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Tumor growth is an evolutionary process governed by somatic mutation, clonal 

selection and random genetic drift, constrained by the co-evolution of the 

microenvironment1,2. Tumor subclones are subpopulations of tumor cells with a common set 

of mutations resulting from the expansion of a single cell during tumor development, and 

have been observed in a significant fraction of cancers and across multiple cancer types3. 

Peter Nowell proposed that tumors evolve through sequential genetic events4, whereby one 

cell acquires a selective advantage so that its lineage becomes predominant. According to this 

traditional model, the selective advantage is conferred by a small set of driver mutations, but, 

as the subclones that bear them expand successively, they accumulate passenger mutations as 

well, which can be detected in sequencing experiments1. Genomes of individual tumors 

contain hundreds to many thousands of these genetic variants, at a wide range of 

frequencies5,6. Given that genetic drift alone can drive novel variants to high frequencies, it is 

of great interest to discern the relative importance of selection and drift in shaping the 

frequency distribution of variants in any given tumor.   

Williams et al.7 recently proposed a way to do so. They found that a simple model of 

tumor growth in which all novel variants are selectively neutral, that is, whose dynamics are 

governed entirely by drift, predicts a linear relationship between the number of mutations 

𝑀(𝑓) present in a fraction f of cells and the reciprocal of that fraction: 𝑀 𝑓 ∝    !
!
. They 

argued that deviation from this null model, i.e. the R-squared of the linear fit is below the 

minimum observed in neutral simulations (R2 < 0.98), indicates the presence of selection and 

that this can be tested by means of variant allele frequencies (VAFs) from which f can be 

derived. Applying this rationale to real cancer data from The Cancer Genome Atlas (TCGA), 

the test proposed by Williams et al. did not reject the null model, that is neutrality, in about 

one third of the cases and the authors concluded that these tumors are neutrally evolving. 
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More recently, multiple myelomas with evidence for the proposed linear relationship were 

associated with poorer prognosis8.  

While providing an interesting approach to infer selection in human cancers, 

unfortunately four major simplifying assumptions underlie the analysis by Williams et al. that 

might render the conclusions questionable.  

First, inferring f of variants from their VAF requires accurate estimates of local copy 

number, overall tumor purity and ploidy. Williams et al. attempted to account for some of 

these factors by restricting their analyses to variants with VAF between 0.12 and 0.24 and 

located in copy-neutral regions of the genome. However, even in that limited VAF window, 

the VAF of a mutation does not reflect its true f in many cases. For example, in tumors with 

whole genome duplications, i.e. 37% of tumors in the analyzed dataset9, the peak of clonal 

mutations acquired after the whole genome doubling event is at or below VAF = 0.25 (one 

out of four copies in a 100% pure tumor sample), which would lead to artificial deviation 

from the linear fit within that VAF window.  

Second, the interpretation of the analyses is inconsistent with the use of neutrality as 

a null model. Failure to reject the null hypothesis is not the same as proving it true, i.e. that 

all neutral simulations have R2 > 0.98 does not prove that non-neutral simulations would 

never yield R2 > 0.98. One would need to demonstrate that this condition is sufficient to infer 

neutrality but also, no equally suited models of non-neutral tumor growth should yield R2 > 

0.98. 

To assess this, we simulated simple tumor growth in which we explicitly model one 

subclonal expansion with a selective advantage, i.e. increasing its division rate λ and/or the 

mutation rate µ of the subclone (Supplementary Methods). Using the original method 

described by Williams et al., neutrality is rejected only within a narrow range of λ and µ 
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values tested that would lead to detectable subclones (true rejection of neutrality in ~11% of 

simulations; Fig. 1a). We conclude that a linear fit with R2 > 0.98 is not sufficient to call 

neutrality and that improper use of this model could result in substantial over-calling of 

neutrality. 

Third, the deterministic model of tumor growth described by Williams et al. relies 

on strong biological assumptions, among which are synchronous cell divisions, constant cell 

death and constant mutation and division rates. Stochastic models of tumor growth are 

biologically more realistic, as they allow for asynchronous divisions and probabilistic 

mutation acquisition, cell death and division rates. Using simple branching processes to 

simulate neutral and non-neutral growth10 (Supplementary Methods), we show that R2 > 

0.98 for 𝑀 𝑓 ∝    !
!
 is neither a necessary nor a sufficient property of neutrally evolving 

tumors (Fig. 1b). Although it can be shown that the expected cumulative number of 

mutations – i.e. the average over many independent samples – 𝑀 𝑓 ∝    !
!
,10 due to the 

biological noise modeled in branching processes, a typical realization of the neutral process 

in a single sample deviates substantially from the expected linear fit, rendering an R-squared 

threshold inaccurate to infer neutrality. As a result, discrimination of neutral and non-neutral 

simulated tumors using a linear fit is almost arbitrary, with 53.5% false positive neutral calls 

in non-neutral tumors (Fig. 1b) and an area under the ROC curve of 0.42 for the 

classification of 1,919 neutral and 1,919 non-neutral tumors (Fig. 1c). 

Fourth, we reason that in tumors called neutral, no subclonal selection should be 

detected. To evaluate this, we use an orthogonal method to identify selection, based on the 

observed variants themselves rather than on their allele frequencies. dN/dS analysis derives 

the fraction of mutated non-synonymous positions to the fraction of mutated synonymous 

positions in the coding regions. It has been widely used to detect the presence of negative or 
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positive selection of non-synonymous variants in coding regions11,12. We applied a dN/dS 

model optimized for the detection of selection in somatic cancer variants13 to TCGA exome 

data  using a published list of 192 cancer genes14 (Supplementary Methods). The analysis 

was performed separately using variants called as clonal or subclonal (Supplementary 

Methods), in tumors called neutral and non-neutral based on the rationale outlined by 

Williams and colleagues7. dN/dS ratio analysis revealed significant positive selection in 

subclonal mutations of tumors classified as neutral (Fig. 1d), further suggesting that the 

approach described by Williams et al. is under-equipped to detect the presence or absence of 

selection. 

In summary, Williams et al. proposed that about one third of tumors are neutrally 

evolving. However, we highlight four simplifying assumptions – to our knowledge not 

previously highlighted – and find that the proposed approach will often identify individual 

tumors as neutral when they are non-neutral and non-neutral when they are neutral. A new 

paper by the same group15 introduces a Bayesian test for detecting selection from VAFs. The 

test estimates selection coefficients and, as such, is an important advance over Williams et 

al.’s frequentist test, which does not. The authors acknowledge that the test can only detect 

large fitness differences, but nevertheless call tumors that fail it “neutral’’ when they are 

merely those in which a weak test has failed to detect selection. We note that neutral theory 

has been developed in population genetics, ecology and cultural evolution and that similar 

tests have been proposed in all of these fields and, in all, eventually been found wanting for 

the same reason: variant abundance distributions do not contain enough information to 

exclude selection16–18. It is of clinical importance to identify and better understand the drivers 

of the potentially more aggressive (sub)clones expanding under selective biological or 

therapeutic pressure, as these are good candidates for predicting resistance and exploring 

combination therapy. Williams et al. are to be commended for having introduced explicit 
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neutral tumor growth models into tumor genomics. However, quantifying the relative 

importance of drift and selection in shaping the allele frequencies of single tumors clearly 

remains an open challenge. Studies relying on their proposed test (e.g. 8) might, then, need 

reevaluation. 
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Figure 1 legend 

(a) Neutrality calls in simulations of tumor growth with subclonal expansion underlying 

selective sweeps. The tree topology being modelled is represented on the right together with the 

parameters of the neutral evolution equations for the two subpopulations of cells (Supplementary 

Methods). The subclone’s fraction (subclone %) increases with its selective advantage advsubclone. 

We vary the λ = 1 + advsubclone and µ parameters of the subclone along a grid. Simulations are 

defined as true non-neutral (light blue) or false neutral (dark blue) when the growing subclone has 

expanded sufficiently to be detectable and the sweep is not complete, i.e. 10% ≤ subclone % ≤ 

90%, otherwise the subclone is considered beyond detection (light green). Non-neutral call: 

R2 < 0.98; neutral call: R2 ≥ 0.98. (b) As (a), using the Gillespie algorithm to simulate 

branching processes10. Simulations leading to subclones beyond detection are either called neutral 

(light green) or non-neutral (dark green). Because of the stochastic nature of branching processes, 

different subclone % values are obtained across simulations from the same advsubclone values. For 

five increasing advsubclone values, we report median ± mad of the subclone % across the simulations. 

(c) Summary ROC curve for the neutral vs. non-neutral classification based on the R2 values 

in 1,919 non-neutral simulations from (b), and 1,919 simulations of neutral tumors. The false 

positive rate and the true positive rate are highlighted for R2 = 0.98 used by Williams et al. (d) 

dN/dS analysis. Maximum likelihood estimates of the dN/dS ratios and associated 95% confidence 

intervals for (sub)clonal mutations in TCGA tumors categorized into neutral and non-neutral 

groups. Ratios for missense and truncating mutations are given. dN/dS > 1 indicates positive 

selection.  
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 1 

Neutral tumor evolution? - Methods 

Outline 
First, we describe the two tumor growth models that were used. The first is 

based on the deterministic continuous model presented by Williams et al.1. The 

second is based on a branching process, a commonly used discrete and fully 

stochastic growth model. We next explain how, using these two models, we can 

simulate variant allele fractions encountered in tumor sequencing studies. We 

describe our implementation of the approach by Williams et al.1 to infer the most 

likely evolutionary path after the emergence of the most recent common ancestor 

(MRCA), i.e. neutral vs. non-neutral evolution. Finally, using real data from The 

Cancer Genome Atlas, we compare neutrality calls to results of dN/dS analysis, an 

independent and well-established approach to detect selection. We further describe 

the availability of the code as a tarball containing R and Java scripts and a Java 

runnable jar file called via one of the R scripts. 

 

Simulations – continuous deterministic models 
The deterministic equations described in Williams et al.1 relate the number of 

cells in a tissue growing exponentially, N, 

𝑁 𝑡 = 2!"# 

and the cumulative number of mutations, M: 

𝑀 𝑡 = 𝜇 2!"!!𝑑𝑡! = !
!" !" !

!
! 2!"# − 1 = !

!" !" !
(𝑁 𝑡 − 1)         (Eq. 1) 

at any given time t ≥ 0, where λ > 0 is the division rate per unit of time, β ≥ 0 is the 

unitless “effective” division fraction, i.e. the fraction of divisions in which both 

daughter cells survive (β = 1 for no cell death, β < 1 to model cell death), and µ > 0 is 

the mutation rate per cell division.  

We have used these continuous deterministic models to simulate tumor growth 

in silico and followed each mutation and its corresponding variant cell fraction. To 

derive the cell fractions, we follow the progeny of the mother cell within which each 

mutation occurred.  
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Assume that the MRCA appears at time t1, with division coefficient β1, 

division rate λ1, and mutation rate µ1. To model a selective sweep within the cell 

population spawned from the MRCA, we assume that at time t2 > t1, a subclone is 

initiated with division coefficient β2, division rate λ2, and mutation rate µ2.  

There is positive selection when λ2β2 > λ1β1. At time t the number of cells 

spawned from the MRCA but not part of the subclone (i.e. the cells with parameters 

β1, λ1, µ1; further referred to as the MRCA lineage) is  

𝑁!(𝑡) = 2!!!!(!!!!) − 2!!!!(!!!!) 

where the second term is omitted when t < t2. Similarly, the number of cells at time t 

from the subclonal lineage (i.e. with parameters β2, λ2, µ2) is 

𝑁!(𝑡) = 2!!!!(!!!!) 

when t > t2 and N2(t) = 0 otherwise. The total cell count at time t is 

𝑁 𝑡 = 𝑁! 𝑡 + 𝑁!(𝑡). 

The tumor growth simulation is terminated at time T > t2 and we derive the 

distribution at time T of the cell fractions for all mutations in the tumor.  

 

Following the number of mutations and their cell fraction 

Because the equations are continuous, they can lead to non-integer numbers of 

mutations and cell divisions. Hence, rather than deriving the number of mutations and 

their allele frequencies f at discrete time points, we model divisions in continuous 

time. We assess the number of additional mutations that have been added in fixed 

(small) time intervals of length dt. From Eq. (1), we find that the number of additional 

mutations occurring in the time interval [t, t + dt] within a population of cells from the 

same lineage (i.e. parameters β, division rate λ, and mutation rate µ) is: 

𝑀 𝑡 + 𝑑𝑡 −𝑀 𝑡 = 𝜇
1

𝜆𝛽 ln 2 (𝑁 𝑡 + 𝑑𝑡 − 𝑁(𝑡)) 

For a mutation occurring at time t, we may compute the variant cell fraction at 

time T. If the mutation occurred in a cell from the MRCA lineage that was not 

inherited by the subclone-initiating cell, then the variant cell fraction is 

𝑓! 𝑡 =
2!!!!(!!!)

𝑁(𝑇)  

If the mutation occurred in the subclone, then the variant cell fraction is 
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𝑓! 𝑡 =
2!!!!(!!!)

𝑁(𝑇)  

Finally, if the mutation occurred in an ancestor cell of the subclone-initiating 

cell, then the variant cell fraction is 

𝑓!" 𝑡 =
2!!!!(!!!) − 2!!!!(!!!!) + 2!!!!(!!!!)

𝑁(𝑇)  

Alternatively, we may calculate variant cell fractions in two steps, first 

determining the variant cell fraction of a mutation within the subpopulation of cells 

from the same lineage, and then scaling the variant cell fraction by the size of that 

subpopulation relative to the total cell population.  

 

Setting the parameters for the grid of simulations 

In each of our simulations the subclone growing under selective advantage 

appears at the 11th generation and the tumor is sampled at the 40th generation with a 

virtual purity of 100%. The number of initial clonal mutations µ0 is not part of these 

models, and we arbitrarily set µ0 = µ2. We fix the following parameters: clonal 

mutation rate µ1 = 16, clonal division rate λ1 = 1, clonal division efficiency β1 = 0.4, 

subclonal β2 = 0.4. The depth of sequencing of the variants cov ~ Pois(10,000) to 

approach the theoretical distribution and the alternate read counts ~ Bin(cov, f/2), 

where f is the variant allele frequency derived from the model (see section on 

simulating tumor variant allele frequencies from sequencing data). We explore the 

results of the neutrality calls for a grid of parameter values wide enough to encompass 

many realistic combinations: 

𝜇! = 2!.!! !∈ !,!,…,!" − 0.5  

and 

𝑎𝑑𝑣!"#$%&'( = (0.01𝑛)!∈ !,!,!,…,!" , 

where 

𝑎𝑑𝑣!"#$%&'( = 𝜆! − 𝜆!. 
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Simulations – fully stochastic models 
To model stochastic discrete tumor growth, we use branching processes with 

the Gillespie algorithm2. These simulated tumors grow under asynchronous division, 

with zero or one subclone.  

This was coded in Java. Each cell is a Java object and has four attributes: a 

Boolean value reporting whether the cell is alive or dead; an integer for the average 

number of mutations per division; an integer with mother cell ID; and an ArrayList of 

all MutationSets inherited from the mother cell. MutationSet is another class, for 

which each object contains one integer for the mother cell ID and one integer for the 

number of mutations within them. The constructor of MutationSet takes the mutation 

rate of the mother cell as average number of events per interval of a Poisson 

distribution to draw the number of mutations. 

Starting with an ArrayList of one tumor initiating cell, for each of 220 cell 

division events, one cell is picked randomly from the living cells and either dies with 

probability P(cell death) or divides into two daughter cells with probability 

P(division) = 1 - P(cell death), akin to the Gillespie algorithm.  

In our simulations, the subclone appears at the 28 th division (~8th generation) 

by changing the division rate value of one of the cells, and the tumor is sampled at the 

220 th division (~20th generation). In these simulations, the number of mutations 

acquired at each cell division for each daughter cell is drawn from a Poisson 

distribution for the MRCA lineage µ ~ Pois(µMRCA) and the subclone lineage 

µ ~ Pois(µsubclone).  

The subclone is selected for division with probability  

𝑃(𝑠𝑢𝑏𝑐𝑙𝑜𝑛𝑒  𝑑𝑖𝑣𝑖𝑑𝑒𝑠) =
(1+ 𝑎𝑑𝑣!"#$%&'()𝑁!"#$%&'(

1+ 𝑎𝑑𝑣!"#$%&'( 𝑁!"#$%&'( + 𝑁!"#$
 

where Nsubclone and NMRCA are the number of cells from the subclonal lineage and the 

MRCA lineage, respectively, and advsubclone > 0 for positive selection and 

advsubclone = 0 for neutral growth. The MRCA population will be selected for division 

with probability 1 - P(subclone divides). 

Within the selected clone, one cell is selected randomly for division with 

probability 

𝑃 𝑐𝑒𝑙𝑙  𝑑𝑖𝑣𝑖𝑑𝑒𝑠 =
1
𝑁 
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where N = NMRCA if the cells belong to the MRCA lineage or N = Nsubclone if the cell 

belongs to the subclonal lineage. 

With higher P(cell death), the first divisions are more likely to lead to the 

death of all cells and the tumor quickly stops growing. To limit this effect when cell 

death is high, we force the D first divisions to happen, i.e. P(cell death) = 0 transiently 

until at least 2D cells are alive.  

 

Setting the parameters for the grid simulations 

In our simulations, starting from one tumor initiating cell, for each of the 220 

cell division events, one cell is picked randomly and either dies with probability 

P(cell death) = 0.2 or divides into two daughter cells with probability P(division) = 1 - 

P(cell death) = 0.8. The subclone appears at the 28 th division (~8th generation) and the 

tumor is sampled at the 220-th division (~20th generation). The ancestor clone’s 

mutation rate µ ~ Pois(16). The average depth of coverage is 100X (see section on 

simulating tumor variant allele frequencies from sequencing data). In our simulations, 

D = 6. 

We explore a grid of values for 

𝜇!"#$%&'( = 2!.!! !∈ !,!,…,!" − 0.5  

and 

𝑎𝑑𝑣!"#$%&'( = (0.01𝑛)!∈ !,!,!,…,!"" . 

This leads to 19*101=1,919 simulated tumor simulations covering the grid.  

 

Simulating tumor variant allele frequencies from sequencing data 
Using the tumor growth models presented here, we can derive the exact 

number of mutations and their prevalence within a virtual tumor. These are taken as 

input to simulate the frequencies that would be observed in the sequencing reads from 

real tumor tissue. 

In order to test the initial hypothesis, i.e. 𝑀(𝑓) ∝ !
!   

𝑛𝑒𝑢𝑡𝑟𝑎𝑙𝑖𝑡𝑦, we start 

with the simplest models and assume: (i) the absence of non-tumor contaminant, (ii) 

100% of the tumor cells are resected, and (iii) a fully diploid cancer genome.  
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Given exact cell fractions, f, of each mutation and an average sequencing 

coverage, cov, we draw for each individual mutation the total number of reads 

covering its genomic position N from a Poisson distribution N ~ Pois(cov), and the 

alternate read counts alt ~ Bin(N,f/2), where f/2 is the allelic fraction for diploid 

regions. Finally, we generate variant calls by taking mutations with alt > 2 and derive 

the variant allelic fraction (VAF) of each variant 𝑉𝐴𝐹 =    !"#
!

. We then use the VAF 

distribution to call neutral and non-neutral tumors, as described by Williams et al.1 

 

Calling neutral tumors 
We followed the description by Williams et al.1 to call neutral and non-neutral 

tumors based on the variant allele frequencies of their somatic single nucleotide 

variants. Tumors with less than 12 mutations with 0.12 ≤ VAF ≤ 0.24 were removed.  

From the TCGA dataset, only tumors with a purity of at least 70%, as inferred by 

ASCAT3, were analyzed.  

We calculated the explained variance (R2) for linear regression models both 

with fixed intercept (intercept = 0) and without fixing the intercept, using the R 

commands: 

> summary(lm(y~x+0,offset=rep(0,length(y))))$r.squared, 

and  

> cor(x,y)^2  

respectively, where y is the cumulative number of mutations and x is the inverse 

allelic frequency minus the upper limit 𝑥 = !
!
− !

!.!"
. Results presented in the 

manuscript were obtained using a variable intercept. In Supplementary Fig. 1, we 

show the heat map of Figure 1a using a fixed intercept. Both methods show 97.5% 

agreement (Supplementary Fig. 2). 
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 7 

 
Supplementary figure 1. As reported in figure 1a using R2 of a linear regression with fixed intercept = 0. The 

tree topology being modelled is represented on the right together with the parameters of the neutral evolution 

equations for the two subpopulations of cells. The subclone’s fraction (subclone %) increases with its selective 

advantage advsubclone. We vary the λ = 1 + advsubclone and µ parameters of the subclone along a grid. Simulations are 

defined as true non-neutral (light blue) or false neutral (dark blue) when the growing subclone is sizable enough to 

be detected and the sweep is not complete, i.e. 10% ≤subclone % ≤ 90%, otherwise the subclone is considered 

beyond detection (light green). Non-neutral call: R2 < 0.98; neutral call: R2 ≥ 0.98. 

 

 
Supplementary figure 2. R2 values for the same simulations as in Supplementary figure 2, with variable and 

fixed intercept, showing an agreement of 97.5% on the neutral calls. The x-axis represents R2 values (squared 

Pearson’s correlation coefficients) for the linear regression between M(f) and f for the simulations in Supp. Fig. 1. 
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The y-axis represents R2 values with fixed intercept = 0. Neutral calls, made if R2 ≥ 0.98, agree for 97.5% of these 

simulations (grey) and disagree for 2.5% of them (red). 

 

ROC and area under the curve 
Using fully stochastic branching processes, we simulated 1,919 non-neutral 

tumors and 1,919 neutral tumors and derived the R2 values of the linear fit between 

the cumulative number of mutations and their inverse variant allelic fraction (VAF) 

within 0.12 ≤ VAF ≤ 0.24. We then plotted the ROC using the R package ROCR 

version 1.0-7 and calculated the false positive rate and the true positive rate assuming 

the  R2 = 0.98 threshold used by Williams et al.1 

 

Detection of selection in neutral and non-neutral tumors - dN/dS 

Dataset 

We ran our analyses on the data from The Cancer Genome Atlas, using 

CaVeMan4,5 single nucleotide variant calls, and ASCAT3 copy number calls, as 

described by Martincorena et al.6  

 

Grouping variants into clonal and subclonal categories 

To classify variants as clonal or subclonal, we used a one-sided proportion test 

to assess whether the alternate and total read counts of each variant were compatible 

with its clonality, given its underlying number of DNA copies, and the overall tumor 

purity. This method is previously described in Alexandrov et al.7 

 

dN/dS analysis and control gene sets 

We performed dN/dS analysis to detect positive or negative selection of non-

synonymous variants, as described by Martincorena et al.6 The R package dNdScv 

was used to derive the dN/dS values and is available on github: 

https://github.com/im3sanger/dndscv. We ran dN/dS separately on clonal and 
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subclonal mutations and separately in the neutral and non-neutral tumors, using a 

published list of 192 cancer genes (COSMIC v.80 - cancer.sanger.ac.uk8)a. 

As a control, we ran dN/dS on subclonal mutations using 100 random sets of 

192 genes, uniformly sampled from 20,090 annotated genes from hg196. The 95% 

interval of dN/dS values was above 1, i.e. showed evidence for positive selection, in 3 

out 100 random gene sets. We further reasoned that not all genes are equally 

“important” to the 192 COSMIC genes across tissues and took their gene expression 

across tissues as a proxy for their importance. We downloaded the human bodymap 

2.0 (https://www.ebi.ac.uk/gxa/experiments/E-MTAB-513/Results) TPM matrix of 

expression and ranked genes by their values. We summed the ranks across relevant 

tissues (adrenal gland, brain, breast, colon, kidney, leukocyte, liver, lung, ovary, 

prostate gland, thyroid gland) and rerun dN/dS on 4x100 192-gene sets randomly 

sampled from the 10,000, 5,000, 2,500 and 1,000 top-ranked (highly-expressed) genes 

in those tissues. Among these four lists of highly expressed genes, the 95% intervals 

of dN/dS values were >1 in 2, 6, 4, 5 out of the 4x100 gene sets, respectively, 

confirming that the dN/dS signal is (cancer-)gene specific and is not biased in random 

gene sets. We then reasoned that gene co-expression levels might be a better proxy for 

“cancer-relevance” of the genes. To this end, the tool Gemma9 

(https://gemma.msl.ubc.ca/home.html) was run to identify genes showing evidence 

for co-expression with one of the 192 cancer genes in >21 out of 442 gene expression 

datasets from the Master set for human. This identified 2,089 unique co-expressed 

genes (with a median of 2 co-expressed genes per cancer gene), from which we 

removed the 227 genes overlapping with the 719 cancer genes from the most recent 

cancer gene census (COSMIC v.84 - cancer.sanger.ac.uk8). We then sampled 192 

unique genes from the 1,862 genes with probabilities of each gene g being sampled 

𝑃 𝑔𝑒𝑛𝑒  𝑔  𝑖𝑠  𝑠𝑎𝑚𝑝𝑙𝑒𝑑 = !
!!!∈! , where G are the genes from the 192 genes that are 

                                                
a ABL1, ACVR1, ACVR1B, AKT1, ALK, AMER1, APC, AR, ARID1A, ARID2, ASXL1, ATM, ATP1A1, ATP2B3, ATR, ATRX, 
AXIN1, AXIN2, BAP1, BCOR, BIRC3, BRAF, BRCA1, BRCA2, CACNA1D, CALR, CARD11, CASP8, CBL, CBLB, CD79A, 
CD79B, CDC73, CDH1, CDKN2A, CDKN2C, CEBPA, CIC, CNOT3, COL2A1, CREBBP, CRLF2, CSF1R, CSF3R, CTNNA1, 
CTNNB1, CUX1, CXCR4, CYLD, DAXX, DICER1, DNM2, DNMT3A, EGFR, EML4, EP300, ERBB2, ERG, ESR1, ETNK1, 
EZH2, FAT1, FAT4, FBXO11, FBXW7, FGFR1, FGFR2, FGFR3, FLT3, FOXA1, FOXL2, FUBP1, GATA1, GATA2, GATA3, 
GNA11, GNAQ, GNAS, GRIN2A, H3F3A, H3F3B, HIF1A, HIST1H3B, HNF1A, HRAS, IDH1, IDH2, IKBKB, IKZF1, IL6ST, 
IL7R, JAK1, JAK2, JAK3, KCNJ5, KDM5C, KDM6A, KDR, KIT, KLF4, KMT2C, KMT2D, KRAS, MAP2K1, MAP2K2, 
MAP2K4, MAX, MED12, MEN1, MET, MLH1, MPL, MSH2, MSH6, MTOR, MYD88, MYOD1, NF1, NF2, NFE2L2, NFKBIE, 
NOTCH1, NOTCH2, NPM1, NRAS, NT5C2, NTRK3, PAX5, PBRM1, PDGFRA, PHF6, PHOX2B, PIK3CA, PIK3R1, PLCG1, 
POLE, POT1, PPP2R1A, PPP6C, PRDM1, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPN13, PTPRB, RAC1, RAD21, 
RB1, RET, RHOA, RNF43, RPL10, RPL5, RUNX1, SETBP1, SETD2, SF3B1, SH2B3, SMAD4, SMARCA4, SMARCB1, SMO, 
SOCS1, SPEN, SPOP, SRC, SRSF2, STAG2, STAT3, STAT5B, STK11, SUFU, TBL1XR1, TBX3, TERT, TET2, TNFAIP3, 
TNFRSF14, TP53, TRAF7, TSC1, TSC2, TSHR, U2AF1, UBR5, USP8, VHL, WT1, XPO1, ZRSR2. 
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co-expressed with g, and Ni is the number of co-expressed genes with gene i. We ran 

dN/dS again on 100 of these 192-gene sets and found that 4 and 5 out of 100 gene 

lists yielded 95% confidence intervals of dN/dS >1 for subclonal mutations in neutral 

and non-neutral tumours, respectively. 

  

Effect of copy number 

We repeated the analyses after selecting only variants that fall within diploid 

regions, i.e. 1 copy of allele A and 1 copy of allele B according to ASCAT3, to show 

that the results were not induced by unreliable neutral calls, which could have resulted 

from the distortion of allele frequencies by copy number changes (Supplementary 

Fig. 3). 

 

 

 
Supplementary Figure 3. dN/dS ratios on all mutations vs. mutations in diploid regions only. Maximum 

likelihood estimates of the dN/dS ratios and associated 95% confidence intervals for (sub)clonal mutations in 

TCGA tumors categorized into neutral and non-neutral groups. Ratios for missense and truncating mutations are 

given. dN/dS > 1 indicates positive selection.  
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Code reproducibility and availability 
Analyses and figures were generated using R version 3.1.3. The branching 

processes are coded in Java. The code for simulations is available as a tarball 

(included within this submission) with R scripts for the deterministic simulations and 

for deriving the figures, and a Java runnable jar file for generating variant fractions 

from the branching processes together with the associated Java source code. 
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