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ABSTRACT 

Molecular mechanisms underpinning the genetic risk for type 2 diabetes (T2D) remain poorly 

understood, hindering translation into new therapies. Recently, genome-wide studies 

identified two coding variants in Peptidylglycine Alpha-amidating Monooxygenase (PAM) 

associated with T2D risk and measures of beta cell dysfunction. Here, we demonstrate that 

both risk alleles impact negatively on overall PAM activity, but via distinct effects on 

expression and catalytic function. In a human beta cell model, PAM silencing caused 

decreased insulin content and altered dynamics of granule exocytosis. Analysis of primary 

human beta cells from cadaveric donors confirmed an effect on exocytosis in carriers of the 

p.D563G T2D-risk allele. Finally, we show that the granular packaging protein 

Chromogranin A is a PAM substrate and a strong candidate for mediating downstream effects 

on insulin secretion. Taken together, our results establish a role for PAM in beta cell function, 

and uncover a novel mechanism for T2D-associated PAM alleles.  
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INTRODUCTION 

Human genetics has the potential to identify novel mechanisms for disease, which in turn 

present opportunities for clinical translation. Over the past 10 years, genome-wide association 

studies (GWAS) have identified over 150 genomic regions robustly associated with type 2 

diabetes (T2D) risk, and have revealed a central role for pancreatic beta cell dysfunction in 

T2D pathogenesis (1-3). However, the translation of GWAS signals into molecular 

mechanisms for disease has been slow, primarily due to uncertainty over the transcripts 

through which non-coding association signals operate (4). Recently, studies focused on 

identifying coding variant association signals have identified nonsynonymous alleles in 

Peptidylglycine Alpha-amidating Monooxygenase (PAM) independently associated with T2D 

risk (rs78408340, p.S539W; and rs35658696, p.D563G), providing a direct link to the 

effector transcript (3, 5). The T2D risk alleles are also associated with reduced insulinogenic 

index – a measure of glucose-stimulated insulin secretion – suggesting that their effects are 

mediated via altered beta cell function (5-7). 

PAM encodes peptidylglycine alpha-amidating monooxygenase (PAM), an enzyme in 

neuroendocrine cells that modifies peptides with a C-terminal glycine to create peptide-

amides (8-10). Amidation can dramatically increase the biological potency of a peptide 

relative to its unmodified glycine-extended conjugate (11). PAM is localised to the Golgi, 

where it is packaged with other endocrine proteins into nascent granules (8, 12). The 

functional enzyme exists in both integral membrane and luminal forms, the latter of which is 

co-secreted with the endocrine peptide(s) (8, 10, 13). 

Despite reports of PAM expression in pancreatic islets, a functional role in beta cells has not 

yet been described (14). Insulin itself is not a PAM substrate, so the effects of PAM on beta 

cell function are therefore mediated by other peptide(s). We hypothesised that T2D-
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associated PAM missense alleles reduce PAM function, affecting amidation of peptides 

critical for insulin secretion. We demonstrate that both diabetes risk alleles negatively impact 

on PAM expression and/or activity, and elucidate an endogenous role for PAM in insulin 

granule packaging and release from beta cells. We also show that PAM amidates the granule 

packaging factor Chromogranin A (CgA), and establish this neuroendocrine peptide as a 

likely downstream effector of PAM in beta cells. Our results are consistent with the direction 

and magnitude of effects for T2D-associated risk alleles in PAM, and establish molecular 

mechanisms for their impact on disease susceptibility. 
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RESULTS 

T2D-associated PAM alleles cause PAM loss-of-function 

PAM is a bifunctional enzyme, possessing two contiguous catalytic domains: peptidylglycine 

alpha-hydroxylating monooxygenase (PHM), and peptidyl alpha-hydroxyglycine alpha-

amidating lyase (PAL) (10). The p.S539W and p.D563G missense mutations are both located 

within the PAL domain and are predicted by in silico tools (SIFT, PolyPhen2) to be 

damaging, suggesting that they could affect enzymatic activity. To test this, we generated 

Human Embryonic Kidney (HEK) 293 cell lines expressing recombinant secreted (non-

integral membrane) PAM protein for in vitro amidation assays. In line with previous 

observations, PAM was constitutively released into supernatant (Supplementary Figure 1A) 

(15). WT-PAM and D563G-PAM were robustly produced, as well as an additional 

catalytically inactive mutant protein, Y651F-PAM, which was used as a control (16). 

Interestingly, we were unable to detect S539W-PAM expression (Supplementary Figure 1A). 

This was observed across three independently derived cell lines, and was not due to cellular 

retention of S539W-PAM (data not shown). 

We subsequently developed a cell-free kinetic assay capable of measuring PAM amidating 

activity via spectrophotometric detection of converted glyoxylate, a by-product of the 

amidation reaction (17, 18). Matching each reaction for PAM input, we observed reduced 

amidating activity for D563G-PAM (p=1.0x10-5) and Y651F-PAM (p=4.1x10-6) (Figure 1A). 

In agreement with its lack of expression, supernatant from S539W-PAM-transfected cells 

was inactive in this assay (Supplementary Figure 1B). Further analysis showed no significant 

difference in substrate affinity between WT-PAM and D563G-PAM (Km 0.95mmol/L vs 

1.02mmol/L, p=0.44), suggesting that the p.D563G substitution affects Kcat (Supplementary 
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Figure 1C). These results demonstrate that the T2D-associated PAM coding alleles decrease 

PAM function via a combination of defective expression and/or reduced catalysis. 

PAM localises to the beta cell secretory pathway 

Having established the direction of effect for T2D risk alleles in PAM, we next explored a 

role for PAM in physiologically relevant tissues. Transcript expression profiling detected 

PAM in multiple tissue types, with highest expression in human islets (Figure 1B and 

Supplementary Figure 2Ai). This is consistent with the published association between PAM 

risk alleles and reduced measures of insulin secretion, and suggests a direct role for PAM in 

beta cell function. We confirmed broadly similar expression patterns in the publicly available 

Genotype-Tissue Expression (GTEx) database, though data for pancreatic islets are not 

available from this project (19). Published RNA sequencing data also showed PAM to be 

equally expressed in enriched fractions of beta cells and non-beta cells (Supplementary 

Figure 2Aii) (20, 21). We verified this expression pattern at the protein level by 

immunofluorescent staining of human islets, which revealed co-localisation of endogenous 

PAM with insulin and glucagon (Figure 1C).  

Detailed analysis of the subcellular localisation of WT and variant PAM proteins was then 

performed for both integral and secreted forms in the human beta cell line EndoC-βH1 (22). 

Integral membrane WT-PAM immunofluorescence localised to the trans-Golgi network 

(TGN), where secretory granules originate, whereas secreted WT-PAM displayed a punctate 

staining pattern and co-localised with endogenous insulin (Figure 1D). Similar results were 

observed for D563G-PAM and Y651F-PAM (Supplementary Figure 2Bi-ii). As in HEK 

cells, secreted S539W-PAM expression was undetectable (Figure 1Dii); however, integral 

membrane S539W-PAM displayed an aberrant staining pattern that localised to the 

endoplasmic reticulum (ER) as well as the TGN (Figure 1Di and Supplementary Figure 
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2Biii). These results confirm that PAM localises to components of the beta cell secretory 

pathway, in agreement with studies in other neuroendocrine cell types (8, 12, 23-25). The 

S539W substitution may interfere with PAM protein folding such that its translocation from 

the ER to the TGN is prevented or delayed. 

PAM regulates glucose-responsive insulin secretion 

Given the negative impact of both T2D risk alleles on overall PAM function, we next 

determined the effects of reduced PAM levels on beta cell activity. siRNA-mediated 

knockdown of PAM in EndoC-βH1 cells caused a 79% reduction in PAM transcript levels 

(Supplementary Figure 3A), and decreased insulin secretion under both basal (-6.9%, p=0.04) 

and high glucose conditions (-14.4%, p=8.2x10-4) (Figure 2A and Supplementary Figure 4A-

B). Furthermore, PAM knockdown cells displayed a significantly blunted response to glucose 

(ratio of high to basal secretion; -7.7 %, p=0.03), indicative of a greater impact on secretion 

under stimulated conditions. Cellular insulin content was also significantly reduced in PAM 

knockdown cells (-17.6%, p=4.9x10-5) despite normal viability and Insulin (INS) expression 

(Figure 2B-D). These results were corroborated by quantitative immunoelectron microscopy, 

which showed a reduction in the amount of immunogold-labelled insulin per vesicle 

following PAM knockdown (6.26±0.28 vs 8.1±0.41 particles per vesicle (ppv), p=1.77x10-4) 

(Figure 3A&Bi-ii). There were also trends towards decreased cross-sectional vesicle area 

(0.048±0.003µm2 vs 0.056±0.005µm2, p=0.18) and increased vesicle density (2.30±0.55 

vesicles/µm2 vs 1.16±0.09 vesicles/µm2, p=0.056) in PAM knockdown cells (Figure 3Biii-iv).  

To probe further the effect of PAM silencing on insulin secretion, we performed high-

resolution single-cell capacitance measurements. Following stimulation of individual cells 

with a train of 10 depolarisations, an increase in plasma membrane surface area due to vesicle 

exocytosis could be detected at each step. The cumulative increase in exocytosis was 
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comparable between PAM knockdown and control cells (43.9±8.6fF.pF-1 vs 38.0±8.1fF.pF-1, 

p=0.64) (figure 2E), and there was no difference in calcium entry (peak current 

4.5±0.7pA.pF-1 vs 3.6±0.6pA.pF-1 for PAM knockdown vs control cells, p=0.27) 

(Supplementary Figure 3B).  In contrast, the kinetics of vesicle release were significantly 

different; in controls cells, nearly 60% of the exocytotic response was elicited by the first 

pulse, compared with less than 40% in PAM knockdown cells (p=0.013) (Figure 2F). The 

increase in cell capacitance during the first two depolarizations provides an estimate for the 

size of the readily releasable pool (RRP) of secretory granules, and subsequent pulses 

represent mobilization of granules from the more intracellular reserve pool (RP) (26). Our 

results indicate that PAM is an endogenous regulator of insulin availability and the exocytotic 

response in pancreatic beta cells, with a specific effect on the availability of the RRP. 

Effects of PAM variants on primary beta cell function 

Having established a role for PAM in a human beta cell model, we sought to corroborate our 

results by examining effects for the common PAM variant (rs35658696) on primary beta cell 

function. We analysed exocytosis in single beta cells from dispersed human islets, with 

capacitance measurements following a train of 10 depolarisations in either 1 or 10 mM 

glucose. Seven individuals heterozygous for the T2D risk allele were compared to seven age-, 

gender-, and BMI-matched individuals homozygous for the reference (non-risk) allele 

(Figure 4A). To specifically test for differences in the RRP, we calculated the total increase 

in capacitance during the first two depolarisations (Figure 4B). Although no differences were 

detected at low glucose, a significant decrease in capacitance was seen in risk allele carriers 

at 10 mM glucose (-26.5%; p = 0.04), indicative of reduced exocytosis from the RRP. Our 

results are therefore consistent with an effect of rs35658696 status on the kinetics of granule 

release that manifests predominantly under stimulated conditions. 
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Chromogranin A is a substrate and downstream effector of PAM in beta cells 

To elucidate the PAM-regulated pathway in beta cells, we finally sought to identify plausible 

target proteins that could act as downstream effectors of PAM activity. While any C-terminal 

glycine-extended peptide could be a substrate for PAM, we reasoned that a key downstream 

mediator of the observed effects in beta cells would need to be co-expressed with PAM along 

the secretory pathway. We therefore searched a published catalogue of the islet secretome for 

potential targets of PAM amidation (27). This highlighted two proteins, Chromogranin A 

(CgA, encoded by CHGA) and Islet Amyloid Polypeptide (IAPP, encoded by IAPP), both of 

which are highly expressed in beta cells and have plausible links with PAM function (27). 

CgA is a granular packaging protein that self-aggregates to condense large numbers of 

neuroendocrine peptides into nascent secretory granules (28-30). It can also be cleaved to 

produce smaller peptides with additional biological roles (31). The role of IAPP in beta cells 

is less well understood, although deposition of elongated fibrils in islets due to IAPP 

aggregation is a feature of T2D (32). 

CHGA silencing (Supplementary Figure 3C) revealed a phenotype similar to that observed 

for PAM, with significant reductions in both insulin content and secretion (Figure 5A-C and 

Supplementary Figure 4C-D). Using an antibody specific to the glycine-extended (non-

amidated) form of CgA (CgA-Gly), we also observed accumulation of CgA-Gly in EndoC-

βH1 cells treated with PAM siRNA by Western blot analysis (Figure 5D and Supplementary 

Figure 3D). Treatment of cells with 4-phenyl-3-butenoic acid (4P3BA), a PAM antagonist, 

produced similar results, demonstrating that amidation of CgA in beta cells is dependent on 

PAM activity (Figure 5D and Supplementary Figure 3D) (33, 34). An antibody that 

recognises all forms of CgA (irrespective of amidation status) detected an additional lower 

molecular weight (~70kDa) form of CgA, presumably due to cleavage near its C-terminus. 

Production of this cleaved form was altered in response to decreased PAM expression and 
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activity, suggesting that processing of CgA may be regulated by PAM-dependent amidation 

(Figure 4D). These results confirm that CgA is a PAM substrate in beta cells, and a strong 

candidate for mediating the effects of PAM on beta cell function. In contrast, silencing of 

IAPP in EndoC-βH1 cells had no effect on insulin content or secretion (Supplementary 

Figure 3E-H). 
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DISCUSSION 

Recent efforts to catalogue coding variants associated with T2D risk have identified 

independent association signals in the PAM gene. The coding risk alleles are also associated 

with decreased insulinogenic index, a physiological measure of insulin secretion in response 

to a glucose challenge, indicating a likely endogenous role for PAM in beta cell function. 

Here, we provide evidence that both T2D-risk alleles reduce overall PAM activity. We also 

show that reduced PAM expression causes beta cell dysfunction through multiple effects on 

insulin availability, secretion, and the dynamics of granule exocytosis. Importantly, these 

defects preferentially affect insulin secretion under stimulated conditions, leading to a blunted 

glucose response. In line with these results, we observed a consistent effect of the rs35658696 

T2D risk allele (p.D563G) on measures of exocytosis in primary human beta cells. Taken 

together, our findings support a molecular mechanism whereby T2D risk alleles in PAM 

decrease PAM function, directly influencing the ability of pancreatic beta cells to mobilize 

insulin in response to glucose. 

This novel mechanism provides a possible explanation for the relatively larger effect of 

rs78408340 (p.S539W PAM) that has been reported in two independent GWAS for T2D and 

insulinogenic index (5, 6). Mislocalisation and/or misexpression of p.S539W PAM would 

severely affect its function, particularly in cell types where the secreted enzyme 

predominates. Retention of integral membrane p.S539W PAM within the ER, as indicated by 

our subcellular localisation studies, could exacerbate this effect through ER stress. The 

precise cellular dynamics that yield secreted PAM in beta cells have not been elucidated; 

however, it appears generally to be more predominant in neuroendocrine cell types (15). This 

raises the intriguing possibility of tissue-specific haploinsufficiency in p.S539W PAM 

carriers. 
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To explore the molecular mechanism underlying beta cell dysfunction in PAM risk allele 

carriers, we performed detailed characterisations of the human beta cell line EndoC-βH1 

following PAM knockdown. The observed defects were broadly similar to those seen in 

primary human beta cells, with differential effects under stimulated conditions and a 

significant reduction in the size of the RRP. Interestingly, the effects of reduced PAM 

function under low glucose conditions in EndoC-βH1 cells were not apparent in primary beta 

cells. This may reflect differences in the degree of PAM loss-of-function between siRNA-

treated EndoC-βH1 cells and rs35658696 risk allele carriers (as suggested by our in vitro 

assay), as well as methodological differences in pre-incubation time prior to capacitance 

measurements, which could affect the extent of granule repletion.  

Our molecular studies in EndoC-βH1 cells confirm that CgA is a substrate for PAM 

amidation in beta cells (34). CgA is a granular packaging protein known to influence vesicle 

composition in other neuroendocrine cell types by facilitating the condensation of secreted 

proteins within nascent secretory vesicles (28-30, 35-37). Previous studies using global Chga 

knockout mouse models have attempted to investigate a role for CgA in pancreatic islets, but 

have been confounded by compensatory increases in other granin proteins including 

Chromogranin B (CgB) (38, 39). Our results suggest a mechanism whereby amidation of 

CgA by PAM enhances its ability to aggregate and package insulin efficiently in granules. In 

support of this hypothesis, amidation of numerous biological peptides has been shown to 

promote protein structure and self-aggregation due to improved electrostatic interactions (40-

42). C-terminal cleavage of CgA has also been found to increase protein stability in pituitary 

cells, and the C-terminal domain of PAM interacts with proteins that influence actin 

cytoskeleton remodelling in yeast-2-hybrid analyses (43-45). These findings provide insights 

into the mechanism by which PAM and CgA may influence granule biogenesis.  
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Although our tissue expression analyses showed PAM to be most highly expressed in 

pancreatic islets, they also reveal that PAM is widely expressed in human tissues. It is 

therefore possible that PAM could influence beta cell function via amidated signals released 

from other cell types (21, 46). Glucagon-like peptide 1 (GLP-1) is an amidated peptide 

released from intestinal L-cells in response to a meal that amplifies insulin secretion (47). 

Moreover, GLP-1 (7-36-amide) has an increased half-life compared to GLP-1 in vitro (7-37), 

suggesting that amidation improves GLP-1 stability (48). PAM may therefore have paracrine 

and endocrine effects on beta cell function via decreased GLP-1 amidation and/or secretion, 

which has implications for genotype-specific responses to incretin-based therapies. 

In conclusion, we show that the amidating enzyme PAM is a critical component of the 

regulated secretory pathway in beta cells, consistent with the observed effects of PAM 

missense variants on T2D risk and insulinogenic index. Our results establish molecular 

mechanisms for T2D-associated PAM risk alleles, and reveal multiple effects of reduced 

PAM function on insulin granule packaging and release from beta cells, potentially via 

amidation of CgA. Our study illustrates the importance of coding variants implicated in 

disease risk to the identification of causal genes for mechanistic studies. Further work is 

required to explore the possible contribution of other tissues to PAM function, particularly 

those that reveal implications for incretin-based therapies. 
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MATERIALS AND METHODS 

Cloning of PAM expression plasmids 

A pCMV6 expression vector encoding integral membrane H. sapiens PAM (NM_138821.2) 

with an in-frame C-terminal Myc-Flag tag (PAM-Myc-Flag) was purchased from Origene. 

Soluble functional PAM-Myc-Flag encompassing the first 710 amino acids was generated via 

PCR using primers 5’GTACCCAGAATGTAGCTCC3’ and 

5’CGGACGCGTAACTGATCGATGTTCCAA3’. Puromycin-resistant PAM-Myc-Flag 

expression vectors were generated via BglII/XmaI digestion, blunt ending with T4 

polymerase, and subcloning into HpaI-digested pIRES puro 2 (Clontech). Mutations were 

introduced via site-directed mutagenesis using the Stratagene QuikChange II kit (Agilent 

Biotechnologies) according to manufacturer’s instructions.  Primer sequences were 

5’CATGTCTGGGATGGAAACTGGTTTGACAGCAAGTTTGTTTAC3’ and 

5’GTAAACAAACTTGCTGTCAAACCAGTTTCCATCCCAGACATG3’ for S539W, 

5’GACACTATTCTTGTCATAGGTCCAAATAATGCTGCAGTAC3’ and 

5’GTACTGCAGCATTATTTGGACCTATGACAAGAATAGTGTC3’ for D563G, and 

5’CATTTATGTATCAGATGGTTTCTGCAACAGCAGGATTGTGC3’ and 

5’GCACAATCCTGCTGTTGCAGAAACCATCTGATACATAAATG3’ for Y651F. All 

plasmids were verified by sequencing. 

Cell culture and transfection 

Human islets were freshly isolated at the Oxford Centre for Islet Transplantation (OXCIT) in 

Oxford, UK, as described (49) and cultured in CMRL medium. HEK 293 cells were routinely 

passaged in DMEM 6429 (Sigma-Aldrich) supplemented with 10% foetal calf serum, 50 

units/mL penicillin and 50µg/mL streptomycin. EndoC-βH1 cells were routinely passaged in 
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growth medium supplemented with 5.5mM glucose (22). All cells were maintained at 

37°C/5% CO2. 

For generation of PAM stable cell lines, HEK 293 cells were transfected using Fugene 6 

(Promega) according to manufacturer’s instructions. Cells were routinely passaged and 

maintained in 1µg/mL puromycin. For fluorescence microscopy, EndoC-βH1 cells were 

transfected in chamber slides (BD Biosciences) using Fugene 6. For siRNA experiments, 

EndoC-βH1 cells were seeded in Opti-MEM reduced serum medium (Life Technologies) 

containing 25nM ON-TARGETplus SMARTpool siRNA complexes (Dharmacon) pre-

formed with Lipofectamine RNAiMAX (Life Technologies) according to manufacturer’s 

instructions. Growth medium was replaced 24hr later and incubated for a further 48hr. For 

PAM inhibitor experiments, seeded cells were treated with 500µM 4-phenyl-3-butenoic acid 

(4P3BA) or DMSO vehicle (Sigma-Aldrich) for 72hr. 

Recombinant PAM protein production 

HEK 293 stable cell lines were seeded into Triple Flasks (Nunc). Medium was replaced with 

DMEM 1145 supplemented with 1mM sodium pyruvate and incubated for 3-5 days. 

Supernatant containing secreted recombinant PAM protein was harvested directly from 

flasks, filtered into a sterile storage bottle (Corning), and pH corrected to 5.5 with HCl. 

Filtered supernatant was concentrated using a Centricon Plus-70 30kDa MW cut-off 

Centrifugal Filter Device (Millipore) according to manufacturer’s instructions. 

Quantitation of recombinant PAM 

For relative quantitation of recombinant PAM proteins, 3x1µL aliquots of concentrated 

supernatant were separated on a 4–20% Criterion TGX Stain-Free Gel (Bio-Rad) and 

transferred to PVDF using a Trans-blot Turbo Transfer Pack (Bio-Rad) according to 
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manufacturer’s instructions. Membranes were incubated overnight in 4A6 anti-Myc tag 

antibody (Millipore) at 4°C and developed using the Clarity Western ECL Substrate (Bio-

Rad) according to manufacturer’s instructions. Proteins were visualised on a ChemiDoc MP 

(Bio-Rad). Lanes and bands were drawn in Image Lab 5.0 and the average band volume 

(intensity) quantified for each triplicate of samples. The amount of recombinant variant PAM 

protein/µL could then be calculated relative to WT-PAM.  

Kinetic analysis of PAM amidating activity 

Amidating activity was measured via spectrophotometric detection of chemically converted 

glyoxylate (18). An assay mix of 100mM MES pH 5.5, 2µM CuSO4, 10mM L-ascorbic acid, 

0.1mg/mL bovine liver catalase, and 20mM hippuric acid (Sigma-Aldrich) was split into 

glass vials. Equimolar amounts of recombinant PAM were added to each vial and incubated 

in a 37°C water bath. Every 30min, samples were removed to a conical 96-well plate 

(4titude) containing 40mM EDTA pH 8.0. The glyoxylate produced was converted to 

glyoxylate phenylhydrazone via addition of 0.1% phenylhydrazine HCl (Sigma-Aldrich), 

incubated at room temperature for 15min, and saturated with concentrated (37%) HCl. The 

contents of the entire plate were then aspirated and dispensed into a flat-bottomed 96-well 

plate (Corning) containing 0.2% K3[Fe(CN)6] using an i-Pipette Automated Pipettor (Apricot 

Designs). Absorbance of 1,5-diphenylformazan was measured at 515nm using a VersaMax 

microplate reader (Molecular Devices). 

Kinetic analysis of variant PAM substrate affinity 

For Km calculations, a 12-point two-fold serial dilution of hippuric acid in which the 

maximum concentration was 20mM was prepared in assay mix (100mM MES pH 5.5, 2µM 

CuSO4, 10mM L-ascorbic acid, 0.1mg/mL bovine liver catalase). Recombinant PAM or 

empty vector control supernatant was then added. The amount of D563G-PAM added to the 
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assay was increased such that it displayed equal Vmax to WT-PAM. The volume of empty 

vector supernatant matched the volume of WT-PAM used in that experiment. Vials were 

incubated in a 37°C water bath for 1hr. Samples were then removed into a conical 96-well 

plate containing 40mM EDTA pH 8.0. 

Gene expression analyses 

Gene expression was measured via Taqman assay. RNA was purified from TRIzol (Ambion) 

homogenates or sourced from commercially available RNA tissue panels (Human Total RNA 

Master Panel II (Clontech), FirstChoice Human Total RNA Survey Panel (Ambion), and 

mouse Total RNA Master Panel (Clontech)). Pooled human adult pancreas RNA from n=3 

donors and pooled human adult islet RNA from n=3 donors was sourced from the Oxford 

Islet Biobank (50). Pooled mouse islet RNA was sourced from four 12–28 week-old NMRI 

mice. Hypothalamus and pituitary RNA were commercially sourced from AMSBio. cDNA 

was generated using the GoScript Reverse Transcription System (Promega) according to 

manufacturer’s instructions and analysed using an Applied Biosystems 7900HT. CT values 

were normalised to the combined average of the housekeeping genes PPIA and TBP. PAM 

expression in human islets and sorted beta cells and non-beta cells was analysed based on 

previously published RNA sequencing data (20). 

Immunofluorescent labelling and microscopy 

For light microscopy, analyses were performed on 4μm sections. Human pancreatic 

specimens fixed in 10% formalin and embedded in wax were used to localise PAM in islets. 

Sections were de-waxed, rehydrated, and heated to 95°C in 10mmol/L Tris + 1mmol/L 

EDTA pH 6.0 for 10min for antigen retrieval. Tissue sections were incubated overnight in 

anti-PAM (Abcam ab109175), guinea-pig anti-insulin (in-house antibody), and mouse anti-

glucagon (Sigma-Aldrich G2654) antibodies.  PAM immunoreactivity was enhanced using a 
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tyramide amplification step (Invitrogen) and visualised with Alexa Fluor 488 (Life 

Technologies). Insulin and glucagon were visualised using Alexa Fluor 633 (Life 

Technologies) and anti-mouse TRITC (Sigma-Aldrich) respectively. 

EndoC-βH1 cells transfected with PAM expression vectors were fixed in 4% 

paraformaldehyde, permeabilised in 0.1% (v/v) Triton X-100, and blocked in 10% (w/v) 

BSA. Primary antibodies (4A6 anti-Myc, Belfast anti-insulin, TGN46 anti-trans Golgi 

[Sigma-Aldrich], and H-70 anti-calnexin [Santa Cruz Biotechnology sc-11397]) were 

incubated overnight at 4°C. Slides were then incubated in Alexa Fluor-conjugated secondary 

antibodies (Life Technologies) and mounted in Vectashield Mounting Medium with DAPI 

(Vector Biolaboratories). Cells were visualised using an LSM 10 META confocal laser 

scanning module arranged on an Axiovert 200 microscope and a Plan-Apochromat 63x/1.4 

oil immersion objective (Carl Zeiss). An argon laser was used to excite Alexa Fluor 488 at 

λ=488nm and a HeNe laser was used to excite Alexa Fluor 543 at λ=543nm. DAPI was 

excited in two-photon mode using the 740nm line of an infrared light Chameleon laser. 

 

Insulin secretion and membrane capacitance assays in EndoC-βH1 

Insulin secretion assays were performed as previously described (51). The CyQUANT Direct 

Cell Proliferation Assay (Thermo Fisher) was used to count cells according to manufacturer’s 

instructions. Insulin secretion and content measurements were normalised to cell count on a 

per-well basis to account for differences in the number of plated cells. Corrected values were 

then normalised to basal insulin secretion rates for scrambled on a per-experiment basis to 

eliminate variability in baseline secretion rates across biological replicates. 

Electrophysiological measurements were performed using an EPC10 Patch Clamp Amplifier 

(HEKA) at 32°C using the standard whole cell configuration as previously described (52). 
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The pipette solution (intracellular medium) contained 125mM Cs-glutamate, 20mM CsCl, 

15mM NaCl, 1mM MgCl2, 5mM HEPES, 0.05mM EGTA, 0.1mM cAMP, and 3mM Mg-

ATP (pH 7.15 with CsOH). The extracellular solution contained 1mM glucose, 118mM 

NaCl, 5.6mM KCl, 1.2mM MgCl2, 5mM HEPES, and 2.6mM CaCl2 (pH 7.4 with NaOH). 

Tetraethylammonium chloride (20mM) was added to block residual K+ currents. 

Electron microscopy 

Transfected EndoC-βH1 cells were fixed in 2.5% glutaraldehyde, post-fixed in 2% uranyl 

acetate, dehydrated in graded methanol, and embedded in London Resin Gold (Agar 

Scientific). Ultrathin sections cut onto nickel grids were immunolabelled for PAM (Abcam 

ab109175) followed by anti-rabbit biotin (Vector Laboratories) and streptavidin gold 15nm 

(Biocell). Insulin was immunolabelled using an in-house antibody followed by anti-guinea 

pig gold 10nm (Biocell). Sections were viewed on a Joel 1010 microscope (accelerating 

voltage 80kV) with a digital camera (Gatan). To estimate PAM concentration in secretory 

vesicles, semi-automatic quantification of immunogold labelling was performed by a blinded 

observer using Image J software. The following parameters were determined: cross-sectional 

vesicle area, vesicle density (number of vesicles/cytoplasmic area), and insulin or PAM 

labelling/vesicle (number of immunogold particles/vesicle). 

Western blot analysis of CgA amidation 

Whole-cell extracts (WCE) from siRNA or inhibitor-treated EndoC-βH1 cells were prepared 

as previously described (53). Supernatant was harvested directly from cells and filtered with a 

0.22μm filter. Protein yields were determined by the Bio-Rad Protein Assay according to 

manufacturer's instructions. We routinely analysed 2-10μg WCE and 0.5% total supernatant 

volume via denaturing SDS-PAGE. Antibodies specific for CgA-Gly (Abcam ab52983) (34) 
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and total CgA (Abcam ab15160) were used to calculate the ratio of amidated to non-amidated 

CgA using Image Lab 5.0. 

Analysis of exocytosis in primary human beta cells 

Human pancreatic islets were isolated and prepared at the Alberta Diabetes Institute IsletCore 

as previously described (54). Single-cell capacitance responses were monitored as described 

above, with an additional pre-incubation period of 1 hour at 1 mM glucose. Following 

recordings, cells were positively identified by insulin immunostaining and islet samples were 

genotyped as previously described (50). We examined the kinetics of exocytosis at 1 and 10 

mM glucose for seven risk allele carriers and seven controls, matched as groups for age (54.9 

years [carriers] vs. 58.4 years [controls]; p = 0.52), gender (2/7 females [carriers] vs. 4/7 

females [controls]) and BMI (27.7 [carriers] vs. 26.7 [controls]; p = 0.68). Mean capacitance 

was calculated per condition for each depolarisation step, and ANOVA with Tukey’s post-

hoc test was applied to detect statistically significant differences. 

Statistics 

All statistical analyses were performed in R v3.0.2, except electron microscopy data and 

electrophysiological measurements in EndoC-βH1 cells, which were analysed using 

OriginPro v8.5.1. Graphs show means of the indicated number of replicates, and error bars 

are SEM. For kinetic data, rates were found to be dependent on substrate concentration, and 

exponential models were fitted. Kinetic and cellular assay data were analysed using two-

sided Welch’s t-test; electrophysiological, electron microscopy, and Western data using 

paired student’s t-test. 
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Study Approval 

All studies were approved by the University of Oxford's Tropical Research Ethics Committee 

(OxTREC reference 2–15), or the Oxfordshire Regional Ethics Committee B (REC reference 

09/H0605/2). Human pancreatic tissue was obtained from subjects at post-mortem 

examination according to local and national ethics permissions. 
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Figure 1 

Figure 1. Analysis of WT and variant PAM function and expression. A) Amidating activity of WT-PAM 
(circles), D563G-PAM (squares), Y651F-PAM (diamonds), or empty vector (EV) (triangles) in vitro (n=4). Error 
bars are mean ±SEM. B) PAM expression in human tissues (n=1). C) Endogenous glucagon (white), PAM (green), 
and insulin (red) expression in human pancreas. White and yellow arrows indicate co-localisation of PAM with 
insulin and glucagon respectively. Scale bar, 20µm. D) EndoC-βH1 cells transfected with expression vectors for 
i) ingetral membrane or ii) secreted WT or variant PAM were labelled for PAM (green), the trans-Golgi network 
(TGN) (red in i), or insulin (red in ii). DAPI (blue) was used as a nuclear marker. Scale bar, 2µm. Results in C&D 
are from a single representative experiment that is indicative of at least two independent experiments. 
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Figure 2

Figure 2. Effects of endogenous PAM on beta cell function. EndoC-βH1 cells were transfected with scrambled 
(Scr) or PAM siRNA then measured for A) insulin secretion (n=8), B) cellular insulin content (n=16), or C) cell 
viability (n=16), D) Insulin (INS) expression (n=3), or E-F) granule exocytosis measured as depolarisation-evoked 
increased in membrane capacitance (n=15 (Scr) or n=16 (PAM)). Error bars are mean ±SEM. P values * <0.05, 
*** <0.001. 
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Figure 3

Figure 3. Effects of endogenous PAM on beta cell ultrastructural features. A) Representative electron 
micrographs from scrambled (Scr) and PAM siRNA-treated EndoC-βH1 cells. Scale bar, 2µm. B) i) number of 
immunogold insulin particles per vesicle (ppv), ii) number of immunogold PAM particles per vesicle, iii) vesicle 
area, and iv) vesicle density. Results shown are the average of n=235 (Scr) or n=290 (PAM) vesicles except for 
iv) where n=10 cells per treatment. M, mitochondrion. Error bars are mean ±SEM. P value *** <0.001. ns, not 
significant. 
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Figure 4

Figure 4. Effects of rs35658696 genotype status on exocytosis measurements in dispersed human islets. 
Capacitance measurements for primary beta cells from seven individuals heterozygous for the rs35658696 risk 
allele (“Carriers”) and seven individuals homozygous for the non-risk allele (“Controls”). Dispersed islets were 
pre-incubated for 1 hour in 1 mM glucose prior to detailed capacitance measurements under the indicated glucose 
concentrations. (A) Stepwise capacitance measurements after each of ten depolarisations, and (B) the cumulative 
increase in capacitance for the first two depolarisations, indicative of the size of the RRP. Error bars are mean 
±SEM. * P value < 0.05.  
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Figure 5

Figure 5. Chromogranin A is a PAM substrate and downstream PAM effector in beta cells. EndoC-βH1 
cells were transfected with scrambled (Scr) or CHGA siRNA then measured for A) insulin secretion (n=8), B) 
cellular insulin content (n=16), and C) cell viability (n=16). D) EndoC-βH1 cells were transfected with scrambled 
or PAM siRNA or treated with vehicle (Control) or 4P3BA, then analysed by Western blot using antibodies 
specific for non-amidated CgA (CgA-Gly) and total CgA. Results in D are from a single representative experiment 
that is indicative of at least two independent experiments. Error bars are mean ±SEM. P values ** <0.01, *** 
<0.001. 
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