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ABSTRACT

Cassava (Manihot esculenta Crantz), a key carbohydrate dietary source for millions of people in
Africa, faces severe yield loses due to two viral diseases: cassava brown streak disease (CBSD)
and cassava mosaic disease (CMD). The completion of the cassava genome sequence and the
whole genome marker profiling of clones from African breeding programs
(www.nextgencassava.org) provides cassava breeders the opportunity to deploy additional
breeding strategies and develop superior varieties with both farmer and industry preferred traits.
Here the identification of genomic segments associated with resistance to CBSD foliar symptoms
and root necrosis as measured in two breeding panels at different growth stages and locations is
reported. Using genome-wide association mapping and genomic prediction models we describe
the genetic architecture for CBSD severity and identify loci strongly associated on chromosomes
4 and 11. Moreover, the significantly associated region on chromosome 4 colocalises with a
Manihot glaziovii introgression segment and the significant SNP markers on chromosome 11 are
situated within a cluster of nucleotide-binding site leucine-rich repeat (NBS-LRR) genes
previously described in cassava. Overall, predictive accuracy values found in this study varied
between CBSD severity traits and across GS models with Random Forest and RKHS showing the

highest predictive accuracies for foliar and root CBSD severity scores.

Key words: Genome-wide association studies (GWAS), virus severity, augmented designs, de-
regressed best linear unbiased Predictions (drg-BLUPs), NBS-LRR proteins
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INTRODUCTION

Cassava (Manihot esculenta Crantz), is a major source of income and dietary calories for more
than 800 million people across the globe especially in Sub Saharan Africa (SSA) and recently, due
to the unique starch qualities of the storage roots cassava is also turning into an industrial crop
(Pérez et al., 2011). Although cassava is a resilient crop, its production is threatened by viral
diseases such as Cassava brown streak virus disease (CBSD), which causes major yield losses to
poor farming families (ASARECA:, 2013; Ndunguru et al., 2015; Patil et al., 2015). CBSD is
caused by two major strains; Cassava brown streak virus (CBSV) and Ugandan cassava brown
streak virus (UCBSV) both CBSVs have successfully colonized the lowland and highland altitudes
across East Africa and new strains are emerging (Winter et al., 2010; Ndunguru et al., 2015; Alicai
et al., 2016). In Uganda, because of CBSVs and agronomical practices, cassava yields were
recorded to be eight times lower than the yield potential for this crop (ASARECA:, 2013).

In addition to the uncontrolled exchange of infected cassava stakes among farmers across borders,
CBSVs are transmitted by the African whitefly (Besimia tobaci) in a semi-persistent manner
(Legg, Sseruwagi, et al., 2014; McQuaid et al., 2016). Upon infection, the viruses use the transport
system of the plant and cause yellow chlorotic vein patterns along minor veins of leaves in
susceptible cassava clones (Ogwok et al., 2010; Maruthi et al., 2016; Anjanappa et al., 2016). On
the stem, prominent brown elongated lesions commonly referred to as “brown streaks” are formed
and in the storage roots, necrotic hard-corky layers are formed in the root cortex of the most
susceptible cassava clones (Hillocks et al., 1996; Legg, Somado, et al., 2014; Ndyetabula et al.,
2016).

Earlier, CBSD resistance breeding initiatives have highlighted the polygenic nature of inheritance
in both intraspecific and interspecific cassava hybrids (Nichols, 1947; Hillocks and Jennings,
2003; Munga, 2008; Kulembeka, 2010). In view of the rapid virus evolution and the insufficiency
of dependable virus diagnostic tools (Alicai et al., 2016) breeding for durable CBSD resistance,
has been the main strategy to control CBSD spread in Eastern Africa. Most of the available elite
cassava lines have exhibited some level of sensitivity to CBSVs ranging from mild sensitivity to

total susceptibility. Moreover, clones classified as resistant and tolerant show diverse symptom
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expression, restricted virus accumulation or recovery after clonal propagation (Hillocks and
Jennings, 2003; Alicai et al., 2016).

Overall, in cassava for many traits the rate of genetic improvement following a traditional breeding
pipeline has been slower due to the combination of several biology-related issues such as: poor
flowering, length of breeding cycle, limited genetic diversity and slow rate of multiplication of
planting materials.

Recently, using genotypic and phenotypic information genome wide association mapping
(GWAS) has been used to unravel the genetic architecture of cassava mosaic disease (CMD)
(Wolfe et al., 2016) and beta carotene content (Esuma et al., 2016). Both studies have been
successful in identifying associated loci with traits of interest. In addition, the performance of
genomic prediction for different traits was previously evaluated using historical phenotypic and
genotyping by sequencing (GBS) datasets from the International Institute of Tropical Agriculture
in Nigeria (Elshire et al., 2011; Ly, Hamblin, Rabbi, Melaku, Bakare, Gauch, et al., 2013).
Genomic Selection (GS) is a breeding method alternative to marker assisted selection and
conventional phenotypic selection which can accelerate genetic gains through the use of
phenotypic and genotypic data from a training population (Meuwissen et al., 2001; Jannink et al.,
2010; Lorenz et al., 2011). The performance of different GS models has been evaluated in various
species and in many traits (Resende et al., 2012; Gouy et al., 2013; Heslot et al., 2014; Charmet
etal., 2014; Cros et al., 2015). Recently the potential of GS for CMD resistance has been reported
with predictive accuracies ranging from 0.53 to 0.58 (Wolfe et al., 2016).

In the present study we followed a GWAS approach in combination with genomic prediction to
unravel the genetic architecture of CBSD in two Ugandan breeding populations. While one of our
main objectives was to assess the current predictive accuracy for CBSD we also aimed to identify
the most promising genomic prediction models that can account for CBSD genetic architecture.
GWAS identified loci strongly associated with CBSVs resistance to foliar symptoms which co-
locate with an introgression block from a cassava wild progenitor, M. glaziovii (Bredeson et al.,
2016) and with root necrosis which were close to a cluster of plant defence response-related genes
annotated in the cassava genome (Lozano et al., 2015). The presence of introgressions segments

from the wild progenitors into the elite breeding lines is the result of cassava improvement
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91  programs at the Amani Research Station throughout the 1940s and 1950s (Jennings and Iglesias,
92  2002; Hillocks and Jennings, 2003).
93  Here we demonstrated with the synergistic implementation of GWAS and GS that GWAS could
94  be used as a prioritization tool to identify markers for genomic prediction for CBSD resistance in
95 cassava.In addition to unravelling the genetics of CBSD resistance these findings may help in the
96 identification of significant causal polymorphisms to guide marker-assisted breeding for CBSD
97  severity that may greatly improve cassava breeding in the face of increasing disease threats to
98  agricultural production.
99
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120 MATERIALS AND METHODS

121 Plant material

122 Phenotypic data was collected from two GWAS panels (Supplementary table 1), GWAS panel 1
123 composed of 429 clones and GWAS panel 2 which was composed of 872 clones.The combined
124  dataset of 1281 cassava clones were developed through three cycles of genetic recombination
125  between cassava introductions and local elite lines by the National root crops breeding program at
126  NaCRRI. These cassava clones have a diverse genetic background whose pedigree could be traced
127  back to introductions from the International Institute of Tropical Agriculture (1ITA), International
128  Center for Tropical Agriculture (CIAT) and the Tanzania national cassava breeding program
129  (Supplementary table 1).

130

131  Phenotyping

132  The GWAS panel trials were conducted in five locations; Namulonge, Kamuli, Serere, Ngetta and
133  Kasese in Uganda.

134  GWAS panel 1 data was collected in two years across three locations, each trial was designed and
135 laid out as a 6 by 30 alpha-lattice design with two-row plots of five plants each at a spacing of 1
136  meter by 1 meter. GWAS panel 2 was evaluated in three locations, on each location, five rows of
137  test clones were bordered by two CBSD susceptible clones in order to increase CBSD disease
138  pressure (TME204). Clones from GWAS panel 2 were evaluated as single entries per location
139  being connected by six common checks in an augmented completely randomized block design
140  with 38 blocks per site (Federer et al., 2002; Federer and Crossa, 2012).

141  CBSD severity was scored at 3 (CBSD3S), 6 (CBSD6S), and 9 (CBSD9S) months after planting
142 (MAP) for foliar and 12 MAP (CBSDRS) for root symptoms respectively. The CBSD9S scores
143 were not available for GWAS panel 1.

144  CBSD severity was measured based on a 5-point scale with a score of 1 implying asymptomatic
145  conditions and a score 5 implying over 50% leaf vein clearing under foliar symptoms. However,
146  at 12 MAP a score of 5 implies over 50% of root-core being covered by a necrotic corky layer.

147  (Supplementary Figure 1)
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148  Clones were classified with a score of 5 if pronounced vein clearing at major leaf veins were jointly
149  displayed with brown streaks on the stems and shoot die-back that appeared as a candle-stick.
150  Clones with 31 — 40% leaf vein clearing together with brown steaks at the stems were classified
151  under score 4. A Score of 3 was assigned to clones with 21 — 30% leaf vein clearing with emerging
152  brown streaks on the stems. While a score of 2 was assigned to clones that only displayed 1 — 20%
153 leaf vein clearing without any visible brown streak symptoms on the stems. Plants classified with
154  ascore of 1 showed no visible sign of leaf necrosis and brown streaks on the stems. On the other
155  hand, root symptoms were also classified into 5 different categories based on a 5 — point standard
156  scale (Jennings and Iglesias, 2002; Hillocks and Jennings, 2003).

157

158  Two-stage genomic analyses

159  For the two stage analyses, the first stage involved accounting for trial-design using a linear mixed
160  model to obtained de-regressed BLUPs (drgBLUPs) and the second stage involved the use of de-
161  regressed BLUPs in GWAS and Genomic prediction.

162 For the panel 1 we fitted the model: = X + ZcioneC + Zrange(oc)” t Zblock(range)P + € , Using
163  the Imer function from the Ime4 R package (Bates et al., 2015). In this model, £ included a fixed
164  effect for the population mean and location. The incidence matrix Zcione and the vector c represent
165 a random effect for clone c~N(0,152) and I represent the identity matrix. The range variable,
166  which is the row or column along which plots are arrayed, is nested in location-rep and is
167  represented by the incidence matrix Zrange(oc) and random effects vector r~N(0,152). Block
168  effects were nested in ranges and incorporated as random with incidence matrix Zpiock(range) and
169  effects vector h~N(0,Is?). Residuals & were fit as random, with e~N(0, I62).

170  For panel 2 we fitted the model y = XB + Zgone€ + ZpiockP + € Where y was the vector of raw
171  phenotypes, g included a fixed effect for the population mean and location with checks included
172  as a covariate. The incidence matrix Zcione and the vector c are the same as the aforementioned
173 model and the blocks were also modeled with incidence matrix Zy;ocx and b represents the random
174  effect for block. The best linear predictors (BLUPS) of the clone effect (¢) were extracted as de-
175  regressed BLUPS following the formula (Garrick et al., 2009):
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176 d = BLUP
eregressed BLUP = —PEV
1- 2
O-C
177

178  Where PEV is the prediction error variance of the BLUP and &2 is the clonal variance component.
179

180

181 DNA preparation and Genotyping by sequencing (GBS)

182  Total genomic DNA was extracted from young tender leaves of all cassava clones included in the
183  phenotyping trials according to standard procedures using the DNAeasy plant mini extraction kit
184 (QIAGEN, 2012). Genotyping-by-sequencing (GBS)(Elshire et al., 2011) libraries were
185  constructed using the ApeKI restriction enzyme (Hamblin and Rabbi, 2014). Marker genotypes
186  were called using TASSEL GBS pipeline V4 (Glaubitz et al., 2014) after aligning the reads to the
187  Cassava v6 reference genome (Prochnik et al., 2012; Goodstein et al., 2014). Variant Calling
188  Format (\VCF) files were generated for each chromosome. Markers with more than 60% missing
189  calls were removed. Genotypes with less than five reads were masked before imputation.
190  Additionally, only biallelic SNP markers were considered for further processing.

191  The marker dataset consisted of a total of 173,647 bi-allelic SNP markers called for 986
192 individuals. This initial dataset was imputed using Beagle 4.1 (Browning and Browning, 2016).
193  After timputation, 63,016 SNPs had an AR2 (Estimated Allelic r-squared) higher than 0.3 and
194  were kept for analysis; from these, 41,530 had a minor allele frequency (MAF) higher than 0.01
195 in our population. Dosage files for this final dataset were generated and used for both GWAS and
196  GS analyses.

197

198  Genetic correlations and heritability estimates

199

200  Correlation across CBSD traits was estimated using pairwise correlations for each location using
201  the drgBLUPs values obtained after fitting the aforementioned linear mixed model. Broad sense
202  heritabilities (plot-mean basis) were calculated using the estimated variance components from the

203  first step of the two-step genomic analysis as explained previously.
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204 In addition,SNP-based heritabilities were calculated for each GWAS panel by fitting a single-step
205  mixed-effects model, the full models which specified clone as a random effect were fitted using
206  the emmreml function from the EMMREML R package (Akdemir and Okeke, 2015). The random
207  effect was modeled as having co-variance proportional to the kinship matrix, which was calculated
208  using the A.mat function from the rrBLUP R package (Endelman, 2011).

209

210

211  Genome-wide association analysis for CBSV severity

212  Although pedigree records indicate the two GWAS panels to be closely related a principal
213 component analysis (PCA) was performed in order to characterize these panels and to identify any
214  population stratification between the two GWAS panels. We used the imputed dataset of 63,016
215  SNP markers to calculate the PCs with the function princomp in R.

216  With the imputed dataset of 63,016 SNP markers and 986 individuals genome wide association
217  was performed using a mixed linear model association analysis (MLMA) accounting for kinship
218 as implemented in GCTA (v 1.26.0) (Yang et al., 2011) . Specifically, we followed a leave one
219  chromosome out approach, with this approach the chromosome on which the candidate SNP
220  markers are tested gets excluded from the genomic relationship (GRM) calculation. Bonferroni
221  correction (reference) was used to correct for multiple testing with a significance threshold set at
222  5.9. Manhattan plots with transformed -logio(P-value) were generated using R package gqgman
223  (Turner, 2014).

224

225  Genomic prediction models

226  To assess the potential of implementing genomic selection for CBSD, seven genomic prediction
227  models were keenly examined; genomic best linear unbiased prediction (GBLUP), reproducing
228  kernel Hilbert spaces (RKHS), BayesCpi, Bayesian LASSO, BayesA, BayesB and Random forest
229 (RF).

230  GBLUP. In this prediction model, the GEBVs are obtained after fitting a linear mixed model
231  where the genomic realized relationship matrix is based on SNP marker dosages. Accordingly, the

232 genomic relationship matrix was constructed using the function A.mat in the R package rrBLUP
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233  (Endelman, 2011) and follows the formula of VVanRaden (2008), method two. GBLUP predictions
234 were made with the function emmreml in the R package EMMREML (Akdemir and Okeke, 2015).
235  Multi-kernel GBLUP. Because the most significant QTLs for foliar severity 3 and 6 MAP were
236  mapped on chromosomes 4 and 11 (this paper) we followed a multi-kernel approach by fitting
237  three kernels with genomic relationship matrices constructed with SNP markers from
238  chromosomes 4 (Gehra), 11 (Genr11) and SNPs from the other chromosomes (Gaiichr-[4,117). Multi-
239  kernel GBLUP predictions were made with the function emmremIMultiKernel in the R package
240 EMMREML (Akdemir and Okeke, 2015).

241 RKHS. Unlike GBLUP for RKHS we use a Gaussian kernel function: K;; = exp(—(d;;0)), where

242  Kjj is the measured relationship between two individuals, dj is their Euclidean genetic distance
243  based on marker dosages and 0 is a tuning (“bandwidth) parameter that determines the rate of
244 decay of correlation among individuals. This function is nonlinear and therefore the kernels used
245  for RKHS can capture non-additive as well as additive genetic variation. To fit a multiple-kernel
246 model with six covariance matrices we used the emmremIMultiKernel function in the EMMREML
247  package, with the following bandwidth parameters: 0.0000005, 0.00005, 0.0005, 0.005, 0.01, 0.05
248  (Multi-kernel RKHS) and allowed REML to find optimal weights for each kernel.

249  Bayesian maker regressions. We tested four Bayesian prediction models: BayesCpi (Habier et
250 al., 2011), the Bayesian LASSO (Park and Casella, 2008), BayesA, and BayesB (Meuwissen et
251 al.,, 2001). The Bayesian models we tested allow for alternative genetic architectures by way of
252  differential shrinkage of marker effects. We performed Bayesian predictions with the R package
253 BGLR (Pérez and De Los Campos, 2014)

254  Random Forest. Random forest (RF) is a machine learning method used for regression and
255  classification (Breiman, 2001; Strobl et al., 2009; Charmet and Storlie, 2012). Random forest
256  regression with marker data has been shown to capture epistatic effects and has been successfully
257  used for prediction (Breiman, 2001; Motsinger-Reif et al., 2008; Heslot et al., 2012; Charmet et
258 al., 2014; Spindel et al., 2015). We implemented RF using the random Forest package in R (Liaw
259  and Wiener, 2002) with the parameter, ntree set to 500 and the number of variables sampled at
260  each split (mtry) equal to 300.

261
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262  Introgression Segment Detection

263  To identify the genome segments in the two GWAS panels, we followed the approach described
264  in Bredeson et al . (Bredeson et al., 2016). We used the M. glaziovii diagnostic markers identified
265 in Supplementary Dataset 2 of Bredeson et al. (Bredeson et al., 2016), these ancestry diagnostic
266  (Al) SNPs were identified as being fixed for different alleles in a sample of two pure M. esculenta
267  (Albert and CM33064) and two pure M. glaziovii.

268  QOut of 173,647 SNP in our imputed dataset, 12,502 matched published Al SNPs. For these Al
269  SNPs, we divided each chromosome into non-overlapping windows of 20 SNP. Within each
270  window, for each individual, we calculated the proportion of genotypes that were homozygous
271  (GIG) or heterozygous (G/E) for M. glaziovii allele and the proportion that were homozygous for
272  the M. esculenta allele (E/E). We assigned G/G, G/E or E/E ancestry to each window, for each
273 individual only when the proportion of the most common genotype in that window was at least
274  twice the proportion of the second most common genotype. We assigned windows a “No Call”
275  status otherwise.

276  We also used this approach on six whole-genome sequenced samples from the cassava HapMap 11
277  (Ramu et al., 2016). These included the two “pure cassava” and M. glaziovii (S) from Bredeson et
278 al. (Bredeson et al., 2016), plus an additional M. glaziovii, and two samples labeled Namikonga.
279  Because these samples came from a different source from most our samples, we could find only
280 11,686 SNPs that matched both the sites in the rest of our study sample and the list of ancestry
281  informative sites for analysis.

282
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291  Linkage disequilibrium plots

292  To confirm whether a large haplotype block present on chromosome 4 colocate with a GWAS
293  QTL identified on this chromosome we calculated LD scores of every SNP marker on chromosome
294 4 in a 1Mb window using GCTA (Yang et al., 2011). Briefly, LD score for a given marker is
295  calculated as the sum of R? adjusted between the index marker and all markers within a specified

296  window. The adjusted R? is an unbiased measure of LD:

(1— R?)
(n—2)
298  Where “n” is the population size and R? is the usual estimator of the squared Pearson’s correlation

299  (Bulik-Sullivan et al., 2015). The resulting LD scores were then plotted against the GWAS logio

297 Ria4j = R?

300 (Pvalue) of every marker on chromosome 4.

301  To highlight the importance of the associated markers on chromosome 11 we calculated pairwise
302  squared Pearson's correlation coefficient (r?) between the top significant GWAS SNP hit on this
303 chromosome and neighboring markers in a window of 2Mb (1Mb upstream and 1Mb downstream).
304  (plink ref)

305

306 Candidate gene identification

307  We used the mIma GCTA output to filter out SNP markers based on -log10 (P-value) values higher
308 than the Bonferroni threshold (~ 5.9). The resulting significant SNP markers were then mapped
309  onto genes using the SNP location and gene description from the M.esculenta_305_v6.1.gene.gff3
310 available in Phytozome 11(Goodstein et al., 2014) for Manihot esculenta v6.1 using the intersect
311  function from bedtools (Quinlan and Hall, 2010).

312

313
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318 RESULTS

319  Phenotypic variability for severity to cassava brown streak virus infection

320 In the present study field disease scoring was done based on a standard CBSD scoring scale that
321  ranges from 1 to 5 for both foliar and root symptoms (Supplementary figure 1).

322 Datasets for CBSD foliar and root severities of the evaluated germplasm are presented in
323 Supplementary figures 2 and 3, both GWAS panels exhibited differential response to CBSVs at
324 three,six, nine and twelve months as revealed in the great variability of the deregressed BLUPs.
325 Interestingly, clones which displayed an intermediate response were by far more abundant than
326  clones with susceptible or resistance response.

327  Phenotypic correlations for foliar and root severities (CBSD3S, CBSD6S and CBSDRS) within
328  panels and within and across locations are presented in Supplementary figure 4, Supplementary
329 tables 2 and 3 with clear differences in CBSD severity scores.

330  For panel 1, results varied across locations and CBSD severity traits the lowest correlation value
331  was between Ngetta and Kasese (0.09) and the highest between Namulonge and Kasese (0.60)
332  Dboth values correspond root severity scoring (Supplementary table 2A).

333  For panel 2 the results varied across locations and CBSD severity traits with correlation values
334  ranging between -0.08 for CBSD9S (Namulonge-Kamuli) and 0.51 CBSD3S (Kamuli-Serere)
335  (Supplementary table 2B).

336  Within locations across traits the highest correlation values were found in panel 1 for foliar
337  scorings CBSD3S and CBSD6S (r> > 0.5) (Supplementary table 3A). For panel 2, correlation
338 across traits varied depending on the location, nonetheless correlations across foliar traits were
339  generally higher than those between foliar and root severity (Supplementary table 3B).

340  Heritability estimate values for CBSD3S, CBSD6S and CBDRS were low to intermediate with
341  broad-sense heritability (H?) estimates spanning a wide range (11% to 73%) for both panels across
342  locations (Table 1). For GWAS panel 2, broad-sense heritability (H?) estimates ranged between
343  56% and 63% for CBSD3S and between 60% and 62% for CBSD6S; while for GWAS panel 1
344 ranged between 11% and 51%.

345  Narrow-sense heritability (h?), also referred to as SNP heritability, was estimated using the

346  variance components obtained as a result of fitting a one step model using the genetic relationship
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347  matrix (GRM) for each panel. For panel 1, the broad- and narrow-sense heritability values were
348  comparable across locations except for the multi-location model. For panel 2, for most locations
349  the broad-sense heritability estimates were larger than the narrow-sense heritability estimates. The
350 high variability observed within and across GWAS panels reflects differences in population
351  composition, field design and environmental effects.

352

353  Genome wide association mapping for CBSV severity in cassava

354  The extent of subpopulation structure between the two GWAS panels was examined by PCA,
355  which showed no distinct clusters: clones from both panels had mixed distribution. Overall, the
356  first three PCAs accounted for 60% of the genetic variation observed in the data (Figure 1). The
357  first PC accounted for 30% of the observed variation while the second and third PCs contributed
358  20% and 10% respectively.

359  Genotype-phenotype associations for CBSD severity traits based on the combination of multi-
360 location data and 986 individuals are presented in Figure 2. Additional GWAS analyses performed
361 on each panel individually are presented in Supplementary tables 4 and 5 and Supplementary
362  figures 5-12.

363  We characterized SNP markers with a -log10 (P-value) above the Bonferroni threshold > 5.9 as
364  significant marker—trait associations and further annotated those into candidate genes
365  (Supplementary table 4).

366  For the combined dataset, we identified 83 significant SNP markers associated to CBSD3S; the
367  markers mapped to chromosome 11 with 61 markers located within genes (Supplementary Table
368 4). The QTL on chromosome 11, top hit reference SNP -logio (P-value) = 9.38, explained 6% of
369  the observed phenotypic variation.

370  On the other hand, for CBSD6S, we identified significant SNPs on chromosome 11, chromosome
371 4 and chromosome 12. On chromosome 11, 33 SNPs surpassed the Bonferroni threshold with 27
372 SNP markers located within genes. The QTL on chromosome 11 is located on the same region as
373  the QTL identified for CBSD3S and explained 5% of the observed phenotypic variation (Figure
374 3A).
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375 It suffices to note that although several SNPs on chromosome 11 for CBSD6S exceeded the
376  Bonferroni threshold, six SNPs were in linkage disequilibrium (r> > 0.6) with the top reference
377  SNP hit. The SNP markers, with an r?>> 0.2 to the reference SNP, were annotated into candidate
378  genes: Manes11G130500, a gene that is known to encode glycine-rich protein. Manes11G130000
379  gene that encodes Leucine-rich repeat (LRR) containing protein, Manes11G130200 gene that
380 encodes the trigger factor chaperone and peptidyl-prolyl trans and Manes11G131100 that encodes
381 aprotein kinase (Figure 3B).

382  Since several SNPs on the chromosome 4 QTL region are in high LD, no single locus can be
383  highlighted as candidate gene(s) to be associated with CBSD severity (Figure 4A). The large
384  haplotype on chromosome 4 is an introgression block from the a wild relative of cassava (M.
385 glaziovii) (Jennings, 1959; Bredeson et al., 2016). We further confirmed the presence and
386  segregation of the introgressed genome segment in both panels using a set of diagnostic markers
387  from M. glaziovii (Figure 4B, supplementary figure 13 and 14).

388  The significant QTL on chromosome 12 has been previously identified for CMD resistance in
389 cassava (Wolfe et al., 2016) Accordingly, after correction for CMD scoring in the first step
390 calculation of CBSD deregressed BLUPs, the QTL on chromosome 12 was no longer significant
391 and only QTLs on chromosomes 4 and 11 remained (supplementary Figure 15).

392 For CBSDRS we could not identify SNPs surpassing the Bonferroni correction partly to the
393  complexity of this trait with apparently several small effect genes and low heritability. However,
394  the results of the analysis of CBSDRS multi-location data of panel 1 identified significant regions
395  onchromosomes 5, 11 and 18 (-log10 (P-value) > 6.5), which explained 8, 6 and 10% phenotypic
396  variance respectively.

397

398  Genome-wide prediction for CBSV severity in cassava

399  An important objective within this study was to assess the accuracy of prediction in cassava for
400 CBSD-related traits. Using the combined dataset, we compared the performance of seven genomic
401  prediction models with contrasting assumptions on trait genetic architecture. Some model
402  predictions represent genomic estimated breeding values (GEBYV) in that they are sums of additive

403  effects of markers, while other model predictions represent genomic estimated total genetic value
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404  (GETGV) because they include non-additive effects. Predictive accuracy for CBSD related traits
405  had mean values across methods of 0.29 (CBSD3S), 0.40 (CBSD6S) and 0.34 (CBSDRS) (Figure
406 5 and Supplementary table 6).

407  Predictive accuracies for CBSD3S varied in the range of 0.27 (BayesB and GBLUP) and 0.32
408 (RF), for CBSD6S we obtained a predictive value of 0.40 for most methods except for RKHS
409 (0.42) and RF (0.41) and for CBSD root severity scores varied from 0.31 (BayesA, B, C and
410 GBLUP)to 0.42 (RF and RKHS). It is clear from the results that higher predictive accuracies were
411  consistently achieved when using Random forest and RKHS for the prediction of both foliar and
412  root CBSD resistance traits. Although for foliar symptoms the increase in predictive accuracy
413  using those methods is modest, for CBSDRS the increase in predictive accuracy was 0.10.

414  Based on the GWAS results, we identified for CBSD3S, CBSD6S and CBSDRS the strongest
415  marker associations on chromosomes 4 and 11 . Markers from chromosomes 4, 11 and markers on
416  other chromosomes were used independently to construct covariance matrices that were fitted in a
417  multikernel GBLUP model (Supplementary figure 16). For all CBSD traits the mean predictive
418  accuracy values from the single-kernel GBLUP model were similar to the mean total predictive
419  accuracy following the multi-kernel approach (Supplementary table 6).

420  Differences were found on the contribution of the individual kernels to the total predictive
421  accuracies. For example, the multikernel GBLUP model for CBSD3S had the lowest total
422  predictive accuracy (0.27) with the highest contribution coming from chromosome 11 and the rest
423  of the genome (0.19). In contrast, the multikernel GBLUP model for CBSD6S gave the highest
424 predictive accuracy (0.40) and most of the accuracy came from chromosome 4 (0.29). The
425  multikernel GBLUP approach for CBSDRS had a total predictive accuracy of 0.30 with the rest
426  of the genome (0.29) contributing the most to the total predictive accuracy (Supplementary figure
427  16).

428

429

430

431

432
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433 DISCUSSION

434  Cassava brown streak disease has been identified as one of the most serious threats to food security
435  (Pennisi, 2010) owing to the significant loses it imparts in cassava wherever it occurs.

436  Host plant resistance, that is obtained through breeding efforts has been so far the most effective
437  approach. However, this is only achievable when the host-pathogen behaviour and interaction is
438  well understood and/or when the genetics of resistance to CBSD are clearly known.

439 In the present study, ~1200 cassava clones from the NaCRRI breeding program in Uganda were
440  evaluated for CBSD severity scores in leaves and root. Specifically, this paper sought to provide
441  fundamental information on the genetics of resistance to CBSD which was previously unknown.
442  From our analyses it was evident that correlation among foliar CBSD severities were higher than
443  correlation between foliar and root severities.

444 Selection of resistant clones has been hampered by the fact that some clones do not show symptoms
445  on leaves or storage roots, while other varieties may only express symptoms on leaves and not on
446  roots and still others do not show symptoms on leaves but instead on roots only (ASARECA:,
447  2013). Moreover, a lack of correlation between virus load and symptom expression in a field
448  evaluation of selected cassava genotypes has been reported (Kaweesi et al., 2014). Previous studies
449  have also reported that 79% plants with above- ground symptoms of CBSD also exhibited root
450  necrosis and 18% of plants had no visible symptoms of CBSV (Hillocks et al., 1996)

451  Recently, efforts to understand CBSD have focused on CBSD resistance population development
452  and preliminary insights into chromosomal regions and genes involved in resistance (Kawuki et
453 al., 2016; Anjanappa et al., 2016, 2017). These studies have highlighted the existence of a QTL
454 on chromosome 11 for CBSD root necrosis among cassava clones of Tanzanian origin (Kawuki et
455  al., 2016).

456  In our study, based on foliar CBSD severity scoring using a multi-location dataset we identified
457  significant QTL regions on chromosome 4 and 11, though these associations were not always
458  consistent when the panels were analyzed separately and per location. Overall, these results
459  highlight the advantage of using a large GWAS panel and a multi-location approach were plants

460 are exposed to different disease pressures to identify additional genomic regions.

-16 -


https://doi.org/10.1101/158543
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/158543; this version posted July 4, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

461  On chromosome 11, a cluster of genes underlies the significant QTL ; candidate genes for further
462  study are: Manes11G131100, Manes11G130500, Manes11G130200 and Manes11G130000.
463  Lozano et al. 2015 previously reported Manes11G130000 when studying the distribution of NBS-
464  LRRin cassava. Furthermore, a recent study on early transcriptome response to brown streak virus
465 infection in susceptible and resistant cassava varieties identified Manes.11G130000 among the
466  differentially expressed genes in the susceptible line 60444 from the ETH cassava germplasm
467  collection (Anjanappa et al., 2017). The QTL on chromosome 11 is particularly unstable across
468 locations, which may be related to NBS-LRR genes conferring resistance to a particular strain,
469  UCBSV exhibits a lower mutation rate, while CBSV is more aggressive and mutates faster.

470  Throughout the 1940s and 1950s at the Amani Research Station, Manihot glaziovii and cassava
471  varieties of Brazilian origin were used for crosses to obtain CBSD resistant varieties (Jennings and
472  lglesias, 2002). One of the introgression segments from these wild relatives has been reported to
473  be located on chromosome 4, however the level of linkage disequilibrium in that region remains
474  as a major constraint for the identification of the gene or genes that are responsible for CBSD
475  resistance (Bredeson et al., 2016). Current on-going research efforts are focused on dissecting the
476  extent of the effects of wild introgressions on cassava traits (Marnin Wolfe personal
477  communication).

478  One important objective of the present study was to test our ability to predict CBSD severity in
479  cassava, which is, particularly relevant in two situations. First, when the objective is the
480 introduction of germplasm from Latin america and/or from West Africa to East Africa and for
481  early seedling or clonal selection of resistant lines.

482  Thus, using a cross-validation approach, we evaluated the suitability of seven GS models with the
483  expectation that the results may differ due to differences in genetics of foliar and root CBSD
484  severity traits (B. J. Hayes et al., 2009; Grattapaglia et al., 2011).

485  In cassava, previous genomic prediction studies have evaluated the predictive ability of GBLUP
486  using historical phenotypic data from the International Institute of Tropical Agriculture (1ITA) and
487 GBS markers and in a small training population with relatively low-density markers (de Oliveira
488 etal., 2012; Ly, Hamblin, Rabbi, Melaku, Bakare, Okechukwu, et al., 2013).

-17 -


https://doi.org/10.1101/158543
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/158543; this version posted July 4, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

489  Principally, the GS models evaluated have varying underlying assumptions genomic-BLUP
490 (GBLUP) model assume an infinitesimal genetic architecture; Bayesian methods such as BayesA
491  and BayesB relax the assumption of common variance across marker effects (De Los Campos et
492  al., 2009; Habier et al., 2011; Legarra et al., 2014), RKHS and random forest methods can model
493  epistatic and other non-additive effects.

494 A first assessment of predictive accuracy of CBSD foliar and root traits in cassava indicate that
495  the use of genomic selection is a promising breeding method for resistance to Cassava brown streak
496  virus. We found moderate to high predictive accuracies for these traits in relation to results from
497  other traits in cassava (Ly, Hamblin, Rabbi, Melaku, Bakare, Okechukwu, et al., 2013). However,
498  predictive accuracy values are lower in comparison to the values reported for cassava mosaic virus
499  (Ly, Hamblin, Rabbi, Melaku, Bakare, Okechukwu, et al., 2013) possibly due the presence of a
500 large effect GWAS QTL (CMD2) for CMD .

501  Although, a priori knowledge of the loci affecting a trait is not needed for GS, we also tested a
502  multiple kernel approach using GWAS results as a reference to construct covariance matrices.
503  GWAS results have been incorporated in genome-wide prediction models to increase predictive
504  accuracy through de-novo GWAS or using previously published GWAS results (Zhang et al.,
505 2014; Spindel et al., 2016).

506 In our study, to avoid a correlation effect across covariance matrices we partitioned SNP markers
507 into three sets: markers on GWAS QTLs chromosomes (chr 4 and 11) and markers on rest of the
508  genome to built genomic relationship matrices (Gehrs,Genri1,Gaitehr-14,117). Remarkably, the predictive
509 accuracy of each kernel modeled the genetic architecture found though GWA analyses. Our
510 GWAS and GS results indicate that resistance to CBSD root necrosis severity is polygenic in
511  nature, which is in accordance to Kawuki et al.’s (2016) results.

512  Our results suggest that non-additive effects are likely to play a role shaping CBSD resistance
513  particularly root necrosis. This conclusion derives from GS results using Random Forest and
514  RKHS, which gave the highest predictive accuracies, and from the observed differences in broad
515  sense and narrow sense heritability values.

516 CBSD is a disease that has devastating consequences in cassava production and poses a risk

517  particularly to countries in Central and West Africa where CBSD is not currently present. Our
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518  study provides, through GWAS and genomic prediction, an insight into the genetic regulation of
519 CBSD severity in leaves and roots. Although we were able to identify a candidate NBS-LRR gene
520  on chromosome 11, the function of this gene in CBSD resistance requires further validation and
521  more importantly, there is a risk that this gene might not be a source of durable resistance to
522  CBSVs. Within this context, genomic selection arises as a promising tool that can accelerate
523  breeding, though the average predictive accuracy is lower than CMD, this is highly variable across
524  locations and the breeding panel evaluated. Further work will require screening of large diversity
525 panels in multiple environments, identification of QTLs specific to viral strains and the
526 introgression of genomic regions conferring resistance to CBSD from wild relatives and Latin
527  American accessions.
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727  Figures and supplementary legends

728  Figure 1. Principal components analysis of panel 1 and panel 2 clones. The top two panels and the lower
729  left panel show the distribution of clones in PC1-PC3. The lower right panel shows the variance explained
730 by the first ten principal components. Green color shows the distribution of panel 1 clones and the orange
731  color shows the distribution of panel 2 clones.
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732
733  Figure 2. GWAS results for CBSD severity .Analysis was performed with a multilocation combined
734  dataset of panels 1 and 2.(a) scoring 3 MAP (b) 6 MAP and (c) root necrosis severity. Red line indicates
735  Bonferroni threshold.

Principal Components

CBSD3S

= 10
5 -
0 -
15 4
3 CBSD6S

10 §

~logrolp)

CBSDRS
10 +

-logo(p)

736 Chromosome
-26 -


https://doi.org/10.1101/158543
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/158543; this version posted July 4, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

737  Figure 3. Chromosome 11 region with QTL for CBSD severity (a) 3 MAP (yellow), 6 MAP and root
738  necrosis (blue).Outer ring black lines indicate clusters of NBS-LRR genes (Lozano et al 2015). Intermediate
739  ring indicate regions homozygous (G/G)(blue) or heterozygous (G/E)(green) for M. glaziovii allele and the
740  proportion that were homozygous for the M. esculenta allele (E/E)(orange) on seven clones. (b) LD
741  association plot, 2 Mb region in chromosome 11, top SNP indicated in red, annotated genes within that

742  region are indicated in the panel below.
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Figure 4. Chromosome 4 region with QTL for CBSD severity with introgression segment (a) 3 MAP
(yellow), 6 MAP and root necrosis (blue). Outer ring black lines indicate clusters of NBS-LRR genes
(Lozano et al 2015). Intermediate ring indicate regions homozygous (G/G)(blue) or heterozygous
(G/E)(green) for M. glaziovii allele and the proportion that were homozygous for the M. esculenta allele
(E/E)(orange) on seven clones. (b) Introgression region on chromosome 4 (colors description) are the same

as the aforementioned),Nam: Namikonga,w: wild M. glaziovii, cm: CM330645,Alb:Albert, P1: panel 1
clones and P2 panel 2 clones.
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763  Figure 5. Cross validation results for CBSD severity. 3 MAP (CBSD3S), 6 MAP (CBSD6S) and Root
764  necrosis (CBSDRS). x-axis : predictive accuracy and y-axis : genomic prediction model.
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781  Table 1. Broad sense heritability (H?) and SNP heritability (h?) of foliar and root CBSD severity.
782  Broad-sense heritability (H?) values were calculated using the variance components obtained from a model
783  fitted using the Imer function from the Ime4 R package. SNP heritability values were calculated using the
784  variance components obtained obtained from a model fitted using the EMMREML R package. Heritability
785  values estimates were calculated for sets 1 and 2 separately.

786
Trait H? h? LOCATION-YEAR Panel

CBSD3S 0.11 0.32 NAMULONGE 1
CBSD6S 031 0.39 NAMULONGE 1
CBSDRS 0.55 0.59 NAMULONGE 1
CBSD3S 0.43 0.48 NGETTA 1
CBSD6S 0.51 0.53 NGETTA 1
CBSDRS 0.73 0.72 NGETTA 1
CBSD3S 0.27 0.29 KASESE 1
CBSD6S 021 0.27 KASESE 1
CBSDRS 0.39 0.47 KASESE 1
CBSD3S 0.61 0.17 MULTI LOCATION 1
CBSD6S 0.35 0.31 MULTI LOCATION 1
CBSDRS 0.37 0.34 MULTI LOCATION 1
CBSD3S 0.60 0.37 NAMULONGE 2
CBSD6S 0.60 0.32 NAMULONGE 2
CBSD9S 0.68 0.34 NAMULONGE 2
CBSDRS 0.24 0.53 NAMULONGE 2
CBSD3S 0.63 0.28 SERERE 2
CBSD6S 0.60 0.28 SERERE 2
CBSD9S 0.73 0.34 SERERE 2
CBSDRS 0.15 0.48 SERERE 2
CBSD3S 0.56 0.27 KAMULI 2
CBSD6S 0.62 0.29 KAMULI 2
CBSD9S 0.75 0.34 KAMULI 2
CBSDRS 0.28 0.44 KAMULI 2
CBSD3S 0.42 0.28 MULTI LOCATION 2
CBSD6S 0.47 0.34 MULTI LOCATION 2
CBSD9S 0.56 0.38 MULTI LOCATION 2
CBSDRS 0.25 0.33 MULTI LOCATION 2
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790  Supplementary figure 1. Cassava brown streak disease symptoms on leaves and roots of sampled
791  plants; Severity Score from 1 (no visible symptoms) to 5 (severely disease plants. (a) leaf veins
792  chlorosis severity progresses with severity score, (b) dark brown necrotic areas within storage
793  roots severity scale.

794

795  Supplementary figure 2.Panel 1 phenotypic distribution of CBSD severity traits.

796  (A) deregressed BLUPs distribution of CBSD 3 months foliar severity, (B) deregressed BLUPs
797  distribution of CBSD 6 months foliar severity, (C) deregressed BLUPs distribution of CBSD 12
798  months root severity

799

800  Supplementary figure 3.Panel 2 phenotypic distribution of CBSD severity traits.

801 (A) deregressed BLUPs distribution of CBSD 3 months foliar severity, (B) deregressed BLUPs
802  distribution of CBSD 6 months foliar severity, (C) deregressed BLUPs distribution of CBSD 9
803  months foliar severity, (D) deregressed BLUPs distribution of CBSD 12 months root severity
804

805 Supplementary figure 4. Correlation plots between de-regressed BLUPs for foliar and root
806 symptoms. De-regressed BLUPs were calculated for different locations in panel 1 and panel 2.
807

808  Supplementary figure 5. GWAS results for CBSD severity in panel 1 measure at Kasese.(a)
809  scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity and (c) root necrosis
810  severity. Red line Bonferroni correction. Blue line logio P-value = 3.8.

811

812  Supplementary figure 6. GWAS results for CBSD severity in panel 1 measure at Ngetta.(a)
813  scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity and (c) root necrosis
814  severity . Red line Bonferroni correction. Blue line logio P-value = 3.8.

815

816  Supplementary figure 7. GWAS results for CBSD severity in panel 1 measure at Namulonge. (a)
817  scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity and (c) root necrosis

818  severity. Red line Bonferroni correction. Blue line logio P-value = 3.8.

-31-


https://doi.org/10.1101/158543
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/158543; this version posted July 4, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

819  Supplementary figure 8. GWAS results for CBSD severity in with a multilocation dataset of
820 panel 1 (a) scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity and (c)
821  root necrosis severity. Red line Bonferroni correction. Blue line logio P-value = 3.8.

822

823  Supplementary figure 9. GWAS results for CBSD severity in panel 2 measure at Kamuli. (a)
824  scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity (c) 9 CBSD 9 months
825  foliar and (c) root necrosis severity. Red line Bonferroni correction. Blue line logio P-value = 3.8.
826

827  Supplementary figure 10. GWAS results for CBSD severity in panel 2 measure at Namulonge.
828 (&) Scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity (c) 9 CBSD 9
829  months foliar and (c) root necrosis severity. Red line Bonferroni correction. Blue line logio P-value
830 =3.8.

831

832  Supplementary figure 11. GWAS results for CBSD severity in panel 2 at Serere. (a) Scoring
833  CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity (c) 9 CBSD 9 months foliar
834  and (c) root necrosis severity. Red line Bonferroni correction. Blue line logio P-value = 3.8.

835

836  Supplementary figure 12. GWAS results for CBSD severity in with a multilocation dataset of
837  panel 2 (a) scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity (c) 9 CBSD
838 9 months foliar and (c) root necrosis severity. Red line Bonferroni correction. Blue line logio P-
839 value=3.38.

840

841  Supplementary figure 13. local LD in chromosome 4. Plot of the mean LD score for each marker
842  .With a smooth line representing a relative measure of the local LD in chromosome 4. Dots are
843  colored with the -logio P-value for the association test for CBSD severity six months after planting.
844

845

846  Supplementary figure 14. Introgressions segment detection. For each clone of the two GWAS

847  panels we calculated the proportion of genotypes that were homozygous (G/G) or heterozygous
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848  (G/E) for M. glaziovii allele and the proportion that were homozygous for the M. esculenta allele
849  (E/E).

850

851  Supplementary figure 15. (a) GWAS results for 6MAP CBSD severity panels 1 and 2 (b) GWAS
852  Results after correction including markers in chromosome 12 as a covariate.

853

854  Supplementary figure 16. Multi-kernel GBLUP approach by fitting three kernels constructed
855  with non-overlapping SNPs (MAF> 0.01) from chromosomes 4, 11 and SNPs from the other
856  chromosomes. Crossvalidation GS predictive accuracies results for CBSD severity were
857 calculated using the multilocation dataset of the combined panels. Scoring CBSD 3 months foliar
858 severity (CBSD3S),CBSD 6 months foliar severity (CBSD6S) and root necrosis severity
859 (CBSDRS).

860

861  Supplementary Table 1.Pedigree information from GWAS panels 1 and 2. Details are shown on
862  the parental lines per clone and selected traits that came from the maternal side.

863

864  Supplementary table 2. Correlation values across locations in panel 1 and panel 2. (A)
865  Correlation of deregressed BLUPs across locations within traits in panel 1 measured in three
866  locations.(B) Correlation of deregressed BLUPs across locations within traits in panel 2 measured
867 in three locations

868

869  Supplementary table 3. Correlation values across locations and traits in panel 1 and panel 2. (A)
870  Correlation of deregressed BLUPs across locations and traits in panel 1 measured in three
871 locations.(B) Correlation of deregressed BLUPs across locations and four traits in panel 2
872  measured in three locations

873

874  Supplementary table 4. Panel 1 and 2 and combined panels GWAS results. Gene annotation is
875  only shown for significant SNPs.

876
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877  Supplementary table 5. Explained variance of phenotypic traits. Details are shown of the
878  reference SNP, the -log10(pval)(score),chromosome and explained variance.

879

880  Supplementary table 6.Genomic prediction accuracy values. (A) Cross validation results using 7
881  GS models for CBSD severity prediction of 3 MAP CBSD3S, 6 MAP CBSD6S and Root necrosis
882 (CBSDRS) (B) Multi-kernel GBLUP crossvalidation by fitting three kernels constructed with non-
883  overlapping SNPs (MAF> 0.01) from chromosomes 4, 11 and SNPs from the other chromosomes.
884 RKHS = Reproducing kernel Hilbert spaces regression, Total accuracy is the accuracy obtained
885 by following the GBLUP multikernel approach.
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