

1 **Risk factor analysis of equine strongyle resistance to anthelmintics**

2

3 Sallé G.^{1,*}, Cortet J.¹, Bois I.², Dubès C.², Guyot-Sionest Q.³, Larrieu C.³, Landrin V.⁴,

4 Majorel G.⁵, Wittreck S.⁶, Woringer E.⁷, Couroucé A.³, Guillot J.⁴, Jacquiet P.², Guégnard

5 F.¹, Blanchard A.¹, Leblond A.⁵

6

7 ¹, INRA/Université de Tours UMR1282 Infectiologie et Santé Publique

8 ², UMR INRA/ENV Toulouse 1225 IHAP, Ecole Nationale Vétérinaire de Toulouse, France

9 ³, LUNAM University, Oniris, unité de recherche NP3, 102 Route de Gachet, 44300 Nantes,

10 France

11 ⁴, Parasitology dept, Dynamyc EnvA, UPEC, Ecole nationale vétérinaire d'Alfort, UPE,

12 Maisons-Alfort, France

13 ⁵, EPIA, INRA, VetAgroSup, University of Lyon, 69280 Marcy L'Etoile, France

14 ⁶, Merial SAS, 29 avenue Tony Garnier, 69007 Lyon, France

15

16 ⁷, Zoetis, 10 rue Raymond David, 92240 Malakoff, France

17

18 ^{*}, corresponding author: Guillaume.Salle@inra.fr

19 Permanent address : INRA Val de Loire, F-37380 Nouzilly, France

20

21

22 **Abstract**

23 Intestinal strongyles are the most problematic endoparasites of equids as a result of their wide
24 distribution and the spread of resistant isolates throughout the world. While abundant
25 literature can be found on the extent of anthelmintic resistance across continents, empirical
26 knowledge about associated risk factors is missing. This study brought together results from
27 anthelmintic efficacy testing and risk factor analysis to provide evidence-based guidelines in
28 the field. It involved 688 horses from 39 French horse farms and riding schools to both
29 estimate Faecal Egg Count Reduction (FEGR) after anthelmintic treatment and to interview
30 farm and riding school managers about their practices. Risk factors associated with reduced
31 anthelmintic efficacy in equine strongyles were estimated across drugs using a marginal
32 modelling approach. Results demonstrated ivermectin efficacy (96.3% FEGR), the inefficacy
33 of fenbendazole (42.8% FEGR) and an intermediate profile for pyrantel (90.3% FEGR). Risk
34 factor analysis provided support to advocate for FEC-based treatment regimens combined
35 with individual anthelmintic dosage and the enforcement of tighter biosecurity around horse
36 introduction that contributed to lower drug resistance risk by 1.75. Premises falling under this
37 typology also relied more on their veterinarians suggesting they play an important role in the
38 sustainability of anthelmintic usage. Similarly, drug resistance risk was halved in premises
39 with frequent pasture rotation and with stocking rate below five horses/ha. This is the first
40 empirical risk factor analysis for anthelmintic resistance in equids, whose findings should
41 guide the implementation of more sustained strongyle management in the field.

42

43 **Keywords:** horse, nematode, anthelmintic resistance, strongyle, cyathostomin

44

45 **1. Introduction**

46 The diversity of helminth species infecting horses is large, and differences in life cycles,
47 epidemiology, pathogenicity and drug susceptibility make it increasingly challenging to
48 define good sustainable parasite control programs. Strongyles remain a major concern. They
49 can be classified into two sub-families, namely Strongylinae (large strongyles) and
50 Cyathostominae known as small strongyles or cyathostomins (Lichtenfels et al., 2008). The
51 large strongyle *Strongylus vulgaris* is associated with a high mortality rate resulting from
52 parasite associated verminous arteritis (Nielsen et al., 2016). This species has been
53 successfully controlled by anthelmintics, despite recent reports of putative re-emergence
54 associated with reduced frequency of anthelmintic treatments (Nielsen et al., 2012; Nielsen et
55 al., 2016). On the contrary, cyathostomins have become a growing concern in the field
56 (Matthews, 2014; Peregrine et al., 2014). This group of nematodes encompasses 50 known
57 species (Lichtenfels et al., 2008) that infect both young and adult horses (Corning, 2009) and
58 have a ubiquitous distribution throughout geo-climatic conditions (Sallé and Cabaret, 2015a).
59 Their life cycle is direct and usually involves encystment of infective larvae into the caeco-
60 colic mucosa of their hosts (Corning, 2009). In heavily infected horses, *en-mass* emergence
61 of these encysted larvae can cause severe clinical pathology characterized by a loss of weight,
62 colic, diarrhoea, protein-losing enteropathy and the eventually death of the animal (Murphy
63 and Love, 1997; Love et al., 1999).

64 The use of anti-infectious drugs puts pathogen populations under selection pressure that can
65 ultimately lead to the emergence of resistant or multi-drug resistant populations (Kennedy
66 and Read, 2017). Over the past decades, small strongyle populations, like other livestock-
67 infecting parasitic nematodes (Kaplan and Vidyashankar, 2012), have demonstrated a gradual
68 increase in their resistance to available anthelmintics in every part of the world (Matthews,
69 2014; Peregrine et al., 2014). Under French settings (Traversa et al., 2012) like in other

70 European (Traversa et al., 2007; Traversa et al., 2009; Relf et al., 2014) or American
71 countries (Slocombe and de Gannes, 2006; Lyons et al., 2008; Molento et al., 2008; Canever
72 et al., 2013), resistant strongyle populations have been reported for every available class of
73 anthelmintics, namely benzimidazoles, tetrahydropyrimidines or macrocyclic lactones.
74 Although previous studies have demonstrated how widespread anthelmintics resistance is,
75 critical assessment of associated risk factors and species composition of resistant parasitic
76 populations is still lacking (Nielsen, 2012), thereby preventing the implementation of clear
77 clear field guidelines. There have been a limited number of reports focusing on factors
78 associated with prevalence of strongyle infection in horses in Germany (Fritzen et al., 2010;
79 Hinney et al., 2011a) or the impact of faeces removal on prevalence in the UK (Corbett et al.,
80 2014). Available studies have considered drenching practices (Lendal et al., 1998; O'Meara
81 and Mulcahy, 2002; Lind et al., 2007; Hinney et al., 2011b; Relf et al., 2012) or estimation of
82 anthelmintic efficacy (Relf et al., 2014; Tzelos et al., 2017). But no attempt has been made to
83 reconcile drenching practices and drug efficacy data. As a consequence, a knowledge gap
84 about putative risk factors and their impacts remains (Nielsen, 2012).
85 The results reported herein have been gathered as part of a large-scale survey involving 688
86 horses from 39 French horse farms and riding schools. At each location, an anthelmintic
87 efficacy test and a questionnaire interview about their practices were performed. From this
88 data, risk factors associated with reduced anthelmintic efficacy in equine strongyles have
89 been estimated across drugs. The objective of this study was to bring together anthelmintic
90 efficacy testing and risk factor analysis to provide evidence-based guidelines to the field.
91
92

93 **2. Materials and methods**

94 **2.1. Farm and riding school sampling**

95 Our study aimed to evaluate drug efficacy for three drug classes and if possible, to have a
96 control group. Therefore, we aimed to build four groups of at least five horses with a minimal
97 faecal egg count (**FEC**) of 150 eggs/g as recommended by the World Association for the
98 Advancement of Veterinary Parasitology, WAAVP guidelines (Coles et al., 1992). To reach
99 this number of infected individuals, bigger stud farms, *i.e.* with at least 20 producing mares,
100 were pre-selected from the French Horse and Riding Institute (IFCE) database, in Normandy,
101 Loire Valley, Aquitaine and Burgundy.

102 Two additional criteria were defined to increase the chance of finding horses with sufficient
103 excretion load to undertake FEC reduction test. First, premises with less than 40 horses were
104 discarded as FEC is usually over-dispersed and focusing on fewer individuals would have
105 reduced our chance to build treatment groups. In Aquitaine however, two farms with slightly
106 smaller herd sizes (25 and 31 horses) were enrolled. Second, last anthelmintic treatment
107 should have been performed three months earlier as this corresponds to the minimal post-
108 moxidectin treatment egg reappearance period (Boersema et al., 1998) advertised on product
109 information (Tzelos et al., 2017). Flyers explaining the purpose of the project were then sent
110 to pre-selected farms before a phone call was made to each manager to make sure that their
111 premises fulfilled requested criteria (at least 40 horses not drenched in the last three months)
112 and to confirm their willingness to participate. Nineteen stud farms were enrolled, *i.e.* five in
113 Normandy, four in Loire Valley, four in Burgundy and six in Aquitaine. Approximately half
114 of these farms (n=11) were involved in horse racing (Thoroughbreds and Anglo-Arabians,
115 French trotters or Thoroughbreds and other than Thoroughbreds), while the remainder
116 produced leisure ponies (n=4) or leisure horses (n=3) or reared dairy mares (n=2). For each of
117 these, matching riding schools located within each stud farm area were subsequently

118 identified and enrolled for anthelmintic efficacy test, with an additional riding school enrolled
119 in Aquitaine, providing a set of 20 riding schools. This set of matched riding schools was
120 used to investigate putative differences between stud farms and riding schools.

121

122 **2.2. Horse sampling and anthelmintic resistance tests**

123 A first round of faecal sampling was made one week before drenching, to select for
124 individuals with a minimum excretion level of 150 eggs per g (epg) as recommended by the
125 WAAVP guidelines (Coles et al., 1992). Faecal material was stored at 4°C before being
126 processed for faecal egg counting within 24h. Based on individual FEC measured, three
127 treatment groups, *i.e.* fenbendazole (Panacur Equine Guard®, Intervet, France), pyrantel
128 (Strongid®, Zoetis, France), or ivermectin (Eqvalan pâte, Merial, France), balanced for FEC
129 were built. To do so, individuals were sorted according to their FEC and sequentially
130 allocated to each treatment group. A control group was built in every farm where additional
131 horses with minimal excretion level were available. On day 0, each horse was weighed using
132 a girth tape and orally administered an anthelmintic dose following manufacturer's
133 requirements. Treatment was administered by the veterinarians enrolled as part of this
134 project.

135 Faecal material was subsequently taken from each horse 14 days after treatment. Every
136 ivermectin-treated individual still present on the premise 30 days after drenching (n=157 out
137 of 159) was sampled again to identify cases of shortened egg-reappearance period. This short
138 time interval was chosen to minimise disturbance with activities on the premises (horse sales
139 or movements).

140

141 **2.3. Processing of faecal material**

142 FEC were measured by sampling 5g of faecal material for each individual horse,
143 subsequently diluted and thoroughly mixed into 75 mL of a NaCl solution (density of 1.18).
144 Prepared solution was loaded on a McMaster slide and strongyle eggs were counted with a
145 sensitivity of 15 epg.

146

147 **2.4. Questionnaire survey and variable definition**

148 A questionnaire, built upon previous published surveys (Fritzen et al., 2010; Maddox et al.,
149 2012), was used to interview each manager as part of a larger survey on antibiotic and
150 anthelmintic resistance. The anthelmintic-associated questions fell into four categories that
151 addressed global premise overview, available pasture and management, horse health
152 management, and drenching strategy.

153 For statistical inference, a few variable levels were redefined to avoid redundancy and to
154 provide the analysis with more statistical power. Therefore, one farm that did not apply
155 systematic drenching upon horse arrival was considered as not drenching any horse upon
156 arrival. Rotation between pastures was recoded as occurring either never, or more (frequent)
157 or less (rare) than every 3 months.

158 In addition, pasture strategies either involved own private pastures dedicated to horses or
159 alternative strategies that included co- grazing with cattle, or access to pastures shared
160 between several breeders. Stocking density was also computed as the herd size divided by
161 available pasture surface, and binned into three categories (more than 5 horses/ha, between 2
162 to 5 horses/ha or less than 1 horse/ha). A three-level workload variable was defined as the
163 number of horses per worker, falling in either less than 10 horses/employee, between 10 and
164 20 horses/employee or more than 20 horses/employee.

165 Two types of managers were defined; those who tried to manage health problems themselves
166 before calling their practitioner and those who called as soon as possible.

167 Anthelmintic provider was considered as a two-level factor contrasting cases where
168 veterinarians delivered the drug or not. The reasons guiding drenching programs were the
169 same across farms, *i.e.* driven by horse well-being and growth, and were not included further
170 in the risk factor analysis. In the end a set of 21 variables was used (supplementary table 1).

171

172 **2.5. Statistical analyses**

173 **2.5.1. Egg Reduction Rate (FECR) and bootstrapping procedure**

174 Sample size to estimate reduced FECR prevalence was determined using EpiTools web-
175 server (Humphry et al., 2004).

176 When a control group was available, FECR values was computed at farm level by averaging
177 treatment group FEC following (Dash et al., 1988):

$$178 \quad ERR = 1 - \left(\frac{\text{mean FEC control, before treatment}}{\text{mean FEC control, after treatment}} \times \frac{\text{mean FEC treated, after treatment}}{\text{mean FEC treated, before treatment}} \right) \times 100,$$

179 hereafter referred to as **Method 1**.

180 Otherwise, FECR has been computed following (Coles et al., 1992):

$$181 \quad ERR = \left(1 - \frac{\text{mean FEC treated, after treatment}}{\text{mean FEC treated, before treatment}} \right) \times 100,$$

182 hereafter denoted **Method 2**.

183 Drug class FECR confidence intervals at the farm level were not estimated as too few
184 individuals were available within each treatment group preventing robust inference of
185 estimate variability (Chernick, 1999). However, for both methods, associated 95% percentile
186 confidence intervals was determined for the region, premise type and drug class and their
187 respective intersections following a block bootstrap approach. This approach takes into
188 account the correlation among observations from the same individual (before and after
189 treatment). For both FECR computation methods, blocks of FECs from the same horse were
190 sampled with replacement from the observed data collected before and after treatment (within
191 region, premise type and drug class), and were used to compute an FECR estimate using

192 equation (1) or (2) accordingly. In that case of method 1, the time-matched control group is
193 used to account for variation in FEC between the two sampling time-points independent of
194 treatment. Therefore, blocks of individual FEC before and after treatment were sampled with
195 replacement from horses belonging to the treated or the control group within a farm.

196 In both cases, computation was performed 10,000 times to yield the empirical distribution of
197 the FECR from which 2.5 and 97.5% percentiles were sampled to derive the 95% confidence
198 interval.

199 Pearson's correlations between FECR of the two methods were estimated using observations
200 from the 24 premises where a control group was available using the *rcorr()* function of the
201 Hmisc package v4.0-3 (Harrell and Dupont, 2017).

202

203 **2.5.2. Variable selection procedure**

204 To overcome model convergence issues, variables showing too little or no variation across
205 sites (control serology or coproscopy upon horse arrival, faeces removal, access to pasture,
206 horse weight estimation, veterinarian specialization, number of veterinary practices
207 considered for diagnostic) were discarded. Additionally, the total number of veterinary drugs
208 found on-site or the frequency of health register updates were not considered further as
209 determinants of anthelmintic efficacy.

210 The aim of this study was to quantify risk factors associated with reduced anthelmintic
211 efficacy, hence associating measured drug efficacy with management practices. This requires
212 the selection of variables that would maximize the total variance explained, while avoiding
213 biased estimates through collinearity (Zuur et al., 2010).

214 Pair-wise Pearson's correlations between variables were estimated to identify collinearity and
215 avoid redundancy in subsequent modelling of anthelmintic efficacy (supplementary data 2).

216 Any correlation coefficient equal to or above 0.4 was considered as indicative of collinearity.

217 As a result, veterinary advice, health management and the off-licence use of anthelmintics
218 that were accounted for by other variables, were not considered any further.

219

220 **2.5.3. Dimensionality reduction by Multiple Correspondance Analysis (MCA)**

221 While the discarding of strongly correlated variables addressed the most problematic
222 collinear relationships, significant correlations were still present between the 18 remaining
223 variables (supplementary data 2).

224 Remaining variables were related to the use of anthelmintics, the use of pasture, or the
225 general constraints applying to the premise (work load measured by the number of horses per
226 employee, and annual veterinary expenses per horse). For each of these three categories, a
227 multiple correspondence analysis was performed on the dedicated set of variables with the
228 FactoMineR v.136 package (Lê et al., 2008). Premise coordinates on the first two
229 components of the MCA were subsequently used to define three-level (premise constraints
230 variable) or four-level variables (anthelmintics and pasture usage).

231

232 **2.5.4. Marginal modelling of drug efficacy**

233 A marginal modelling approach of individual horse egg count reduction rate (FECR) was
234 applied as outlined elsewhere (Walker et al., 2014) and implemented in R (R Core Team,
235 2016) with the geepack package v1.2-1 (Højsgaard S., 2006). In that framework, individual
236 egg counts measured at a given time, before or after treatment, are assumed to be Poisson
237 distributed and thus modelled with a log-linear regression model.

238 This model includes environmental variables (premise type, region, and the three variables
239 built from the MCA) interacting with a binary variable coding for the treatment, *i.e.* taking
240 value of 1 after treatment or 0 before treatment. This variable accounts for the treatment-
241 mediated change in egg count reduction, hence estimating FECRs, while the fitted

242 interactions estimate the contribution of considered environmental conditions to FECRs
243 (Crellin et al., 2016). Exponentiated estimates therefore provide the relative risk of increased
244 (relative risk above one) / decreased (relative risk smaller than one) FECRs associated with a
245 given environmental variable. Any variable whose relative risk confidence interval does not
246 include one is declared as significantly impacting on the FECRs. A forward-backward
247 procedure was implemented with the *stepAIC()* function of the R MASS package v7.3-47 to
248 select for the model minimizing the Akaike Information Criterion.
249 The model aimed to quantify universal risk factors, *i.e.* considered environmental effects
250 across drug class. Treatment group was thus added into the model. Drug class-specific
251 analyses based on individual treatment group data taken separately did not provide reliable
252 results and were not reported.

253 **3. Results**

254 **3.1. Observations from questionnaire surveys**

255 Detailed answers from questionnaire surveys are provided as supplementary data 1.

256

257 **3.1.1. Overview of the enrolled premises**

258 At least three treatment groups could be built in every location. However, herd size was
259 highly variable between sites, ranging from 21 to 250 individuals (mean herd size of 70
260 horses). This variation was mostly driven by the herd being bigger in stud farms than in
261 riding schools (average herd size of 88.3 and 52.2 respectively; $p=0.008$). Horses were
262 generally housed in individual boxes ($n=31/39$) and a few premises had an outdoor-only
263 breeding system ($n=7/39$). Noticeably, staff size did not strongly correlate with herd size
264 ($r=0.33$, $p=0.04$), especially in stud farms where workers were in charge of 13 horses more
265 than in riding schools ($p<10^{-4}$).

266

267 **3.1.2. Horse movements on site**

268 Horse movement occurred in half of the premises ($n=21/39$) at least once a month while
269 seven premises were rarely housing horses from other places. For these introductions, no
270 serology, no coproscopy and no anthelmintic efficacy tests were performed in any of the 39
271 premises, whereas anthelmintic drenching upon arrival was implemented in 11 riding schools
272 and seven stud farms. Only four managers reported seeking advice from their veterinarians to
273 manage these movements.

274

275 **3.1.3. Pasture availability and management**

276 In every site, horses had outdoor access and could generally grazed throughout the year
277 ($n=27/39$). Most premises had their own pastures that were grazed by horses only. Three

278 farms had access to pastures shared with other breeders, and mixed grazing of horses with
279 cattle was implemented in seven premises. Stocking density was below 3 horses/ha in 75% of
280 sites. However, it was as high as 14 horses/ha and was generally higher in riding schools than
281 in stud farms (average densities of 1.3 and 4.3 horses/ha respectively, $p=2\times 10^{-4}$). Rotation
282 between pastures was implemented in 29 locations at least once a year and driven by grass
283 growth. Faeces removal was implemented in one premise. Manure spreading was performed
284 in one third (n=10/39) of the surveyed sites.

285

286 **3.1.4. Health management and interactions with veterinarians**

287 About two-thirds of the premises relied on specialized equine practitioners (n=24/39), who
288 were often called after managers had already attempted to manage health problem themselves
289 (n=28/39). Half of the premises (n=20/39) were consulting several practices to cross-validate
290 advice, or benefit from several skills, or both.

291 Yearly veterinary expenses per horse varied from less than 100 € (n=15), between 100 and
292 200 € (n=14), or more than 200 € (n=10).

293 Importantly, managers reporting to be more independent in health management were over-
294 represented in sites not implementing any measure upon horse introduction (13/39) and in the
295 sites spending less than 100€/horse/year ($r=-0.39$ and -0.41 respectively; supplementary table
296 1). Health management was hence confounded by the two other variables and not considered
297 further.

298 Mandatory on-site health register was variably used, *i.e.* 20 managers fulfilled it regularly
299 (systematically or on a regular basis), while 19 rarely did it (never or doing it from time to
300 time). The number of veterinary drugs found within on-site pharmacy greatly varied from
301 null to 15, with two-thirds of premises having 5 drugs or less with a slight trend of more
302 medications found in horse riding schools (Kruskal-Wallis test, $p=0.07$).

303

304 **3.1.5. Drenching strategy for intestinal nematodes**

305 Anthelmintic dosing was usually based on a visual weight estimate (n=27/39) that could be
306 combined with girth tape (n=9/39), and rarely with a scale (n=2/39). Grouped-based
307 drenching was carried out in 11 sites. Time of drenching was registered most of the time
308 (n=31). Drenching frequency occurred two (n=13), three (n=11) or four times (n=14) a year,
309 and drenching programs alternated between drug classes.

310 Noticeably, a limited fraction of premises (n=6) reported off-license use of anthelmintics
311 despite most of the managers seeking advice from their veterinarians (5 out 6). These
312 involved ivermectin (n=3), doramectin (n=2) or praziquantel (n=2) licensed for ruminants.

313 The off-licence use of anthelmintics was only reported in premises implementing two (n=5)
314 or three (n=1) annual treatments, resulting in a negative correlation between these two
315 variables ($r=-0.41$, supplementary data 2). The off-licence variable was hence not considered
316 further in the modelling analysis.

317 Anthelmintics were bought from veterinarians in 62% of cases, while three and 16 managers
318 reported buying from the internet or their pharmacist, respectively. In the latter case, only
319 three managers were aware of the legal requirement of showing a veterinarian's prescription
320 to the pharmacist.

321 The delivery of anthelmintics by veterinarians occurred more frequently when they
322 contributed to the drenching scheme design, *i.e.* 79 % of cases against 40% when they did not
323 ($r=0.4$, supplementary table 2). In addition, stud farm managers relied more on their
324 veterinarian's advice for drenching in comparison to their riding school counterparts (84% of
325 stud farms vs. 67 % of riding schools; $r=0.45$, supplementary table 2). Premises that did not
326 rely on veterinary advice also did not implement any measure upon horse arrival ($r=0.47$,

327 p=0.003; supplementary table 2). Veterinary advice was hence accounted for three other
328 variables, and was not considered further in the analysis.

329 FEC-based drenching regimen was implemented in 14 premises.

330 **3.2. Results of anthelmintic efficacy tests**

331 This design provided enough resolution to detect prevalence as low as 1%, with precision of
332 0.05 and assuming FEC sensitivity of 70% and specificity of 90%.

333 A total of 688 horses from 39 premises were sampled at least once during this experiment.

334 Out of these, 601 horses excreting more than 150 epg before treatment were enrolled for the
335 anthelmintic resistance test (Table 1). Control groups were available in 24 out of the 39
336 retained farms (Table 1). Average FEC before treatment was 912 ± 762 epg (supplementary
337 data 3).

338 Estimated Faecal Egg Count Reduction (FEGR) and associated variation have been reported
339 in Table 1 while premise-level estimated FEGR have been attached as supplementary data 4.
340 FECRs measured in the 24 sites where control group was available showed highly consistent
341 results between the two implemented calculation methods for ivermectin and fenbendazole
342 (Pearson's correlation coefficient of 100 and 82%, respectively). This correlation however
343 dropped to 65% for pyrantel.

344 Estimated FEGRs demonstrated the almost generalized inefficacy of fenbendazole with an
345 average FEGR of 46.2% (sd=33.5%) or 42.8% (sd = 33.4%) for method 1 and 2, respectively
346 and confidence intervals not including 100% efficacy in Burgundy and Aquitaine (Table 1,
347 supplementary data 4). Nevertheless, two riding schools and one stud farm located in
348 Normandy exhibited FEGRs of at least 90% (supplementary data 4).

349 Observed trends for ivermectin were the exact opposite of these, as the mean estimated
350 FECRs were 98.1% (sd: 8.6%) and 96.3% (sd: 14.5%) according to methods 1 and 2,
351 respectively (Table 1, supplementary data 4). Seven horses from three riding schools and

352 three stud farms exhibited FECRs lower than 90% after ivermectin treatment, resulting in
353 bigger confidence intervals in Aquitaine and Normandy (Table 1). Egg reappearance was
354 investigated 30 days after ivermectin drenching, *i.e.* based on FEC from 157 available horses.
355 At this time, only nine horses excreted strongyle eggs (mean FEC of 14.6 epg). These were
356 found in eight farms (three from Burgundy, four from Aquitaine and one from Loire Valley)
357 and one riding school from Aquitaine. Only three of these horses had egg excretion levels
358 above 50% of their before treatment FEC.

359 Pyrantel exhibited an intermediate profile in comparison to the two other drugs as average
360 FECRs were close to the 90% threshold, *i.e.* 92.5% (sd: 15.4%) and 90.3% (sd: 19.6%) for
361 methods 1 and 2, respectively (Table 1).

362

363 **3.3. Risk factors associated with anthelmintic efficacy**

364 The variation in FEC before and after treatment was explicitly modelled by considering every
365 individual FEC and by correcting for the farm environmental variables. This is to better
366 capture the inter-individual variations associated with FEC while estimating the relative risk
367 associated with environmental variables. Relative risks associated with reduced FECR were
368 estimated across drug categories, any relative risk above 1 indicating an increased egg count
369 after treatment and thus reduced efficacy. Drug-specific risk factors were subsequently
370 estimated considering observations from each treatment group independently.

371

372 **3.3.1. Multivariate analysis and summary variables**

373 An MCA was applied to the set of variables related to the use of pasture and anthelmintics
374 (figure 1) or the constraints applying to the premise (figure 2) to avoid fitting collinear
375 variables in the drug efficacy model.

376 The MCA applied to the variables related to pasture usage accounted for 42% of the between-
377 variable variance (figure 1A) and distinguished between four contrasted typologies. The first
378 typology regrouped premises where grazing options were limited, *i.e.* mostly indoor housing
379 and seasonal grazing with rare rotation between pastures. While typologies 1 and 3 were
380 mostly driven by the housing system, the split between the other two systems was accounted
381 for by the pasture surface availability (figure 1A). The 2nd pasture usage typology clustered
382 together premises with the lowest stocking density, that were also able to perform manure
383 spreading and frequent rotation between pastures. These four typologies were used to build a
384 pasture usage variable for subsequent modelling.

385 The same approach resolved 31% of the variation in anthelmintics usage between premises
386 (figure 1B). In this case, typologies 2 and 4 distinguished between premises with the most
387 extreme behaviors regarding drug use. Premises falling under typology 2 applying strategies
388 usually regarded as the most sustainable for drug resistance and typology 1 represented an
389 intermediate situation between typologies 2 and 4. Typology 3 grouped together premises
390 relying on a single annual macrocyclic lactone treatment. These four typologies were used to
391 build an anthelmintic usage variable for subsequent modelling.

392 The two remaining variables to be considered addressed the annual veterinary expenses and
393 the workload in premises (figure 2). These two variable were summarized as a so-called
394 “constraint” variable that distinguished between three situations. Typology 2 described the
395 most heavily constrained premises with highest workload and veterinary expenses (figure 2),
396 whereas typology 1 and 3 accounted for the smallest workload and most reduced veterinary
397 expenses respectively (figure 2). Typology 1, defined by more limited workload and
398 intermediate veterinary expenses, mostly encompassed riding schools. However, the
399 correlation between the premise type and the three constraint levels was not significant
400 ($r=0.26, p=0.1$, supplementary table 5).

401 No residual significant correlations existed between variables considered for modeling
402 (supplementary table 5).

403

404 **3.3.2. Risk-factors across anthelmintic drug class**

405 Modeling of drug efficacy relied on a set of six variables, *i.e.* day of treatment, treatment
406 group, region and the three summary variables derived from MCA.

407 A first analysis investigated universal factors associated with drug efficacy, measured by
408 FECR, that would be true across anthelmintic drugs and would not depend on the drug mode
409 of action. Relative risks associated with the retained variables have been provided in table 2.

410 Noticeably, the interaction term between the day of treatment and premise type or the region
411 of interest or premise constraints were not retained by the model selection procedure,
412 suggesting these variables were not providing information to the modelling of drug efficacy
413 that had not been already accounted for by other variables.

414 In line with estimated FECRs, pyrantel and ivermectin were less at risk of reduced FECRs
415 than fenbendazole considered as the reference level (Table 2).

416 Premises falling under the second typology of pasture usage (figure 1A) demonstrated a
417 significant reduction of drug resistance risk ($OR=0.53$, $p=0.001$) in comparisons to other
418 modalities (Table 2). This typology equally matched riding schools ($n=6$) or stud farms ($n=5$)
419 but was over-represented in Normandy (6/11). This certainly explains why the site location
420 was not retained in the model selection procedure.

421 The second typology of anthelmintic usage (figure 1B), that regroup strategies usually
422 thought of as more sustainable toward drug resistance, was significantly associated with a
423 reduced risk of drug resistance ($OR=0.57$, $p=0.02$). No significant differences could be made
424 between other typologies (Table 1).

425

426 **4. Discussion**

427 Current knowledge about anthelmintic resistance in equine strongyles is usually scattered
428 across drug efficacy reports and questionnaire surveys about parasite management (Nielsen,
429 2012). This leaves a major knowledge gap in the critical assessment of factors underpinning
430 anthelmintic resistance in equids. Our study aims to fill in this gap with the report of an
431 association between anthelmintic FECRs and management practices in horses.

432 The drug efficacy landscape in the present study remained similar to what was reported in a
433 previous study in France (Traversa et al., 2012) and what was described in other countries
434 (Matthews, 2014). In summary, fenbendazole cannot be used for the management of small
435 strongyles any more, in contrast to ivermectin whose efficacy remained above 95%. Pyrantel
436 had an intermediate efficacy FECR pattern with a 90% reduction of egg-excreting animals.

437 However, two original findings tend to depart from this general pattern. First, the risk of
438 fenbendazole resistance was significantly lowered in Normandy with a few premises (3/39)
439 still harbouring fenbendazole-susceptible strongyle populations. This was in line with a
440 previous study (1/18) conducted in France (Traversa et al., 2012). However, it was not
441 possible to identify an obvious consistent factor that would explain this sustained
442 fenbendazole efficacy. In-depth investigation of practices and analysis of parasitic
443 community structure with a nemabiome approach (Avramenko et al., 2015) may help better
444 understanding this feature and then confirming fenbendazole-susceptibility by interrogating
445 beta-tubulin sequences and allelic frequencies (Lake et al., 2009). Second, our results showed
446 that ivermectin efficacy may not be sustained at its current level in the near future as egg
447 excretion already took place 30 days after treatment in a limited number of horses across all
448 regions. In addition, larger FECR confidence intervals were encountered in Normandy and
449 Aquitaine, suggestive of a higher variability in ivermectin efficacy. Original ERP was 9
450 weeks for ivermectin (Boersema et al., 1996) but indications of shortened ERP have been

451 found in Germany (von Samson-Himmelstjerna et al., 2007), the UK (Daniels and Proudman,
452 2016), Belgium, the Netherlands and Italy (Geurden et al., 2014) and had never been reported
453 in France. In this study, the quantitative determination of ERP was not possible due to
454 practical reasons. Instead we focused on the 30th day post ivermectin treatment to minimize
455 interferences of our design with activities on premises and to ensure that most of the treated
456 horses would still be available for sampling. Despite this, a few horses had already been sold
457 or sent to other premises for training.

458 Beyond the crude estimation of drug efficacy, this study aimed to identify major determinants
459 underpinning egg reduction rate, and to estimate their respective relative contributions to
460 provide evidence-based recommendations in the field.

461 Pasture-related variables were significant contributors to the variation in drug efficacy
462 measured by egg reduction rate. Noticeably, sites with typology 2, that had the lowest
463 stocking density, were able to implement frequent pasture rotation and to perform manure
464 spreading, had a significantly decreased risk of drug resistance. Stocking density has been
465 advocated as a factor driving drug resistance even if it could not be associated with more
466 elevated infection rate in a German epidemiological study (Fritzen et al., 2010). On the
467 contrary, frequent pasture rotation is one of the evasion strategy recommended to minimize
468 pasture contamination (Michel, 1985). Therefore, it is probable that the combination of both a
469 reduced horse density with frequent rotation between pastures minimized the use of drugs in
470 these sites. The effect of manure spreading in the context of drug resistance remains
471 uncertain. It could simply correlate with the available grazing surface and mirror the stocking
472 density but this correlation was not significant in this dataset ($r=-0.28$, $p=0.09$).

473 Interestingly, drug resistance was significantly reduced in sites implementing a combination
474 of FEC-based drenching programs, determination of drug dosage on an individual basis and a
475 high level of biosecurity, *i.e.* little horse movement combined with a quarantine and

476 drenching upon horse introduction. Evidence-based drenching and individual drug dosage
477 have long been advocated for in ruminant and equine systems as a sustainable parasite
478 management practices, as the former is thought to reduce selection pressure (Kenyon et al.,
479 2009) and the latter is thought to prevent under dosing whose impact on drug resistance
480 development relies on many parameters (Smith et al., 1999; Silvestre et al., 2001). Our
481 findings thus provided evidence to promote their enforcement in the field.

482 Notably, the more sustainable anthelmintic usage typology (typology 2) also accounted for
483 the delivery of anthelmintic treatment by veterinarians. Under French regulations, veterinary
484 medications can be delivered by veterinarians or pharmacists upon display of a veterinary
485 prescription (Anonymous, 2007). This regulation was generally applied across the considered
486 study sites and well correlated with the involvement of veterinarians into the drenching
487 scheme design. Recent study in the UK suggests that practitioners may provide useful advice
488 on drug use (Easton et al., 2016) and thus reinforce their role in sustainable parasite control.
489 Such partnerships between veterinarians and horse owners should thus be encouraged in
490 France as 40% of the considered sites designed their own drenching scheme.

491 These first insights into determinants of drug efficacy only focused on environmental factors,
492 putting aside intrinsic worm characteristics, like species composition, that should be
493 investigated further. Recent advances in parasite metagenomics would help addressing this
494 question.

495

496 **Conclusions**

497 This study reports the first risk estimation analysis between management practices and drug
498 efficacy in equine strongyles. While drug resistance prevalence remains in agreement with
499 previous surveys from France and other countries, *i.e.* a generalized failure of fenbendazole, a
500 decreasing efficacy of pyrantel and reasonably high efficacy of ivermectin despite evidence
501 of reduced egg reappearance period. Most importantly, we have quantified the relative risks
502 and benefits associated with equine farms management practices. These estimations provided
503 support to advocate for FEC-based treatment regimens as well as individual determination of
504 anthelmintic dosage. In addition, tight biosecurity enforced by reduced horse movements and
505 a combinaison of anthelmintic treatment with quarantine upon horse introduction should be
506 recommended. Anthelmintics delivery by veterinarians was also among beneficial factors
507 relative to drug resistance. Also, sites with frequent pasture rotations and stocking rate below
508 five horses/ha displayed a reduced risk of drug resistance.

509

510 **Figure 1. Multiple correspondence analysis of the variables related to pasture (A) and**
511 **anthelmintics (B) uses**

512 The first two components of the analysis are plotted and distinguish between four different
513 typologies annotated in black (e.g. pasture.use1). Environmental variables are represented by
514 red triangles while dots represent corresponding premises, colored according to the typology
515 they belong to. Ellipses represent the 95% credible interval associated with each typology.

516

517 **Figure 2. Multiple correspondence analysis of the variables related to structural**
518 **constraints applying to premises**

519 The first two components of the analysis are plotted and distinguish between three different
520 typologies annotated in black (e.g. Constraint.1). Levels corresponding to the considered
521 workload and veterinary expenses variables are represented by red triangles while dots
522 represent corresponding premises, colored according to the typology they belong to. Ellipses
523 represent the 95% credible interval associated with each typology.

524

525

526

527

528

529

Table 1. Average Egg Reduction Rate estimated across premise type and regions

Region		Ivermectin			Pyrantel			Fenbendazole		
		RS*	SF*	Across region	RS	SF	Across region	RS	SF	Across region
Aquitaine	N	26	27	53	29	26	55	29	28	57
	3 RS (14)	mean	100	99,9	99,9	75,3	86,7	81	18,8	63
	3 SF (15)	sd	0	0,1	0,1	39,5	16,4	27,8	32,5	41,1
	CI	[100-100]	[91,8-100]	[97,6-100]	[39,4-100]	[41,3-100]	[0-100]	[0-87]	[0-98,9]	[0-98,3]
Burgundy	N	15	17	32	13	19	32	16	19	35
	3 RS (11)	mean	99,8	89,5	93,9	99,2	96,3	97,6	31,2	55,9
	4 SF (19)	sd	0,3	21,1	15,9	1,4	4,3	3,5	27,9	26
	CI	[99,4-100]	[0-100]	[0-100]	[100-100]	[83,6-100]	[51,4-100]	[0-77,5]	[0-96,9]	[0-97,1]
Loire Valley	N	18	16	34	19	15	34	19	13	32
	3 RS (14)	mean	100	100	100	97,2	93,3	95,2	32,5	68,2
	3 SF (14)	sd	0	0	0	2,6	9,3	6,5	29,6	9,6
	CI	[100-100]	[100-100]	[100-100]	[85,3-100]	[50-100]	[19,6-100]	[0-78,6]	[0-100]	[0-100]
Normandy	N	18	22	40	19	23	42	21	22	43
	2 RS (10)	mean	99	99,9	99,5	90,8	99,3	95,9	45,9	50,8
	3 SF (15)	sd	1,4	0,2	0,9	12,3	1	7,7	64,9	46,9
	CI	[82,2-100]	[95-100]	[0-100]	[80,3-100]	[92,8-100]	[60,3-100]	[0-100]	[0-100]	[0-100]
Across premise type	N	77	82	159	80	83	163	85	82	167
	mean	99,8	96,7	98,1	90,6	94,1	92,5	30,8	59,2	46,2
	sd	0,6	11,7	8,6	20,8	9,3	15,4	32,5	29,6	33,5
	CI	[98,8-100]	[95,2-100]	[95-100]	[39,4-100]	[58,9-100]	[41,3-100]	[0-92,3]	[0-100]	[0-100]

530

531

Table 1 continued

Region		Ivermectin			Pyrantel			Fenbendazole			
		RS*	SF*	Across region	RS	SF	Across region	RS	SF	Across region	
Method 2: FECRT = $100 \times (1 - \text{FEC14/FEC0})$	Aquitaine	mean	100	98,7	99,4	93,8	73,4	84,4	13,9	51,6	31,3
	7 RS	sd	0	2,9	2	6,9	36,2	26,1	14,7	41,8	34,9
	6 SF	CI	[100-100]	[70,8-100]	[79,2-100]	[0-100]	[0-100]	[0-100]	[0-79,6]	[0-98,7]	[0-98,5]
	Burgundy	mean	99,6	88,1	93,8	98,9	95,6	97,3	22,3	42,5	32,4
	4 RS	sd	0,5	23,8	16,8	1,5	4,8	3,7	30,2	37	33,1
	4 SF	CI	[96,3-100]	[0-100]	[0-100]	[91,4-100]	[78,6-100]	[78,6-100]	[0-88,2]	[0-92,4]	[0-92,4]
	Loire Valley	mean	100	79,5	89,8	96,5	74,1	85,3	36,1	60,9	48,5
	4 RS	sd	0	41	29	2,4	33,8	25,2	15,2	15,5	19,4
	4 SF	CI	[100-100]	[0-100]	[0-100]	[87,7-100]	[26,7-100]	[26,7-100]	[0-78,6]	[0-100]	[0-100]
	Normandy	mean	99,4	99,9	99,6	97,5	95,5	96,5	83,4	39,7	61,6
Across premise type	5 RS	sd	1,3	0,2	0,9	3,2	8,9	6,4	18,2	36,2	35,5
	5 SF	CI	[60-100]	[99,2-100]	[99,2-100]	[85,1-100]	[38,7-100]	[85,1-100]	[0-100]	[0-100]	[0-100]
	Across premise type	mean	99,8	92,7	96,3	96,3	84	90,3	37,4	48,5	42,8
Across premise type	sd	0,7	21,1	15	4,8	26,5	19,6	33,6	33,3	33,5	
	type	CI	[96,3-100]	[0-100]	[79,2-100]	[52,6-100]	[38,7-100]	[39,7-100]	[0-100]	[0-100]	[0-100]

534 Drug-specific average Egg Reduction Rates (mean) and standard deviations (sd) measured 14 days after treatment have been collated for each
 535 drug and region of interest for the two egg reduction rate calculation methods used. CI stands for Cross-sectional confidence intervals. N
 536 indicates the number of horses available, while RS and SF stand for riding-school and stud farm respectively. Figures in brackets under the
 537 Region column stands for the number of horses allocated to the control group in Riding Schools or Stud Farms accordingly.

538 **Table 2. Estimated odd ratios associated with retained environmental variables**

539 For each of the retained management practice, the relative risk of reduced (below 1) or
540 increased (higher than 1) risk of anthelmintic resistance is provided. Associated 95%
541 confidence intervals lower and upper limits are given as well as the associated *p* value.

542

Variable	Odd ratio	Lower Odd Ratio	Upper Odd Ratio	<i>p</i>
Ivermectin vs. Fenbendazole	0,02	0,01	0,08	<10 ⁻²
Pyrantel vs. Fenbendazole	0,14	0,08	0,22	<10 ⁻²
Pasture.use2 vs Pasture.use1	0,53	0,36	0,79	<10 ⁻²
Pasture.use3 vs Pasture.use1	0,78	0,52	1,18	0,24
Pasture.use4 vs Pasture.use1	0,78	0,55	1,11	0,17
AH.use2 vs AH.use1	0,57	0,36	0,92	0,02
AH.use3 vs AH.use1	0,89	0,62	1,27	0,52
AH.use4 vs AH.use1	1,10	0,78	1,57	0,58

543

544

545

546 **Supplementary Data 1. Retained variables and data distribution across premises**
547 **Supplementary Data 2. Pair-wise Pearson's correlations between variables**
548 **Supplementary Data 3. Average faecal egg count by premise type and region before**
549 **anthelmintic treatment**
550 **Supplementary Data 4. Farm-level egg reduction rates with associated confidence**
551 **intervals**
552 **Supplementary Data 5. Correlation between variables retained for the modelling of**
553 **Faecal Egg Count Reduction**

554 **Acknowledgements**

555 Authors are greatly indebted to the premise managers who took part to this study and gave us
556 access to their stud or riding schools. We would like to acknowledge Pr. C. Chartier for
557 kindly granting access to his parasitology laboratory, Dr. C. Laugier for discussing the
558 questionnaire and Dr. L. Crespin for critical comments on this manuscript. We also would
559 like to acknowledge the technical support of Dr. C. Charvet, C. Koch and C. Musset during
560 this survey, and J. Noonan, A. Tracey and P. Driguez for their review of the English
561 language. This work has been funded by the French Institute for Horse and Horse Riding
562 (IFCE) and the Fonds Eperon fund for horse racing (BIOREQUI project), as well as the
563 Merial and Zoetis companies.

564

565

566 **References**

567 Anonymous, 2007. Code de la Santé Publique - Article R5141-112, in: Française, R. (Ed.).

568 Avramenko, R.W., Redman, E.M., Lewis, R., Yazwinski, T.A., Wasmuth, J.D., Gilleard, J.S.,

569 2015. Exploring the Gastrointestinal "Nemabiome": Deep Amplicon Sequencing to Quantify

570 the Species Composition of Parasitic Nematode Communities. *PLoS One* 10, e0143559.

571 Boersema, J.H., Eysker, M., Maas, J., vanderAar, W.M., 1996. Comparison of the

572 reappearance of strongyle eggs in foals, yearlings, and adult horses after treatment with

573 ivermectin or pyrantel. *Vet Quart* 18, 7-9.

574 Boersema, J.H., Eysker, M., van der Aar, W.M., 1998. The reappearance of strongyle eggs in

575 the faeces of horses after treatment with moxidectin. *Vet Q* 20, 15-17.

576 Canever, R.J., Braga, P.R., Boeckh, A., Grycajuck, M., Bier, D., Molento, M.B., 2013. Lack of

577 Cyathostomin sp. reduction after anthelmintic treatment in horses in Brazil. *Vet Parasitol*

578 194, 35-39.

579 Chernick, M.R., 1999. Bootstrap Methods: A practitioner's guide.

580 Coles, G.C., Bauer, C., Borgsteede, F.H., Geerts, S., Klei, T.R., Taylor, M.A., Waller, P.J., 1992.

581 World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for

582 the detection of anthelmintic resistance in nematodes of veterinary importance. *Vet*

583 *Parasitol* 44, 35-44.

584 Corbett, C.J., Love, S., Moore, A., Burden, F.A., Matthews, J.B., Denwood, M.J., 2014. The

585 effectiveness of faecal removal methods of pasture management to control the

586 cyathostomin burden of donkeys. *Parasit Vectors* 7, 48.

587 Corning, S., 2009. Equine cyathostomins: a review of biology, clinical significance and

588 therapy. *Parasit Vectors* 2 Suppl 2, S1.

589 Crellin, T., Walker, M., Lamberton, P.H., Kabatereine, N.B., Tukahebwa, E.M., Cotton, J.A.,

590 Webster, J.P., 2016. Reduced Efficacy of Praziquantel Against *Schistosoma mansoni* Is

591 Associated With Multiple Rounds of Mass Drug Administration. *Clin Infect Dis* 63, 1151-

592 1159.

593 Daniels, S.P., Proudman, C.J., 2016. Shortened egg reappearance after ivermectin or

594 moxidectin use in horses in the UK. *Vet J* 218, 36-39.

595 Dash, K.M., Hall, E., Barger, I.A., 1988. The role of arithmetic and geometric mean worm egg

596 counts in faecal egg count reduction tests and in monitoring strategic drenching programs in

597 sheep. *Aust Vet J* 65, 66-68.

598 Day, T., Read, A.F., 2016. Does High-Dose Antimicrobial Chemotherapy Prevent the

599 Evolution of Resistance? *PLoS Comput Biol* 12, e1004689.

600 Easton, S., Pinchbeck, G.L., Tzelos, T., Bartley, D.J., Hotchkiss, E., Hodgkinson, J.E., Matthews,

601 J.B., 2016. Investigating interactions between UK horse owners and prescribers of

602 anthelmintics. *Prev Vet Med* 135, 17-27.

603 Fritzen, B., Rohn, K., Schnieder, T., von Samson-Himmelstjerna, G., 2010. Endoparasite

604 control management on horse farms--lessons from worm prevalence and questionnaire

605 data. *Equine Vet J* 42, 79-83.

606 Geurden, T., van Doorn, D., Claerebout, E., Kooyman, F., De Keersmaecker, S., Vercruyse, J.,

607 Besognet, B., Vanimisetti, B., di Regalbono, A.F., Beraldo, P., Di Cesare, A., Traversa, D.,

608 2014. Decreased strongyle egg re-appearance period after treatment with ivermectin and

609 moxidectin in horses in Belgium, Italy and The Netherlands. *Vet Parasitol* 204, 291-296.

610 Harrell, F.E., Dupont, C., 2017. Hmisc: Harrell Miscellaneous.

611 Hinney, B., Wirtherle, N.C., Kyule, M., Miethe, N., Zessin, K.H., Clausen, P.H., 2011a.
612 Prevalence of helminths in horses in the state of Brandenburg, Germany. *Parasitol Res* 108,
613 1083-1091.

614 Hinney, B., Wirtherle, N.C., Kyule, M., Miethe, N., Zessin, K.H., Clausen, P.H., 2011b. A
615 questionnaire survey on helminth control on horse farms in Brandenburg, Germany and the
616 assessment of risks caused by different kinds of management. *Parasitol Res* 109, 1625-1635.

617 Højsgaard S., H., U., Yan, J., 2006. The R Package geepack for Generalized Estimating
618 Equations. *Journal of Statistical Software* 15, 1-11.

619 Humphry, R.W., Cameron, A., Gunn, G.J., 2004. A practical approach to calculate sample size
620 for herd prevalence surveys. *Prev Vet Med* 65, 173-188.

621 Kaplan, R.M., Vidyashankar, A.N., 2012. An inconvenient truth: Global worming and
622 anthelmintic resistance. *Veterinary Parasitology* 186, 70-78.

623 Kennedy, D.A., Read, A.F., 2017. Why does drug resistance readily evolve but vaccine
624 resistance does not? *Proc Biol Sci* 284.

625 Kenyon, F., Greer, A.W., Coles, G.C., Cringoli, G., Papadopoulos, E., Cabaret, J., Berrag, B.,
626 Varady, M., Van Wyk, J.A., Thomas, E., Vercruyse, J., Jackson, F., 2009. The role of targeted
627 selective treatments in the development of refugia-based approaches to the control of
628 gastrointestinal nematodes of small ruminants. *Vet Parasitol* 164, 3-11.

629 Kotze, A.C., Hunt, P.W., Skuce, P., von Samson-Himmelstjerna, G., Martin, R.J., Sager, H.,
630 Krucken, J., Hodgkinson, J., Lespine, A., Jex, A.R., Gillean, J.S., Beech, R.N., Wolstenholme,
631 A.J., Demeler, J., Robertson, A.P., Charvet, C.L., Neveu, C., Kaminsky, R., Rufener, L.,
632 Alberich, M., Menez, C., Prichard, R.K., 2014. Recent advances in candidate-gene and whole-
633 genome approaches to the discovery of anthelmintic resistance markers and the description
634 of drug/receptor interactions. *Int J Parasitol Drugs Drug Resist* 4, 164-184.

635 Lake, S.L., Matthews, J.B., Kaplan, R.M., Hodgkinson, J.E., 2009. Determination of genomic
636 DNA sequences for beta-tubulin isotype 1 from multiple species of cyathostomin and
637 detection of resistance alleles in third-stage larvae from horses with naturally acquired
638 infections. *Parasites & Vectors* 2.

639 Lê, S., Josse, J., Husson, F., 2008. FactoMineR: A Package for Multivariate Analysis. *Journal of
640 Statistical Software* 25, 1-18.

641 Lendal, S., Larsen, M.M., Bjorn, H., Craven, J., Chrieli, M., Olsen, S.N., 1998. A questionnaire
642 survey on nematode control practices on horse farms in Denmark and the existence of risk
643 factors for the development of anthelmintic resistance. *Vet Parasitol* 78, 49-63.

644 Lichtenfels, J.R., Kharchenko, V.A., Dvojnos, G.M., 2008. Illustrated identification keys to
645 strongylid parasites (Strongylidae: Nematoda) of horses, zebras and asses (Equidae). *Vet
646 Parasitol* 156, 4-161.

647 Lind, E.O., Rautalinko, E., Uggla, A., Waller, P.J., Morrison, D.A., Hoglund, J., 2007. Parasite
648 control practices on Swedish horse farms. *Acta Vet Scand* 49, 25.

649 Love, S., Murphy, D., Mellor, D., 1999. Pathogenicity of cyathostome infection. *Vet Parasitol*
650 85, 113-121; discussion 121-112, 215-125.

651 Lyons, E.T., Tolliver, S.C., Ionita, M., Collins, S.S., 2008. Evaluation of parasiticidal activity of
652 fenbendazole, ivermectin, oxibendazole, and pyrantel pamoate in horse foals with emphasis
653 on ascarids (*Parascaris equorum*) in field studies on five farms in Central Kentucky in 2007.
654 *Parasitol Res* 103, 287-291.

655 Maddox, T.W., Pinchbeck, G.L., Clegg, P.D., Wedley, A.L., Dawson, S., Williams, N.J., 2012.
656 Cross-sectional study of antimicrobial-resistant bacteria in horses. Part 2: Risk factors for
657 faecal carriage of antimicrobial-resistant *Escherichia coli* in horses. *Equine Vet J* 44, 297-303.

658 Martinez-Valladares, M., Famularo, M.R., Fernandez-Pato, N., Cordero-Perez, C., Castanon-
659 Ordóñez, L., Rojo-Vazquez, F.A., 2012. Characterization of a multidrug resistant *Teladorsagia*
660 *circumcincta* isolate from Spain. *Parasitol Res* 110, 2083-2087.

661 Matthews, J.B., 2014. Anthelmintic resistance in equine nematodes. *Int J Parasitol Drugs*
662 *Drug Resist* 4, 310-315.

663 Michel, J.F., 1985. Epidemiology and Control of Gastrointestinal Helminths in Domestic
664 Animals, in: Bossche, H.V., Thienpont, D., Janssens, P.G. (Eds.), *Chemotherapy of*
665 *Gastrointestinal Helminths*. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 67-123.

666 Molento, M.B., Antunes, J., Bentes, R.N., Coles, G.C., 2008. Anthelmintic resistant
667 nematodes in Brazilian horses. *Vet Rec* 162, 384-385.

668 Murphy, D., Love, S., 1997. The pathogenic effects of experimental cyathostome infections
669 in ponies. *Vet Parasitol* 70, 99-110.

670 Nielsen, M.K., 2012. Sustainable equine parasite control: perspectives and research needs.
671 *Vet Parasitol* 185, 32-44.

672 Nielsen, M.K., Jacobsen, S., Olsen, S.N., Bousquet, E., Pihl, T., 2016. Nonstrangulating
673 intestinal infarction associated with *Strongylus vulgaris* in referred Danish equine cases.
674 *Equine Vet J* 48, 376-379.

675 Nielsen, M.K., Vidyashankar, A.N., Olsen, S.N., Monrad, J., Thamsborg, S.M., 2012.
676 *Strongylus vulgaris* associated with usage of selective therapy on Danish horse farms-is it
677 reemerging? *Vet Parasitol* 189, 260-266.

678 O'Meara, B., Mulcahy, G., 2002. A survey of helminth control practices in equine
679 establishments in Ireland. *Vet Parasitol* 109, 101-110.

680 Peregrine, A.S., Molento, M.B., Kaplan, R.M., Nielsen, M.K., 2014. Anthelmintic resistance in
681 important parasites of horses: does it really matter? *Vet Parasitol* 201, 1-8.

682 R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation
683 for Statistical Computing, Vienna.

684 Relf, V.E., Lester, H.E., Morgan, E.R., Hodgkinson, J.E., Matthews, J.B., 2014. Anthelmintic
685 efficacy on UK Thoroughbred stud farms. *Int J Parasitol* 44, 507-514.

686 Relf, V.E., Morgan, E.R., Hodgkinson, J.E., Matthews, J.B., 2012. A questionnaire study on
687 parasite control practices on UK breeding Thoroughbred studs. *Equine Vet J* 44, 466-471.

688 Sallé, G., Cabaret, J., 2015a. Meta-analysis of cyathostomins community structure and
689 diversity, International Conference of the World Association for the Advancement of
690 Veterinary Parasitology, Liverpool, The United-Kingdom, p. 220.

691 Sallé, G., Cabaret, J., 2015b. A survey on parasite management by equine veterinarians
692 highlights the need for a regulation change. *Vet Rec Open* 2, e000104.

693 Silvestre, A., Cabaret, J., Humbert, J.F., 2001. Effect of benzimidazole under-dosing on the
694 resistant allele frequency in *Teladorsagia circumcincta* (Nematoda). *Parasitology* 123, 103-
695 111.

696 Slocombe, J.O., de Gannes, R.V., 2006. Cyathostomes in horses in Canada resistant to
697 pyrantel salts and effectively removed by moxidectin. *Vet Parasitol* 140, 181-184.

698 Smith, G., Grenfell, B.T., Isham, V., Cornell, S., 1999. Anthelmintic resistance revisited:
699 under-dosing, chemoprophylactic strategies, and mating probabilities. *Int J Parasitol* 29, 77-
700 91; discussion 93-74.

701 Traversa, D., Castagna, G., von Samson-Himmelstjerna, G., Meloni, S., Bartolini, R., Geurden,
702 T., Pearce, M.C., Wöringer, E., Besognet, B., Milillo, P., D'Espois, M., 2012. Efficacy of major
703 anthelmintics against horse cyathostomins in France. *Vet Parasitol* 188, 294-300.

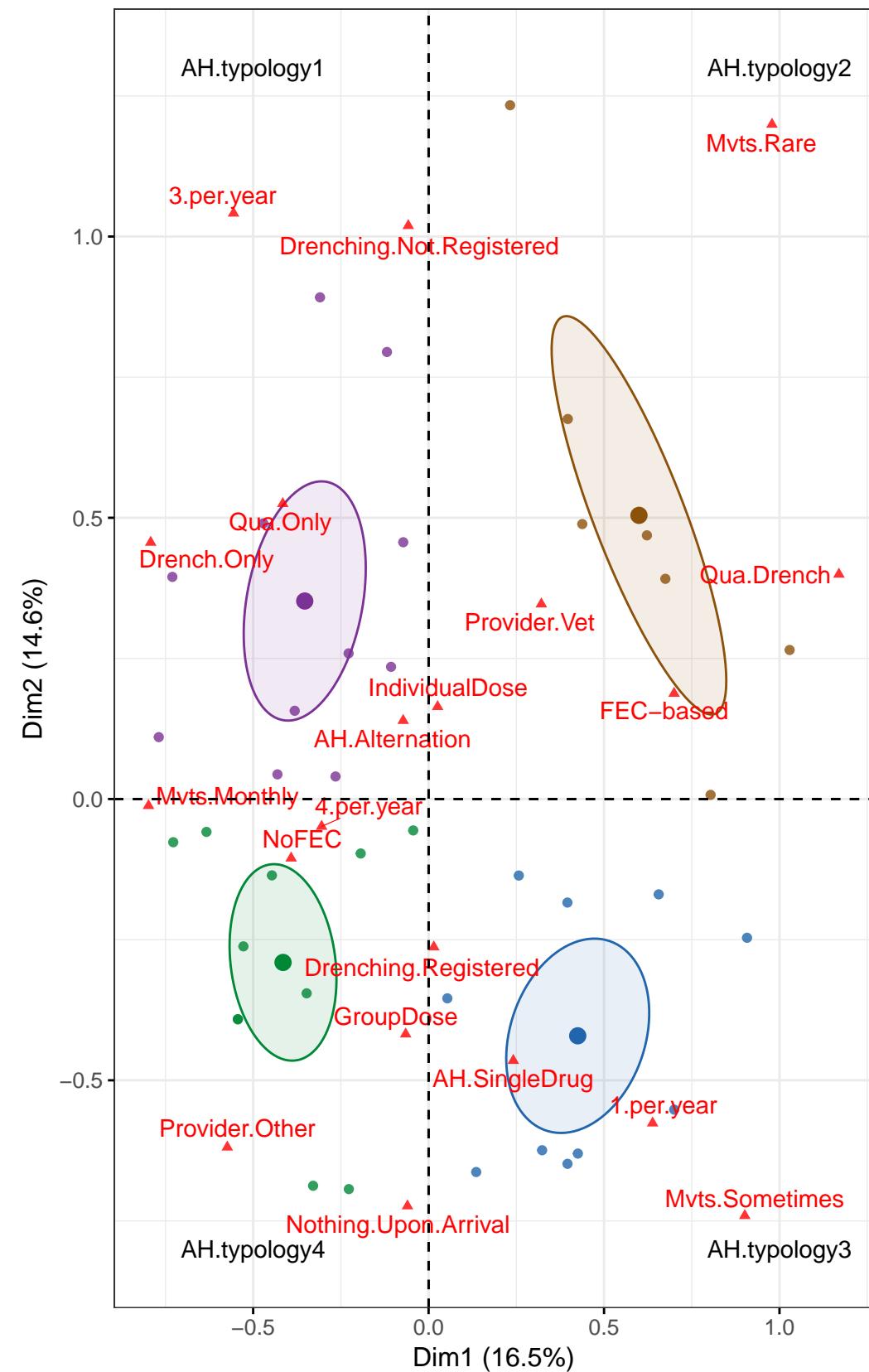
704 Traversa, D., Klei, T.R., Iorio, R., Paoletti, B., Lia, R.P., Otranto, D., Sparagano, O.A.,
705 Giangaspero, A., 2007. Occurrence of anthelmintic resistant equine cyathostome
706 populations in central and southern Italy. *Prev Vet Med* 82, 314-320.

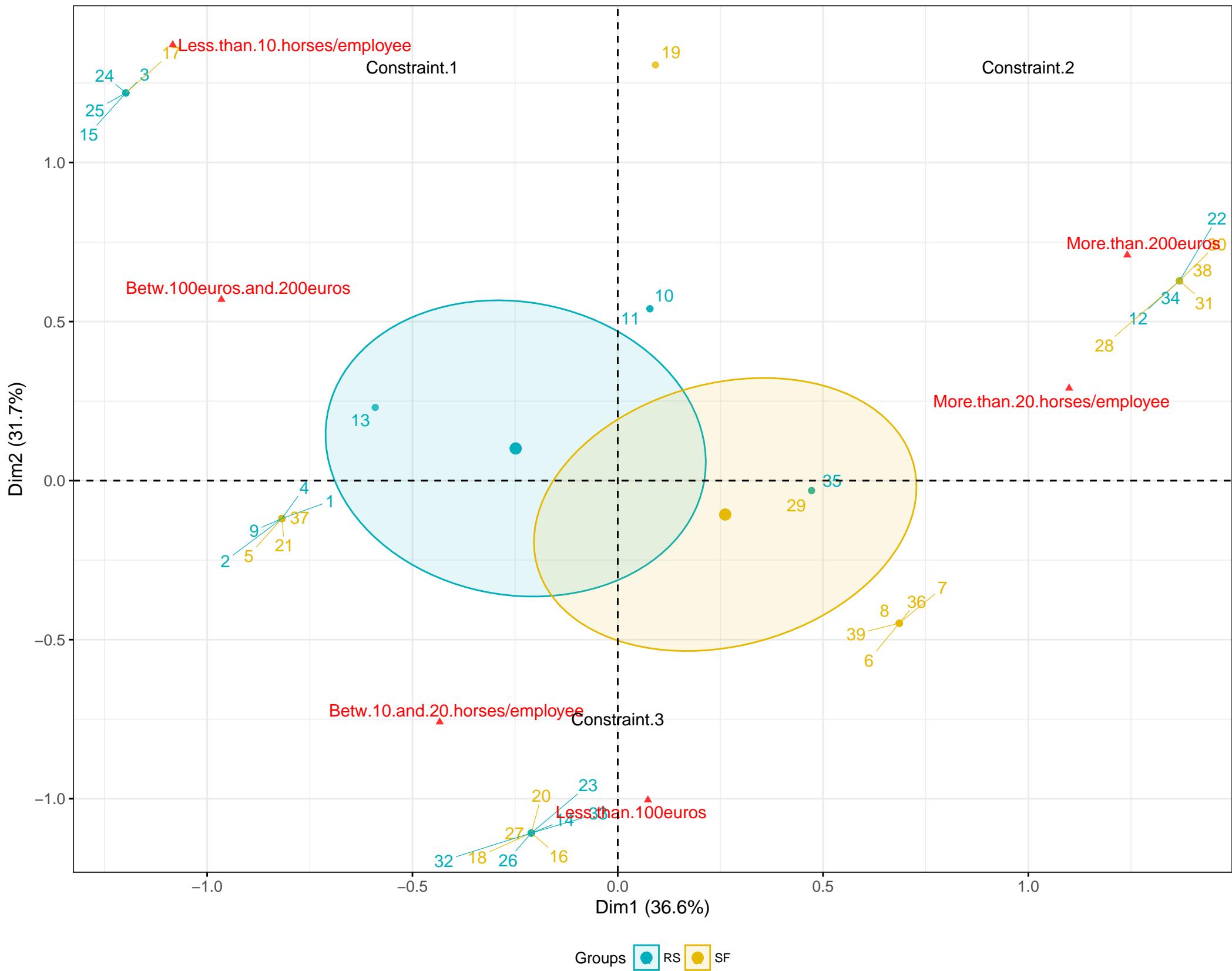
707 Traversa, D., von Samson-Himmelstjerna, G., Demeler, J., Milillo, P., Schurmann, S., Barnes,
708 H., Otranto, D., Perrucci, S., di Regalbono, A.F., Beraldo, P., Boeckh, A., Cobb, R., 2009.
709 Anthelmintic resistance in cyathostomin populations from horse yards in Italy, United
710 Kingdom and Germany. *Parasit Vectors* 2 Suppl 2, S2.

711 Tzelos, T., Barbeito, J.S., Nielsen, M.K., Morgan, E.R., Hodgkinson, J.E., Matthews, J.B., 2017.
712 Strongyle egg reappearance period after moxidectin treatment and its relationship with
713 management factors in UK equine populations. *Vet Parasitol* 237, 70-76.

714 von Samson-Himmelstjerna, G., Fritzen, B., Demeler, J., Schurmann, S., Rohn, K., Schnieder,
715 T., Epe, C., 2007. Cases of reduced cyathostomin egg-reappearance period and failure of
716 *Parascaris equorum* egg count reduction following ivermectin treatment as well as survey
717 on pyrantel efficacy on German horse farms. *Vet Parasitol* 144, 74-80.

718 Walker, M., Churcher, T.S., Basanez, M.G., 2014. Models for measuring anthelmintic drug
719 efficacy for parasitologists. *Trends Parasitol* 30, 528-537.


720 Zuur, A.F., Ieno, E.N., Elphick, C.S., 2010. A protocol for data exploration to avoid common
721 statistical problems. *Methods Ecol Evol* 1, 3-14.


722

A

B

