

1 **Genome-wide association mapping and genomic prediction unravels CBSD resistance in a
2 *Manihot esculenta* breeding population**

3 Siraj Ismail Kayondo^{1,2}, Dunia Pino Del Carpio³, Roberto Lozano³, Alfred Ozimati^{1,3}, Marnin Wolfe³, Yona Baguma¹,
4 Vernon Gracen^{2,3}, Offei Samuel², Morag Ferguson⁵, Robert Kawuki¹ and Jean-Luc Jannink^{3,4}

5 1) National Crop Resources Research Institute, NaCRRI, P.O. Box, 7084 Kampala, Uganda,

6 2) West Africa Center for Crop Improvement, (WACCI), University of Ghana,

7 3) School of Integrative Plant Sciences, Section on Plant breeding and Genetics, Cornell University, Ithaca, New York,

8 4) US Department of Agriculture – Agricultural Research Service (USDA-ARS)

9 5) International Institute for Tropical Agriculture (IITA), Nairobi

10 Corresponding author: kawukisezirobert@gmail.com

11
12

13 **ABSTRACT**

14 Cassava (*Manihot esculenta* Crantz), a key carbohydrate dietary source for millions of people in
15 Africa, faces severe yield loses due to two viral diseases: cassava brown streak disease (CBSD)
16 and cassava mosaic disease (CMD). The completion of the cassava genome sequence and the
17 whole genome marker profiling of clones from African breeding programs
18 (www.nextgencassava.org) provides cassava breeders the opportunity to deploy additional
19 breeding strategies and develop superior varieties with both farmer and industry preferred traits.

20 Here the identification of genomic segments associated with resistance to CBSD foliar symptoms
21 and root necrosis as measured in two breeding panels at different growth stages and locations is
22 reported. Using genome-wide association mapping and genomic prediction models we describe
23 the genetic architecture for CBSD severity and identify loci strongly associated on chromosomes
24 4 and 11. Moreover, the significantly associated region on chromosome 4 colocalises with a
25 *Manihot glaziovii* introgression segment and the significant SNP markers on chromosome 11 are
26 situated within a cluster of nucleotide-binding site leucine-rich repeat (NBS-LRR) genes
27 previously described in cassava. Overall, predictive accuracy values found in this study varied
28 between CBSD severity traits and across GS models with Random Forest and RKHS showing the
29 highest predictive accuracies for foliar and root CBSD severity scores.

30

31 Key words: Genome-wide association studies (GWAS), virus severity, augmented designs, de-
32 regressed best linear unbiased Predictions (drg-BLUPs), NBS-LRR proteins

33

34 **INTRODUCTION**

35 Cassava (*Manihot esculenta* Crantz), is a major source of income and dietary calories for more
36 than 800 million people across the globe especially in Sub Saharan Africa (SSA) and recently, due
37 to the unique starch qualities of the storage roots cassava is also turning into an industrial crop
38 (Pérez *et al.*, 2011). Although cassava is a resilient crop, its production is threatened by viral
39 diseases such as Cassava brown streak virus disease (CBSD), which causes major yield losses to
40 poor farming families (ASARECA:, 2013; Ndunguru *et al.*, 2015; Patil *et al.*, 2015). CBSD is
41 caused by two major strains; *Cassava brown streak virus* (CBSV) and *Ugandan cassava brown*
42 *streak virus* (UCBSV) both CBSVs have successfully colonized the lowland and highland altitudes
43 across East Africa and new strains are emerging (Winter *et al.*, 2010; Ndunguru *et al.*, 2015; Alicai
44 *et al.*, 2016). In Uganda, because of CBSVs and agronomical practices, cassava yields were
45 recorded to be eight times lower than the yield potential for this crop (ASARECA:, 2013).

46 In addition to the uncontrolled exchange of infected cassava stakes among farmers across borders,
47 CBSVs are transmitted by the African whitefly (*Besimia tobaci*) in a semi-persistent manner
48 (Legg, Sseruwagi, *et al.*, 2014; McQuaid *et al.*, 2016). Upon infection, the viruses use the transport
49 system of the plant and cause yellow chlorotic vein patterns along minor veins of leaves in
50 susceptible cassava clones (Ogwok *et al.*, 2010; Maruthi *et al.*, 2016; Anjanappa *et al.*, 2016). On
51 the stem, prominent brown elongated lesions commonly referred to as “brown streaks” are formed
52 and in the storage roots, necrotic hard-corky layers are formed in the root cortex of the most
53 susceptible cassava clones (Hillocks *et al.*, 1996; Legg, Somado, *et al.*, 2014; Ndyetabula *et al.*,
54 2016).

55 Earlier, CBSD resistance breeding initiatives have highlighted the polygenic nature of inheritance
56 in both intraspecific and interspecific cassava hybrids (Nichols, 1947; Hillocks and Jennings,
57 2003; Munga, 2008; Kulembeka, 2010). In view of the rapid virus evolution and the insufficiency
58 of dependable virus diagnostic tools (Alicai *et al.*, 2016) breeding for durable CBSD resistance,
59 has been the main strategy to control CBSD spread in Eastern Africa. Most of the available elite
60 cassava lines have exhibited some level of sensitivity to CBSVs ranging from mild sensitivity to
61 total susceptibility. Moreover, clones classified as resistant and tolerant show diverse symptom

62 expression, restricted virus accumulation or recovery after clonal propagation (Hillocks and
63 Jennings, 2003; Alicai *et al.*, 2016).

64 Overall, in cassava for many traits the rate of genetic improvement following a traditional breeding
65 pipeline has been slower due to the combination of several biology-related issues such as: poor
66 flowering, length of breeding cycle, limited genetic diversity and slow rate of multiplication of
67 planting materials.

68 Recently, using genotypic and phenotypic information genome wide association mapping
69 (GWAS) has been used to unravel the genetic architecture of cassava mosaic disease (CMD)
70 (Wolfe *et al.*, 2016) and beta carotene content (Esuma *et al.*, 2016). Both studies have been
71 successful in identifying associated loci with traits of interest. In addition, the performance of
72 genomic prediction for different traits was previously evaluated using historical phenotypic and
73 genotyping by sequencing (GBS) datasets from the International Institute of Tropical Agriculture
74 in Nigeria (Elshire *et al.*, 2011; Ly, Hamblin, Rabbi, Melaku, Bakare, Gauch, *et al.*, 2013).
75 Genomic Selection (GS) is a breeding method alternative to marker assisted selection and
76 conventional phenotypic selection which can accelerate genetic gains through the use of
77 phenotypic and genotypic data from a training population (Meuwissen *et al.*, 2001; Jannink *et al.*,
78 2010; Lorenz *et al.*, 2011). The performance of different GS models has been evaluated in various
79 species and in many traits (Resende *et al.*, 2012; Gouy *et al.*, 2013; Heslot *et al.*, 2014; Charmet
80 *et al.*, 2014; Cros *et al.*, 2015). Recently the potential of GS for CMD resistance has been reported
81 with predictive accuracies ranging from 0.53 to 0.58 (Wolfe *et al.*, 2016).

82 In the present study we followed a GWAS approach in combination with genomic prediction to
83 unravel the genetic architecture of CBS in two Ugandan breeding populations. While one of our
84 main objectives was to assess the current predictive accuracy for CBS we also aimed to identify
85 the most promising genomic prediction models that can account for CBS genetic architecture.
86 GWAS identified loci strongly associated with CBSVs resistance to foliar symptoms which co-
87 locate with an introgression block from a cassava wild progenitor, *M. glaziovii* (Bredeson *et al.*,
88 2016) and with root necrosis which were close to a cluster of plant defence response-related genes
89 annotated in the cassava genome (Lozano *et al.*, 2015). The presence of introgressions segments
90 from the wild progenitors into the elite breeding lines is the result of cassava improvement

91 programs at the Amani Research Station throughout the 1940s and 1950s (Jennings and Iglesias,
92 Hillocks and Jennings, 2003).

93 Here we demonstrated with the synergistic implementation of GWAS and GS that GWAS could
94 be used as a prioritization tool to identify markers for genomic prediction for CBSD resistance in
95 cassava. In addition to unravelling the genetics of CBSD resistance these findings may help in the
96 identification of significant causal polymorphisms to guide marker-assisted breeding for CBSD
97 severity that may greatly improve cassava breeding in the face of increasing disease threats to
98 agricultural production.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120 **MATERIALS AND METHODS**

121 **Plant material**

122 Phenotypic data was collected from two GWAS panels (Supplementary table 1), GWAS panel 1
123 composed of 429 clones and GWAS panel 2 which was composed of 872 clones. The combined
124 dataset of 1281 cassava clones were developed through three cycles of genetic recombination
125 between cassava introductions and local elite lines by the National root crops breeding program at
126 NaCRRI. These cassava clones have a diverse genetic background whose pedigree could be traced
127 back to introductions from the International Institute of Tropical Agriculture (IITA), International
128 Center for Tropical Agriculture (CIAT) and the Tanzania national cassava breeding program
129 (Supplementary table 1).

130

131 **Phenotyping**

132 The GWAS panel trials were conducted in five locations; Namulonge, Kamuli, Serere, Ngetta and
133 Kasese in Uganda.

134 GWAS panel 1 data was collected in two years across three locations, each trial was designed and
135 laid out as a 6 by 30 alpha-lattice design with two-row plots of five plants each at a spacing of 1
136 meter by 1 meter. GWAS panel 2 was evaluated in three locations, on each location, five rows of
137 test clones were bordered by two CBSD susceptible clones in order to increase CBSD disease
138 pressure (TME204). Clones from GWAS panel 2 were evaluated as single entries per location
139 being connected by six common checks in an augmented completely randomized block design
140 with 38 blocks per site (Federer *et al.*, 2002; Federer and Crossa, 2012).

141 CBSD severity was scored at 3 (CBSD3S), 6 (CBSD6S), and 9 (CBSD9S) months after planting
142 (MAP) for foliar and 12 MAP (CBSDRS) for root symptoms respectively. The CBSD9S scores
143 were not available for GWAS panel 1.

144 CBSD severity was measured based on a 5-point scale with a score of 1 implying asymptomatic
145 conditions and a score 5 implying over 50% leaf vein clearing under foliar symptoms. However,
146 at 12 MAP a score of 5 implies over 50% of root-core being covered by a necrotic corky layer.
147 (Supplementary Figure 1)

148 Clones were classified with a score of 5 if pronounced vein clearing at major leaf veins were jointly
149 displayed with brown streaks on the stems and shoot die-back that appeared as a candle-stick.
150 Clones with 31 – 40% leaf vein clearing together with brown streaks at the stems were classified
151 under score 4. A Score of 3 was assigned to clones with 21 – 30% leaf vein clearing with emerging
152 brown streaks on the stems. While a score of 2 was assigned to clones that only displayed 1 – 20%
153 leaf vein clearing without any visible brown streak symptoms on the stems. Plants classified with
154 a score of 1 showed no visible sign of leaf necrosis and brown streaks on the stems. On the other
155 hand, root symptoms were also classified into 5 different categories based on a 5 – point standard
156 scale (Jennings and Iglesias, 2002; Hillocks and Jennings, 2003).

157

158 **Two-stage genomic analyses**

159 For the two stage analyses, the first stage involved accounting for trial-design using a linear mixed
160 model to obtained de-regressed BLUPs (drgBLUPs) and the second stage involved the use of de-
161 regressed BLUPs in GWAS and Genomic prediction.

162 For the panel 1 we fitted the model: $= \mathbf{X}\beta + \mathbf{Z}_{\text{clone}}c + \mathbf{Z}_{\text{range(loc.)}}r + \mathbf{Z}_{\text{block(range)}}b + \varepsilon$, using
163 the *lmer* function from the *lme4* R package (Bates et al., 2015). In this model, β included a fixed
164 effect for the population mean and location. The incidence matrix $\mathbf{Z}_{\text{clone}}$ and the vector c represent
165 a random effect for clone $c \sim N(0, \mathbf{I}\sigma_c^2)$ and \mathbf{I} represent the identity matrix. The range variable,
166 which is the row or column along which plots are arrayed, is nested in location-rep and is
167 represented by the incidence matrix $\mathbf{Z}_{\text{range(loc.)}}$ and random effects vector $r \sim N(0, \mathbf{I}\sigma_r^2)$. Block
168 effects were nested in ranges and incorporated as random with incidence matrix $\mathbf{Z}_{\text{block(range)}}$ and
169 effects vector $b \sim N(0, \mathbf{I}\sigma_b^2)$. Residuals ε were fit as random, with $\varepsilon \sim N(0, \mathbf{I}\sigma_\varepsilon^2)$.

170 For panel 2 we fitted the model $\mathbf{y} = \mathbf{X}\beta + \mathbf{Z}_{\text{clone}}c + \mathbf{Z}_{\text{block}}b + \varepsilon$ Where \mathbf{y} was the vector of raw
171 phenotypes, β included a fixed effect for the population mean and location with checks included
172 as a covariate. The incidence matrix $\mathbf{Z}_{\text{clone}}$ and the vector c are the same as the aforementioned
173 model and the blocks were also modeled with incidence matrix $\mathbf{Z}_{\text{block}}$ and \mathbf{b} represents the random
174 effect for block. The best linear predictors (BLUPs) of the clone effect (\hat{c}) were extracted as de-
175 regressed BLUPS following the formula (Garrick *et al.*, 2009):

176
$$\text{deregressed BLUP} = \frac{\text{BLUP}}{1 - \frac{\text{PEV}}{\sigma_c^2}}$$

177

178 Where PEV is the prediction error variance of the BLUP and σ_c^2 is the clonal variance component.

179

180

181 **DNA preparation and Genotyping by sequencing (GBS)**

182 Total genomic DNA was extracted from young tender leaves of all cassava clones included in the
183 phenotyping trials according to standard procedures using the DNAeasy plant mini extraction kit
184 (QIAGEN, 2012). Genotyping-by-sequencing (GBS)(Elshire *et al.*, 2011) libraries were
185 constructed using the ApeKI restriction enzyme (Hamblin and Rabbi, 2014). Marker genotypes
186 were called using TASSEL GBS pipeline V4 (Glaubitz *et al.*, 2014) after aligning the reads to the
187 Cassava v6 reference genome (Prochnik *et al.*, 2012; Goodstein *et al.*, 2014). Variant Calling
188 Format (VCF) files were generated for each chromosome. Markers with more than 60% missing
189 calls were removed. Genotypes with less than five reads were masked before imputation.
190 Additionally, only biallelic SNP markers were considered for further processing.

191 The marker dataset consisted of a total of 173,647 bi-allelic SNP markers called for 986
192 individuals. This initial dataset was imputed using Beagle 4.1 (Browning and Browning, 2016).
193 After timputation, 63,016 SNPs had an AR2 (Estimated Allelic r-squared) higher than 0.3 and
194 were kept for analysis; from these, 41,530 had a minor allele frequency (MAF) higher than 0.01
195 in our population. Dosage files for this final dataset were generated and used for both GWAS and
196 GS analyses.

197

198 **Genetic correlations and heritability estimates**

199

200 Correlation across CBSD traits was estimated using pairwise correlations for each location using
201 the drgBLUPs values obtained after fitting the aforementioned linear mixed model. Broad sense
202 heritabilities (plot-mean basis) were calculated using the estimated variance components from the
203 first step of the two-step genomic analysis as explained previously.

204 In addition, SNP-based heritabilities were calculated for each GWAS panel by fitting a single-step
205 mixed-effects model, the full models which specified clone as a random effect were fitted using
206 the *emmreml* function from the *EMMREML* R package (Akdemir and Okeke, 2015). The random
207 effect was modeled as having co-variance proportional to the kinship matrix, which was calculated
208 using the *A.mat* function from the *rrBLUP* R package (Endelman, 2011).

209

210

211 **Genome-wide association analysis for CBSV severity**

212 Although pedigree records indicate the two GWAS panels to be closely related a principal
213 component analysis (PCA) was performed in order to characterize these panels and to identify any
214 population stratification between the two GWAS panels. We used the imputed dataset of 63,016
215 SNP markers to calculate the PCs with the function *princomp* in R.

216 With the imputed dataset of 63,016 SNP markers and 986 individuals genome wide association
217 was performed using a mixed linear model association analysis (MLMA) accounting for kinship
218 as implemented in GCTA (v 1.26.0) (Yang *et al.*, 2011) . Specifically, we followed a leave one
219 chromosome out approach, with this approach the chromosome on which the candidate SNP
220 markers are tested gets excluded from the genomic relationship (GRM) calculation. Bonferroni
221 correction (reference) was used to correct for multiple testing with a significance threshold set at
222 5.9. Manhattan plots with transformed $-\log_{10}(P\text{-value})$ were generated using R package *qqman*
223 (Turner, 2014).

224

225 **Genomic prediction models**

226 To assess the potential of implementing genomic selection for CBSD, seven genomic prediction
227 models were keenly examined; genomic best linear unbiased prediction (GBLUP), reproducing
228 kernel Hilbert spaces (RKHS), BayesCpi, Bayesian LASSO, BayesA, BayesB and Random forest
229 (RF).

230 **GBLUP.** In this prediction model, the GEBVs are obtained after fitting a linear mixed model
231 where the genomic realized relationship matrix is based on SNP marker dosages. Accordingly, the
232 genomic relationship matrix was constructed using the function *A.mat* in the R package rrBLUP

233 (Endelman, 2011) and follows the formula of VanRaden (2008), method two. GBLUP predictions
234 were made with the function *emmreml* in the R package EMMREML (Akdemir and Okeke, 2015).
235 **Multi-kernel GBLUP.** Because the most significant QTLs for foliar severity 3 and 6 MAP were
236 mapped on chromosomes 4 and 11 (this paper) we followed a multi-kernel approach by fitting
237 three kernels with genomic relationship matrices constructed with SNP markers from
238 chromosomes 4 (G_{chr4}), 11 (G_{chr11}) and SNPs from the other chromosomes ($G_{allchr-[4,11]}$). Multi-
239 kernel GBLUP predictions were made with the function *emmremlMultiKernel* in the R package
240 EMMREML (Akdemir and Okeke, 2015).
241 **RKHS.** Unlike GBLUP for RKHS we use a Gaussian kernel function: $K_{ij} = \exp(-d_{ij}\theta)$, where
242 K_{ij} is the measured relationship between two individuals, d_{ij} is their Euclidean genetic distance
243 based on marker dosages and θ is a tuning (“bandwidth”) parameter that determines the rate of
244 decay of correlation among individuals. This function is nonlinear and therefore the kernels used
245 for RKHS can capture non-additive as well as additive genetic variation. To fit a multiple-kernel
246 model with six covariance matrices we used the *emmremlMultiKernel* function in the EMMREML
247 package, with the following bandwidth parameters: 0.0000005, 0.00005, 0.0005, 0.005, 0.01, 0.05
248 (Multi-kernel RKHS) and allowed REML to find optimal weights for each kernel.
249 **Bayesian marker regressions.** We tested four Bayesian prediction models: BayesCpi (Habier *et*
250 *al.*, 2011), the Bayesian LASSO (Park and Casella, 2008), BayesA, and BayesB (Meuwissen *et*
251 *al.*, 2001). The Bayesian models we tested allow for alternative genetic architectures by way of
252 differential shrinkage of marker effects. We performed Bayesian predictions with the R package
253 BGLR (Pérez and De Los Campos, 2014)
254 **Random Forest.** Random forest (RF) is a machine learning method used for regression and
255 classification (Breiman, 2001; Strobl *et al.*, 2009; Charmet and Storlie, 2012). Random forest
256 regression with marker data has been shown to capture epistatic effects and has been successfully
257 used for prediction (Breiman, 2001; Motsinger-Reif *et al.*, 2008; Heslot *et al.*, 2012; Charmet *et*
258 *al.*, 2014; Spindel *et al.*, 2015). We implemented RF using the random Forest package in R (Liaw
259 and Wiener, 2002) with the parameter, *ntree* set to 500 and the number of variables sampled at
260 each split (*mtry*) equal to 300.

261

262 **Introgression Segment Detection**

263 To identify the genome segments in the two GWAS panels, we followed the approach described
264 in Bredeson et al . (Bredeson *et al.*, 2016). We used the *M. glaziovii* diagnostic markers identified
265 in Supplementary Dataset 2 of Bredeson et al. (Bredeson *et al.*, 2016), these ancestry diagnostic
266 (AI) SNPs were identified as being fixed for different alleles in a sample of two pure *M. esculenta*
267 (Albert and CM33064) and two pure *M. glaziovii*.

268 Out of 173,647 SNP in our imputed dataset, 12,502 matched published AI SNPs. For these AI
269 SNPs, we divided each chromosome into non-overlapping windows of 20 SNP. Within each
270 window, for each individual, we calculated the proportion of genotypes that were homozygous
271 (G/G) or heterozygous (G/E) for *M. glaziovii* allele and the proportion that were homozygous for
272 the *M. esculenta* allele (E/E). We assigned G/G, G/E or E/E ancestry to each window, for each
273 individual only when the proportion of the most common genotype in that window was at least
274 twice the proportion of the second most common genotype. We assigned windows a “No Call”
275 status otherwise.

276 We also used this approach on six whole-genome sequenced samples from the cassava HapMap II
277 (Ramu *et al.*, 2016). These included the two “pure cassava” and *M. glaziovii* (S) from Bredeson et
278 al. (Bredeson *et al.*, 2016), plus an additional *M. glaziovii*, and two samples labeled Namikonga.
279 Because these samples came from a different source from most our samples, we could find only
280 11,686 SNPs that matched both the sites in the rest of our study sample and the list of ancestry
281 informative sites for analysis.

282

283

284

285

286

287

288

289

290

291 **Linkage disequilibrium plots**

292 To confirm whether a large haplotype block present on chromosome 4 collocate with a GWAS
293 QTL identified on this chromosome we calculated LD scores of every SNP marker on chromosome
294 4 in a 1Mb window using GCTA (Yang *et al.*, 2011). Briefly, LD score for a given marker is
295 calculated as the sum of R^2 adjusted between the index marker and all markers within a specified
296 window. The adjusted R^2 is an unbiased measure of LD:

$$297 R_{adj}^2 = R^2 - \frac{(1 - R^2)}{(n - 2)}$$

298 Where “n” is the population size and R^2 is the usual estimator of the squared Pearson’s correlation
299 (Bulik-Sullivan *et al.*, 2015). The resulting LD scores were then plotted against the GWAS \log_{10}
300 (Pvalue) of every marker on chromosome 4.

301 To highlight the importance of the associated markers on chromosome 11 we calculated pairwise
302 squared Pearson's correlation coefficient (r^2) between the top significant GWAS SNP hit on this
303 chromosome and neighboring markers in a window of 2Mb (1Mb upstream and 1Mb downstream).
304 (plink ref)

305

306 **Candidate gene identification**

307 We used the mlma GCTA output to filter out SNP markers based on $-\log_{10}$ (P-value) values higher
308 than the Bonferroni threshold (~ 5.9). The resulting significant SNP markers were then mapped
309 onto genes using the SNP location and gene description from the M.esculenta_305_v6.1.gene.gff3
310 available in Phytozome 11(Goodstein *et al.*, 2014) for *Manihot esculenta* v6.1 using the intersect
311 function from bedtools (Quinlan and Hall, 2010).

312

313

314

315

316

317

318 **RESULTS**

319 **Phenotypic variability for severity to cassava brown streak virus infection**

320 In the present study field disease scoring was done based on a standard CBSD scoring scale that
321 ranges from 1 to 5 for both foliar and root symptoms (Supplementary figure 1).

322 Datasets for CBSD foliar and root severities of the evaluated germplasm are presented in
323 Supplementary figures 2 and 3, both GWAS panels exhibited differential response to CBSVs at
324 three,six, nine and twelve months as revealed in the great variability of the deregressed BLUPs.
325 Interestingly, clones which displayed an intermediate response were by far more abundant than
326 clones with susceptible or resistance response.

327 Phenotypic correlations for foliar and root severities (CBSD3S, CBSD6S and CBSDRS) within
328 panels and within and across locations are presented in Supplementary figure 4, Supplementary
329 tables 2 and 3 with clear differences in CBSD severity scores.

330 For panel 1, results varied across locations and CBSD severity traits the lowest correlation value
331 was between Ngetta and Kasese (0.09) and the highest between Namulonge and Kasese (0.60)
332 both values correspond root severity scoring (Supplementary table 2A).

333 For panel 2 the results varied across locations and CBSD severity traits with correlation values
334 ranging between -0.08 for CBSD9S (Namulonge-Kamuli) and 0.51 CBSD3S (Kamuli-Serere)
335 (Supplementary table 2B).

336 Within locations across traits the highest correlation values were found in panel 1 for foliar
337 scorings CBSD3S and CBSD6S ($r^2 > 0.5$) (Supplementary table 3A). For panel 2, correlation
338 across traits varied depending on the location, nonetheless correlations across foliar traits were
339 generally higher than those between foliar and root severity (Supplementary table 3B).

340 Heritability estimate values for CBSD3S, CBSD6S and CBDRS were low to intermediate with
341 broad-sense heritability (H^2) estimates spanning a wide range (11% to 73%) for both panels across
342 locations (Table 1). For GWAS panel 2, broad-sense heritability (H^2) estimates ranged between
343 56% and 63% for CBSD3S and between 60% and 62% for CBSD6S; while for GWAS panel 1
344 ranged between 11% and 51%.

345 Narrow-sense heritability (h^2), also referred to as SNP heritability, was estimated using the
346 variance components obtained as a result of fitting a one step model using the genetic relationship

347 matrix (GRM) for each panel. For panel 1, the broad- and narrow-sense heritability values were
348 comparable across locations except for the multi-location model. For panel 2, for most locations
349 the broad-sense heritability estimates were larger than the narrow-sense heritability estimates. The
350 high variability observed within and across GWAS panels reflects differences in population
351 composition, field design and environmental effects.

352

353 **Genome wide association mapping for CBSV severity in cassava**

354 The extent of subpopulation structure between the two GWAS panels was examined by PCA,
355 which showed no distinct clusters: clones from both panels had mixed distribution. Overall, the
356 first three PCAs accounted for 60% of the genetic variation observed in the data (Figure 1). The
357 first PC accounted for 30% of the observed variation while the second and third PCs contributed
358 20% and 10% respectively.

359 Genotype-phenotype associations for CBSD severity traits based on the combination of multi-
360 location data and 986 individuals are presented in Figure 2. Additional GWAS analyses performed
361 on each panel individually are presented in Supplementary tables 4 and 5 and Supplementary
362 figures 5-12.

363 We characterized SNP markers with a $-\log_{10}$ (P-value) above the Bonferroni threshold > 5.9 as
364 significant marker–trait associations and further annotated those into candidate genes
365 (Supplementary table 4).

366 For the combined dataset, we identified 83 significant SNP markers associated to CBSD3S; the
367 markers mapped to chromosome 11 with 61 markers located within genes (Supplementary Table
368 4). The QTL on chromosome 11, top hit reference SNP $-\log_{10}$ (P-value) = 9.38, explained 6% of
369 the observed phenotypic variation.

370 On the other hand, for CBSD6S, we identified significant SNPs on chromosome 11, chromosome
371 4 and chromosome 12. On chromosome 11, 33 SNPs surpassed the Bonferroni threshold with 27
372 SNP markers located within genes. The QTL on chromosome 11 is located on the same region as
373 the QTL identified for CBSD3S and explained 5% of the observed phenotypic variation (Figure
374 3A).

375 It suffices to note that although several SNPs on chromosome 11 for CBSD6S exceeded the
376 Bonferroni threshold, six SNPs were in linkage disequilibrium ($r^2 > 0.6$) with the top reference
377 SNP hit. The SNP markers, with an $r^2 > 0.2$ to the reference SNP, were annotated into candidate
378 genes: Manes11G130500, a gene that is known to encode glycine-rich protein. Manes11G130000
379 gene that encodes Leucine-rich repeat (LRR) containing protein, Manes11G130200 gene that
380 encodes the trigger factor chaperone and *peptidyl-prolyl* trans and Manes11G131100 that encodes
381 a protein kinase (Figure 3B).

382 Since several SNPs on the chromosome 4 QTL region are in high LD, no single locus can be
383 highlighted as candidate gene(s) to be associated with CBSD severity (Figure 4A). The large
384 haplotype on chromosome 4 is an introgression block from the a wild relative of cassava (*M.*
385 *glaziovii*) (Jennings, 1959; Bredeson *et al.*, 2016). We further confirmed the presence and
386 segregation of the introgressed genome segment in both panels using a set of diagnostic markers
387 from *M. glaziovii* (Figure 4B, supplementary figure 13 and 14).

388 The significant QTL on chromosome 12 has been previously identified for CMD resistance in
389 cassava (Wolfe *et al.*, 2016) Accordingly, after correction for CMD scoring in the first step
390 calculation of CBSD deregressed BLUPs, the QTL on chromosome 12 was no longer significant
391 and only QTLs on chromosomes 4 and 11 remained (supplementary Figure 15).

392 For CBSDRS we could not identify SNPs surpassing the Bonferroni correction partly to the
393 complexity of this trait with apparently several small effect genes and low heritability. However,
394 the results of the analysis of CBSDRS multi-location data of panel 1 identified significant regions
395 on chromosomes 5, 11 and 18 (-log10 (P-value) > 6.5), which explained 8, 6 and 10% phenotypic
396 variance respectively.

397

398 **Genome-wide prediction for CBSV severity in cassava**

399 An important objective within this study was to assess the accuracy of prediction in cassava for
400 CBSD-related traits. Using the combined dataset, we compared the performance of seven genomic
401 prediction models with contrasting assumptions on trait genetic architecture. Some model
402 predictions represent genomic estimated breeding values (GEBV) in that they are sums of additive
403 effects of markers, while other model predictions represent genomic estimated total genetic value

404 (GETGV) because they include non-additive effects. Predictive accuracy for CBSD related traits
405 had mean values across methods of 0.29 (CBSD3S), 0.40 (CBSD6S) and 0.34 (CBSDRS) (Figure
406 5 and Supplementary table 6).
407 Predictive accuracies for CBSD3S varied in the range of 0.27 (BayesB and GBLUP) and 0.32
408 (RF), for CBSD6S we obtained a predictive value of 0.40 for most methods except for RKHS
409 (0.42) and RF (0.41) and for CBSD root severity scores varied from 0.31 (BayesA, B, C and
410 GBLUP) to 0.42 (RF and RKHS). It is clear from the results that higher predictive accuracies were
411 consistently achieved when using Random forest and RKHS for the prediction of both foliar and
412 root CBSD resistance traits. Although for foliar symptoms the increase in predictive accuracy
413 using those methods is modest, for CBSDRS the increase in predictive accuracy was 0.10.
414 Based on the GWAS results, we identified for CBSD3S, CBSD6S and CBSDRS the strongest
415 marker associations on chromosomes 4 and 11. Markers from chromosomes 4, 11 and markers on
416 other chromosomes were used independently to construct covariance matrices that were fitted in a
417 multikernel GBLUP model (Supplementary figure 16). For all CBSD traits the mean predictive
418 accuracy values from the single-kernel GBLUP model were similar to the mean total predictive
419 accuracy following the multi-kernel approach (Supplementary table 6).
420 Differences were found on the contribution of the individual kernels to the total predictive
421 accuracies. For example, the multikernel GBLUP model for CBSD3S had the lowest total
422 predictive accuracy (0.27) with the highest contribution coming from chromosome 11 and the rest
423 of the genome (0.19). In contrast, the multikernel GBLUP model for CBSD6S gave the highest
424 predictive accuracy (0.40) and most of the accuracy came from chromosome 4 (0.29). The
425 multikernel GBLUP approach for CBSDRS had a total predictive accuracy of 0.30 with the rest
426 of the genome (0.29) contributing the most to the total predictive accuracy (Supplementary figure
427 16).
428
429
430
431
432

433 **DISCUSSION**

434 Cassava brown streak disease has been identified as one of the most serious threats to food security
435 (Pennisi, 2010) owing to the significant losses it imparts in cassava wherever it occurs.
436 Host plant resistance, that is obtained through breeding efforts has been so far the most effective
437 approach. However, this is only achievable when the host-pathogen behaviour and interaction is
438 well understood and/or when the genetics of resistance to CBSD are clearly known.
439 In the present study, ~1200 cassava clones from the NaCRRI breeding program in Uganda were
440 evaluated for CBSD severity scores in leaves and root. Specifically, this paper sought to provide
441 fundamental information on the genetics of resistance to CBSD which was previously unknown.
442 From our analyses it was evident that correlation among foliar CBSD severities were higher than
443 correlation between foliar and root severities.
444 Selection of resistant clones has been hampered by the fact that some clones do not show symptoms
445 on leaves or storage roots, while other varieties may only express symptoms on leaves and not on
446 roots and still others do not show symptoms on leaves but instead on roots only (ASARECA:,
447 2013). Moreover, a lack of correlation between virus load and symptom expression in a field
448 evaluation of selected cassava genotypes has been reported (Kaweesi *et al.*, 2014). Previous studies
449 have also reported that 79% plants with above-ground symptoms of CBSD also exhibited root
450 necrosis and 18% of plants had no visible symptoms of CBSV (Hillocks *et al.*, 1996)
451 Recently, efforts to understand CBSD have focused on CBSD resistance population development
452 and preliminary insights into chromosomal regions and genes involved in resistance (Kawuki *et*
453 *al.*, 2016; Anjanappa *et al.*, 2016, 2017). These studies have highlighted the existence of a QTL
454 on chromosome 11 for CBSD root necrosis among cassava clones of Tanzanian origin (Kawuki *et*
455 *al.*, 2016).
456 In our study, based on foliar CBSD severity scoring using a multi-location dataset we identified
457 significant QTL regions on chromosome 4 and 11, though these associations were not always
458 consistent when the panels were analyzed separately and per location. Overall, these results
459 highlight the advantage of using a large GWAS panel and a multi-location approach where plants
460 are exposed to different disease pressures to identify additional genomic regions.

461 On chromosome 11, a cluster of genes underlies the significant QTL ; candidate genes for further
462 study are: Manes11G131100, Manes11G130500, Manes11G130200 and Manes11G130000.
463 Lozano *et al.* 2015 previously reported Manes11G130000 when studying the distribution of *NBS-*
464 *LRR* in cassava. Furthermore, a recent study on early transcriptome response to brown streak virus
465 infection in susceptible and resistant cassava varieties identified Manes.11G130000 among the
466 differentially expressed genes in the susceptible line 60444 from the ETH cassava germplasm
467 collection (Anjanappa *et al.*, 2017). The QTL on chromosome 11 is particularly unstable across
468 locations, which may be related to NBS-LRR genes conferring resistance to a particular strain,
469 UCBSV exhibits a lower mutation rate, while CBSV is more aggressive and mutates faster.
470 Throughout the 1940s and 1950s at the Amani Research Station, *Manihot glaziovii* and cassava
471 varieties of Brazilian origin were used for crosses to obtain CBSD resistant varieties (Jennings and
472 Iglesias, 2002). One of the introgression segments from these wild relatives has been reported to
473 be located on chromosome 4, however the level of linkage disequilibrium in that region remains
474 as a major constraint for the identification of the gene or genes that are responsible for CBSD
475 resistance (Bredeson *et al.*, 2016). Current on-going research efforts are focused on dissecting the
476 extent of the effects of wild introgressions on cassava traits (Marnin Wolfe personal
477 communication).
478 One important objective of the present study was to test our ability to predict CBSD severity in
479 cassava, which is, particularly relevant in two situations. First, when the objective is the
480 introduction of germplasm from Latin America and/or from West Africa to East Africa and for
481 early seedling or clonal selection of resistant lines.
482 Thus, using a cross-validation approach, we evaluated the suitability of seven GS models with the
483 expectation that the results may differ due to differences in genetics of foliar and root CBSD
484 severity traits (B. J. Hayes *et al.*, 2009; Grattapaglia *et al.*, 2011).
485 In cassava, previous genomic prediction studies have evaluated the predictive ability of GBLUP
486 using historical phenotypic data from the International Institute of Tropical Agriculture (IITA) and
487 GBS markers and in a small training population with relatively low-density markers (de Oliveira
488 *et al.*, 2012; Ly, Hamblin, Rabbi, Melaku, Bakare, Okechukwu, *et al.*, 2013).

489 Principally, the GS models evaluated have varying underlying assumptions genomic-BLUP
490 (GBLUP) model assume an infinitesimal genetic architecture; Bayesian methods such as BayesA
491 and BayesB relax the assumption of common variance across marker effects (De Los Campos *et*
492 *al.*, 2009; Habier *et al.*, 2011; Legarra *et al.*, 2014), RKHS and random forest methods can model
493 epistatic and other non-additive effects.

494 A first assessment of predictive accuracy of CBSD foliar and root traits in cassava indicate that
495 the use of genomic selection is a promising breeding method for resistance to Cassava brown streak
496 virus. We found moderate to high predictive accuracies for these traits in relation to results from
497 other traits in cassava (Ly, Hamblin, Rabbi, Melaku, Bakare, Okechukwu, *et al.*, 2013). However,
498 predictive accuracy values are lower in comparison to the values reported for cassava mosaic virus
499 (Ly, Hamblin, Rabbi, Melaku, Bakare, Okechukwu, *et al.*, 2013) possibly due the presence of a
500 large effect GWAS QTL (CMD2) for CMD .

501 Although, a priori knowledge of the loci affecting a trait is not needed for GS, we also tested a
502 multiple kernel approach using GWAS results as a reference to construct covariance matrices.
503 GWAS results have been incorporated in genome-wide prediction models to increase predictive
504 accuracy through *de-novo* GWAS or using previously published GWAS results (Zhang *et al.*,
505 2014; Spindel *et al.*, 2016).

506 In our study, to avoid a correlation effect across covariance matrices we partitioned SNP markers
507 into three sets: markers on GWAS QTLs chromosomes (chr 4 and 11) and markers on rest of the
508 genome to built genomic relationship matrices ($G_{chr4}, G_{chr11}, G_{allchr-[4,11]}$). Remarkably, the predictive
509 accuracy of each kernel modeled the genetic architecture found though GWA analyses. Our
510 GWAS and GS results indicate that resistance to CBSD root necrosis severity is polygenic in
511 nature, which is in accordance to Kawuki *et al.*'s (2016) results.

512 Our results suggest that non-additive effects are likely to play a role shaping CBSD resistance
513 particularly root necrosis. This conclusion derives from GS results using Random Forest and
514 RKHS, which gave the highest predictive accuracies, and from the observed differences in broad
515 sense and narrow sense heritability values.

516 CBSD is a disease that has devastating consequences in cassava production and poses a risk
517 particularly to countries in Central and West Africa where CBSD is not currently present. Our

518 study provides, through GWAS and genomic prediction, an insight into the genetic regulation of
519 CBSD severity in leaves and roots. Although we were able to identify a candidate NBS-LRR gene
520 on chromosome 11, the function of this gene in CBSD resistance requires further validation and
521 more importantly, there is a risk that this gene might not be a source of durable resistance to
522 CBSVs. Within this context, genomic selection arises as a promising tool that can accelerate
523 breeding, though the average predictive accuracy is lower than CMD, this is highly variable across
524 locations and the breeding panel evaluated. Further work will require screening of large diversity
525 panels in multiple environments, identification of QTLs specific to viral strains and the
526 introgression of genomic regions conferring resistance to CBSD from wild relatives and Latin
527 American accessions.

528

529 **Acknowledgements**

530 We acknowledge the Bill & Melinda Gates Foundation and UKaid (Grant 1048542;
531 <http://www.gatesfoundation.org>) and support from the CGIAR Research Program on Roots,
532 Tubers and Bananas (<http://www.rtb.cgiar.org>). Thanks also the technical team NaCRRI for
533 collection of phenotypic data

534

535

536 **REFERENCES**

537 Akdemir D, Okeke UG (2015). EMMREML: Fitting Mixed Models with Known Covariance Structures.

538 Alicai T, Ndunguru J, Sseruwagi P, Tairo F, Okao-Okuja G, Nanvubya R, *et al.* (2016). *Characterization*
539 *by Next Generation Sequencing Reveals the Molecular Mechanisms Driving the Faster Evolutionary*
540 *rate of Cassava brown streak virus Compared with Ugandan cassava brown streak virus.* Cold Spring
541 Harbor Labs Journals.

542 Anjanappa RB, Mehta D, Maruthi MN, Kanju E, Gruissem W, Vanderschuren H (2016). Characterization
543 of Brown Streak Virus–Resistant Cassava. **29**: 527–534.

544 Anjanappa RB, Mehta D, Okoniewski MJ, Szabelska A, Gruissem W, Vanderschuren H (2017). Early
545 transcriptome response to brown streak virus infection in susceptible and resistant cassava varieties. :
546 1–22.

547 ASARECA: (2013). *ASARECA Annual Report 2012: Transforming Agriculture for Economic Growth in*
548 *Eastern and Central Africa.* Entebbe, Uganda.

549 B. J. Hayes, H. D. Daetwyler, P. Bowman, G. Moser, B. Tier4, R. Crump, *et al.* (2009). Accuracy of
550 Genomic Selection: Comparing Theory and Results. In: Daetwyler HD (ed) *Genome-Wide Evaluation*
551 *of Populations*, Proc. of Assoc. Advmt. Anim. Breed., pp 352–355.

552 Bredeson J V, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, *et al.* (2016). Sequencing
553 wild and cultivated cassava and related species reveals extensive interspecific hybridization and
554 genetic diversity. *Nat Biotechnol* **34**: 562–570.

555 Breiman L (2001). Random Forests. *Mach Learn* **45**: 5–32.

556 Browning BL, Browning SR (2016). Genotype Imputation with Millions of Reference Samples. *Am J Hum*
557 *Genet* **98**: 116–126.

558 Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P-R, *et al.* (2015). An atlas of genetic
559 correlations across human diseases and traits. *Nat Publ Gr* **47**.

560 Charmet G, Storlie E (2012). Implementation of genome-wide selection in wheat. *Russ J Genet Appl Res*
561 **2**: 298–303.

562 Charmet G, Storlie E, Oury FX, Laurent V, Beghin D, Chevarin L, *et al.* (2014). Genome-wide prediction
563 of three important traits in bread wheat. *Mol Breed* **34**: 1843–1852.

564 Cros D, Denis M, Sánchez L, Cochard B, Flori A, Durand-gasselin T, *et al.* (2015). Genomic selection
565 prediction accuracy in a perennial crop: case study of oil palm (*Elaeis guineensis* Jacq.). *Theor Appl*
566 *Genet* **128**: 397–410.

567 Elshire RJ, Glaubitz JC, Sun Q, Poland J a, Kawamoto K, Buckler ES, *et al.* (2011). A robust, simple

568 genotyping-by-sequencing (GBS) approach for high diversity species. *PLoS One* **6**: e19379.

569 Endelman JB (2011). Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP.

570 *Plant Genome* **4**: 250.

571 Esuma W, Herselman L, Labuschagne MT, Ramu P, Lu F, Baguma Y, *et al.* (2016). Genome-wide

572 association mapping of provitamin A carotenoid content in cassava. *Euphytica*.

573 Federer WT, Crossa J (2012). Screening Experimental Designs for Quantitative Trait Loci, Association

574 Mapping, Genotype-by Environment Interaction, and Other Investigations. *Front Physiol* **3**.

575 Federer WT, Nguyen N-K, others (2002). Constructing Augmented Experiment Designs with Gendex.

576 Garrick DJ, Taylor JF, Fernando RL (2009). Deregressing estimated breeding values and weighting

577 information for genomic regression analyses. *Genet Sel Evol* **41**: 55.

578 Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, *et al.* (2014). TASSEL-GBS: a high

579 capacity genotyping by sequencing analysis pipeline. *PLoS One* **9**: e90346.

580 Goodstein D, Batra S, Carlson J, Hayes R, Phillips J, Shu S, *et al.* (2014). Phytozome Comparative Plant

581 Genomics Portal.

582 Gouy M, Rousselle Y, Bastianelli D, Lecomte P, Bonnal L, Roques D, *et al.* (2013). Experimental

583 assessment of the accuracy of genomic selection in sugarcane. *Theor Appl Genet* **126**: 1–12.

584 Grattapaglia D, Deon M, Resende V, Resende MR, Sansaloni CP, Petroli CD, *et al.* (2011). Genomic

585 Selection for growth traits in Eucalyptus: accuracy within and across breeding populations. *From*

586 *IUFRO Tree Biotechnol Conf BMC Proc* **5**.

587 Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011). Extension of the bayesian alphabet for genomic

588 selection. *BMC Bioinformatics* **12**: 186.

589 Hamblin MT, Rabbi IY (2014). The Effects of Restriction-Enzyme Choice on Properties of Genotyping-

590 by-Sequencing Libraries: A Study in Cassava (). *Crop Sci* **0**: 0.

591 Heslot N, Akdemir D, Sorrells ME, Jannink JL (2014). Integrating environmental covariates and crop

592 modeling into the genomic selection framework to predict genotype by environment interactions.

593 *Theor Appl Genet* **127**: 463–480.

594 Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2012). Genomic Selection in Plant Breeding: A Comparison

595 of Models. *Crop Sci* **52**: 146.

596 Hillocks RJ, Jennings DL (2003). Cassava brown streak disease: a review of present knowledge and

597 research needs. *Int J Pest Manag* **49**: 225–234.

598 Hillocks RJ, Raya M, Thresh JM (1996). The association between root necrosis and above-ground

599 symptoms of brown streak virus infection of cassava in southern Tanzania. *Int J Pest Manag* **42**: 285–

600 289.

601 Jannink J-LL, Lorenz AJ, Iwata H (2010). Genomic selection in plant breeding: from theory to practice.
602 *Brief Funct Genomics* **9**: 166–177.

603 Jennings DL (1959). *Manihot melanobasis* Müll. Arg.—a useful parent for cassava breeding. *Euphytica* **8**:
604 157–162.

605 Jennings DL, Iglesias C (2002). Breeding for Crop Improvement. *Cassava Biol Prod Util*: 149–166.

606 Kaweesi T, Kawuki R, Kyaligonza V, Baguma Y, Tusiime G, Ferguson ME (2014). Field evaluation of
607 selected cassava genotypes for cassava brown streak disease based on symptom expression and virus
608 load. *Virol J* **11**: 216.

609 Kawuki RSRS, Kaweesi T, Esuma W, Pariyo A, Kayondo IS, Ozimati A, *et al.* (2016). Eleven years of
610 breeding efforts to combat cassava brown streak disease. *Breed Sci* **66**: 560–571.

611 Kulembeka HP (2010). Genetic linkage mapping of Field Resistance to cassava brown streak Disease in
612 cassava landraces from Tanzania. University of the Free State.

613 Legarra A, Christensen OF, Aguilar I, Misztal I (2014). Single Step, a general approach for genomic
614 selection. *Livest Sci* **166**: 54–65.

615 Legg J, Somado EA, Barker I, Beach L, Ceballos H, Cuellar W, *et al.* (2014). A global alliance declaring
616 war on cassava viruses in Africa. *Food Secur* **6**: 231–248.

617 Legg JP, Sseruwagi P, Boniface S, Okao-Okuja G, Shirima R, Bigirimana S, *et al.* (2014). Spatio-temporal
618 patterns of genetic change amongst populations of cassava *Bemisia tabaci* whiteflies driving virus
619 pandemics in East and Central Africa. *Virus Res* **186**: 61–75.

620 Liaw a, Wiener M (2002). Classification and Regression by randomForest. *R news* **2**: 18–22.

621 Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, *et al.* (2011). Genomic Selection in Plant
622 Breeding. Knowledge and Prospects. In: *Advances in Agronomy*, Elsevier Inc Vol 110, pp 77–123.

623 De Los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, *et al.* (2009). Predicting
624 quantitative traits with regression models for dense molecular markers and pedigree. *Genetics* **182**:
625 375–385.

626 Lozano R, Hamblin MT, Prochnik S, Jannink J-L (2015). Identification and distribution of the NBS-LRR
627 gene family in the Cassava genome. *BMC Genomics* **16**: 1–14.

628 Ly D, Hamblin M, Rabbi I, Melaku G, Bakare M, Gauch HG, *et al.* (2013). Relatedness and genotype ??
629 environment interaction affect prediction accuracies in genomic selection: A study in cassava. *Crop
630 Sci* **53**: 1312–1325.

631 Ly D, Hamblin M, Rabbi I, Melaku G, Bakare M, Okechukwu R, *et al.* (2013). Relatedness and Genotype-

632 by-environment Interaction Affect Prediction Accuracies in Genomic Selection: a Study in Cassava
633 2. *Crop Sci.*

634 Maruthi MN, Jeremiah CS, Mohammed IU, Legg JP (2016). Virus-vector relationships and the role of
635 whiteflies, *Bemisia tabaci*, and farmer practices in the spread of cassava brown streak viruses.

636 Mbanzibwa DR, Tian YP, Tugume AK, Mukasa SB, Tairo F, Kyamanywa S, *et al.* (2011). Simultaneous
637 virus-specific detection of the two cassava brown streak-associated viruses by RT-PCR reveals wide
638 distribution in East Africa, mixed infections, and infections in *Manihot glaziovii*. *J Virol Methods*
639 **171**: 394–400.

640 McQuaid CF, Sseruwagi P, Pariyo A, van den Bosch F (2016). Cassava brown streak disease and the
641 sustainability of a clean seed system. *Plant Pathol* **65**: 299–309.

642 Meuwissen THE, Hayes BJ, Goddard ME (2001). Prediction of total genetic value using genome-wide
643 dense marker maps. *Genetics* **157**: 1819–1829.

644 Motsinger-Reif AA, Reif DM, Fanelli TJ, Ritchie MD (2008). A comparison of analytical methods for
645 genetic association studies. *Genet Epidemiol* **32**: 767–778.

646 Munga TL (2008). Breeding for Cassava Brown Streak Resistance in Coastal Kenya. University of
647 KwaZulu-Natal Republic of South Africa.

648 Ndunguru J, Sseruwagi P, Tairo F, Stomeo F, Maina S, Djinkeng A, *et al.* (2015). Analyses of twelve new
649 whole genome sequences of cassava brown streak viruses and ugandan cassava brown streak viruses
650 from East Africa: Diversity, supercomputing and evidence for further speciation. *PLoS One* **10**:
651 e0139321.

652 Ndyetabula IL, Merumba SM, Jeremiah SC, Kasele S, Mkamilo GS, Kagimbo FM, *et al.* (2016). Analysis
653 of Interactions Between Cassava Brown Streak Disease Symptom Types Facilitates the Determination
654 of Varietal Responses and Yield Losses. *Plant Dis* **100**: 1388–1396.

655 Nichols RFW (1947). Breeding cassava for virus resistance. *East African Agric J* **12**: 184–94.

656 Ogwok E, Patil BL, Alicai T, Fauquet CM (2010). Transmission studies with Cassava brown streak Uganda
657 virus (Potyviridae: Ipomovirus) and its interaction with abiotic and biotic factors in *Nicotiana*
658 *benthamiana*. *J Virol Methods* **169**: 296–304.

659 de Oliveira EJ, de Resende MDV, da Silva Santos V, Ferreira CF, Oliveira GAF, da Silva MS, *et al.* (2012).
660 Genome-wide selection in cassava. *Euphytica* **187**: 263–276.

661 Park T, Casella G (2008). The Bayesian Lasso. *J Am Stat Assoc* **103**: 681–686.

662 Patil BL, Legg JP, Kanju E, Fauquet CM (2015). Cassava brown streak disease: A threat to food security
663 in Africa. *J Gen Virol* **96**: 956–968.

664 Pennisi E (2010). Armed and dangerous. *Science* **327**: 804–5.

665 Pérez JC, Lenis JI, Calle F, Morante N, Sánchez T, Debouck D, *et al.* (2011). Genetic variability of root
666 peel thickness and its influence in extractable starch from cassava (*Manihot esculenta* Crantz) roots.
667 *Plant Breed* **130**: 688–693.

668 Pérez P, De Los Campos G (2014). Genome-wide regression and prediction with the BGLR statistical
669 package. *Genetics* **198**: 483–495.

670 Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, *et al.* (2012). The Cassava
671 Genome: Current Progress, Future Directions. *Trop Plant Biol* **5**: 88–94.

672 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, *et al.* (2007). PLINK: A Tool Set
673 for Whole-Genome Association and Population-Based Linkage Analyses. *Am J Hum Genet* **81**: 559–
674 575.

675 QIAGEN (2012). *DNeasy ® Plant Handbook DNeasy Plant Mini Kit and tissues , or fungi Sample & Assay*
676 *Technologies QIAGEN Sample and Assay Technologies*.

677 Quinlan AR, Hall IM (2010). BEDTools: a flexible suite of utilities for comparing genomic features.
678 *Bioinforma Appl NOTE* **26**: 841–84210.

679 Ramu P, Esuma W, Kawuki R, Rabbi IY, Egesi C, Bredeson J V, *et al.* (2016). Cassava HapMap: Managing
680 genetic load in a clonal crop species. *bioRxiv*: 1–15.

681 Rentería ME, Cortes A, Medland SE (2013). Using PLINK for Genome-Wide Association Studies (GWAS)
682 and Data Analysis. In: Gondro C, van der Werf J, Hayes B (eds) Humana Press: Totowa, NJ Vol
683 1019, pp 193–213.

684 Resende MFR, Muñoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, *et al.* (2012). Accelerating the
685 domestication of trees using genomic selection: accuracy of prediction models across ages and
686 environments. *New Phytol* **193**: 617–624.

687 Spindel JE, Begum H, Akdemir D, Collard B, Redoña E, Jannink J, *et al.* (2016). Genome-wide prediction
688 models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement.
689 *Heredity (Edinb)* **116**: 395–408.

690 Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redoña E, *et al.* (2015). Genomic Selection and
691 Association Mapping in Rice (*Oryza sativa*): Effect of Trait Genetic Architecture, Training Population
692 Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite,
693 Tropical Rice Breeding Lines. *PLoS Genet* **11**: 1–25.

694 Strobl C, Malley J, Tutz G (2009). An Introduction to Recursive Partitioning: Rationale, Application, and
695 Characteristics of Classification and Regression Trees, Bagging, and Random Forests. *Psychol*

696 *Methods* **14**: 323–348.

697 Turner SD (2014). *qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots*.

698 VanRaden PM (2008). Efficient methods to compute genomic predictions. *J Dairy Sci* **91**: 4414–23.

699 Winter S, Koerbler M, Stein B, Pietruszka A, Paape M, Butgereit A (2010). Analysis of cassava brown
700 streak viruses reveals the presence of distinct virus species causing cassava brown streak disease in
701 East Africa. *J Gen Virol* **91**: 1365–1372.

702 Wolfe MD, Rabbi IY, Egesi C, Hamblin M, Kawuki R, Kulakow P, *et al.* (2016). Genome-wide association
703 and prediction reveals the genetic architecture of cassava mosaic disease resistance and prospects for
704 rapid genetic improvement. *Plant Genome* **9**: 1–13.

705 Yang J, Lee SH, Goddard ME, Visscher PM (2011). GCTA: A tool for genome-wide complex trait analysis.
706 *Am J Hum Genet* **88**: 76–82.

707 Zhang Z, Ober U, Erbe M, Zhang H, Gao N, He J, *et al.* (2014). Improving the accuracy of whole genome
708 prediction for complex traits using the results of genome wide association studies (X Cai, Ed.). *PLoS*
709 *One* **9**: e93017.

710

711

712

713

714

715

716

717

718

719

720

721

722

723

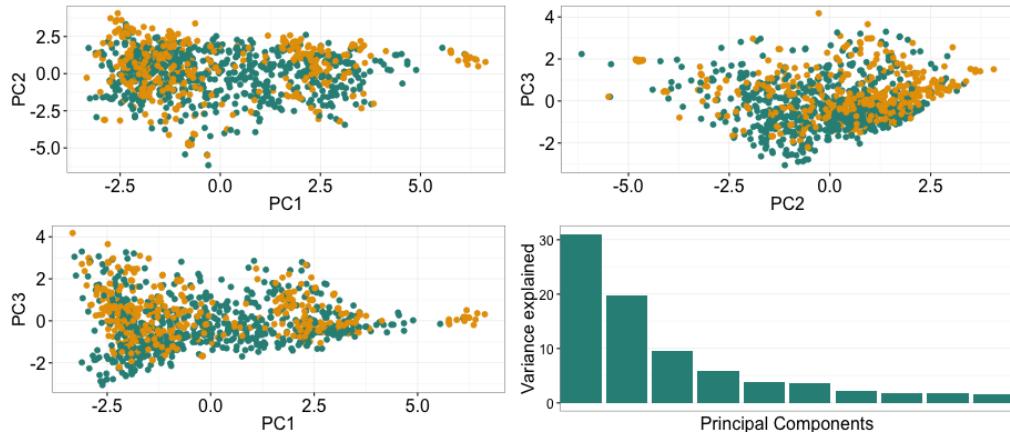
724

725

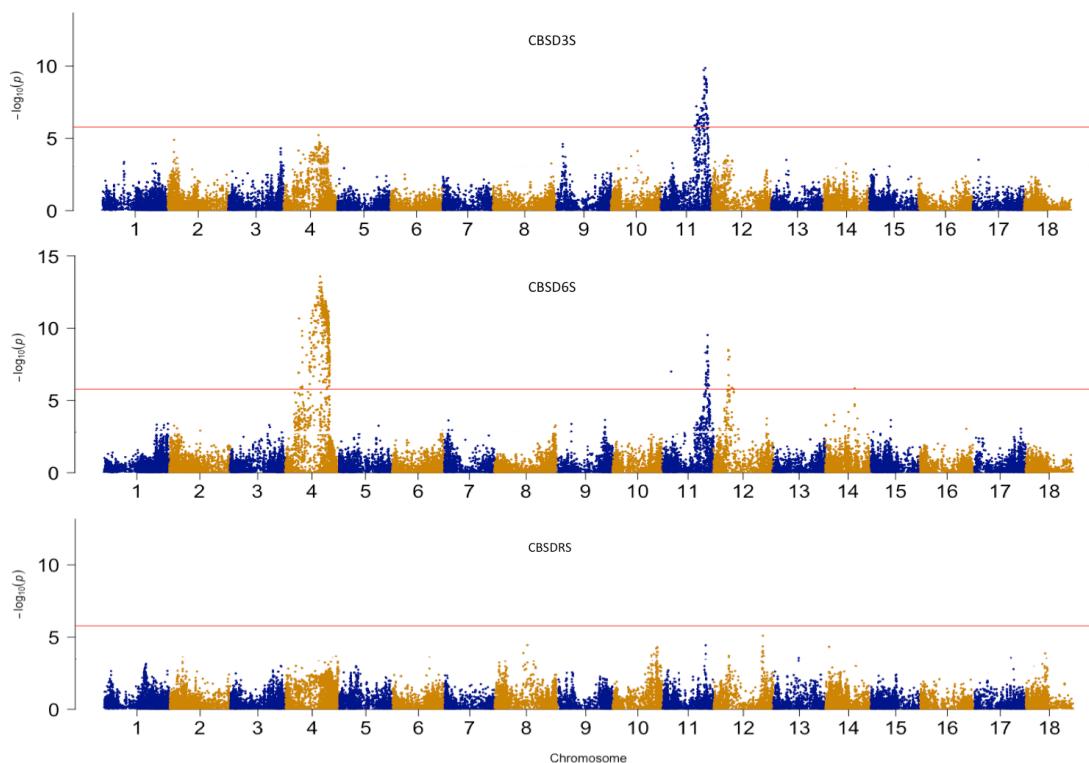
726

727 **Figures and supplementary legends**

728 **Figure 1. Principal components analysis of panel 1 and panel 2 clones.** The top two panels and the lower
729 left panel show the distribution of clones in PC1-PC3. The lower right panel shows the variance explained
730 by the first ten principal components. Green color shows the distribution of panel 1 clones and the orange
731 color shows the distribution of panel 2 clones.

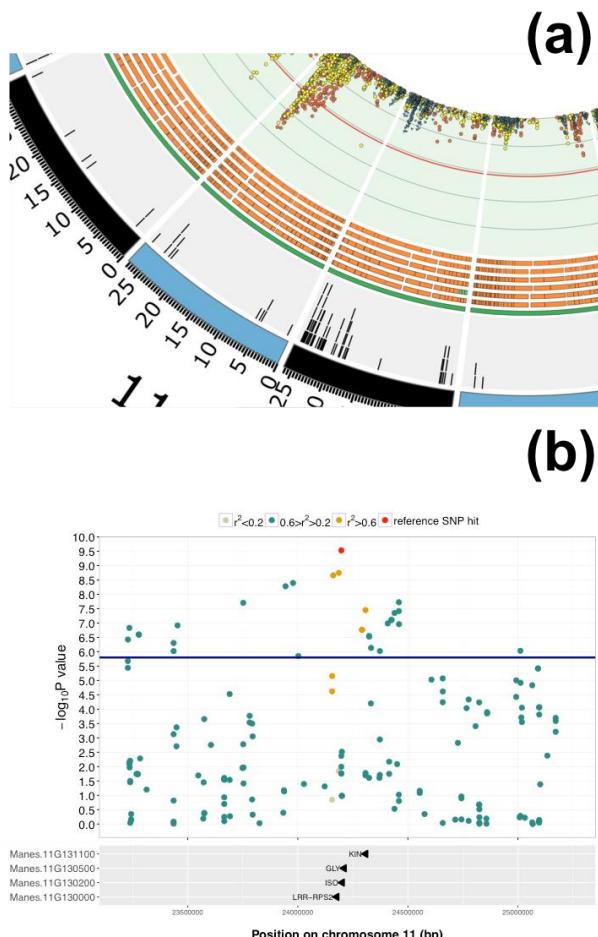


732 **Figure 2. GWAS results for CBSD severity.** Analysis was performed with a multilocation combined
733 dataset of panels 1 and 2.(a) scoring 3 MAP (b) 6 MAP and (c) root necrosis severity. Red line indicates
734 Bonferroni threshold.
735



736

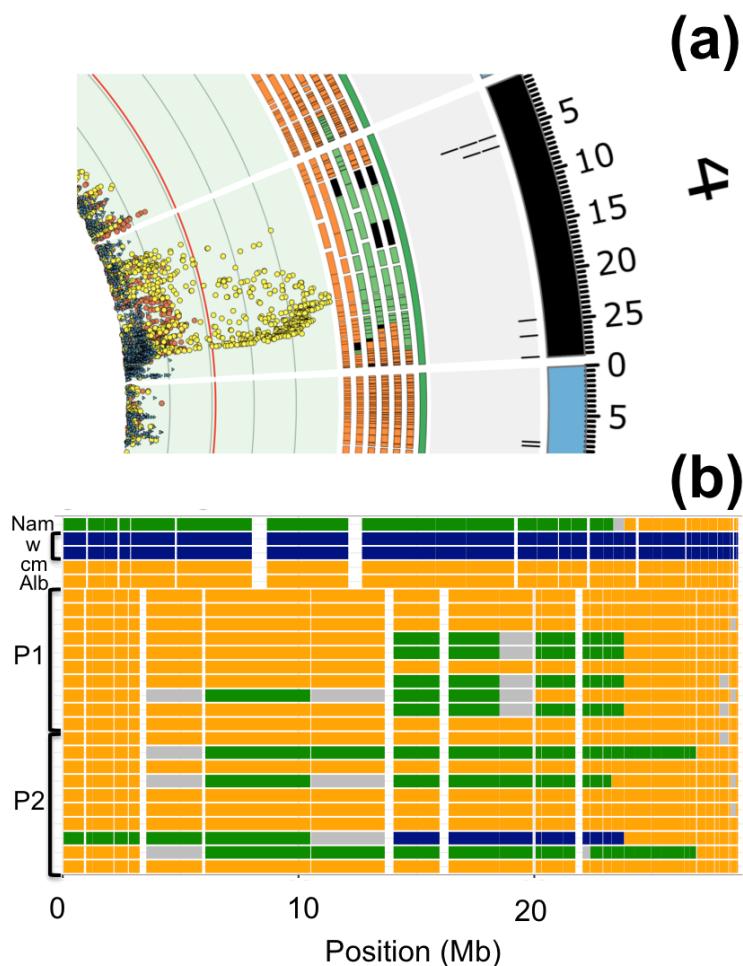
737 **Figure 3. Chromosome 11 region with QTL for CBSD severity** (a) 3 MAP (yellow), 6 MAP and root
738 necrosis (blue). Outer ring black lines indicate clusters of NBS-LRR genes (Lozano et al 2015). Intermediate
739 ring indicate regions homozygous (G/G)(blue) or heterozygous (G/E)(green) for *M. glaziovii* allele and the
740 proportion that were homozygous for the *M. esculenta* allele (E/E)(orange) on seven clones. (b) LD
741 association plot, 2 Mb region in chromosome 11, top SNP indicated in red, annotated genes within that
742 region are indicated in the panel below.



743
744
745
746
747
748
749
750

751 **Figure 4. Chromosome 4 region with QTL for CBSD severity with introgression segment** (a) 3 MAP
752 (yellow), 6 MAP and root necrosis (blue). Outer ring black lines indicate clusters of NBS-LRR genes
753 (Lozano et al 2015). Intermediate ring indicate regions homozygous (G/G)(blue) or heterozygous
754 (G/E)(green) for *M. glaziovii* allele and the proportion that were homozygous for the *M. esculenta* allele
755 (E/E)(orange) on seven clones. (b) Introgression region on chromosome 4 (colors description) are the same
756 as the aforementioned), Nam: Namikonga, w: wild *M. glaziovii*, cm: CM330645, Alb: Albert, P1: panel 1
757 clones and P2 panel 2 clones.

758



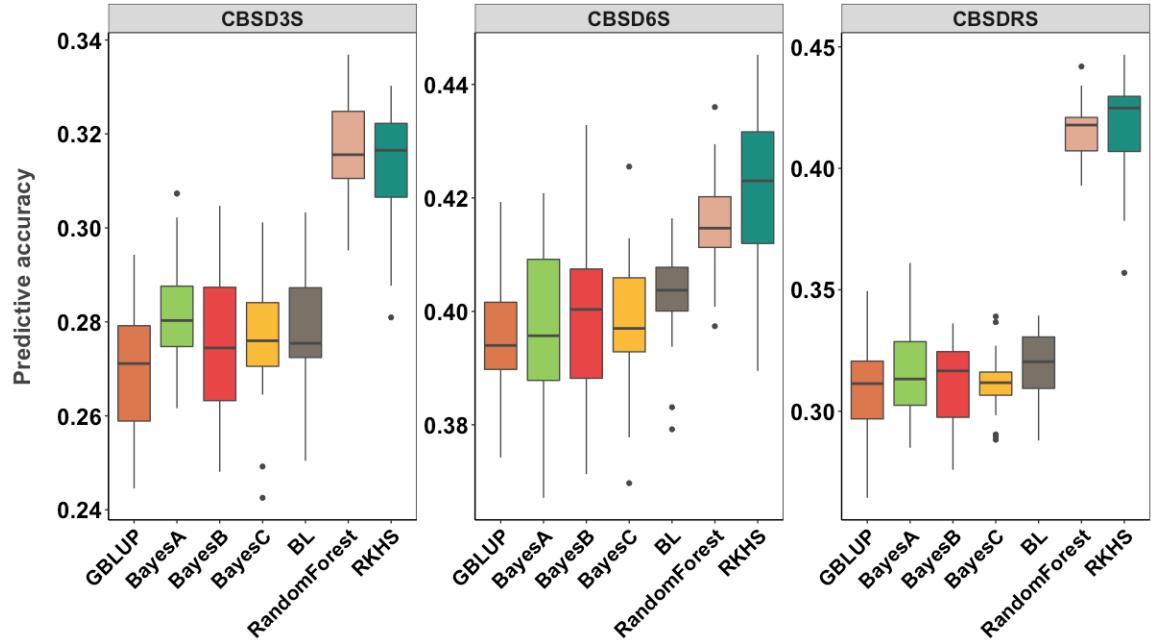
759

760

761

762

763 **Figure 5. Cross validation results for CBSD severity.** 3 MAP (CBSD3S), 6 MAP (CBSD6S) and Root
764 necrosis (CBSDRS). x-axis : predictive accuracy and y-axis : genomic prediction model.



765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

781 **Table 1. Broad sense heritability (H^2) and SNP heritability (h^2) of foliar and root CBSD severity.**

782 Broad-sense heritability (H^2) values were calculated using the variance components obtained from a model
783 fitted using the *lmer* function from the lme4 R package. SNP heritability values were calculated using the
784 variance components obtained from a model fitted using the EMMREML R package. Heritability
785 values estimates were calculated for sets 1 and 2 separately.

786

Trait	H^2	h^2	LOCATION-YEAR	Panel
CBSD3S	0.11	0.32	NAMULONGE	1
CBSD6S	0.31	0.39	NAMULONGE	1
CBSDRS	0.55	0.59	NAMULONGE	1
CBSD3S	0.43	0.48	NGETTA	1
CBSD6S	0.51	0.53	NGETTA	1
CBSDRS	0.73	0.72	NGETTA	1
CBSD3S	0.27	0.29	KASESE	1
CBSD6S	0.21	0.27	KASESE	1
CBSDRS	0.39	0.47	KASESE	1
CBSD3S	0.61	0.17	MULTI LOCATION	1
CBSD6S	0.35	0.31	MULTI LOCATION	1
CBSDRS	0.37	0.34	MULTI LOCATION	1
CBSD3S	0.60	0.37	NAMULONGE	2
CBSD6S	0.60	0.32	NAMULONGE	2
CBSD9S	0.68	0.34	NAMULONGE	2
CBSDRS	0.24	0.53	NAMULONGE	2
CBSD3S	0.63	0.28	SERERE	2
CBSD6S	0.60	0.28	SERERE	2
CBSD9S	0.73	0.34	SERERE	2
CBSDRS	0.15	0.48	SERERE	2
CBSD3S	0.56	0.27	KAMULI	2
CBSD6S	0.62	0.29	KAMULI	2
CBSD9S	0.75	0.34	KAMULI	2
CBSDRS	0.28	0.44	KAMULI	2
CBSD3S	0.42	0.28	MULTI LOCATION	2
CBSD6S	0.47	0.34	MULTI LOCATION	2
CBSD9S	0.56	0.38	MULTI LOCATION	2
CBSDRS	0.25	0.33	MULTI LOCATION	2

787

788

789

790 **Supplementary figure 1.** Cassava brown streak disease symptoms on leaves and roots of sampled
791 plants; Severity Score from 1 (no visible symptoms) to 5 (severely disease plants. (a) leaf veins
792 chlorosis severity progresses with severity score, (b) dark brown necrotic areas within storage
793 roots severity scale.

794

795 **Supplementary figure 2.** Panel 1 phenotypic distribution of CBSD severity traits.
796 (A) deregressed BLUPs distribution of CBSD 3 months foliar severity, (B) deregressed BLUPs
797 distribution of CBSD 6 months foliar severity, (C) deregressed BLUPs distribution of CBSD 12
798 months root severity

799

800 **Supplementary figure 3.** Panel 2 phenotypic distribution of CBSD severity traits.
801 (A) deregressed BLUPs distribution of CBSD 3 months foliar severity, (B) deregressed BLUPs
802 distribution of CBSD 6 months foliar severity, (C) deregressed BLUPs distribution of CBSD 9
803 months foliar severity, (D) deregressed BLUPs distribution of CBSD 12 months root severity

804

805 **Supplementary figure 4. Correlation plots between de-regressed BLUPs for foliar and root**
806 **symptoms.** De-regressed BLUPs were calculated for different locations in panel 1 and panel 2.

807

808 **Supplementary figure 5.** GWAS results for CBSD severity in panel 1 measure at Kasese.(a)
809 scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity and (c) root necrosis
810 severity. Red line Bonferroni correction. Blue line \log_{10} P-value = 3.8.

811

812 **Supplementary figure 6.** GWAS results for CBSD severity in panel 1 measure at Ngetta.(a)
813 scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity and (c) root necrosis
814 severity . Red line Bonferroni correction. Blue line \log_{10} P-value = 3.8.

815

816 **Supplementary figure 7.** GWAS results for CBSD severity in panel 1 measure at Namulonge. (a)
817 scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity and (c) root necrosis
818 severity. Red line Bonferroni correction. Blue line \log_{10} P-value = 3.8.

819 **Supplementary figure 8.** GWAS results for CBSD severity in with a multilocation dataset of
820 panel 1 (a) scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity and (c)
821 root necrosis severity. Red line Bonferroni correction. Blue line \log_{10} P-value = 3.8.
822

823 **Supplementary figure 9.** GWAS results for CBSD severity in panel 2 measure at Kamuli. (a)
824 scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity (c) 9 CBSD 9 months
825 foliar and (c) root necrosis severity. Red line Bonferroni correction. Blue line \log_{10} P-value = 3.8.
826

827 **Supplementary figure 10.** GWAS results for CBSD severity in panel 2 measure at Namulonge.
828 (a) Scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity (c) 9 CBSD 9
829 months foliar and (c) root necrosis severity. Red line Bonferroni correction. Blue line \log_{10} P-value
830 = 3.8.
831

832 **Supplementary figure 11.** GWAS results for CBSD severity in panel 2 at Serere. (a) Scoring
833 CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity (c) 9 CBSD 9 months foliar
834 and (c) root necrosis severity. Red line Bonferroni correction. Blue line \log_{10} P-value = 3.8.
835

836 **Supplementary figure 12.** GWAS results for CBSD severity in with a multilocation dataset of
837 panel 2 (a) scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity (c) 9 CBSD
838 9 months foliar and (c) root necrosis severity. Red line Bonferroni correction. Blue line \log_{10} P-
839 value = 3.8.
840

841 **Supplementary figure 13.** local LD in chromosome 4. Plot of the mean LD score for each marker
842 .With a smooth line representing a relative measure of the local LD in chromosome 4. Dots are
843 colored with the $-\log_{10}$ P-value for the association test for CBSD severity six months after planting.
844

845

846 **Supplementary figure 14.** Introgressions segment detection. For each clone of the two GWAS
847 panels we calculated the proportion of genotypes that were homozygous (G/G) or heterozygous

848 (G/E) for *M. glaziovii* allele and the proportion that were homozygous for the *M. esculenta* allele
849 (E/E).

850

851 **Supplementary figure 15.** (a) GWAS results for 6MAP CBSD severity panels 1 and 2 (b) GWAS
852 Results after correction including markers in chromosome 12 as a covariate.

853

854 **Supplementary figure 16.** Multi-kernel GBLUP approach by fitting three kernels constructed
855 with non-overlapping SNPs (MAF > 0.01) from chromosomes 4, 11 and SNPs from the other
856 chromosomes. Crossvalidation GS predictive accuracies results for CBSD severity were
857 calculated using the multilocation dataset of the combined panels. Scoring CBSD 3 months foliar
858 severity (CBSD3S),CBSD 6 months foliar severity (CBSD6S) and root necrosis severity
859 (CBSDRS).

860

861 **Supplementary Table 1.** Pedigree information from GWAS panels 1 and 2. Details are shown on
862 the parental lines per clone and selected traits that came from the maternal side.

863

864 **Supplementary table 2.** Correlation values across locations in panel 1 and panel 2. (A)
865 Correlation of deregressed BLUPs across locations within traits in panel 1 measured in three
866 locations.(B) Correlation of deregressed BLUPs across locations within traits in panel 2 measured
867 in three locations

868

869 **Supplementary table 3.** Correlation values across locations and traits in panel 1 and panel 2. (A)
870 Correlation of deregressed BLUPs across locations and traits in panel 1 measured in three
871 locations.(B) Correlation of deregressed BLUPs across locations and four traits in panel 2
872 measured in three locations

873

874 **Supplementary table 4.** Panel 1 and 2 and combined panels GWAS results. Gene annotation is
875 only shown for significant SNPs.

876

877 **Supplementary table 5.** Explained variance of phenotypic traits. Details are shown of the
878 reference SNP, the -log10(pval)(score),chromosome and explained variance.

879

880 **Supplementary table 6.**Genomic prediction accuracy values. (A) Cross validation results using 7
881 GS models for CBSD severity prediction of 3 MAP CBSD3S, 6 MAP CBSD6S and Root necrosis
882 (CBSDRS) (B) Multi-kernel GBLUP crossvalidation by fitting three kernels constructed with non-
883 overlapping SNPs (MAF> 0.01) from chromosomes 4, 11 and SNPs from the other chromosomes.
884 RKHS = Reproducing kernel Hilbert spaces regression, Total accuracy is the accuracy obtained
885 by following the GBLUP multikernel approach.

886

887

888

889

890

891

892