J.M., 2016. Phenotypic Plasticity and Species Coexistence. *Trends*
622 *Ecol. Evol.* 31, 808–813.

623 van Ruijven, J., Berendse, F., 2005. Diversity–productivity relationships: initial effects, long-
624 term patterns, and underlying mechanisms. *Proc. Natl. Acad. Sci. U. S. A.* 102, 695–
625 700.

626 van Valen, L., 1965. Morphological variation and width of ecological niche. Am. Nat. 99,
627 377–390.

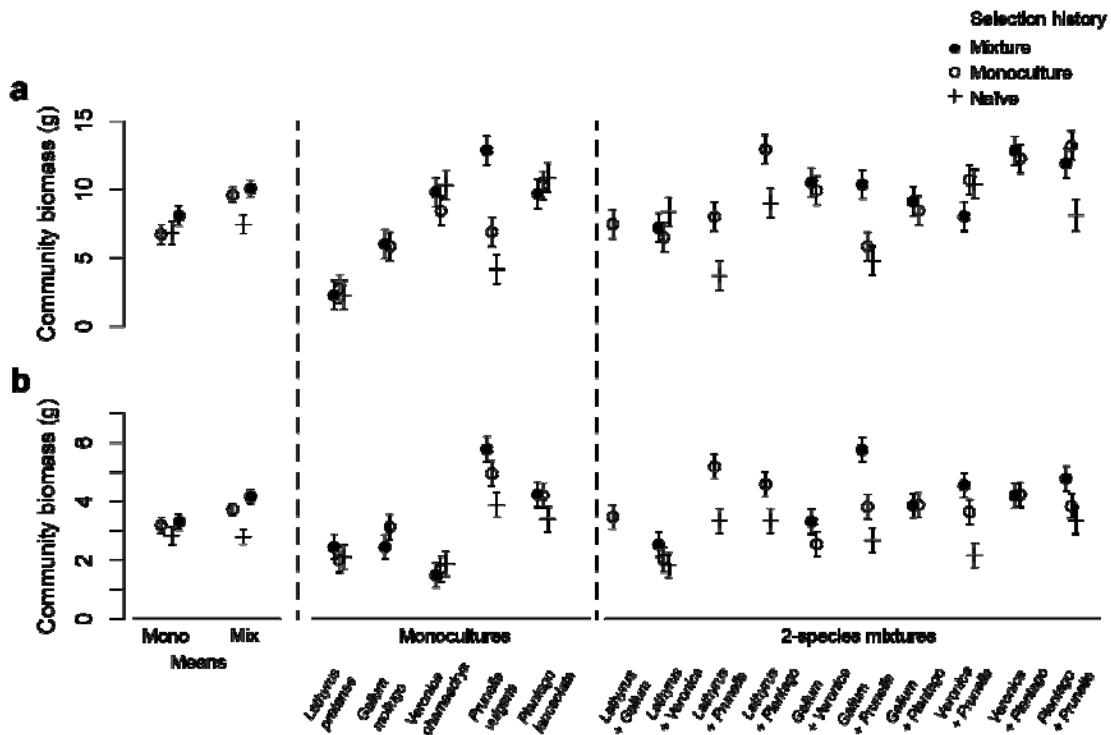
628 van Moorsel, S. J., Hahl, T., Wagg, C., De Deyn, G. B., Flynn, D.F.B., Zuppinger-Dingley,
629 D., Schmid, B., 2017. Community evolution increases plant productivity at low
630 diversity. bioRxiv 111617.

631 Vermeulen, P.J., Anten, N.P.R., Schieving, F., Werger, M.J.A., During, H.J., 2008. Height
632 convergence in response to neighbour growth: genotypic differences in the
633 stoloniferous plant *Potentilla reptans*. New Phytol. 177, 688–697.

634 Violle, C., Enquist, B.J., McGill, B.J., Jiang, L., Albert, C.H., Hulshof, C., Jung, V., Messier,
635 J., 2012. The return of the variance: intraspecific variability in community ecology.
636 Trends Ecol. Evol. 27, 244–252.

637 Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007.
638 Let the concept of trait be functional! Oikos 116, 882–892.

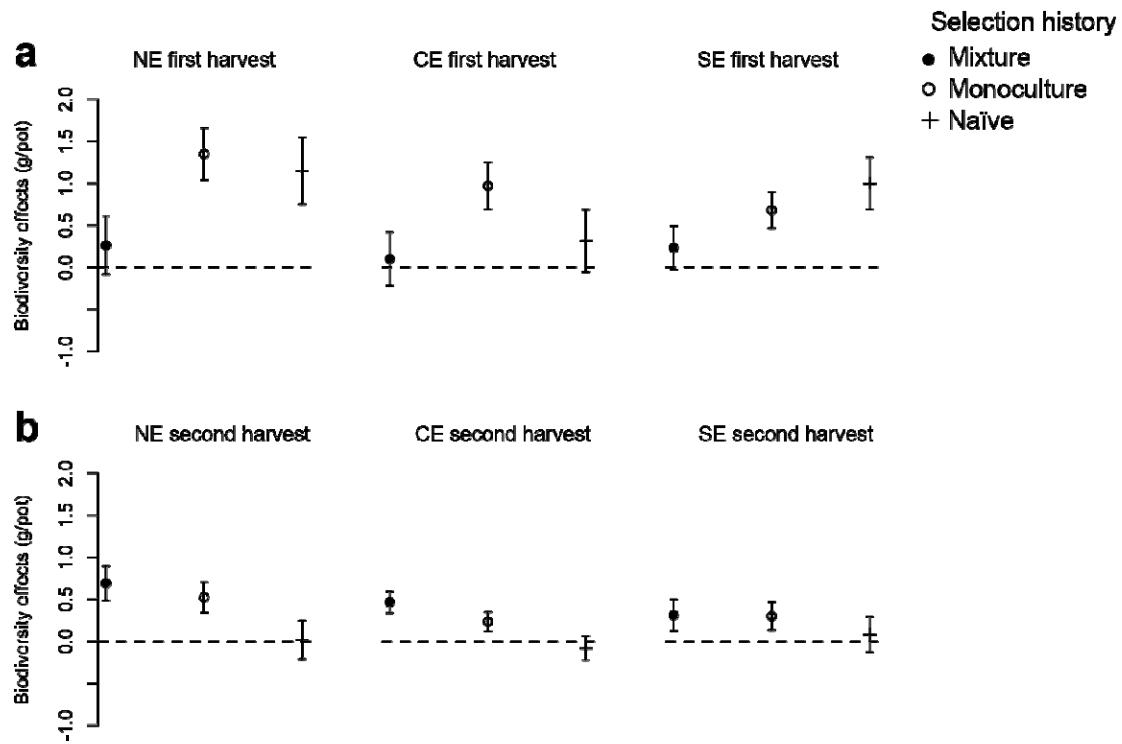
639 von Felten, S., Hector, A., Buchmann, N., Niklaus, P.A., Schmid, B., Scherer-Lorenzen, M.,
640 2009. Belowground nitrogen partitioning in experimental grassland plant
641 communities of varying species richness. Ecology 90, 1389–1399.


642 Wacker, L., Baudois, O., Eichenberger-Glinz, S., Schmid, B., 2009. Effects of plant species
643 richness on stand structure and productivity. J. Plant Ecol. 2, 95–106.

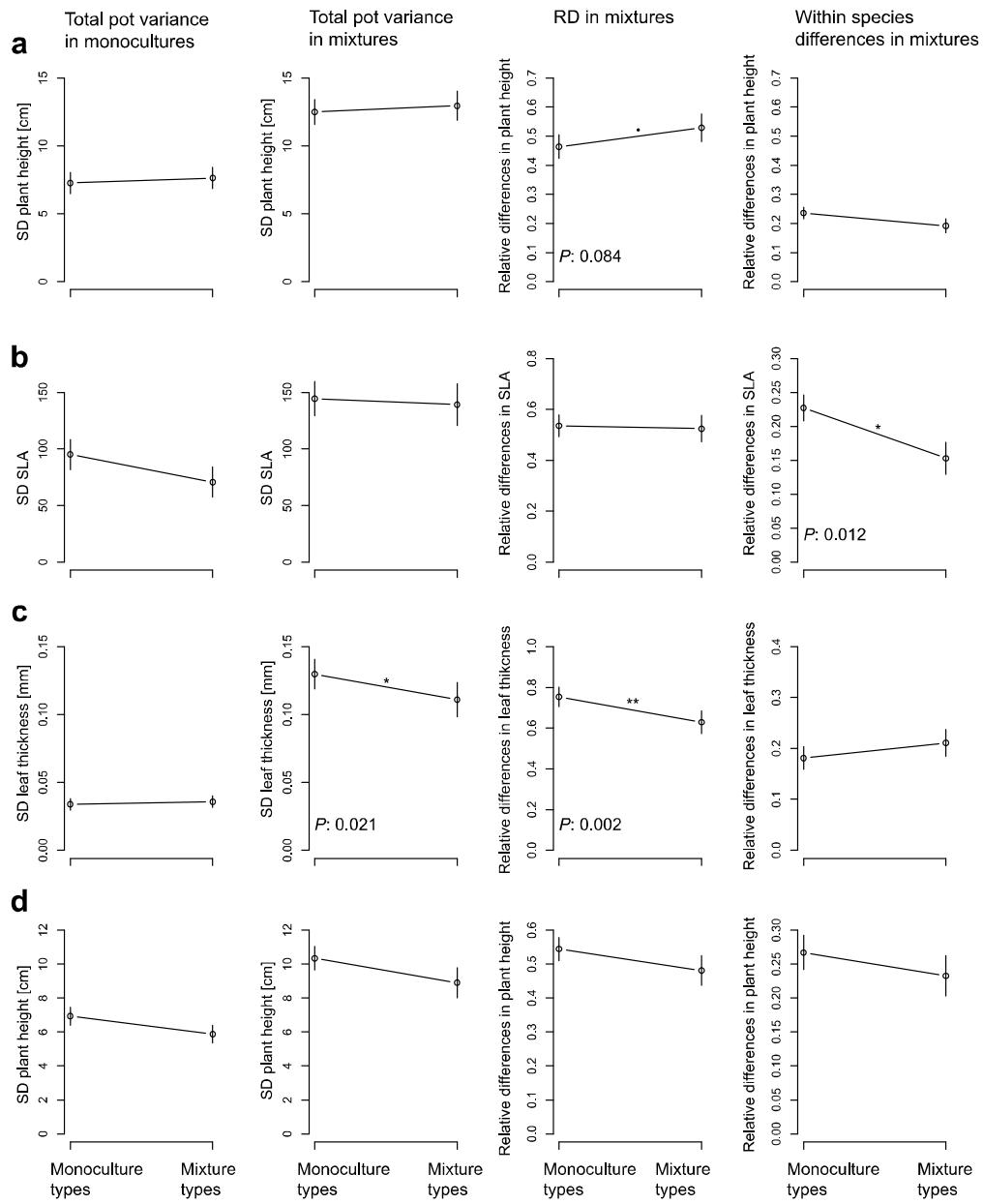
644 White, J.W., Montes-R, C., 2005. Variation in parameters related to leaf thickness in
645 common bean (*Phaseolus vulgaris* L.). Field Crops Res. 91, 7–21.

646 Williams, L.J., Paquette, A., Cavender-Bares, J., Messier, C., Reich, P.B., 2017. Spatial
647 complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol.
648 Evol. 1, 63.

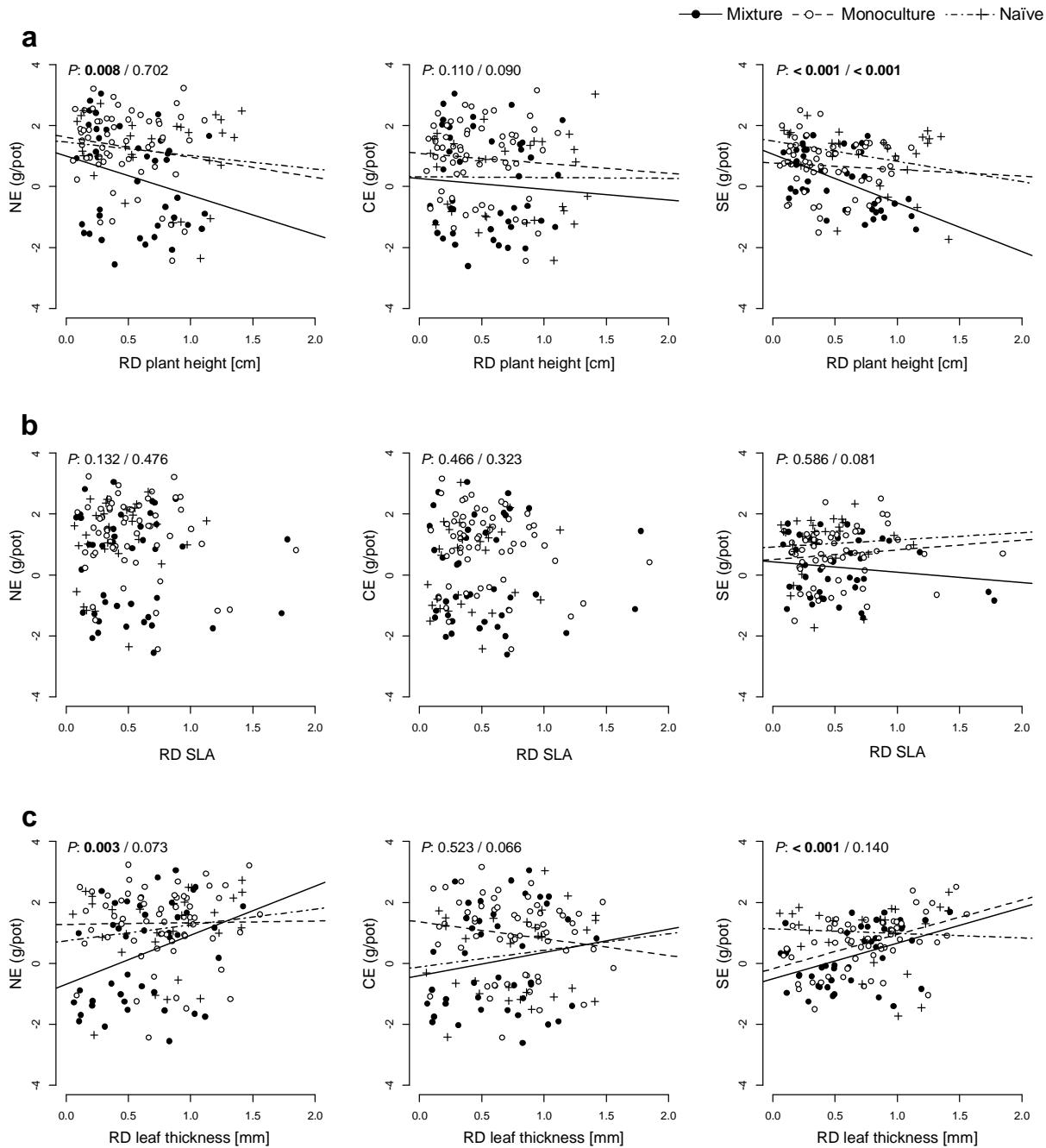
649 Zuppinger-Dingley, D., Schmid, B., Petermann, J.S., Yadav, V., De Deyn, G.B., Flynn,
650 D.F.B., 2014. Selection for niche differentiation in plant communities increases
651 biodiversity effects. *Nature* 515, 108–111.


652

653


654 **Fig. 1.** Mean community biomass for monocultures and 2-species mixtures. Shown are
655 means and standard errors from a linear mixed-effects model with selection history, species
656 combination and the interaction between selection history and species assembly as fixed-
657 effects terms and table (including the block) as random-effects term. **a**, first harvest. **b**,
658 second harvest.

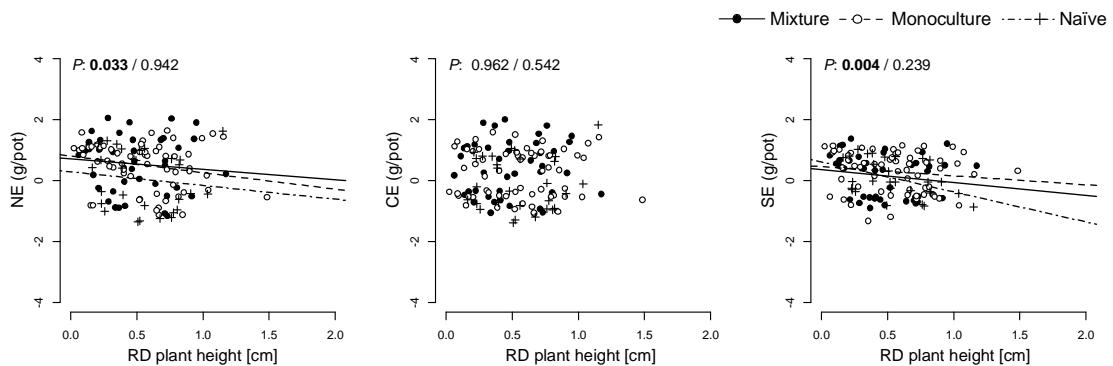
659


660
661
662
663 **Fig. 2.** We assessed biodiversity effects for both biomass harvests by additive partitioning of
664 the net effect (a, NE) into complementarity effect (b, CE) and sampling effect (c, SE) for
665 plants with different selection histories (naïve, monoculture, mixture). Shown are means and
666 standard errors from a linear mixed-effects model, with selection history as fixed-effects
667 term and species assembly, the interaction between selection history and species assembly
668 and table (including block) as random-effects terms.

669

670

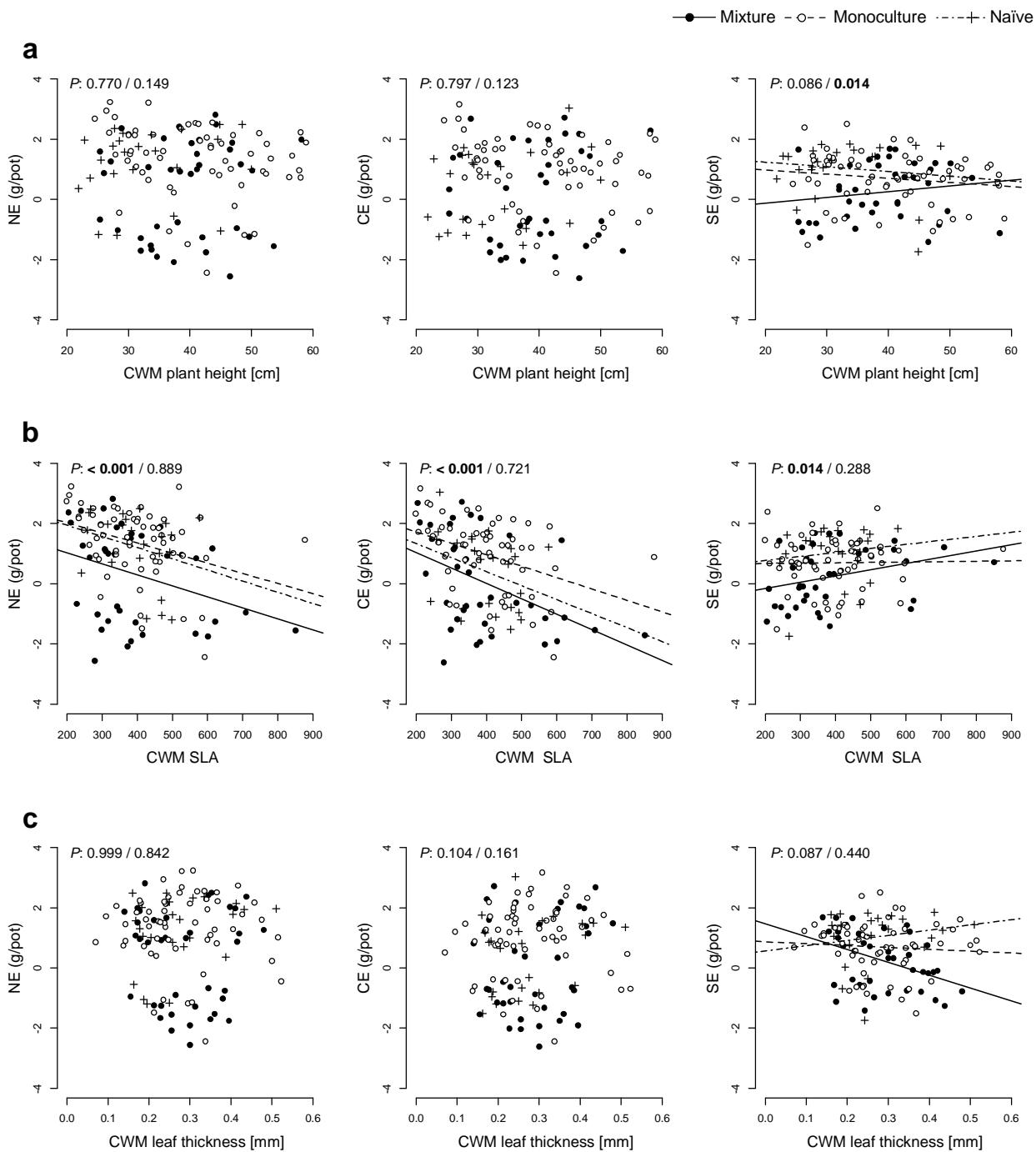
671 **Fig. 3.** Trait variance in monoculture and mixture assemblages in response to selection
672 history (monoculture- vs. mixture-type plants). **a)** plant height at first harvest, **b)** SLA at the
673 first harvest, **c)** leaf thickness at the first harvest, **d)** plant height at second harvest. Shown
674 are means and standard errors from a mixed-effects model with selection history, species
675 assembly and the two-way interaction of these as fixed-effects terms and table (including
676 block) as random term. Significant and marginally significant P -values are indicated in the
677 respective plot.



678

679 **Fig. 4.** Biodiversity effects at the first harvest in response to relative differences between
 680 species (RDs) for three traits: **a**, plant height (in cm), **b**, specific leaf area (SLA) and **c**, leaf
 681 thickness (in mm). Indicated P -values refer to ANOVA results for fixed-effects terms from a
 682 mixed-effects model with RD, species assembly, selection history and interactions of these

683 as fixed-effects terms and table (including block) as random-effects term: RD / interaction
684 RD \times selection history (naïve plants vs. mixture types vs. monoculture types). Regression
685 lines are plotted in cases for which at least one *P*-value was significant. Left column: NE,
686 middle column: CE, right column: SE.
687

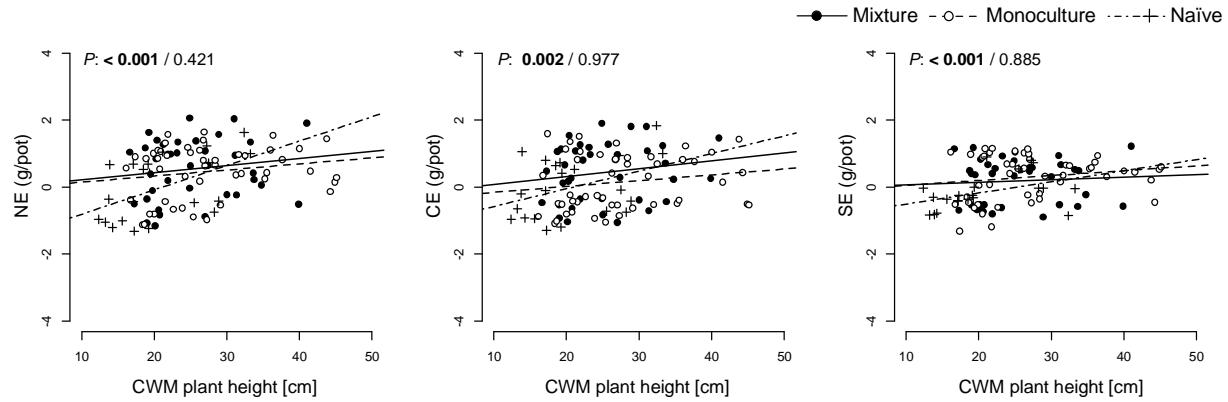

688

689

690 **Fig. 5.** Biodiversity effects at the second harvest in response to relative differences between
691 species for plant height (in cm). Indicated *P*-values refer to ANOVA results for fixed-effects
692 terms from a mixed-effects model with RD, species assembly, selection history and
693 interactions of these as fixed-effects terms and table (including block) as random-effects
694 term: RD / interaction RD \times selection history (naïve plants vs. mixture types vs. monoculture
695 types). Regression lines are plotted in cases for which at least one *P*-value was significant.
696 Left column: NE, middle column: CE, right column: SE.

697

698
699


700 **FIG. 6.** Biodiversity effects at the first harvest in response to the community-weighted mean
701 (CWM) of three traits: **a**, plant height (in cm), **b**, specific leaf area (SLA) and **c**, leaf
702 thickness (in mm). Indicated P -values refer to ANOVA results for fixed-effects terms from a
703 mixed-effects model with CWM, species assembly, selection history and interactions of
704 these as fixed-effects terms and table (including block) as random-effects term: CWM /

705 interaction CWM × selection history (naïve plants vs. mixture types vs. monoculture types).

706 Regression lines are plotted in cases for which at least one *P*-value was significant. Left

707 column: NE, middle column: CE, right column: SE.

708

709

710 **Fig. 7.** Biodiversity effects at the second harvest in response to the community-weighted

711 mean (CWM) of plant height (in cm). Indicated *P*-values refer to ANOVA results for fixed-

712 effects terms from a mixed-effects model with CWM, species assembly, selection history

713 and interactions of these as fixed-effects terms and table (including block) as random-effects

714 term: CWM / interaction CWM × selection history (naïve plants vs. mixture types vs.

715 monoculture types). Regression lines are plotted in cases for which at least one *P*-value was

716 significant. Left column: NE, middle column: CE, right column: SE.

717 **Table 1.** Results of mixed-effects ANOVA for the aboveground biomass of the test assemblages at first harvest after 12 weeks of growth (**a**) and
 718 at second harvest after 24 weeks of growth (**b**).
 719

Source of variation		a) Harvest 1				b) Harvest 2		
		nDf	dDF	F	P	dDF	F	P
Species assembly:								
	Monoculture vs. mixture	1	173.3	29.09	< 0.001	174	10.78	0.001
	Monoculture identity or species combination of mixture	13	171.2	16.53	< 0.001	171.8	15.47	< 0.001
Selection history:								
	Naïve vs. mono or mix types	1	173	16.63	< 0.001	173.7	42.72	< 0.001
	Mono vs. mix types	1	169.6	1.78	0.184	170.1	5.71	0.018
Assembly × history:								
	Monoculture vs. mixture × naïve vs. mono or mix types	1	168.4	1.72	0.191	168.8	8.56	0.004
	Monoculture vs. mixture × Mono or mix types	1	172.2	1.69	0.195	172.9	3.52	0.062
Species assembly × history:								
	Species assembly × naïve vs. mono or mix types	8	171.7	5.35	< 0.001	172.3	2.15	0.033
	Species assembly × mono types vs. mix types	10	172.3	2.91	0.002	172.9	1.23	0.275

nDF = numerator degrees of freedom, dDF = denominator degrees of freedom, F = variance ratio, P = probability of type-I error. Variance components (Var) and associated standard errors (SE) for the random effects are provided together with the number of replicates.

720

721

722 **Table 2.** Results of mixed-effects ANOVA for biodiversity effects of the test assemblages at
 723 the first harvest after 12 weeks of growth (**a**) and at the second harvest after 24 weeks of
 724 growth (**b**).

Source of variation	nDf	a) NE Harvest 1			b) NE Harvest 2		
		dDF	F	P	dDF	F	P
Overall mean	1	15.9	26.67	< 0.001	15.1	14.35	0.002
Naïve vs. mono or mix types	1	95.3	0.806	0.372	96.1	11.54	< 0.001
Mono types vs. mix types	1	93.9	21.01	< 0.001	93.6	0.026	0.872
Species assembly	9	96.7	2.646	0.009	97.7	4.837	< 0.001
Species assembly × naïve vs. mono or mix types	4	97.5	4.459	0.002	98.9	1.463	0.219
Species assembly × mono types vs. mix types	6	98	4.095	0.001	99	1.518	0.18
Source of variation	nDf	a) CE harvest 1			b) CE Harvest 2		
		dDF	F	P	dDF	F	P
Overall mean	1	15.8	8.214	0.011	14.5	4.108	0.061
Naïve vs. mono or mix types	1	95.9	1.427	0.235	96.6	5.668	0.019
Mono types vs. mix types	1	94.4	14.2	< 0.001	93.8	1.524	0.22
Species assembly	9	97.4	2.534	0.012	98.4	1.121	0.356
Species assembly × naïve vs. mono or mix types	4	98.3	1.835	0.128	99.7	0.584	0.675
Species assembly × mono types vs. mix types	6	98.8	2.53	0.025	99.8	0.468	0.831
Source of variation	nDf	a) SE harvest 1			b) SE Harvest 2		
		dDF	F	P	dDF	F	P
Overall mean	1	14.2	97.07	< 0.001	15.1	11.66	0.004
Naïve vs. mono or mix types	1	104.2	12.66	0.001	98.8	2.224	0.139
Mono types vs. mix types	1	101.2	10.28	0.002	95.7	2.37	0.127
Species assembly	9	105.5	5.793	< 0.001	100.8	11.53	< 0.001
Species assembly × naïve vs. mono or mix types	4	105.9	10.08	< 0.001	102	3.517	0.01
Species assembly × mono types vs. mix types	6	105.9	2.865	0.013	101.9	2.541	0.025

nDF = numerator degrees of freedom, dDF = denominator degrees of freedom, F = variance ratio, P = probability of type-I error. Variance components (Var) and associated standard errors (SE) for the random effects are provided together with the number of replicates.

725

726