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ABSTRACT 13 

Cassava (Manihot esculenta Crantz), a key carbohydrate dietary source for millions of people in 14 

Africa, faces severe yield loses due to two viral diseases: cassava brown streak disease (CBSD) 15 

and cassava mosaic disease (CMD). The completion of the cassava genome sequence and the 16 

whole genome marker profiling of clones from African breeding programs 17 

(www.nextgencassava.org) provides cassava breeders the opportunity to deploy additional 18 

breeding strategies and develop superior varieties with both farmer and industry preferred traits. 19 

Here the identification of genomic segments associated with resistance to CBSD foliar symptoms 20 

and root necrosis as measured in two breeding panels at different growth stages and locations is 21 

reported.  Using genome-wide association mapping and genomic prediction models we describe 22 

the genetic architecture for CBSD severity and identify loci strongly associated on chromosomes 23 

4 and 11. Moreover, the significantly associated region on chromosome 4 colocalises with a 24 

Manihot glaziovii introgression segment and the significant SNP markers on chromosome 11 are 25 

situated within a cluster of nucleotide-binding site leucine-rich repeat (NBS-LRR) genes 26 

previously described in cassava. Overall, predictive accuracy values found in this study varied 27 

between CBSD severity traits and across GS models with Random Forest and RKHS showing the 28 

highest predictive accuracies for foliar and root CBSD severity scores.   29 

 30 

Key words: Genome-wide association studies (GWAS), virus severity, augmented designs, de-31 

regressed best linear unbiased Predictions (drg-BLUPs), NBS-LRR proteins 32 
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 33 

INTRODUCTION 34 

Cassava (Manihot esculenta Crantz), is a major source of income and dietary calories for more 35 

than 800 million people across the globe especially in Sub Saharan Africa (SSA) and recently, due 36 

to the unique starch qualities of the storage roots cassava is also turning into an industrial crop 37 

(Pérez et al., 2011). Although cassava is a resilient crop, its production is threatened by viral 38 

diseases such as Cassava brown streak virus disease (CBSD), which causes major yield losses to 39 

poor farming families (ASARECA:, 2013; Ndunguru et al., 2015; Patil et al., 2015). CBSD is 40 

caused by two major strains; Cassava brown streak virus (CBSV) and Ugandan cassava brown 41 

streak virus (UCBSV) both CBSVs have successfully colonized the lowland and highland altitudes 42 

across East Africa and new strains are emerging (Winter et al., 2010; Ndunguru et al., 2015; Alicai 43 

et al., 2016). In Uganda, because of CBSVs and agronomical practices, cassava yields were 44 

recorded to be eight times lower than the yield potential for this crop (ASARECA:, 2013). 45 

In addition to the uncontrolled exchange of infected cassava stakes among farmers across borders, 46 

CBSVs are transmitted by the African whitefly (Besimia tobaci) in a semi-persistent manner 47 

(Legg, Sseruwagi, et al., 2014; McQuaid et al., 2016). Upon infection, the viruses use the transport 48 

system of the plant and cause yellow chlorotic vein patterns along minor veins of leaves in 49 

susceptible cassava clones (Ogwok et al., 2010; Maruthi et al., 2016; Anjanappa et al., 2016). On 50 

the stem, prominent brown elongated lesions commonly referred to as “brown streaks” are formed 51 

and in the storage roots, necrotic hard-corky layers are formed in the root cortex of the most 52 

susceptible cassava clones (Hillocks et al., 1996; Legg, Somado, et al., 2014; Ndyetabula et al., 53 

2016).  54 

Earlier, CBSD resistance breeding initiatives have highlighted the polygenic nature of inheritance 55 

in both intraspecific and interspecific cassava hybrids (Nichols, 1947; Hillocks and Jennings, 56 

2003; Munga, 2008; Kulembeka, 2010). In view of the rapid virus evolution and the insufficiency 57 

of dependable virus diagnostic tools (Alicai et al., 2016) breeding for durable CBSD resistance, 58 

has been the main strategy to control CBSD spread in Eastern Africa. Most of the available elite 59 

cassava lines have exhibited some level of sensitivity to CBSVs ranging from mild sensitivity to 60 

total susceptibility. Moreover, clones classified as resistant and tolerant show diverse symptom 61 
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expression, restricted virus accumulation or recovery after clonal propagation (Hillocks and 62 

Jennings, 2003; Alicai et al., 2016). 63 

Overall, in cassava for many traits the rate of genetic improvement following a traditional breeding 64 

pipeline has been slower due to the combination of several biology-related issues such as: poor 65 

flowering, length of breeding cycle, limited genetic diversity and slow rate of multiplication of 66 

planting materials.  67 

Recently, using genotypic and phenotypic information genome wide association mapping 68 

(GWAS) has been used to unravel the genetic architecture of cassava mosaic disease (CMD) 69 

(Wolfe et al., 2016) and beta carotene content (Esuma et al., 2016). Both studies have been 70 

successful in identifying associated loci with traits of interest. In addition, the performance of 71 

genomic prediction for different traits was previously evaluated using historical phenotypic and 72 

genotyping by sequencing (GBS) datasets from the International Institute of Tropical Agriculture 73 

in Nigeria (Elshire et al., 2011; Ly, Hamblin, Rabbi, Melaku, Bakare, Gauch, et al., 2013). 74 

Genomic Selection (GS) is a breeding method alternative to marker assisted selection and 75 

conventional phenotypic selection which can accelerate genetic gains through the use of 76 

phenotypic and genotypic data from a training population (Meuwissen et al., 2001; Jannink et al., 77 

2010; Lorenz et al., 2011). The performance of different GS models has been evaluated in various 78 

species and in many traits (Resende et al., 2012; Gouy et al., 2013; Heslot et al., 2014; Charmet 79 

et al., 2014; Cros et al., 2015). Recently the potential of GS for CMD resistance has been reported 80 

with predictive accuracies ranging from 0.53 to 0.58 (Wolfe et al., 2016). 81 

In the present study we followed a GWAS approach in combination with genomic prediction to 82 

unravel the genetic architecture of CBSD in two Ugandan breeding populations. While one of our 83 

main objectives was to assess the current predictive accuracy for CBSD we also aimed to identify 84 

the most promising genomic prediction models that can account for CBSD genetic architecture. 85 

GWAS identified loci strongly associated with CBSVs resistance to foliar symptoms which co-86 

locate with an introgression block from a cassava wild progenitor, M. glaziovii  (Bredeson et al., 87 

2016) and with root necrosis which were close to a cluster of plant defence response-related genes 88 

annotated in the cassava genome (Lozano et al., 2015). The presence of introgressions segments 89 

from the wild progenitors into the elite breeding lines is the result of cassava improvement 90 
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programs at the Amani Research Station throughout the 1940s and 1950s (Jennings and Iglesias, 91 

2002; Hillocks and Jennings, 2003). 92 

Here we demonstrated with the synergistic implementation of GWAS and GS that GWAS could 93 

be used as a prioritization tool to identify markers for genomic prediction for CBSD resistance in 94 

cassava.In addition to unravelling the genetics of CBSD resistance these findings may help in the 95 

identification of significant causal polymorphisms to guide marker-assisted breeding for CBSD 96 

severity that may greatly improve cassava breeding in the face of increasing disease threats to 97 

agricultural production. 98 

 99 

 100 
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MATERIALS AND METHODS 120 

Plant material 121 

Phenotypic data was collected from two GWAS panels (Supplementary table 1), GWAS panel 1 122 

composed of 429 clones and GWAS panel 2 which was composed of 872 clones.The combined 123 

dataset of 1281 cassava clones were developed through three cycles of genetic recombination 124 

between cassava introductions and local elite lines by the National root crops breeding program at 125 

NaCRRI. These cassava clones have a diverse genetic background whose pedigree could be traced 126 

back to introductions from the International Institute of Tropical Agriculture (IITA), International 127 

Center for Tropical Agriculture (CIAT) and the Tanzania national cassava breeding program 128 

(Supplementary table 1).  129 

 130 

Phenotyping  131 

The GWAS panel trials were conducted in five locations; Namulonge, Kamuli, Serere, Ngetta and 132 

Kasese in Uganda.  133 

GWAS panel 1 data was collected in two years across three locations, each trial was designed and 134 

laid out as a 6 by 30 alpha-lattice design with two-row plots of five plants each at a spacing of 1 135 

meter by 1 meter. GWAS panel 2 was evaluated in three locations, on each location, five rows of 136 

test clones were bordered by two CBSD susceptible clones in order to increase CBSD disease 137 

pressure (TME204). Clones from GWAS panel 2 were evaluated as single entries per location 138 

being connected by six common checks in an augmented completely randomized block design 139 

with 38 blocks per site (Federer et al., 2002; Federer and Crossa, 2012).  140 

CBSD severity was scored at 3 (CBSD3S), 6 (CBSD6S), and 9 (CBSD9S) months after planting 141 

(MAP) for foliar and 12 MAP (CBSDRS) for root symptoms respectively. The CBSD9S scores 142 

were not available for GWAS panel 1. 143 

CBSD severity was measured based on a 5-point scale with a score of 1 implying asymptomatic 144 

conditions and a score 5 implying over 50% leaf vein clearing under foliar symptoms. However, 145 

at 12 MAP a score of 5 implies over 50% of root-core being covered by a necrotic corky layer. 146 

(Supplementary Figure 1)   147 
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Clones were classified with a score of 5 if pronounced vein clearing at major leaf veins were jointly 148 

displayed with brown streaks on the stems and shoot die-back that appeared as a candle-stick. 149 

Clones with 31 – 40% leaf vein clearing together with brown steaks at the stems were classified 150 

under score 4. A Score of 3 was assigned to clones with 21 – 30% leaf vein clearing with emerging 151 

brown streaks on the stems. While a score of 2 was assigned to clones that only displayed 1 – 20% 152 

leaf vein clearing without any visible brown streak symptoms on the stems. Plants classified with 153 

a score of 1 showed no visible sign of leaf necrosis and brown streaks on the stems. On the other 154 

hand, root symptoms were also classified into 5 different categories based on a 5 – point standard 155 

scale (Jennings and Iglesias, 2002; Hillocks and Jennings, 2003). 156 

 157 

Two-stage genomic analyses 158 

For the two stage analyses, the first stage involved accounting for trial-design using a linear mixed 159 

model to obtained de-regressed BLUPs (drgBLUPs) and the second stage involved the use of de-160 

regressed BLUPs in GWAS and Genomic prediction. 161 

For the panel 1 we fitted the model: =  𝐗𝛽 +  𝐙𝐜𝐥𝐨𝐧𝐞𝑐 + 𝐙𝐫𝐚𝐧𝐠𝐞(𝐥𝐨𝐜.)𝑟 + 𝐙𝐛𝐥𝐨𝐜𝐤(𝐫𝐚𝐧𝐠𝐞)𝑏 + 𝜀 , using 162 

the lmer function from the lme4 R package (Bates et al., 2015). In this model, β included a fixed 163 

effect for the population mean and location. The incidence matrix Zclone and the vector c represent 164 

a random effect for clone 𝑐~N(0, 𝐈𝜎𝑐
2) and 𝐈 represent the identity matrix. The range variable, 165 

which is the row or column along which plots are arrayed, is nested in location-rep and is 166 

represented by the incidence matrix Zrange(loc.) and random effects vector 𝑟~N(0, 𝐈𝜎𝑟
2). Block 167 

effects were nested in ranges and incorporated as random with incidence matrix Zblock(range) and 168 

effects vector 𝑏~N(0, 𝐈𝜎𝑏
2). Residuals 𝜀 were fit as random, with 𝜀~N(0, 𝐈𝜎𝜀

2).  169 

For panel 2 we fitted the model 𝒚 =  𝐗𝛽 + 𝐙𝐜𝐥𝐨𝐧𝐞𝑐 + 𝐙𝐛𝐥𝐨𝐜𝐤𝑏 + 𝜀 Where y was the vector of raw 170 

phenotypes, β included a fixed effect for the population mean and location with checks included 171 

as a covariate. The incidence matrix Zclone and the vector c are the same as the aforementioned 172 

model and the blocks were also modeled with incidence matrix 𝐙𝐛𝐥𝐨𝐜𝐤 and b represents the random 173 

effect for block. The best linear predictors (BLUPs) of the clone effect (ĉ) were extracted as de-174 

regressed BLUPS following the formula (Garrick et al., 2009): 175 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2017. ; https://doi.org/10.1101/158543doi: bioRxiv preprint 

https://doi.org/10.1101/158543
http://creativecommons.org/licenses/by-nc/4.0/


 

 

- 7 - 

 

𝐝𝐞𝐫𝐞𝐠𝐫𝐞𝐬𝐬𝐞𝐝 𝐁𝐋𝐔𝐏 =   
𝐁𝐋𝐔𝐏

𝟏 −
 𝐏𝐄𝐕      

𝛔𝐜
𝟐

                           176 

 177 

Where PEV is the prediction error variance of the BLUP and 𝛔𝐜
𝟐 is the clonal variance component. 178 

 179 

 180 

DNA preparation and Genotyping by sequencing (GBS) 181 

Total genomic DNA was extracted from young tender leaves of all cassava clones included in the 182 

phenotyping trials according to standard procedures using the DNAeasy plant mini extraction kit 183 

(QIAGEN, 2012). Genotyping-by-sequencing (GBS)(Elshire et al., 2011) libraries were 184 

constructed using the ApeKI restriction enzyme (Hamblin and Rabbi, 2014). Marker genotypes 185 

were called using TASSEL GBS pipeline V4 (Glaubitz et al., 2014) after aligning the reads to the 186 

Cassava v6 reference genome (Prochnik et al., 2012; Goodstein et al., 2014). Variant Calling 187 

Format (VCF) files were generated for each chromosome. Markers with more than 60% missing 188 

calls were removed. Genotypes with less than five reads were masked before imputation. 189 

Additionally, only biallelic SNP markers were considered for further processing. 190 

The marker dataset consisted of a total of 173,647 bi-allelic SNP markers called for 986 191 

individuals. This initial dataset was imputed using Beagle 4.1 (Browning and Browning, 2016). 192 

After timputation, 63,016 SNPs had an AR2 (Estimated Allelic r-squared) higher than 0.3 and 193 

were kept for analysis; from these, 41,530 had a minor allele frequency (MAF) higher than 0.01 194 

in our population. Dosage files for this final dataset were generated and used for both GWAS and 195 

GS analyses. 196 

 197 

Genetic correlations and heritability estimates  198 

 199 

Correlation across CBSD traits was estimated using pairwise correlations for each location using 200 

the drgBLUPs values obtained after fitting the aforementioned linear mixed model.  Broad sense 201 

heritabilities (plot-mean basis) were calculated using the estimated variance components from the 202 

first step of the two-step genomic analysis as explained previously.  203 
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In addition,SNP-based heritabilities were calculated for each GWAS panel by fitting a single-step 204 

mixed-effects model, the full models which specified clone as a random effect were fitted using 205 

the emmreml function from the EMMREML R package (Akdemir and Okeke, 2015). The random 206 

effect was modeled as having co-variance proportional to the kinship matrix, which was calculated 207 

using the A.mat function from the rrBLUP R package (Endelman, 2011). 208 

 209 

  210 

Genome-wide association analysis for CBSV severity 211 

Although pedigree records indicate the two GWAS panels to be closely related a principal 212 

component analysis (PCA) was performed in order to characterize these panels and to identify any 213 

population stratification between the two GWAS panels. We used the imputed dataset of 63,016 214 

SNP markers to calculate the PCs with the function princomp in R. 215 

With the imputed dataset of 63,016 SNP markers and 986 individuals genome wide association 216 

was performed using a mixed linear model association analysis (MLMA) accounting for kinship 217 

as implemented in GCTA (v 1.26.0) (Yang et al., 2011) . Specifically, we followed a leave one 218 

chromosome out approach, with this approach the chromosome on which the candidate SNP 219 

markers are tested gets excluded from the genomic relationship (GRM) calculation. Bonferroni 220 

correction (reference) was used to correct for multiple testing with a significance threshold set at 221 

5.9. Manhattan plots with transformed -log10(P-value) were generated using R package qqman 222 

(Turner, 2014).  223 

 224 

Genomic prediction models  225 

To assess the potential of implementing genomic selection for CBSD, seven genomic prediction 226 

models were keenly examined; genomic best linear unbiased prediction (GBLUP), reproducing 227 

kernel Hilbert spaces (RKHS), BayesCpi, Bayesian LASSO, BayesA, BayesB and Random forest 228 

(RF).  229 

GBLUP. In this prediction model, the GEBVs are obtained after fitting a linear mixed model 230 

where the genomic realized relationship matrix is based on SNP marker dosages. Accordingly, the 231 

genomic relationship matrix was constructed using the function A.mat in the R package rrBLUP 232 
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(Endelman, 2011) and follows the formula of VanRaden (2008), method two. GBLUP predictions 233 

were made with the function emmreml in the R package EMMREML (Akdemir and Okeke, 2015). 234 

Multi-kernel GBLUP. Because the most significant QTLs for foliar severity 3 and 6 MAP were 235 

mapped on chromosomes 4 and 11 (this paper) we followed a multi-kernel approach by fitting 236 

three kernels with genomic relationship matrices constructed with SNP markers from 237 

chromosomes 4 (Gchr4), 11 (Gchr11) and SNPs from the other chromosomes (Gallchr-[4,11]). Multi-238 

kernel GBLUP predictions were made with the function emmremlMultiKernel  in the R package 239 

EMMREML (Akdemir and Okeke, 2015). 240 

RKHS. Unlike GBLUP for RKHS we use a Gaussian kernel function: 𝐾𝑖𝑗 = exp (−(dijθ)), where 241 

Kij is the measured relationship between two individuals, dij is their Euclidean genetic distance 242 

based on marker dosages and θ is a tuning (“bandwidth”) parameter that determines the rate of 243 

decay of correlation among individuals. This function is nonlinear and therefore the kernels used 244 

for RKHS can capture non-additive as well as additive genetic variation. To fit a multiple-kernel 245 

model with six covariance matrices we used the emmremlMultiKernel function in the EMMREML 246 

package, with the following bandwidth parameters: 0.0000005, 0.00005, 0.0005, 0.005, 0.01, 0.05 247 

(Multi-kernel RKHS) and allowed REML to find optimal weights for each kernel.  248 

Bayesian maker regressions. We tested four Bayesian prediction models: BayesCpi (Habier et 249 

al., 2011), the Bayesian LASSO (Park and Casella, 2008), BayesA, and BayesB (Meuwissen et 250 

al., 2001). The Bayesian models we tested allow for alternative genetic architectures by way of 251 

differential shrinkage of marker effects. We performed Bayesian predictions with the R package 252 

BGLR (Pérez and De Los Campos, 2014) 253 

Random Forest. Random forest (RF) is a machine learning method used for regression and 254 

classification (Breiman, 2001; Strobl et al., 2009; Charmet and Storlie, 2012). Random forest 255 

regression with marker data has been shown to capture epistatic effects and has been successfully 256 

used for prediction (Breiman, 2001; Motsinger-Reif et al., 2008; Heslot et al., 2012; Charmet et 257 

al., 2014; Spindel et al., 2015). We implemented RF using the random Forest package in R (Liaw 258 

and Wiener, 2002) with the parameter, ntree set to 500 and the number of variables sampled at 259 

each split (mtry) equal to 300. 260 

 261 
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Introgression Segment Detection 262 

To identify the genome segments in the two GWAS panels, we followed the approach described 263 

in Bredeson et al . (Bredeson et al., 2016). We used the M. glaziovii diagnostic markers identified 264 

in Supplementary Dataset 2 of Bredeson et al. (Bredeson et al., 2016), these ancestry diagnostic 265 

(AI) SNPs were identified as being fixed for different alleles in a sample of two pure M. esculenta 266 

(Albert and CM33064) and two pure M. glaziovii.  267 

Out of 173,647 SNP in our imputed dataset, 12,502 matched published AI SNPs. For these AI 268 

SNPs, we divided each chromosome into non-overlapping windows of 20 SNP. Within each 269 

window, for each individual, we calculated the proportion of genotypes that were homozygous 270 

(G/G) or heterozygous (G/E) for M. glaziovii allele and the proportion that were homozygous for 271 

the M. esculenta allele (E/E).  We assigned G/G, G/E or E/E ancestry to each window, for each 272 

individual only when the proportion of the most common genotype in that window was at least 273 

twice the proportion of the second most common genotype. We assigned windows a “No Call” 274 

status otherwise. 275 

We also used this approach on six whole-genome sequenced samples from the cassava HapMap II 276 

(Ramu et al., 2016). These included the two “pure cassava” and M. glaziovii (S) from Bredeson et 277 

al. (Bredeson et al., 2016), plus an additional M. glaziovii, and two samples labeled Namikonga. 278 

Because these samples came from a different source from most our samples, we could find only 279 

11,686 SNPs that matched both the sites in the rest of our study sample and the list of ancestry 280 

informative sites for analysis. 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 
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Linkage disequilibrium plots  291 

To confirm whether a large haplotype block present on chromosome 4 colocate with a GWAS 292 

QTL identified on this chromosome we calculated LD scores of every SNP marker on chromosome 293 

4 in a 1Mb window using GCTA (Yang et al., 2011). Briefly, LD score for a given marker is 294 

calculated as the sum of R2 adjusted between the index marker and all markers within a specified 295 

window. The adjusted R2 is an unbiased measure of LD: 296 

𝑅𝑎𝑑𝑗
2 =  𝑅2 − 

 ( 1 −  𝑅2)

(𝑛 − 2)
 297 

Where “n” is the population size and R2 is the usual estimator of the squared Pearson’s correlation 298 

(Bulik-Sullivan et al., 2015). The resulting LD scores were then plotted against the GWAS log10 299 

(Pvalue) of every marker on chromosome 4. 300 

To highlight the importance of the associated markers on chromosome 11 we calculated pairwise 301 

squared Pearson's correlation coefficient (r2) between the top significant GWAS SNP hit on this 302 

chromosome and neighboring markers in a window of 2Mb (1Mb upstream and 1Mb downstream). 303 

(plink ref) 304 

 305 

Candidate gene identification 306 

We used the mlma GCTA output to filter out SNP markers based on -log10 (P-value) values higher 307 

than the Bonferroni threshold (~ 5.9). The resulting significant SNP markers were then mapped 308 

onto genes using the SNP location and gene description from the M.esculenta_305_v6.1.gene.gff3 309 

available in Phytozome 11(Goodstein et al., 2014) for Manihot esculenta v6.1 using the intersect 310 

function from bedtools (Quinlan and Hall, 2010).  311 

 312 

 313 

 314 

 315 

 316 

 317 
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RESULTS   318 

Phenotypic variability for severity to cassava brown streak virus infection 319 

In the present study field disease scoring was done based on a standard CBSD scoring scale that 320 

ranges from 1 to 5 for both foliar and root symptoms (Supplementary figure 1).  321 

Datasets for CBSD foliar and root severities of the evaluated germplasm are presented in 322 

Supplementary figures 2 and 3, both GWAS panels exhibited differential response to CBSVs at 323 

three,six, nine and twelve months as revealed in the great variability of the deregressed BLUPs.  324 

Interestingly, clones which displayed an intermediate response were by far more abundant than 325 

clones with susceptible or resistance response.  326 

Phenotypic correlations for foliar and root severities (CBSD3S, CBSD6S and CBSDRS) within 327 

panels and within and across locations are presented in Supplementary figure 4, Supplementary 328 

tables 2 and 3 with clear differences in CBSD severity scores.  329 

For panel 1, results varied across locations and CBSD severity traits the lowest correlation value 330 

was between Ngetta and Kasese (0.09) and the highest between Namulonge and Kasese (0.60) 331 

both values correspond root severity scoring (Supplementary table 2A). 332 

For panel 2 the results varied across locations and CBSD severity traits with correlation values 333 

ranging between -0.08 for CBSD9S (Namulonge-Kamuli) and 0.51 CBSD3S (Kamuli-Serere) 334 

(Supplementary table 2B).  335 

Within locations across traits the highest correlation values were found in panel 1 for foliar 336 

scorings CBSD3S and CBSD6S (r2 > 0.5) (Supplementary table 3A). For panel 2, correlation 337 

across traits varied depending on the location, nonetheless correlations across foliar traits were 338 

generally higher than those between foliar and root severity (Supplementary table 3B). 339 

Heritability estimate values for CBSD3S, CBSD6S and CBDRS were low to intermediate with 340 

broad-sense heritability (H2) estimates spanning a wide range (11% to 73%) for both panels across 341 

locations (Table 1). For GWAS panel 2, broad-sense heritability (H2) estimates ranged between 342 

56% and 63% for CBSD3S and between 60% and 62% for CBSD6S; while for GWAS panel 1 343 

ranged between 11% and 51%.  344 

Narrow-sense heritability (h2), also referred to as SNP heritability, was estimated using the 345 

variance components obtained as a result of fitting a one step model using the genetic relationship 346 
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matrix (GRM) for each panel. For panel 1, the broad- and narrow-sense heritability values were 347 

comparable across locations except for the multi-location model. For panel 2, for most locations 348 

the broad-sense heritability estimates were larger than the narrow-sense heritability estimates. The 349 

high variability observed within and across GWAS panels reflects differences in population 350 

composition, field design and environmental effects. 351 

 352 

Genome wide association mapping for CBSV severity in cassava 353 

The extent of subpopulation structure between the two GWAS panels was examined by PCA, 354 

which showed no distinct clusters: clones from both panels had mixed distribution. Overall, the 355 

first three PCAs accounted for 60% of the genetic variation observed in the data (Figure 1). The 356 

first PC accounted for 30% of the observed variation while the second and third PCs contributed 357 

20% and 10% respectively.  358 

Genotype-phenotype associations for CBSD severity traits based on the combination of multi-359 

location data and 986 individuals are presented in Figure 2. Additional GWAS analyses performed 360 

on each panel individually are presented in Supplementary tables 4 and 5 and Supplementary 361 

figures 5-12. 362 

We characterized SNP markers with a -log10 (P-value) above the Bonferroni threshold > 5.9 as 363 

significant marker–trait associations and further annotated those into candidate genes 364 

(Supplementary table 4).  365 

For the combined dataset, we identified 83 significant SNP markers associated to CBSD3S; the 366 

markers mapped to chromosome 11 with 61 markers located within genes (Supplementary Table 367 

4). The QTL on chromosome 11, top hit reference SNP -log10 (P-value) = 9.38, explained 6% of 368 

the observed phenotypic variation.  369 

On the other hand, for CBSD6S, we identified significant SNPs on chromosome 11, chromosome 370 

4 and chromosome 12.  On chromosome 11, 33 SNPs surpassed the Bonferroni threshold with 27 371 

SNP markers located within genes. The QTL on chromosome 11 is located on the same region as 372 

the QTL identified for CBSD3S and explained 5% of the observed phenotypic variation (Figure 373 

3A).  374 
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It suffices to note that although several SNPs on chromosome 11 for CBSD6S exceeded the 375 

Bonferroni threshold, six SNPs were in linkage disequilibrium (r2 > 0.6) with the top reference 376 

SNP hit. The SNP markers, with an r2> 0.2 to the reference SNP, were annotated into candidate 377 

genes: Manes11G130500, a gene that is known to encode glycine-rich protein. Manes11G130000 378 

gene that encodes Leucine-rich repeat (LRR) containing protein, Manes11G130200 gene that 379 

encodes the trigger factor chaperone and peptidyl-prolyl trans and Manes11G131100 that encodes 380 

a protein kinase (Figure 3B).  381 

Since several SNPs on the chromosome 4 QTL region are in high LD, no single locus can be 382 

highlighted as candidate gene(s) to be associated with CBSD severity (Figure 4A). The large 383 

haplotype on chromosome 4 is an introgression block from the a wild relative of cassava (M. 384 

glaziovii) (Jennings, 1959; Bredeson et al., 2016). We further confirmed the presence and 385 

segregation of the introgressed genome segment in both panels using a set of diagnostic markers 386 

from M. glaziovii (Figure 4B, supplementary figure 13 and 14).  387 

The significant QTL on chromosome 12 has been previously identified for CMD resistance in 388 

cassava  (Wolfe et al., 2016) Accordingly, after correction for CMD scoring in the first step 389 

calculation of CBSD deregressed BLUPs, the QTL on chromosome 12 was no longer significant 390 

and only QTLs on chromosomes 4 and 11 remained (supplementary Figure 15 ).  391 

For CBSDRS we could not identify SNPs surpassing the Bonferroni correction partly to the 392 

complexity of this trait with apparently several small effect genes and low heritability. However, 393 

the results of the analysis of CBSDRS multi-location data of panel 1 identified significant regions 394 

on chromosomes 5, 11 and 18 (-log10 (P-value) > 6.5), which explained 8, 6 and 10% phenotypic 395 

variance respectively. 396 

 397 

Genome-wide prediction for CBSV severity in cassava 398 

An important objective within this study was to assess the accuracy of prediction in cassava for 399 

CBSD-related traits. Using the combined dataset, we compared the performance of seven genomic 400 

prediction models with contrasting assumptions on trait genetic architecture. Some model 401 

predictions represent genomic estimated breeding values (GEBV) in that they are sums of additive 402 

effects of markers, while other model predictions represent genomic estimated total genetic value 403 
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(GETGV) because they include non-additive effects. Predictive accuracy for CBSD related traits 404 

had mean values across methods of 0.29 (CBSD3S), 0.40 (CBSD6S) and 0.34 (CBSDRS) (Figure 405 

5 and Supplementary table 6). 406 

Predictive accuracies for CBSD3S varied in the range of 0.27 (BayesB and GBLUP) and 0.32 407 

(RF), for CBSD6S we obtained a predictive value of 0.40 for most methods except for RKHS 408 

(0.42) and RF (0.41) and for CBSD root severity scores varied from 0.31 (BayesA, B, C and 409 

GBLUP) to 0.42 (RF and RKHS). It is clear from the results that higher predictive accuracies were 410 

consistently achieved when using Random forest and RKHS for the prediction of both foliar and 411 

root CBSD resistance traits. Although for foliar symptoms the increase in predictive accuracy 412 

using those methods is modest, for CBSDRS the increase in predictive accuracy was 0.10. 413 

Based on the GWAS results, we identified for CBSD3S, CBSD6S and CBSDRS the strongest 414 

marker associations on chromosomes 4 and 11 . Markers from chromosomes 4, 11 and markers on 415 

other chromosomes were used independently to construct covariance matrices that were fitted in a 416 

multikernel GBLUP model (Supplementary figure 16). For all CBSD traits the mean predictive 417 

accuracy values from the single-kernel GBLUP model were similar to the mean total predictive 418 

accuracy following the multi-kernel approach (Supplementary table 6).  419 

Differences were found on the contribution of the individual kernels to the total predictive 420 

accuracies. For example, the multikernel GBLUP model for CBSD3S had the lowest total 421 

predictive accuracy (0.27) with the highest contribution coming from chromosome 11 and the rest 422 

of the genome (0.19). In contrast, the multikernel GBLUP model for CBSD6S gave the highest 423 

predictive accuracy (0.40) and most of the accuracy came from chromosome 4 (0.29). The 424 

multikernel GBLUP approach for CBSDRS had a total predictive accuracy of 0.30 with the rest 425 

of the genome (0.29) contributing the most to the total predictive accuracy (Supplementary figure 426 

16). 427 

 428 

 429 

 430 

 431 

 432 
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DISCUSSION 433 

Cassava brown streak disease has been identified as one of the most serious threats to  food security 434 

(Pennisi, 2010) owing to the significant loses it imparts in cassava wherever it occurs. 435 

Host plant resistance, that is obtained through breeding efforts has been so far the most effective 436 

approach. However, this is only achievable when the host-pathogen behaviour and interaction is 437 

well understood and/or when the genetics of resistance to CBSD are clearly known. 438 

In the present study, ~1200 cassava clones from the NaCRRI breeding program in Uganda were 439 

evaluated for CBSD severity scores in leaves and root. Specifically, this paper sought to provide 440 

fundamental information on the genetics of resistance to CBSD which was previously unknown. 441 

From our analyses it was evident that correlation among foliar CBSD severities were higher than 442 

correlation between foliar and root severities.  443 

Selection of resistant clones has been hampered by the fact that some clones do not show symptoms 444 

on leaves or storage roots, while other varieties may only express symptoms on leaves and not on 445 

roots and still others do not show symptoms on leaves but instead on roots only (ASARECA:, 446 

2013). Moreover, a lack of correlation between virus load and symptom expression in a field 447 

evaluation of selected cassava genotypes has been reported (Kaweesi et al., 2014). Previous studies 448 

have also reported that 79% plants with above- ground symptoms of CBSD also exhibited root 449 

necrosis and 18% of plants had no visible symptoms of CBSV (Hillocks et al., 1996) 450 

Recently, efforts to understand CBSD have focused on CBSD resistance population development 451 

and preliminary insights into chromosomal regions and genes involved in resistance (Kawuki et 452 

al., 2016; Anjanappa et al., 2016, 2017). These studies have highlighted the existence of a QTL 453 

on chromosome 11 for CBSD root necrosis among cassava clones of Tanzanian origin (Kawuki et 454 

al., 2016).   455 

In our study, based on foliar CBSD severity scoring using a multi-location dataset we identified 456 

significant QTL regions on chromosome 4 and 11, though these associations were not always 457 

consistent when the panels were analyzed separately and per location. Overall, these results 458 

highlight the advantage of using a large GWAS panel and a multi-location approach were plants 459 

are exposed to different disease pressures to identify additional genomic regions.  460 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2017. ; https://doi.org/10.1101/158543doi: bioRxiv preprint 

https://doi.org/10.1101/158543
http://creativecommons.org/licenses/by-nc/4.0/


 

 

- 17 - 

 

On chromosome 11, a cluster of genes underlies the significant QTL ; candidate genes for further 461 

study are: Manes11G131100, Manes11G130500, Manes11G130200 and Manes11G130000. 462 

Lozano et al. 2015 previously reported Manes11G130000 when studying the distribution of NBS-463 

LRR in cassava. Furthermore, a recent study on early transcriptome response to brown streak virus 464 

infection in susceptible and resistant cassava varieties identified Manes.11G130000 among the 465 

differentially expressed genes in the susceptible line 60444 from the ETH cassava germplasm 466 

collection (Anjanappa et al., 2017). The QTL on chromosome 11 is particularly unstable across 467 

locations, which may be related to NBS-LRR genes conferring resistance to a particular strain, 468 

UCBSV exhibits a lower mutation rate, while CBSV is more aggressive and mutates faster.  469 

Throughout the 1940s and 1950s at the Amani Research Station, Manihot glaziovii and cassava 470 

varieties of Brazilian origin were used for crosses to obtain CBSD resistant varieties (Jennings and 471 

Iglesias, 2002). One of the introgression segments from these wild relatives has been reported to 472 

be located on chromosome 4, however the level of linkage disequilibrium in that region remains 473 

as a major constraint for the identification of the gene or genes that are responsible for CBSD 474 

resistance (Bredeson et al., 2016). Current on-going research efforts are focused on dissecting the 475 

extent of the effects of wild introgressions on cassava traits (Marnin Wolfe personal 476 

communication).  477 

One important objective of the present study was to test our ability to predict CBSD severity in 478 

cassava, which is, particularly relevant in two situations. First, when the objective is the 479 

introduction of germplasm from Latin america and/or from West Africa to East Africa and for 480 

early seedling or clonal selection of resistant lines.   481 

Thus, using a cross-validation approach, we evaluated the suitability of seven GS models with the 482 

expectation that the results may differ due to differences in genetics of foliar and root CBSD 483 

severity traits (B. J. Hayes et al., 2009; Grattapaglia et al., 2011). 484 

In cassava, previous genomic prediction studies have evaluated the predictive ability of GBLUP 485 

using historical phenotypic data from the International Institute of Tropical Agriculture (IITA) and 486 

GBS markers and in a small training population with relatively low-density markers (de Oliveira 487 

et al., 2012; Ly, Hamblin, Rabbi, Melaku, Bakare, Okechukwu, et al., 2013). 488 
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Principally, the GS models evaluated have varying underlying assumptions genomic-BLUP 489 

(GBLUP) model assume an infinitesimal genetic architecture; Bayesian methods such as BayesA 490 

and BayesB relax the assumption of common variance across marker effects (De Los Campos et 491 

al., 2009; Habier et al., 2011; Legarra et al., 2014), RKHS and random forest methods can model 492 

epistatic and other non-additive effects. 493 

A first assessment of predictive accuracy of CBSD foliar and root traits in cassava indicate that 494 

the use of genomic selection is a promising breeding method for resistance to Cassava brown streak 495 

virus. We found moderate to high predictive accuracies for these traits in relation to results from 496 

other traits in cassava (Ly, Hamblin, Rabbi, Melaku, Bakare, Okechukwu, et al., 2013). However, 497 

predictive accuracy values are lower in comparison to the values reported for cassava mosaic virus 498 

(Ly, Hamblin, Rabbi, Melaku, Bakare, Okechukwu, et al., 2013) possibly due the presence of a 499 

large effect GWAS QTL (CMD2) for CMD . 500 

Although, a priori knowledge of the loci affecting a trait is not needed for GS, we also tested a 501 

multiple kernel approach using GWAS results as a reference to construct covariance matrices. 502 

GWAS results have been incorporated in genome-wide prediction models to increase predictive 503 

accuracy through de-novo GWAS or using previously published GWAS results (Zhang et al., 504 

2014; Spindel et al., 2016).  505 

In our study, to avoid a correlation effect across covariance matrices we partitioned SNP markers 506 

into three sets: markers on GWAS QTLs chromosomes (chr 4 and 11) and markers on rest of the 507 

genome to built genomic relationship matrices (Gchr4,Gchr11,Gallchr-[4,11]).Remarkably, the predictive 508 

accuracy of each kernel modeled the genetic architecture found though GWA analyses. Our 509 

GWAS and GS results indicate that resistance to CBSD root necrosis severity is polygenic in 510 

nature, which is in accordance to Kawuki et al.’s (2016) results.  511 

Our results suggest that non-additive effects are likely to play a role shaping CBSD resistance 512 

particularly root necrosis. This conclusion derives from GS results using Random Forest and 513 

RKHS, which gave the highest predictive accuracies, and from the observed differences in broad 514 

sense and narrow sense heritability values. 515 

CBSD is a disease that has devastating consequences in cassava production and poses a risk 516 

particularly to countries in Central and West Africa where CBSD is not currently present. Our 517 
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study provides, through GWAS and genomic prediction, an insight into the genetic regulation of 518 

CBSD severity in leaves and roots. Although we were able to identify a candidate NBS-LRR gene 519 

on chromosome 11, the function of this gene in CBSD resistance requires further validation and 520 

more importantly, there is a risk that this gene might not be a source of durable resistance to 521 

CBSVs. Within this context, genomic selection arises as a promising tool that can accelerate 522 

breeding, though the average predictive accuracy is lower than CMD, this is highly variable across 523 

locations and the breeding panel evaluated. Further work will require screening of large diversity 524 

panels in multiple environments, identification of QTLs specific to viral strains and the 525 

introgression of genomic regions conferring resistance to CBSD from wild relatives and Latin 526 

American accessions. 527 
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Figures and supplementary legends 727 

Figure 1. Principal components analysis of panel 1 and panel 2 clones. The top two panels and the lower 728 

left panel show the distribution of clones in PC1-PC3. The lower right panel shows the variance explained 729 

by the first ten principal components. Green color shows the distribution of panel 1 clones and the orange 730 

color shows the distribution of panel 2 clones. 731 

 732 

Figure 2. GWAS results for CBSD severity .Analysis was performed with a multilocation combined 733 

dataset of panels 1 and 2.(a) scoring 3 MAP (b) 6 MAP and (c) root necrosis severity. Red line indicates 734 

Bonferroni threshold.  735 

 736 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2017. ; https://doi.org/10.1101/158543doi: bioRxiv preprint 

https://doi.org/10.1101/158543
http://creativecommons.org/licenses/by-nc/4.0/


 

 

- 27 - 

 

Figure 3. Chromosome 11 region with QTL for CBSD severity (a) 3 MAP (yellow), 6 MAP and root 737 

necrosis (blue).Outer ring black lines indicate clusters of NBS-LRR genes (Lozano et al 2015). Intermediate 738 

ring indicate regions homozygous (G/G)(blue) or heterozygous (G/E)(green) for M. glaziovii allele and the 739 

proportion that were homozygous for the M. esculenta allele (E/E)(orange) on seven clones. (b) LD 740 

association plot, 2 Mb region in chromosome 11, top SNP indicated in red, annotated genes within that 741 

region are indicated in the panel below.  742 
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Figure 4. Chromosome 4 region with QTL for CBSD severity with introgression segment (a) 3 MAP 751 

(yellow), 6 MAP and root necrosis (blue). Outer ring black lines indicate clusters of NBS-LRR genes 752 

(Lozano et al 2015). Intermediate ring indicate regions homozygous (G/G)(blue) or heterozygous 753 

(G/E)(green) for M. glaziovii allele and the proportion that were homozygous for the M. esculenta allele 754 

(E/E)(orange) on seven clones.  (b) Introgression region on chromosome 4 (colors description) are the same 755 

as the aforementioned),Nam: Namikonga,w: wild M. glaziovii, cm: CM330645,Alb:Albert, P1: panel 1 756 

clones and P2 panel 2 clones. 757 
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Figure 5. Cross validation results for CBSD severity. 3 MAP (CBSD3S), 6 MAP (CBSD6S) and Root 763 

necrosis (CBSDRS). x-axis : predictive accuracy and y-axis : genomic prediction model.  764 
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Table 1. Broad sense heritability (H2)  and SNP heritability (h2) of foliar and root CBSD severity. 781 

Broad-sense heritability (H2) values were calculated using the variance components obtained from a model 782 

fitted using the lmer function from the lme4 R package. SNP heritability values were calculated using the 783 

variance components obtained obtained from a model fitted using the EMMREML R package. Heritability 784 

values estimates were calculated for sets 1 and 2 separately. 785 

 786 

Trait H2 h2 LOCATION-YEAR Panel 

CBSD3S 0.11 0.32 NAMULONGE 1 

CBSD6S 0.31 0.39 NAMULONGE 1 

CBSDRS 0.55 0.59 NAMULONGE 1 

CBSD3S 0.43 0.48 NGETTA 1 

CBSD6S 0.51 0.53 NGETTA 1 

CBSDRS 0.73 0.72 NGETTA 1 

CBSD3S 0.27 0.29 KASESE 1 

CBSD6S 0.21 0.27 KASESE 1 

CBSDRS 0.39 0.47 KASESE 1 

CBSD3S 0.61 0.17 MULTI LOCATION 1 

CBSD6S 0.35 0.31 MULTI LOCATION 1 

CBSDRS 0.37 0.34 MULTI LOCATION 1 

CBSD3S 0.60 0.37 NAMULONGE 2 

CBSD6S 0.60 0.32 NAMULONGE 2 

CBSD9S 0.68 0.34 NAMULONGE 2 

CBSDRS 0.24 0.53 NAMULONGE 2 

CBSD3S 0.63 0.28 SERERE 2 

CBSD6S 0.60 0.28 SERERE 2 

CBSD9S 0.73 0.34 SERERE 2 

CBSDRS 0.15 0.48 SERERE 2 

CBSD3S 0.56 0.27 KAMULI 2 

CBSD6S 0.62 0.29 KAMULI 2 

CBSD9S 0.75 0.34 KAMULI 2 

CBSDRS 0.28 0.44 KAMULI 2 

CBSD3S 0.42 0.28 MULTI LOCATION 2 

CBSD6S 0.47 0.34 MULTI LOCATION 2 

CBSD9S 0.56 0.38 MULTI LOCATION 2 

CBSDRS 0.25 0.33 MULTI LOCATION 2 

 787 

 788 

 789 
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Supplementary figure 1. Cassava brown streak disease symptoms on leaves and roots of sampled 790 

plants; Severity Score from 1 (no visible symptoms) to 5 (severely disease plants. (a) leaf veins 791 

chlorosis severity progresses with severity score, (b) dark brown necrotic areas within storage 792 

roots severity scale. 793 

 794 

Supplementary figure 2.Panel 1 phenotypic distribution of CBSD severity traits. 795 

( A) deregressed BLUPs distribution of CBSD 3 months foliar severity, (B) deregressed BLUPs  796 

distribution of CBSD 6 months foliar severity, (C) deregressed BLUPs distribution of CBSD 12 797 

months root severity 798 

 799 

Supplementary figure 3.Panel 2 phenotypic distribution of CBSD severity traits. 800 

(A) deregressed BLUPs distribution of CBSD 3 months foliar severity, (B) deregressed BLUPs 801 

distribution of CBSD 6 months foliar severity, (C)  deregressed BLUPs distribution of CBSD 9 802 

months foliar severity, (D)  deregressed BLUPs distribution of CBSD 12 months root severity 803 

 804 

Supplementary figure 4. Correlation plots between de-regressed BLUPs for foliar and root 805 

symptoms. De-regressed BLUPs were calculated for different locations in panel 1 and panel 2.  806 

 807 

Supplementary figure 5. GWAS results for CBSD severity in panel 1 measure at Kasese.(a) 808 

scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity and (c) root necrosis 809 

severity. Red line Bonferroni correction. Blue line log10 P-value = 3.8. 810 

 811 

Supplementary figure 6. GWAS results for CBSD severity in panel 1 measure at Ngetta.(a) 812 

scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity and (c) root necrosis 813 

severity . Red line Bonferroni correction. Blue line log10 P-value = 3.8. 814 

 815 

Supplementary figure 7. GWAS results for CBSD severity in panel 1 measure at Namulonge. (a) 816 

scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity and (c) root necrosis 817 

severity. Red line Bonferroni correction. Blue line log10 P-value = 3.8. 818 
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 Supplementary figure 8. GWAS results for CBSD severity in with a multilocation dataset of 819 

panel 1 (a) scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity and (c) 820 

root necrosis severity. Red line Bonferroni correction. Blue line log10 P-value = 3.8. 821 

  822 

Supplementary figure 9. GWAS results for CBSD severity in panel 2 measure at Kamuli. (a) 823 

scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity (c) 9 CBSD 9 months 824 

foliar and (c) root necrosis severity. Red line Bonferroni correction. Blue line log10 P-value = 3.8.  825 

 826 

Supplementary figure 10. GWAS results for CBSD severity in panel 2 measure at Namulonge. 827 

(a) Scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity (c) 9 CBSD 9 828 

months foliar and (c) root necrosis severity. Red line Bonferroni correction. Blue line log10 P-value 829 

= 3.8. 830 

 831 

Supplementary figure 11. GWAS results for CBSD severity in panel 2 at Serere. (a) Scoring 832 

CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity (c) 9 CBSD 9 months foliar 833 

and (c) root necrosis severity. Red line Bonferroni correction. Blue line log10 P-value = 3.8. 834 

 835 

Supplementary figure 12. GWAS results for CBSD severity in with a multilocation dataset of 836 

panel 2 (a) scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity (c) 9 CBSD 837 

9 months foliar and (c) root necrosis severity. Red line Bonferroni correction. Blue line log10 P-838 

value = 3.8. 839 

 840 

Supplementary figure 13. local LD in chromosome 4. Plot of the mean LD score for each marker 841 

.With a smooth line representing a relative measure of the local LD in chromosome 4. Dots are 842 

colored with the -log10 P-value for the association test for CBSD severity six months after planting.  843 

  844 

 845 

Supplementary figure 14. Introgressions segment detection. For each clone of the two GWAS 846 

panels we calculated the proportion of genotypes that were homozygous (G/G) or heterozygous 847 
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(G/E) for M. glaziovii allele and the proportion that were homozygous for the M. esculenta allele 848 

(E/E). 849 

 850 

Supplementary figure 15. (a) GWAS results for 6MAP CBSD severity panels 1 and 2 (b) GWAS 851 

Results after correction including markers in chromosome 12 as a covariate. 852 

 853 

Supplementary figure 16. Multi-kernel GBLUP approach by fitting three kernels constructed 854 

with non-overlapping SNPs (MAF> 0.01) from chromosomes 4, 11 and SNPs from the other 855 

chromosomes. Crossvalidation GS  predictive accuracies results for CBSD severity were 856 

calculated using the multilocation dataset of  the combined panels. Scoring CBSD 3 months foliar 857 

severity (CBSD3S),CBSD 6 months foliar severity (CBSD6S) and root necrosis severity 858 

(CBSDRS). 859 

 860 

Supplementary Table 1.Pedigree information from GWAS panels 1 and 2. Details are shown on 861 

the parental lines per clone and selected traits that came from the maternal side. 862 

 863 

Supplementary table 2. Correlation values across locations in panel 1 and panel 2. (A) 864 

Correlation of deregressed BLUPs across locations within traits in panel 1 measured in three 865 

locations.(B) Correlation of deregressed BLUPs across locations within traits in panel 2 measured 866 

in three locations 867 

 868 

Supplementary table 3. Correlation values across locations and traits in panel 1 and panel 2. (A) 869 

Correlation of deregressed BLUPs across locations and traits in panel 1 measured in three 870 

locations.(B) Correlation of deregressed BLUPs across locations and four traits in panel 2 871 

measured in three locations 872 

 873 

Supplementary table 4. Panel 1 and 2 and combined panels GWAS results. Gene annotation is 874 

only shown for significant SNPs. 875 

 876 
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Supplementary table 5. Explained variance of phenotypic traits. Details are shown of the 877 

reference SNP, the -log10(pval)(score),chromosome and explained variance. 878 

 879 

Supplementary table 6.Genomic prediction accuracy values. (A) Cross validation results using 7 880 

GS models for CBSD severity prediction of 3 MAP CBSD3S, 6 MAP CBSD6S and Root necrosis 881 

(CBSDRS) (B) Multi-kernel GBLUP crossvalidation by fitting three kernels constructed with non-882 

overlapping SNPs (MAF> 0.01) from chromosomes 4, 11 and SNPs from the other chromosomes. 883 

RKHS = Reproducing kernel Hilbert spaces regression, Total accuracy is the accuracy obtained 884 

by following the GBLUP multikernel approach. 885 
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