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Abstract 
 
Background: Gene set enrichment analysis and overrepresentation analyses are commonly used 
methods to determine the biological processes affected by a differential expression experiment. 
This approach requires biologically relevant gene sets, which are currently curated manually, 
limiting their availability and accuracy in many organisms without extensively curated resources. 
New feature learning approaches can now be paired with existing data collections to directly 
extract functional gene sets from big data. 
  
Results: Here we introduce a method to identify perturbed processes. In contrast with methods 
that use curated gene sets, this approach uses signatures extracted from public expression data. 
We first extract expression signatures from public data using ADAGE, a neural network-based 
feature extraction approach. We next identify signatures that are differentially active under a 
given treatment. Our results demonstrate that these signatures represent biological processes that 
are perturbed by the experiment. Because these signatures are directly learned from data without 
supervision, they can identify uncurated or novel biological processes. We implemented 
ADAGE signature analysis for the bacterial pathogen Pseudomonas aeruginosa. For the 
convenience of different user groups, we implemented both an R package (ADAGEpath) and a 
web server (http://adage.greenelab.com) to run these analyses. Both are open-source to allow 
easy expansion to other organisms or signature generation methods. We applied ADAGE 
signature analysis to an example dataset in which wild-type and ∆anr mutant cells were grown as 
biofilms on the Cystic Fibrosis genotype bronchial epithelial cells. We mapped active signatures 
in the dataset to KEGG pathways and compared with pathways identified using GSEA. The two 
approaches generally return consistent results; however, ADAGE signature analysis also 
identified a signature that revealed the molecularly supported link between the MexT regulon 
and Anr.  
  
Conclusions: We designed ADAGE signature analysis to perform gene set analysis using data-
defined functional gene signatures. This approach addresses an important gap for biologists 
studying non-traditional model organisms and those without extensive curated resources 
available. We built both an R package and web server to provide ADAGE signature analysis to 
the community. 
 
Keywords: gene set analysis, denoising autoencoder, unsupervised feature extraction, data-
defined gene set, Pseudomonas aeruginosa 
 
Background 
High-throughput genome-scale measurements are now widely used because they can provide a 
global view of a biological system. Typical experiments involve a control and some sort of 
treatment, and the typical output is a list of genes with expression levels that were significantly 
altered. In addition to examining genes of interest individually, researchers often summarize 
results with gene set overrepresentation analysis (also called pathway analysis) to infer the 
biological basis of the gene list. These analyses aim to link groups of perturbed genes by their 
biological themes and help researchers understand the effect of an experiment on biological 
pathways. 
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Two primary components comprise gene set analyses: a testing algorithm and pre-defined sets of 
biologically themed genes. While the first part has been extensively explored [1–3], the second 
part has not drawn much attention because the creation and maintenance of gene sets remains a 
largely manual process requiring substantial curator effort. Currently, gene sets are primarily 
contributed by consortia of curators, such as the GO consortium [4,5]. Manual annotation 
ensures the quality of the gene sets but is slow, can be tedious, and leads to gene sets with certain 
biases [6]. Furthermore, while a small set of primary model organisms has received substantial 
curator effort, other organisms remain sparsely annotated. Accurately transferring annotations 
across organisms using computational prediction algorithms remains challenging, particularly for 
biological processes [7]. Due to the limited availability and sparse coverage of gene sets, the 
potential of gene set analysis remains limited for most non-traditional model organisms. 
 
In contrast to the paucity of carefully curated gene sets specific to these non-traditional models, 
the amount of genome-wide gene expression data has grown rapidly, especially for microbes 
which have a relatively small transcriptome and are inexpensive to assay [8]. For single-cell 
organisms, a complete compendium of public data ideally captures expression under numerous 
conditions. We may expect these compendia to extensively characterize many of the organism’s 
transcriptional regulatory processes and to be well-suited targets for the extraction of pathway-
like signatures.  
 
We previously developed ADAGE, an algorithm that extracts meaningful gene sets from 
genome-wide gene expression compendia [9]. ADAGE models are unsupervised neural network 
models of large publicly available gene expression compendia. Specifically, ADAGE models are 
denoising autoencoder neural networks [10,11]. ADAGE first encodes gene expression data into 
neural network nodes and then decodes those nodes to reconstruct the original expression levels. 
The denoising term in the name comes from the fact that random noise is added to the input 
while encoding individual samples. This results in a model that is able to reconstruct expression 
levels without noise and has been shown to make models more robust [11]. These neural network 
nodes describe features of the input data that capture essential patterns, i.e. those robust to noise. 
Our analysis of the genes that most influence each node previously revealed that they form gene 
sets that resemble human-annotated biological processes and pathways, which often exhibit 
consistent coexpression in large gene expression compendia [9,12]. We have termed such gene 
sets ADAGE signatures. We developed eADAGE, which summarizes multiple ADAGE models 
into an ensemble model, to more robustly capture pathways and found that it covered 
significantly more biological pathways more precisely [12]. In addition to signatures that match 
curated pathways, eADAGE also extracts signatures that group genes that match known but 
uncurated pathways and others that may represent undiscovered biological processes. 
 
To fully leverage signatures built by eADAGE or other robust feature construction approaches, 
we introduce an ADAGE signature analysis pipeline. ADAGE signature analysis aims to identify 
one or more signatures that respond to an experimental treatment. As with gene set analyses, 
these signatures represent biological processes that may be perturbed by the treatment. The 
approach is similar to traditional gene set analysis but replaces human-annotated gene sets with 
ADAGE-learned signatures. ADAGE signature analysis complements pathway-style analysis in 
any organism by providing an unsupervised perspective, and is usable for non-traditional model 
organisms or other organisms for which curated pathways are unavailable. Here we demonstrate 
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ADAGE signature analysis in the bacterial pathogen Pseudomonas aeruginosa. We chose P. 
aeruginosa as our model organism because it has sufficient public gene expression data to 
construct a model and a dedicated research community. Though sparsely curated in the recent 
past, its pathway annotations have been growing rapidly due to a community annotation initiative 
[13]. This allows us to validate the biological relevance of gene signatures learned by ADAGE, 
while also demonstrating its ability to identify as yet unannotated biological processes. To 
facilitate the use of ADAGE signature analysis, we developed both an R package for users with 
bioinformatics background and an easy-to-use web server intended for use by bench biologists.  
 
Methods 
 
ADAGE signature analysis workflow 
ADAGE signature analysis has three major steps: data preparation, active signature detection, 
and signature interpretation (Figure 1). In addition to the input dataset to be analyzed, ADAGE 
signature analysis also requires an ADAGE model and the gene expression compendium of an 
organism from which the model was built. The P. aeruginosa compendium and (e)ADAGE 
models can be built following instructions in [9,12]. 
 
Data preparation 
Gene expression data must be normalized to be compatible with the ADAGE model. Raw 
microarray data measured on the same chip platform as the compendium are analyzed with 
Robust Multi-array Average (RMA) [14]. RMA includes background correction, quantile 
normalization, and probe summarization; however, quantile normalization is performed against 
the quantile distribution of the compendium so that the resulting expression values are 
comparable with the compendium. Other types of gene expression data must first be processed 
into gene-level expression values. Gene identifiers used in the input data are mapped to the gene 
identifiers used in the compendium. We next impute the expression of missing genes using k-
nearest neighbors - the neighbors are computed based on similarity in the compendium. For 
processed microarray data, we apply quantile normalization using the compendium’s quantiles. 
For RNA-seq data, expression values are normalized to the compendium via TDM [15]. The last 
step in data preparation for all types of input data is a zero-one linear transformation using the 
compendium as reference. Measurements outside the range observed in the compendium are set 
to zero or one according to whether they are below or above the range. After processing, the 
dataset is ready for ADAGE signature analysis. 
 
Active signature detection 
The concept of ADAGE signature was first introduced in [12]. To recap, in an ADAGE model, 
genes connect to nodes via weights and this vector of weights characterizes each node (Figure 2). 
The distribution of the weight vector centers near zero and is close to normal, with a small 
number of genes contributing high weights. We group genes with weights more extreme than 2.5 
standard deviations from the mean on the positive side and the negative side of the weight 
distribution separately. These two gene sets form the positive signature and negative signature of 
a node and are simply named as “NodeXXpos” and “NodeXXneg”. The positive and negative 
signatures of the same node are not always related. As opposed to a simple set of genes, the 
signature is a gene set with a weight value for each gene that indicates the gene’s importance to 
the set. For simplicity and because the positive and negative sides of the distribution are already 
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separated, we ignore the signs of weight values. 
 
After data preparation, we calculate each signature’s activity for every sample in the input 
dataset. The signature’s activity reflects how active that signature is in each sample and is 
defined as the average expression values of signature genes weighted by genes’ absolute weights 
in the signature. This results in a matrix of activity values, where each row is a signature and 
each column is a sample, which can be shown in an activity heatmap (Figure 1). To detect 
signatures associated with an experimental treatment, we apply statistical tests to signature 
activities. The most appropriate statistical test depends on the experimental design. After 
applying the selected test, we can identify a list of the signatures with the greatest changes in 
activity in response to a particular experimental treatment. 
 
We have observed that multiple signatures can share many genes. Signature overlap may be due 
in part to the random noise added during training; however, we cannot rule out the possibility 
that the subtle differences between two overlapping signatures are biologically meaningful. 
Therefore, we must carefully handle signature overlap to remove redundant signatures but retain 
those relevant to a specific dataset. To accomplish this, we calculate marginal activities of every 
combination of two signatures. The marginal activity for a signature pair is the activity of one 
signature after removing genes that it overlaps with the second signature. After removal, we test 
whether the marginal activities still respond significantly to the treatment. We ignore signatures 
when their activity is no longer significant after removing the effect of another signature, as long 
as the other signature is not also removed through this process. In a special case where a group of 
signatures all become non-significant after removing each other, we keep the one that is most 
significantly altered. This process results in a final list of signatures affected by an experimental 
treatment. 
 
Signature interpretation 
It is important to note that a benefit of ADAGE signature analysis, as opposed to attempting to 
interpret the entire set of signatures, is that investigators only need to examine signatures that are 
affected by their experiment. Signatures are gene sets formed based on the expression patterns in 
a gene expression compendium. They are not annotated to a specific biological process, but we 
have used several strategies to help understand the biological meaning behind a signature. The 
most intuitive way is to examine its gene composition. If some genes have been previously 
characterized and share a biological theme, they may suggest the biological process represented 
by the signature. Users can also link existing curated biological knowledge such as KEGG [16] 
pathways and GO terms [17] to signatures through an enrichment test, though such annotations 
are not always available. Even when they exist, annotations are not expected to be 
comprehensive for non-traditional model organisms. Finally, users can probe a signature by 
analyzing the compendium and extracting experiments in which the signature has its largest 
activity ranges. We expect these to be experimental conditions in which the biological processes 
represented by the signature are perturbed. Taken together or individually, these steps allow 
researchers to quickly interpret signatures of interest without curating a complete collection of 
pathways. 
 
To visualize which genes are in signatures and how they are related across the overall model, we 
construct a gene-gene network using genes in selected signatures of interest. The network is built 
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upon gene-gene relationships extracted from an ADAGE model. In the network, two genes are 
linked by an edge if the correlation between their weight vectors, i.e. how strongly connected 
they are to each node, is higher than a tunable cutoff. Depending on how they are linked with 
each other, genes can form modules in the network. These modules highlight functional units of 
genes in differentially active signatures. The network can be interactively explored and its use is 
facilitated by overlaid information, such as gene descriptions, differential expression in the 
experiment being analyzed, and annotations for each gene from GO and KEGG where available. 
 
User interface 
There are two ways for users to access ADAGE signature analysis. We provide an R package, 
intended for computationally inclined users and a web server intended for those without 
familiarity with the R programming language. The R package and the web server are both 
preloaded with a Pseudomonas aeruginosa gene expression compendium containing microarray 
samples measured on the Pae_G1a Affymetrix Pseudomonas aeruginosa array that were 
available on the ArrayExpress database [18] before July 31 2015, a previously published 
eADAGE model built on this compendium [12], and P.a. gene information retrieved from 
NCBI’s ftp site. Both are open source and licensed freely, so that investigators can add their own 
machine learning models and additional organisms. We also plan to expand both resources to 
include additional non-traditional model organisms. 
 
Web server 
We developed a web server that implements the most central components of ADAGE signature 
analysis. The web server is designed with a clean separation between a backend API and a 
JavaScript application frontend. This allows programmatic access to the server if desired. The 
backend is written in Python using the Django framework. The frontend uses AngularJS to 
provide a responsive user experience, with Vega and D3 used to provide interactive 
visualizations. Both the backend and frontend are available under the permissive 3-clause BSD 
open source license. Advanced users can initialize their own instance of the ADAGE web server, 
load models of their choosing, and supply this interface to users. Our public instance of the 
ADAGE web server is hosted on Amazon Web Services. Here we describe the main features 
provided by the web server. Users first need to choose a machine learning model on the 
homepage and all the following analyses are model specific. Then users can explore assays and 
experiments and perform signature analysis (Analyze), explore genes’ similarities in the model 
through a gene-gene network (GeneNetwork), explore signatures in the model (Signature), and 
obtain annotations for the underlying sample compendium (Download).  
 
Analyze: The Analyze feature guides users to perform the entire ADAGE signature analysis 
pipeline (Figure 3). To begin the analysis, users first search experiments or samples with a 
keyword. Next users identify experiments or samples of interest and add them to the analysis 
basket. Clicking the analysis basket takes users to the Sample page, where sample information is 
listed. A heatmap is plotted showing signature activities in all samples and can be clustered by 
sample or signature. To compare two groups of samples, users assign samples to either a 
treatment (yellow)  or a control (purple) group. Then a differential activation test between the 
two groups is performed and its result is presented in a volcano plot showing difference in mean 
activity in the x-axis and significance p-value in the y-axis. Signatures with positive activity 
differences are active in the comparison group. Users choose signatures that are highly 
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differentially active and examine them either in the Signature page or the GeneNetwork page 
described below. 
 
GeneNetwork: The GeneNetwork feature allows users to investigate a gene or a group of genes 
in an ADAGE-derived gene-gene network. Users input genes of interest from the organism 
associated with that machine learning model. A network including input genes and their 
connecting genes drawn from the machine learning model will be shown. The default view 
presents genes connected by an absolute edge correlation higher than 0.5. Users can adjust the 
correlation range to examine more strongly or weakly connected genes. Another way to obtain 
genes of interest is from a two-group comparison through the Analysis feature as described 
above. If the gene-gene network results from this process, then the color of each gene in the 
network reflects gene expression fold change. Otherwise, the node color is grey. Gene 
information such as names and function description are provided when clicking on a node. 
Signatures shared by two connecting genes are shown when clicking on an edge. 
 
Signature: The Signature feature helps users to interpret the biological meaning of an ADAGE 
signature. After choosing a machine learning model, users can directly examine a signature in the 
model. The Signature page lists each gene in a signature and its known functions. It also presents 
a table of GO and KEGG pathways associated with the signature. To help identify other public 
datasets that have the signature active, it also shows experiments with the highest activity range 
for that signature.  
 
Download: The Download feature allows users to download sample annotations. These 
annotations are manually curated experimental information for each sample in the training 
compendium [12]. 
 
R package 
We built an R package called ADAGEpath to perform ADAGE signature analysis. It is written 
exclusively in R [19] using the devtools package [20] and is available on github 
(https://github.com/greenelab/ADAGEpath) under the BSD-3-clause license. Here we describe 
the main functions in the package. 
 
The function load_dataset() loads and processes an input dataset from local machine or directly 
from the ArrayExpress database if an accession number is provided. The recommended input 
format is a set of raw CEL files, which can be directly processed from the probe level with the 
help of the affy [21], affyio [22], and preprocessCore [23] packages from Bioconductor. When 
CEL files are not available or the input dataset is measured by RNAseq, load_dataset() also 
accepts processed expression values at the gene level. Missing values in processed data are 
imputed with the impute Bioconductor package. RNAseq measurements are further transformed 
using the TDM package [24]. Since ADAGE uses expression values between 0 and 1, input 
expression values are linearly transformed to be between 0 and 1 using the function 
zeroone_norm(). 
 
The function calculate_activity() calculates each signature's activity for each sample in the 
dataset. To identify signatures with differential activities, we suggest using the Bioconductor 
package limma [25], particularly when sample size is small. Limma builds linear models to test 
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differential activation and estimates variance more robustly than the t-test. To facilitate the most 
frequently used two-group comparison, we wrap a limma-based two-group differential activation 
test into the function build_limma(). The test significance and the activity difference between 
two groups can be visualized using plot_volcano(). The function get_active_signatures() 
supports three ways to prioritize most activated signatures: filtering by significance, sorting by 
absolute activity difference, and optimizing significance and activity difference simultaneously 
through choosing signatures lying on the top Pareto fronts. In multi-objective optimization, if 
there is no other solution that outperforms a specific solution over all objectives, that solution is 
said to be Pareto optimal. All such solutions make up the Pareto front. Limma also supports 
many types of experimental designs, such as factorial design and time-course experiments. We 
provide examples of analyzing a time-course experiment and a factorial-design experiment using 
limma in the package vignettes. Users can also apply other statistical tests to identify activated 
signatures if desired. The function plot_activity_heatmap() generates a heatmap showing how 
signature activity changes across samples. 
 
To remove redundant signatures, users can calculate the marginal activity for each permutation 
of two signatures using calculate_marginal_activity(). When the comparison is between two 
groups of samples, the function plot_marginal_activation() helps visualize whether a signature is 
still strongly active after the impact of another signature has been removed and the function 
remove_redundant_signatures() returns non-redundant active signatures for a dataset. Users can 
check how signatures overlap with each other in their gene compositions using the function 
plot_signature_overlap(). 
 
To get a detailed view of a signature or a group of signatures, users can retrieve their constituent 
genes using annotate_genes_in_signatures(). Users can also download existing GO terms and 
KEGG pathways [16] from the TRIBE web server [26] using fetch_geneset() and associate 
signatures to known GO and KEGG pathways using annotate_signatures_with_genesets(). The 
TRIBE web server also allows users to build and share their own custom gene sets, so the 
connection to this resource enables custom gene set analysis as well. Lastly, users can visualize 
signatures via gene-gene networks using the function visualize_gene_network(). The network is 
built with the help of the R package igraph [27] and made interactive with the package 
visNetwork [28].  
 
ADAGEpath is built upon many existing R packages. In addition to the packages mentioned 
above, ADAGEpath uses functions from gplots [29], corrplot [30], leaflet [31], and plotly [32] 
for plotting; httr [33] and jsonlite [34] for data querying; readr [35], data.table [36], tibble [37], 
dplyr [38], magrittr [39], R.utils [40], and reshape2 [41].  
 
A comparison between two user interfaces 
The web server and R package target users with different backgrounds and needs. For bench 
scientists, the web server is straightforward to use and does not require familiarity with any 
programming language. For bioinformaticians, the R package provides more flexibility. It allows 
programmatic access and integration with other analysis pipelines. Powered by rich statistical 
resources in R, the R package tests the differential activation using the more robust linear model 
(provided by the limma R package). The web server currently supports the two-sample t-test for 
differential activation. Therefore, it's normal to get slightly different results from the two 
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platforms. To avoid security and privacy issues with data storage and management, the web 
server currently supports only public datasets. The overlapping signature removal function is not 
available in the web server at this time. Users who wish to automatically filter overlapping 
signatures or analyze datasets that are not publicly available should use the R package. 
 
Results 
 
Here we demonstrate ADAGE signature analysis on an example dataset (GSE67006). This 
dataset contains wild-type and ∆anr mutant grown as biofilms on the Cystic Fibrosis genotype 
bronchial epithelial cells (CFBE) in order to model cystic fibrosis airways infections. Anr is a 
transcriptional regulator responsible for the aerobic to anaerobic transition [42]. We performed 
ADAGE signature analysis to identify biological processes that were affected by Anr on CFBE 
cells. The script that reproduces the following analysis is available on Github 
(https://github.com/greenelab/SignatureAnalysis-CaseStudy). 
 
We first ran a two-group limma test between wild-type samples and mutant samples to detect 
signatures with significantly different activities. We visualized test results as a volcano plot with 
activity difference on the x-axis and test significance on the y-axis (Figure 4A). Many signatures 
passed the 0.05 significance cutoff. To focus on the most differentially active signatures, we 
considered both activity differences and statistical significance by selecting signatures that were 
on the top 10 layers of Pareto fronts. This resulted in 36 signatures and their activities in each 
sample were visualized with a heatmap in which yellow indicated high activity and blue 
indicated low activity (Figure 4B).  
 
Because signatures could overlap in their gene compositions, we evaluated the effects of 
ADAGE parameters on overlap. We observed that signatures tend to have more overlapping 
genes when the model is trained with higher corruption level (the amount of noise added) (Figure 
S1A, B). For each overlap, we cannot rule out the possibility that subtle differences are 
biologically meaningful. Supporting the potential biological distinctions between similar 
signatures, models trained with more noise also cover more biological pathways within a 
reasonable corruption range (0% to 25% corruption) (Figure S1C). For this reason, we employed 
a data-driven process to remove overlapping signatures before performing detailed investigation 
of specific signatures. 
 
We calculated the marginal activity for each combination of signature pairs and tested its 
significance in differentiating the wild-type and deletion strains. Figure 4C shows the test 
significance (adjusted p-values in the -log10 scale) when the signature in each column was 
removed from the signature in the row and the diagonal shows the significance of each signature. 
A cross sign indicates non-significant p-values. We define a signature to be redundant if it 
becomes non-significant after removing the effect of another signature. Following these rules, we 
dropped the following signatures: Node119pos, Node214neg, Node299pos, Node130pos, 
Node250neg, Node154pos, Node63neg, Node39neg, Node228pos, Node158neg, Node140pos, 
Node269neg, Node31neg, Node185neg, Node275pos, Node278pos, and Node285neg. 
Interestingly, Node34pos and Node28neg shared many genes (Figure 4D), but they each 
contained additional genes and both remained significant in the marginal activation test. This 
result highlighted the importance of viewing signature overlap in the context of a dataset. At this 
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stage, there were 19 differentially active signatures remaining. These were visualized together in 
a gene-gene network (edge correlation cutoff = 0.5) (Figure 5A); the edges between genes in this 
network revealed sets of genes that have transcriptional relationships as detected in the ADAGE 
model. Network modules, discrete clusters within the network, can reveal regulons. For example, 
the sets of genes involved in denitrification (Figure 5C).  
 
Table 1: Signatures selected by ADAGE signature analysis for the example dataset and their 
associated KEGG pathways.  

Signature Pathway 

Pathway 
association 
significance 
(adj.p.val) 

Pathway 
activation 

significance 
(adj.p.val) 

Node276neg KEGG-Module-M00156: Cytochrome c oxidase, cbb3-type 1.10E-03 0.00E+00* 
Node34pos KEGG-Module-M00156: Cytochrome c oxidase, cbb3-type 4.20E-03 1.00E-04* 
Node38neg KEGG-Module-M00334: Type VI secretion system 1.00E-04 2.00E-04* 
Node33neg KEGG-Module-M00334: Type VI secretion system 0.00E+00 2.00E-04* 

Node28neg KEGG-Pathway-pae00910: Nitrogen metabolism - Pseudomonas 
aeruginosa PAO1 1.00E-04 2.00E-04* 

Node31pos KEGG-Module-M00334: Type VI secretion system 0.00E+00 2.00E-04* 
Node28neg KEGG-Module-M00529: Denitrification, nitrate => nitrogen 1.00E-04 4.00E-04* 

Node276neg KEGG-Pathway-pae00460: Cyanoamino acid metabolism - 
Pseudomonas aeruginosa PAO1 2.10E-03 9.00E-04* 

Node57neg KEGG-Module-M00240: Iron complex transport system 2.00E-04 7.50E-03* 
Node155neg KEGG-Module-M00240: Iron complex transport system 4.50E-03 1.48E-02* 

Node155neg KEGG-Pathway-pae01053: Biosynthesis of siderophore group 
nonribosomal peptides - Pseudomonas aeruginosa PAO1 0.00E+00 1.50E-02* 

Node57neg KEGG-Pathway-pae01053: Biosynthesis of siderophore group 
nonribosomal peptides - Pseudomonas aeruginosa PAO1 0.00E+00 1.51E-02* 

Node66pos KEGG-Pathway-pae01053: Biosynthesis of siderophore group 
nonribosomal peptides - Pseudomonas aeruginosa PAO1 0.00E+00 1.52E-02* 

Node205neg KEGG-Pathway-pae01053: Biosynthesis of siderophore group 
nonribosomal peptides - Pseudomonas aeruginosa PAO1 0.00E+00 1.53E-02* 

Node27neg KEGG-Pathway-pae01053: Biosynthesis of siderophore group 
nonribosomal peptides - Pseudomonas aeruginosa PAO1 2.40E-03 1.59E-02* 

Node33neg KEGG-Module-M00644: Vanadium resistance, efflux pump 
MexGHI-OpmD 3.00E-04 2.88E-01 

Node155neg KEGG-Module-M00242: Zinc transport system 1.35E-02 1.00E+00 

Node276neg KEGG-Pathway-pae01503: Cationic antimicrobial peptide 
(CAMP) resistance - Pseudomonas aeruginosa PAO1 0.00E+00 1.00E+00 

Node276neg KEGG-Pathway-pae00520: Amino sugar and nucleotide sugar 
metabolism - Pseudomonas aeruginosa PAO1 2.40E-03 1.00E+00 

Node276neg KEGG-Module-M00721: Cationic antimicrobial peptide (CAMP) 
resistance, arnBCADTEF operon 0.00E+00 1.00E+00 

Node9pos KEGG-Pathway-pae00260: Glycine, serine and threonine 
metabolism - Pseudomonas aeruginosa PAO1 5.10E-03 1.00E+00 
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Node9pos KEGG-Pathway-pae00630: Glyoxylate and dicarboxylate 
metabolism - Pseudomonas aeruginosa PAO1 6.20E-03 1.00E+00 

The significance of a pathway’s association with a signature and the significance of the 
pathway’s activity difference between ∆anr mutant and wild-type are provided respectively. 
Adjusted p-values were rounded off to three decimal digits. A star indicates a significantly active 
pathway with adjusted p-value <=0.05. Pathways detected both by ADAGE signature analysis 
and GSEA (Table 2) are colored correspondingly. 
 
Table 2: GSEA result for the example dataset.  

Pathway Pathwa
y size 

Enrichmen
t score 

Enrichment 
significanc
e (FDR q-

val) 
KEGG-MODULE-M00178: RIBOSOME, BACTERIA 56 0.622 0.00E+00* 

KEGG-PATHWAY-PAE03010: RIBOSOME - 
PSEUDOMONAS AERUGINOSA PAO1 56 0.622 0.00E+00* 

KEGG-MODULE-M00334: TYPE VI SECRETION SYSTEM 43 -0.83 0.00E+00* 
KEGG-PATHWAY-PAE03070: BACTERIAL SECRETION 

SYSTEM - PSEUDOMONAS AERUGINOSA PAO1 90 -0.609 4.29E-04* 
KEGG-PATHWAY-PAE01053: BIOSYNTHESIS OF 

SIDEROPHORE GROUP NONRIBOSOMAL PEPTIDES - 
PSEUDOMONAS AERUGINOSA PAO1 6 -0.995 1.13E-03* 

KEGG-MODULE-M00331: TYPE II GENERAL 
SECRETION PATHWAY 33 -0.664 3.35E-03* 

KEGG-PATHWAY-PAE00910: NITROGEN METABOLISM 
- PSEUDOMONAS AERUGINOSA PAO1 37 -0.641 3.54E-03* 

KEGG-MODULE-M00156: CYTOCHROME C OXIDASE, 
CBB3-TYPE 8 -0.877 7.24E-03* 

KEGG-MODULE-M00332: TYPE III SECRETION SYSTEM 18 -0.722 9.69E-03* 
KEGG-MODULE-M00529: DENITRIFICATION, NITRATE 

=> NITROGEN 10 -0.81 1.06E-02* 
KEGG-MODULE-M00023: TRYPTOPHAN 

BIOSYNTHESIS, CHORISMATE => TRYPTOPHAN 9 -0.808 2.99E-02* 
KEGG-PATHWAY-PAE00280: VALINE, LEUCINE AND 

ISOLEUCINE DEGRADATION - PSEUDOMONAS 
AERUGINOSA PAO1 48 -0.562 3.64E-02* 

KEGG-PATHWAY-PAE00970: AMINOACYL-TRNA 
BIOSYNTHESIS - PSEUDOMONAS AERUGINOSA PAO1 27 0.623 4.38E-02* 

KEGG-PATHWAY-PAE00460: CYANOAMINO ACID 
METABOLISM - PSEUDOMONAS AERUGINOSA PAO1 11 -0.675 2.04E-01 

KEGG-MODULE-M00240: IRON COMPLEX TRANSPORT 
SYSTEM 10 -0.661 2.63E-01 

Adjusted p-values were rounded off to three decimal digits. Pathways significantly enriched 
(FDR q-val <= 0.05) are highlighted by stars. Pathways detected both by ADAGE signature 
analysis (Table 1) and GSEA are colored correspondingly. 
 
We next performed analyses designed to suggest the biological basis of the activated signatures. 
We linked signatures to KEGG pathways through enrichment tests. Twelve of the nineteen 
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signatures were significantly enriched for one or more of fourteen KEGG pathways (Table 1, 
pathway association significance). We then tested whether these KEGG pathways were 
differentially active between wild-type and ∆anr mutants using only genes shared by signatures 
and their associated pathways. Genes in seven of the fourteen KEGG pathways were 
significantly activated (adjusted p-value <=0.05) (Table 1, pathway activation significance). As a 
comparison, we also performed the popular gene set enrichment analysis (GSEA) [43] and 
considered pathways with FDR q-values lower than 0.05 in GSEA’s permutation test (Table 2). 
Five pathways were detected by both GSEA and ADAGE: Type VI secretion system; 
Cytochrome c oxidase, cbb3-type; Nitrogen metabolism; Denitrification, nitrate => nitrogen; 
Biosynthesis of siderophore group nonribosomal peptides. These pathways have been shown to 
be regulated by Anr [44]. Eight pathways were only detected by GSEA (Table 2, pathways with 
white background). Many are large pathways including the Ribosome and bacterial secretion 
system pathways (size of 56 and 90 respectively). GSEA has been found to be biased towards 
large gene sets [45]. Three of the GSEA-only pathways were associated with signatures that 
nearly met the signature selection criteria (Figure S2), and two were not associated with any 
ADAGE signatures. Nine KEGG pathways were not significantly enriched in GSEA but were 
associated with active ADAGE signatures (Table 1, pathways with white background). Among 
them, two pathways (Cyanoamino acid metabolism and Iron complex transport system) were 
considered activated by ADAGE signature analysis and also achieved high enrichment scores in 
GSEA (Table 2). The other seven pathways did not appear activated in this dataset. This 
primarily occurred when one signature was associated with several KEGG pathways, though 
sometimes only one or two of the pathways were strongly activated in this dataset. The fact that 
several pathways are grouped into one signature indicates that their expression frequently co-
varies across the compendium. Therefore, pathways that are associated with active signatures but 
are not active themselves in a dataset should be viewed critically. They could be co-regulated 
pathways whose activities did not peak at the time of experiment or pathways that are co-
regulated but only under conditions not relevant to this experiment. 
 
ADAGE built not only signatures resembling existing pathways but also novel signatures that are 
unavailable in traditional pathway analysis. Seven differentially active signatures were not 
enriched for KEGG pathways, including Node35pos (Figure 5B), the most active signature in the 
∆anr mutant (Figure 4A). We also attempted to interpret Node35pos using GO terms but, as with 
our KEGG analysis, found it associated with no existing GO terms. Node35pos contains genes 
mexEF and oprN, which encode multidrug efflux protein, and many uncharacterized genes. The 
majority of the genes in Node35pos were highly expressed in ∆anr mutants. To examine whether 
or not Node35pos captured a regulatory module, we analyzed the three most highly differentially 
expressed uncharacterized genes (PA4881, PA3229, and PA2486) in the STRING network [46] 
and found that they all returned similar networks that were subsets of Node35pos (Figure S3). 
Interestingly, these STRING networks were primarily built upon text mining. The reference 
papers used by STRING that performed a transcriptional profiling either did not release data [47] 
or used RNA-seq [48] and thus they were not included in the eADAGE model training set. 
Therefore, we concluded that signature Node35pos captured a transcriptional process, which was 
independently supported by the STRING network. MexEF-OprN is known to be regulated by 
MexT [49], which is connected to genes in Node35pos but is not in Node35pos itself (Figure 
5B). Further examination showed that genes in Node35pos overlapped the MexT regulon (FDR 
q-value of 8.7e-23, MexT regulon obtained from CollecTF database [50]). The link between 
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MexT and Anr has not been explicitly studied before. In strains lacking anr, the expression of 
mexT and MexT-regulated genes was higher. Because it has been shown that the MexT regulon, 
including the mexEF-oprN operon, is induced in response to nitrosative stress [51], we predict 
that the lack of the Anr- regulated denitrification genes nar, nir, and nor reduced detoxification 
of endogenously generated reactive nitrogen species [52–54], thereby activating MexT. The 
strong up-regulation of MexT, a redox-responsive regulator, may also be more active in ∆anr 
mutant due to other changes in intracellular redox [55].  
 
Through examining the overlapping genes in the seven uncharacterized signatures, we divided 
them into two groups (Figure S4).  Group 1 contains MexT regulatory programs as represented 
by Node35pos. Group 2 contains many quorum sensing controlled genes, which are lower in the 
∆anr mutant. Interestingly, the visualization of these pathways in output generated by this tool 
prompted the examination of connections between the MexT regulon and quorum sensing. 
Indeed, high expression of mexEF-oprN is associated with decreased quorum sensing due to the 
efflux of the QS molecule HHQ [56]. At the time we retrieved KEGG pathways and performed 
this analysis, signatures in Group 2 were still uncharacterized in KEGG. An updated analysis 
showed that signatures in Group 2 were now associated with KEGG pathways quorum sensing 
and phenazine biosynthesis, which were added to KEGG on 8-1-2016 and 3-27-2017 
respectively. Signatures in Group 1 were still uncharacterized in the updated analysis. Quorum 
sensing and phenazine biosynthesis have been studied for a long time in P. aeruginosa with 
many well-characterized genes. The time lag in their annotation hinders their usage in traditional 
pathway analysis, yet ADAGE identified them directly from public data and grouped them into 
signatures. This again highlights the strength of ADAGE-based signature analysis: it does not 
rely on pre-defined pathways but uses regulatory patterns directly extracted from large 
compendia of gene expression data. 
 
Discussion  
Researchers performing ADAGE signature analysis reverse the steps of traditional gene set 
analysis: they first identify signatures with statistically significant differential expression patterns 
before attempting interpretation. These researchers then only need to focus on signatures relevant 
to their experiments. This is important for organisms with incomplete or absent gene sets, 
because the alternative would be to curate every possible gene set before performing any 
analysis. The lag from discovery to gene set annotation also hinders the application of traditional 
gene set analysis to organisms with available curated resources. Our analysis revealed that even 
well characterized process, e.g. quorum sensing, can lack annotation in some resources and thus 
would not be detectable in traditional gene set analysis. However, biologists working in a field 
can often readily identify and interpret these differentially active ADAGE signatures. ADAGE 
signatures may also be comprised entirely of uncharacterized genes. Though such signatures 
would be difficult to interpret, they may represent novel biological processes. Thus ADAGE 
signature analysis is well suited to hypothesis generation in organisms about which little is 
known. 
 
Constructing high-quality signatures in an unsupervised manner requires two key components: 
sufficient data and suitable feature extraction algorithms. The ideal data compendium should be a 
broad survey of an organism probed under many conditions. Signature analysis is unlikely to 
detect pathways that have never been perturbed in a compendium, and a heavily biased 
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compendium would result in limited detection of biological processes. Though it is difficult to 
directly measure data comprehensiveness, both data quantity and a broad set of contributing 
research groups are expected to positively correlate with comprehensiveness. Quantity is 
important because more overall conditions are likely to have been measured, and the number of 
contributing research groups is important because they are likely to be studying different aspects 
of an organism’s biology. As genome-wide measurements continue to grow, we expect such 
methods to be more broadly applied to reveal perturbed biological processes and pathways. 
 
Good feature extraction algorithms are also needed to best utilize the available data. Many 
feature extraction approaches have been applied on biological data, such as PCA [57–59], ICA 
[60–62], and NMF [63–65]. We previously developed ADAGE, a neural network-based 
approach, and found it to outperform PCA and ICA in representing biological states [9] and 
capturing KEGG pathways [12] in P. aeruginosa. However, it is still challenging to 
comprehensively evaluate the “effectiveness” of features built by different approaches, 
especially for less-studied organisms. Because every method has its own underlying assumptions 
and objectives, we expect them to learn different types of features and complement each other. 
The concept of gene set analysis with data-defined gene sets is not limited to ADAGE signatures. 
Future work will focus on expanding this analysis pipeline to more feature types and providing 
support for more organisms. 
 
Conclusions 
Gene set analysis has been a powerful tool for interpreting the results of high throughput 
experiments. However, curating biologically important gene sets requires tremendous effort. As 
a result, many organisms, including those that are widely used to study certain processes, remain 
unannotated. In contrast with the sparsity of gene set annotations, high-throughput experimental 
data has accumulated rapidly. Unsupervised analysis of these data can reveal gene sets that 
parallel human-curated biological pathways. We introduced ADAGE signature analysis, a gene 
set analysis method powered by signatures built directly from expression data by ADAGE or 
other unsupervised feature construction methods. The approach includes three major steps: data 
preparation, differentially active signature detection, and signature interpretation. We compared 
this approach with GSEA on an example dataset and observed that ADAGE signature analysis 
and GSEA detected similar curated KEGG pathways. However, ADAGE signature analysis also 
identified a novel regulatory relationship unannotated in KEGG. This result highlights the 
advantage of ADAGE signature analysis: it does not depend on curated knowledgebases but 
instead the breadth of existing public data. ADAGE signature analysis is implemented in an R 
package and a web server for users with different backgrounds and needs. For those without a 
specific dataset to analyze, we also provided a gene-gene network view to explore transcriptional 
regulatory modules learned by ADAGE.  
 
List of abbreviations 
ADAGE: Analysis using Denoising Autoencoders for Gene Expression data 
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Figure legends 
Figure 1: ADAGE signature analysis workflow.  
An input dataset is first processed to be compatible with a provided ADAGE model trained on 
the provided expression compendium. Raw microarray measurements are transformed by RMA, 
while processed data first have missing values imputed and then are normalized to the 
compendium. The second step is detecting active signatures in the dataset. Signature activity for 
each sample in the dataset is computed. Statistical test on the signature activity is used to identify 
signatures respond to an experimental treatment. Redundant signatures are further removed. The 
last step is interpreting the biological meaning of active signatures through evaluating genes in 
the signatures, pathways associated with the signatures, datasets related to the signatures, and a 
gene-gene network built upon the signatures.  
 
Figure 2: ADAGE model and gene signatures. 
In an ADAGE model, every gene is linked to every node through an edge. The edge weight is 
fixed after model training and its magnitude is reflected by edge thickness. The distribution of 
gene weights to a node is centered at zero and close to normal. Genes giving weights higher than 
the positive high-weight (HW) cutoff together form the positive gene signature for that node 
(genes in the orange circle). Similarly, genes giving weights lower than the negative HW cutoff 
together form negative gene signature for that node (genes in the blue circle). 
 
Figure 3: ADAGE web server interface and analysis workflow. 
The ADAGE web server interface has six tabs on the top. The signature analysis pipeline starts 
with choosing a machine learning model on the homepage (step1) and choosing to explore assays 
and experiments (step2). In the Analyze page, users can search datasets or samples using 
keywords (step3). After clicking the “+” button beside each dataset or sample, the dataset with 
all samples in it or an individual sample is added into the analysis basket (step4). After users add 
samples, clicking the basket brings users to the Sample page (step5). The Sample page provides 
experimental information about each sample and a signature activity heatmap. Users can define a 
two-group comparison by selecting samples and assigning them to either treatment (yellow) 
group or control (purple) group (step6). The signatures that are differentially active between two 
groups of samples can be examined in a volcano plot (step7). Next users select signatures in the 
volcano plot (step8) and further inspect them in the Signature page (step9). The Signature page 
provides information about gene composition, gene set association, and related datasets of a 
signature. Lastly, users can visualize their interested signatures in a gene-gene network (step10). 
Users can also directly examine genes in the gene-gene network through the GeneNetwork tab 
and examine a signature through the Signature tab. 
 
Figure 4: ADAGE signature analysis for the example dataset. 
A: A volcano plot showing both the activity difference and the statistical test significance in the 
activation test between ∆anr mutant and wild-type. Signatures that lie on the top 10 layers of 
Pareto fronts are labeled and highlighted in red. The red dotted line indicates the significance of 
–log10(0.05). 
B: A heatmap showing the absolute activity difference of signatures detected in panel A. 
C: A non-symmetric heatmap reflecting the marginal activation significance (adjusted p value in 
–log10 scale) between every signature pair in panel A. For two signatures, one in the row and the 
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other in the column, the heatmap color depicts how strong the signature in the row is 
differentially activated after the genes it shares with the signature in the column have been 
depleted. A cross sign indicates a non-significant activation (adjusted p-value > 0.05). The 
diagonal shows the activation significance of a signature without overlapping gene removal. 
D: A symmetric heatmap reflecting signature similarity between every signature pair in panel A. 
The heat color represents the odds ratio that two signatures overlap in their gene contents. 
Because comparing a signature with itself would result in an odds ratio of infinity, values on the 
diagonal are replaced by the highest odds ratio among all signature pairs. 
 
Figure 5: The gene-gene network for the example dataset. 
A: The ADAGE gene-gene network subset by genes in the selected active signatures. Each 
vertex in the network is a gene. Vertex color corresponds to gene expression fold change 
between ∆anr mutant and wild-type (red: high in ∆anr mutant; blue: low in ∆anr mutant). Genes 
with black border are genes that have KEGG pathway annotations. The thickness of edges 
reflects how strong gene-gene relationships are in the ADAGE model. 
B: The network module of genes in Node35pos. 
C: The network module of genes involved in denitrification. 
 
Figure S1: The relationship between corruption level used in building ADAGE models and the 
redundancy of signatures derived from the models. The plot summarized results from 100 
ADAGE models built at each corruption level. 
A: The number of signature pairs with gene compositions significantly overlapped increases with 
corruption level until the corruption level reaches 30%.  
B: As corruption level increases, the number of signatures in a model that enriched of the same 
KEGG pathway also increases on average, indicating the signatures become more redundant.  
C: ADAGE models tend to capture more unique KEGG pathways (pathway coverage) when 
more noise was added during training until the corruption level is higher than 25%. 
 
Figure S2: KEGG pathways enriched in the GSEA analysis but not associated with selected 
signatures in the ADAGE signature analysis. In the same volcano plot as Figure 4A, signatures 
associated with GSEA-only pathways are highlighted in blue while signatures lie on the first 10 
Pareto fronts are highlighted in Red. Node137pos, Node252neg, and Node113neg obtained high 
significances in the activation test and would be considered if we lose the activation cutoff. 
Pathways Tryptophan biosynthesis, chorismate => tryptophan (KEGG-Module-M00023) and 
Aminoacyl-trna biosynthesis (KEGG-Pathway-pae00970) are not associated with any signature, 
so they were not labeled in the plot. 
 
Figure S3: Validation of Node35pos as a transcriptional program via the STRING network. 
A: The largest connected module of the gene-gene network subset by genes in Node35pos. 
B: Gene-gene networks returned by STRING when searching PA2486, PA3229, and PA4881 
respectively. The STRING networks of the three genes are subsets of the Node35pos network. 
 
Figure S4: Groups of signatures that are uncharacterized by KEGG. 
A: The signature similarity heatmap of uncharacterized signatures. Heatmap color reflects the 
odds ratio that two signatures overlap in their gene contents. Signatures are divided into two 
groups based on their similarity. 
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B: The largest connected module in the gene-gene network subset by genes in Group1 
signatures. This module contains the MexT regulatory program. 
C: The largest connected module in the gene-gene network subset by genes in Group2 
signatures. This module contains many genes involved in quorum sensing. 
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