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Tumor growth is an evolutionary process governed by somatic mutation, clonal
selection and random genetic drift, constrained by the co-evolution of the
microenvironment' . Tumor subclones are subpopulations of tumor cells with a common set
of mutations resulting from the expansion of a single cell during tumor development, and
have been observed in a significant fraction of cancers and across multiple cancer types.
Peter Nowell proposed that tumors evolve through sequential genetic events®, whereby one
cell acquires a selective advantage so that its lineage becomes predominant. According to this
traditional model, the selective advantage is conferred by a small set of driver mutations, but,
as the subclones that bear them expand successively, they accumulate passenger mutations as
well, which can be detected in sequencing experiments'. Genomes of individual tumors
contain hundreds to many thousands of these genetic variants, at a wide range of
frequencies™. Given that genetic drift alone can drive novel variants to high frequencies, it is
of great interest to discern the relative importance of selection and drift in shaping the

frequency distribution of variants in any given tumor.

Williams et al.” recently proposed a way to do so. They found that a simple model of
tumor growth in which all novel variants are selectively neutral, that is, whose dynamics are

governed entirely by drift, predicts a linear relationship between the number of mutations

M(f) present in a fraction f of cells and the reciprocal of that fraction: M(f) « ch They

argued that deviation from this null model, i.e. the R-squared of the linear fit is below the
minimum observed in neutral simulations (R*< 0.98), indicates the presence of selection and
that this can be tested by means of variant allele frequencies (VAFs) from which f can be
derived. Applying this rationale to real cancer data from The Cancer Genome Atlas (TCGA),
the test proposed by Williams et al. did not reject the null model, that is neutrality, in about

one third of the cases and the authors concluded that these tumors are neutrally evolving.
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More recently, multiple myelomas with evidence for the proposed linear relationship were

. . . 8
associated with poorer prognosis’.

While providing an interesting approach to infer selection in human cancers,
unfortunately four major simplifying assumptions underlie the analysis by Williams et al. that

might render the conclusions questionable.

First, inferring f of variants from their VAF requires accurate estimates of local copy
number, overall tumor purity and ploidy. Williams et al. attempted to account for some of
these factors by restricting their analyses to variants with VAF between 0.12 and 0.24 and
located in copy-neutral regions of the genome. However, even in that limited VAF window,
the VAF of a mutation does not reflect its true f'in many cases. For example, in tumors with
whole genome duplications, i.e. 37% of tumors in the analyzed dataset’, the peak of clonal
mutations acquired after the whole genome doubling event is at or below VAF = 0.25 (one
out of four copies in a 100% pure tumor sample), which would lead to artificial deviation

from the linear fit within that VAF window.

Second, the interpretation of the analyses is inconsistent with the use of neutrality as
a null model. Failure to reject the null hypothesis is not the same as proving it true, i.e. that
all neutral simulations have R* > 0.98 does not prove that non-neutral simulations would
never yield R? > 0.98. One would need to demonstrate that this condition is sufficient to infer

neutrality but also, no equally suited models of non-neutral tumor growth should yield R* >

0.98.

To assess this, we simulated simple tumor growth in which we explicitly model one
subclonal expansion with a selective advantage, i.e. increasing its division rate A and/or the
mutation rate u of the subclone (Supplementary Methods). Using the original method

described by Williams et al., neutrality is rejected only within a narrow range of 4 and u
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values tested that would lead to detectable subclones (true rejection of neutrality in ~11% of
simulations; Fig. 1a). We conclude that a linear fit with R* > 0.98 is not sufficient to call
neutrality and that improper use of this model could result in substantial over-calling of

neutrality.

Third, the deterministic model of tumor growth described by Williams et al. relies
on strong biological assumptions, among which are synchronous cell divisions, constant cell
death and constant mutation and division rates. Stochastic models of tumor growth are
biologically more realistic, as they allow for asynchronous divisions and probabilistic
mutation acquisition, cell death and division rates. Using simple branching processes to

simulate neutral and non-neutral growth'® (Supplementary Methods), we show that R* >

0.98 for M(f) < ]lcis neither a necessary nor a sufficient property of neutrally evolving

tumors (Fig. 1b). Although it can be shown that the expected cumulative number of

mutations — i.e. the average over many independent samples — M(f) « }%’10 due to the

biological noise modeled in branching processes, a typical realization of the neutral process
in a single sample deviates substantially from the expected linear fit, rendering an R-squared
threshold inaccurate to infer neutrality. As a result, discrimination of neutral and non-neutral
simulated tumors using a linear fit is almost arbitrary, with 53.5% false positive neutral calls
in non-neutral tumors (Fig. 1b) and an area under the ROC curve of 0.42 for the

classification of 1,919 neutral and 1,919 non-neutral tumors (Fig. 1¢).

Fourth, we reason that in tumors called neutral, no subclonal selection should be
detected. To evaluate this, we use an orthogonal method to identify selection, based on the
observed variants themselves rather than on their allele frequencies. dN/dS analysis derives
the fraction of mutated non-synonymous positions to the fraction of mutated synonymous

positions in the coding regions. It has been widely used to detect the presence of negative or
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positive selection of non-synonymous variants in coding regions'"'>. We applied a dN/dS
model optimized for the detection of selection in somatic cancer variants'® to TCGA exome
data using a published list of 192 cancer genes'* (Supplementary Methods). The analysis
was performed separately using variants called as clonal or subclonal (Supplementary
Methods), in tumors called neutral and non-neutral based on the rationale outlined by
Williams and colleagues’. dN/dS ratio analysis revealed significant positive selection in
subclonal mutations of tumors classified as neutral (Fig. 1d), further suggesting that the
approach described by Williams et al. is under-equipped to detect the presence or absence of

selection.

In summary, Williams et al. proposed that about one third of tumors are neutrally
evolving. However, we highlight four simplifying assumptions — to our knowledge not
previously highlighted — and find that the proposed approach will often identify individual
tumors as neutral when they are non-neutral and non-neutral when they are neutral. A new
paper by the same group' introduces a Bayesian test for detecting selection from VAFs. The
test estimates selection coefficients and, as such, is an important advance over Williams et
al.’s frequentist test, which does not. The authors acknowledge that the test can only detect
large fitness differences, but nevertheless call tumors that fail it “neutral’” when they are
merely those in which a weak test has failed to detect selection. We note that neutral theory
has been developed in population genetics, ecology and cultural evolution and that similar
tests have been proposed in all of these fields and, in all, eventually been found wanting for
the same reason: variant abundance distributions do not contain enough information to

. 16-18
exclude selection

. It is of clinical importance to identify and better understand the drivers
of the potentially more aggressive (sub)clones expanding under selective biological or

therapeutic pressure, as these are good candidates for predicting resistance and exploring

combination therapy. Williams et al. are to be commended for having introduced explicit
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neutral tumor growth models into tumor genomics. However, quantifying the relative
importance of drift and selection in shaping the allele frequencies of single tumors clearly
remains an open challenge. Studies relying on their proposed test (e.g. *) might, then, need

reevaluation.
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Figure 1 legend

(a) Neutrality calls in simulations of tumor growth with subclonal expansion underlying
selective sweeps. The tree topology being modelled is represented on the right together with the
parameters of the neutral evolution equations for the two subpopulations of cells (Supplementary
Methods). The subclone’s fraction (subclone %) increases with its selective advantage advsubcione.
We vary the 4 = 1 + advgpeone and u parameters of the subclone along a grid. Simulations are
defined as true non-neutral (light blue) or false neutral (dark blue) when the growing subclone has
expanded sufficiently to be detectable and the sweep is not complete, i.e. 10% < subclone % <
90%, otherwise the subclone is considered beyond detection (light green). Non-neutral call:
R”*<0.98; neutral call: R* > 0.98. (b) As (a), using the Gillespie algorithm to simulate
branching processes'’. Simulations leading to subclones beyond detection are either called neutral
(light green) or non-neutral (dark green). Because of the stochastic nature of branching processes,
different subclone % values are obtained across simulations from the same advgcione Values. For
five increasing advgelone Values, we report median + mad of the subclone % across the simulations.
(¢) Summary ROC curve for the neutral vs. non-neutral classification based on the R’ values
in 1,919 non-neutral simulations from (b), and 1,919 simulations of neutral tumors. The false
positive rate and the true positive rate are highlighted for R*= 0.98 used by Williams et al. (d)
dN/dS analysis. Maximum likelihood estimates of the dN/dS ratios and associated 95% confidence
intervals for (sub)clonal mutations in TCGA tumors categorized into neutral and non-neutral
groups. Ratios for missense and truncating mutations are given. dN/dS > 1 indicates positive

selection.
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Neutral tumor evolution? - Methods

Outline

First, we describe the two tumor growth models that were used. The first is
based on the deterministic continuous model presented by Williams e al.'. The
second is based on a branching process, a commonly used discrete and fully
stochastic growth model. We next explain how, using these two models, we can
simulate variant allele fractions encountered in tumor sequencing studies. We
describe our implementation of the approach by Williams ef al.' to infer the most
likely evolutionary path after the emergence of the most recent common ancestor
(MRCA), i.e. neutral vs. non-neutral evolution. Finally, using real data from The
Cancer Genome Atlas, we compare neutrality calls to results of dN/dS analysis, an
independent and well-established approach to detect selection. We further describe
the availability of the code as a tarball containing R and Java scripts and a Java

runnable jar file called via one of the R scripts.

Simulations — continuous deterministic models
The deterministic equations described in Williams ef al.' relate the number of
cells in a tissue growing exponentially, NV,
N(t) = 27B¢

and the cumulative number of mutations, M:

_ EoaBt gpr K ABt _ __u _
M(t) = p [, 2%t dt = e (2 1) = (N(®) = 1) (Eq. 1)

at any given time ¢ > (), where A > 0 is the division rate per unit of time, > 0 is the
unitless “effective” division fraction, i.e. the fraction of divisions in which both
daughter cells survive (f = 1 for no cell death, B < 1 to model cell death), and p > 0 is
the mutation rate per cell division.

We have used these continuous deterministic models to simulate tumor growth
in silico and followed each mutation and its corresponding variant cell fraction. To
derive the cell fractions, we follow the progeny of the mother cell within which each

mutation occurred.
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Assume that the MRCA appears at time ¢;, with division coefficient £,
division rate A;, and mutation rate x;. To model a selective sweep within the cell
population spawned from the MRCA, we assume that at time ¢, > ¢;, a subclone is
initiated with division coefficient f, division rate 4,, and mutation rate .

There is positive selection when A,5,> A;4;. At time ¢ the number of cells
spawned from the MRCA but not part of the subclone (i.e. the cells with parameters
L1, A1, wg; further referred to as the MRCA lineage) is

Ny (£) = 22B1(t=t2) _ 22aBa(t=t2)
where the second term is omitted when ¢ < #,. Similarly, the number of cells at time ¢
from the subclonal lineage (i.e. with parameters £, 4,, u) is
Ny (1) = 222be(t-t)
when ¢ > ¢, and N,(?) = 0 otherwise. The total cell count at time 7 is
N(t) = Ny (t) + N,(t).
The tumor growth simulation is terminated at time 7 > ¢, and we derive the

distribution at time 7T of the cell fractions for all mutations in the tumor.

Following the number of mutations and their cell fraction

Because the equations are continuous, they can lead to non-integer numbers of
mutations and cell divisions. Hence, rather than deriving the number of mutations and
their allele frequencies f at discrete time points, we model divisions in continuous
time. We assess the number of additional mutations that have been added in fixed
(small) time intervals of length dt. From Eq. (1), we find that the number of additional
mutations occurring in the time interval [¢, ¢ + dt] within a population of cells from the

same lineage (i.e. parameters f, division rate 4, and mutation rate x) is:

M(t +dt) — M(t) (N(t+dt) — N(t))

1
0]

For a mutation occurring at time ¢, we may compute the variant cell fraction at
time 7. If the mutation occurred in a cell from the MRCA lineage that was not

inherited by the subclone-initiating cell, then the variant cell fraction is
241B1(T-1)
t)=———
A0 =y

If the mutation occurred in the subclone, then the variant cell fraction is
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222 B2(T—t)
f(t) = N
Finally, if the mutation occurred in an ancestor cell of the subclone-initiating
cell, then the variant cell fraction is
2MB1(T=t) _ 921 B1(T—t2) 4 DA2B2(T—t7)

N(T)

f12(t) =

Alternatively, we may calculate variant cell fractions in two steps, first
determining the variant cell fraction of a mutation within the subpopulation of cells
from the same lineage, and then scaling the variant cell fraction by the size of that

subpopulation relative to the total cell population.

Setting the parameters for the grid of simulations

In each of our simulations the subclone growing under selective advantage
appears at the 1" generation and the tumor is sampled at the 40th generation with a
virtual purity of 100%. The number of initial clonal mutations xy is not part of these
models, and we arbitrarily set uyp = 2. We fix the following parameters: clonal
mutation rate u; = 16, clonal division rate 4; = 1, clonal division efficiency f; = 0.4,
subclonal £, = 0.4. The depth of sequencing of the variants cov ~ Pois(10,000) to
approach the theoretical distribution and the alternate read counts ~ Bin(cov, f/2),
where f is the variant allele frequency derived from the model (see section on
simulating tumor variant allele frequencies from sequencing data). We explore the
results of the neutrality calls for a grid of parameter values wide enough to encompass
many realistic combinations:

Uy = [(zo'sn)ne{zs,...,zo} - 0-5]
and
advsypcione = (0.01n)ne(0,1,2,..,803

where

advsubclone = /12 - /11-
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Simulations — fully stochastic models

To model stochastic discrete tumor growth, we use branching processes with
the Gillespie algorithm®. These simulated tumors grow under asynchronous division,
with zero or one subclone.

This was coded in Java. Each cell is a Java object and has four attributes: a
Boolean value reporting whether the cell is alive or dead; an integer for the average
number of mutations per division; an integer with mother cell ID; and an ArrayList of
all MutationSets inherited from the mother cell. MutationSet is another class, for
which each object contains one integer for the mother cell ID and one integer for the
number of mutations within them. The constructor of MutationSet takes the mutation
rate of the mother cell as average number of events per interval of a Poisson
distribution to draw the number of mutations.

Starting with an ArrayList of one tumor initiating cell, for each of 2°° cell
division events, one cell is picked randomly from the living cells and either dies with
probability P(cell death) or divides into two daughter cells with probability
P(division) = 1 - P(cell death), akin to the Gillespie algorithm.

8th g: . - th .
2% division (~8" generation)

In our simulations, the subclone appears at the
by changing the division rate value of one of the cells, and the tumor is sampled at the
220 ™ division (~20" generation). In these simulations, the number of mutations
acquired at each cell division for each daughter cell is drawn from a Poisson
distribution for the MRCA lineage u ~ Pois(umrca) and the subclone lineage
p ~ Pois(tsubelone)-

The subclone is selected for division with probability

(1 + advsubclone)Nsubclone
(1 + advsubclone)Nsubclone + NMRCA

where Nypcione and Nyrca are the number of cells from the subclonal lineage and the

P(subclone divides) =

MRCA lineage, respectively, and advspcone > 0 for positive selection and
advsubeione = 0 for neutral growth. The MRCA population will be selected for division
with probability 1 - P(subclone divides).

Within the selected clone, one cell is selected randomly for division with

probability

1
P(cell divides) = N
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where N = Nyrcy if the cells belong to the MRCA lineage or N = Nypcione if the cell
belongs to the subclonal lineage.

With higher P(cell death), the first divisions are more likely to lead to the
death of all cells and the tumor quickly stops growing. To limit this effect when cell
death is high, we force the D first divisions to happen, i.e. P(cell death) = 0 transiently

until at least 2D cells are alive.

Setting the parameters for the grid simulations
In our simulations, starting from one tumor initiating cell, for each of the 2*°
cell division events, one cell is picked randomly and either dies with probability
P(cell death) = 0.2 or divides into two daughter cells with probability P(division) =1 -
P(cell death) = 0.8. The subclone appears at the 2° ™ division (~8" generation) and the
tumor is sampled at the 2?°-th division (~20™ generation). The ancestor clone’s
mutation rate u ~ Pois(16). The average depth of coverage is 100X (see section on
simulating tumor variant allele frequencies from sequencing data). In our simulations,
D=6.
We explore a grid of values for
Usubclone = [(zo'sn)ne{z,s,...,zo} - 0-5]
and
advVsypcione = (0.011)ne(0,1,2,..,1003-

This leads to 19*101=1,919 simulated tumor simulations covering the grid.

Simulating tumor variant allele frequencies from sequencing data

Using the tumor growth models presented here, we can derive the exact
number of mutations and their prevalence within a virtual tumor. These are taken as
input to simulate the frequencies that would be observed in the sequencing reads from

real tumor tissue.

In order to test the initial hypothesis, i.e. M(f) « ]% & neutrality, we start

with the simplest models and assume: (i) the absence of non-tumor contaminant, (ii)

100% of the tumor cells are resected, and (iii) a fully diploid cancer genome.
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Given exact cell fractions, f, of each mutation and an average sequencing
coverage, cov, we draw for each individual mutation the total number of reads
covering its genomic position N from a Poisson distribution N ~ Pois(cov), and the
alternate read counts alt ~ Bin(N,f/2), where f/2 is the allelic fraction for diploid

regions. Finally, we generate variant calls by taking mutations with a/f > 2 and derive
the variant allelic fraction (VAF) of each variant VAF = %t We then use the VAF

distribution to call neutral and non-neutral tumors, as described by Williams ef al.'

Calling neutral tumors

We followed the description by Williams et al.' to call neutral and non-neutral
tumors based on the variant allele frequencies of their somatic single nucleotide
variants. Tumors with less than 12 mutations with 0.12 < VAF < 0.24 were removed.
From the TCGA dataset, only tumors with a purity of at least 70%, as inferred by
ASCAT?’, were analyzed.

We calculated the explained variance (R?) for linear regression models both
with fixed intercept (intercept = 0) and without fixing the intercept, using the R
commands:
> summary(lm(y~x+0,offset=rep(0,length(y))))Sr.squared,
and
> cor(x,y)"2

respectively, where y is the cumulative number of mutations and x is the inverse

allelic frequency minus the upper limit x = ]lc — ﬁ. Results presented in the
manuscript were obtained using a variable intercept. In Supplementary Fig. 1, we
show the heat map of Figure 1a using a fixed intercept. Both methods show 97.5%

agreement (Supplementary Fig. 2).
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Supplementary figure 1. As reported in figure 1a using R’ of a linear regression with fixed intercept = 0. The
tree topology being modelled is represented on the right together with the parameters of the neutral evolution
equations for the two subpopulations of cells. The subclone’s fraction (subclone %) increases with its selective
advantage advgypcione. We vary the 1 = 1 + advgypeione and u parameters of the subclone along a grid. Simulations are
defined as true non-neutral (light blue) or false neutral (dark blue) when the growing subclone is sizable enough to
be detected and the sweep is not complete, i.e. 10% <subclone % < 90%, otherwise the subclone is considered

beyond detection (light green). Non-neutral call: R* < 0.98; neutral call: R? > 0.98.
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Supplementary figure 2. R’ values for the same simulations as in Supplementary figure 2, with variable and
fixed intercept, showing an agreement of 97.5% on the neutral calls. The x-axis represents R? values (squared

Pearson’s correlation coefficients) for the linear regression between M(f) and f for the simulations in Supp. Fig. 1.
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The y-axis represents R* values with fixed intercept = 0. Neutral calls, made if R*> 0.98, agree for 97.5% of these

simulations (grey) and disagree for 2.5% of them (red).

ROC and area under the curve

Using fully stochastic branching processes, we simulated 1,919 non-neutral
tumors and 1,919 neutral tumors and derived the R? values of the linear fit between
the cumulative number of mutations and their inverse variant allelic fraction (VAF)
within 0.12 < VAF < 0.24. We then plotted the ROC using the R package ROCR
version 1.0-7 and calculated the false positive rate and the true positive rate assuming

the R*= 0.98 threshold used by Williams et al.'

Detection of selection in neutral and non-neutral tumors - dN/dS

Dataset
We ran our analyses on the data from The Cancer Genome Atlas, using
CaVeMan™ single nucleotide variant calls, and ASCAT® copy number calls, as

described by Martincorena et al.®

Grouping variants into clonal and subclonal categories

To classify variants as clonal or subclonal, we used a one-sided proportion test
to assess whether the alternate and total read counts of each variant were compatible
with its clonality, given its underlying number of DNA copies, and the overall tumor

purity. This method is previously described in Alexandrov et al.’

dN/dS analysis and control gene sets
We performed dN/dS analysis to detect positive or negative selection of non-
synonymous variants, as described by Martincorena ef al.® The R package dNdScv

was used to derive the dN/dS wvalues and is available on github:

https://github.com/im3sanger/dndscv. We ran dN/dS separately on clonal and
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subclonal mutations and separately in the neutral and non-neutral tumors, using a
published list of 192 cancer genes (COSMIC v.80 - cancer.sanger.ac.uk®)™.

As a control, we ran dN/dS on subclonal mutations using 100 random sets of
192 genes, uniformly sampled from 20,090 annotated genes from hg19°. The 95%
interval of dN/dS values was above 1, i.e. showed evidence for positive selection, in 3
out 100 random gene sets. We further reasoned that not all genes are equally
“important” to the 192 COSMIC genes across tissues and took their gene expression
across tissues as a proxy for their importance. We downloaded the human bodymap

2.0 (https://www.ebi.ac.uk/gxa/experiments/E-MTAB-513/Results) TPM matrix of

expression and ranked genes by their values. We summed the ranks across relevant
tissues (adrenal gland, brain, breast, colon, kidney, leukocyte, liver, lung, ovary,
prostate gland, thyroid gland) and rerun dN/dS on 4x100 192-gene sets randomly
sampled from the 10,000, 5,000, 2,500 and 1,000 top-ranked (highly-expressed) genes
in those tissues. Among these four lists of highly expressed genes, the 95% intervals
of dN/dS values were >1 in 2, 6, 4, 5 out of the 4x100 gene sets, respectively,
confirming that the dN/dS signal is (cancer-)gene specific and is not biased in random
gene sets. We then reasoned that gene co-expression levels might be a better proxy for
“cancer-relevance” of the genes. To this end, the tool Gemma’

(https://gemma.msl.ubc.ca/home.html) was run to identify genes showing evidence

for co-expression with one of the 192 cancer genes in >21 out of 442 gene expression
datasets from the Master set for human. This identified 2,089 unique co-expressed
genes (with a median of 2 co-expressed genes per cancer gene), from which we
removed the 227 genes overlapping with the 719 cancer genes from the most recent
cancer gene census (COSMIC v.84 - cancer.sanger.ac.uk®). We then sampled 192

unique genes from the 1,862 genes with probabilities of each gene g being sampled

P(gene g is sampled) = Y, icc %, where G are the genes from the 192 genes that are

a ABLI, ACVRI, ACVRIB, AKTI, ALK, AMERI, APC, AR, ARIDIA, ARID2, ASXL1, ATM, ATP1A1, ATP2B3, ATR, ATRX,
AXINI, AXIN2, BAP1, BCOR, BIRC3, BRAF, BRCAI, BRCA2, CACNAID, CALR, CARDI11, CASPS, CBL, CBLB, CD794,
CD79B, CDC73, CDHI, CDKN2A4, CDKN2C, CEBPA, CIC, CNOT3, COL241, CREBBP, CRLF2, CSFIR, CSF3R, CTNNAI,
CTNNBI, CUX1, CXCR4, CYLD, DAXX, DICERI, DNM2, DNMT34, EGFR, EML4, EP300, ERBB2, ERG, ESRI, ETNK],
EZH2, FATI, FAT4, FBXO11, FBXW7, FGFRI, FGFR2, FGFR3, FLT3, FOXAI, FOXL2, FUBPI, GATAI, GATA2, GATA3,
GNA1l, GNAQ, GNAS, GRIN2A, H3F3A4, H3F3B, HIF1A, HISTIH3B, HNF1A, HRAS, IDHI, IDH2, IKBKB, IKZF1, IL6ST,
IL7R, JAK1, JAK2, JAK3, KCNJ5, KDM5C, KDM6A, KDR, KIT, KLF4, KMT2C, KMT2D, KRAS, MAP2K1, MAP2K?2,
MAP2K4, MAX, MED12, MEN1, MET, MLH1, MPL, MSH2, MSH6, MTOR, MYDS88, MYODI, NF1, NF2, NFE2L2, NFKBIE,
NOTCHI, NOTCH2, NPM1, NRAS, NT5C2, NTRK3, PAX5, PBRM1, PDGFRA, PHF6, PHOX2B, PIK3CA, PIK3RI, PLCGI,
POLE, POTI, PPP2RIA, PPP6C, PRDMI, PRKACA, PRKARIA, PTCHI, PTEN, PTPN11, PTPNI3, PTPRB, RACI, RAD21,
RBI, RET, RHOA, RNF43, RPL10, RPL5, RUNXI, SETBPI, SETD2, SF3B1, SH2B3, SMAD4, SMARCA4, SMARCB1, SMO,
SOCS1, SPEN, SPOP, SRC, SRSF2, STAG2, STAT3, STAT5B, STK11, SUFU, TBLIXRI, TBX3, TERT, TET2, TNFAIP3,
TNFRSF14, TP53, TRAF7, TSCI1, TSC2, TSHR, U2AF 1, UBRS, USPS, VHL, WT1, XPOI, ZRSR2.
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co-expressed with g, and ; is the number of co-expressed genes with gene i. We ran
dN/dS again on 100 of these 192-gene sets and found that 4 and 5 out of 100 gene
lists yielded 95% confidence intervals of dN/dS >1 for subclonal mutations in neutral

and non-neutral tumours, respectively.

Effect of copy number

We repeated the analyses after selecting only variants that fall within diploid
regions, i.e. 1 copy of allele A and 1 copy of allele B according to ASCAT’, to show
that the results were not induced by unreliable neutral calls, which could have resulted
from the distortion of allele frequencies by copy number changes (Supplementary

Fig. 3).

1 Missense
124 = Truncating
]

dN/dS (192 cancer genes)
oON MO
s, ——
=
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-

Neutral Non-neutral Neutral Non-neutral

Diploid genome  Whole genome

Supplementary Figure 3. dN/dS ratios on all mutations vs. mutations in diploid regions only. Maximum
likelihood estimates of the dN/dS ratios and associated 95% confidence intervals for (sub)clonal mutations in
TCGA tumors categorized into neutral and non-neutral groups. Ratios for missense and truncating mutations are

given. dN/dS > 1 indicates positive selection.
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Code reproducibility and availability

Analyses and figures were generated using R version 3.1.3. The branching
processes are coded in Java. The code for simulations is available as a tarball
(included within this submission) with R scripts for the deterministic simulations and
for deriving the figures, and a Java runnable jar file for generating variant fractions

from the branching processes together with the associated Java source code.
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