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Abstract

Background: Gene set enrichment analysis and overrepresentation analyses are commonly used
methods to determine the biological processes affected by a differential expression experiment.
This approach requires biologically relevant gene sets, which are currently curated manually,
limiting their availability and accuracy in many organisms without extensively curated resources.
New feature learning approaches can now be paired with existing data collections to directly
extract functional gene sets from big data.

Results: Here we introduce a method to identify perturbed processes. In contrast with methods
that use curated gene sets, this approach uses signatures extracted from public expression data.
We first extract expression signatures from public data using ADAGE, a neural network-based
feature extraction approach. We next identify signatures that are differentially active under a
given treatment. Our results demonstrate that these signatures represent biological processes that
are perturbed by the experiment. Because these signatures are directly learned from data without
supervision, they can identify uncurated or novel biological processes. We implemented
ADAGE signature analysis for the bacterial pathogen Pseudomonas aeruginosa. For the
convenience of different user groups, we implemented both an R package (ADAGEpath) and a
web server (http://adage.greenelab.com) to run these analyses. Both are open-source to allow
easy expansion to other organisms or signature generation methods. We applied ADAGE
signature analysis to an example dataset in which wild-type and Aanr mutant cells were grown as
biofilms on the Cystic Fibrosis genotype bronchial epithelial cells. We mapped active signatures
in the dataset to KEGG pathways and compared with pathways identified using GSEA. The two
approaches generally return consistent results; however, ADAGE signature analysis also
identified a signature that revealed the molecularly supported link between the MexT regulon
and Anr.

Conclusions: We designed ADAGE signature analysis to perform gene set analysis using data-
defined functional gene signatures. This approach addresses an important gap for biologists
studying non-traditional model organisms and those without extensive curated resources
available. We built both an R package and web server to provide ADAGE signature analysis to
the community.

Keywords: gene set analysis, denoising autoencoder, unsupervised feature extraction, data-
defined gene set, Pseudomonas aeruginosa

Background

High-throughput genome-scale measurements are now widely used because they can provide a
global view of a biological system. Typical experiments involve a control and some sort of
treatment, and the typical output is a list of genes with expression levels that were significantly
altered. In addition to examining genes of interest individually, researchers often summarize
results with gene set overrepresentation analysis (also called pathway analysis) to infer the
biological basis of the gene list. These analyses aim to link groups of perturbed genes by their
biological themes and help researchers understand the effect of an experiment on biological
pathways.
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Two primary components comprise gene set analyses: a testing algorithm and pre-defined sets of
biologically themed genes. While the first part has been extensively explored [1-3], the second
part has not drawn much attention because the creation and maintenance of gene sets remains a
largely manual process requiring substantial curator effort. Currently, gene sets are primarily
contributed by consortia of curators, such as the GO consortium [4,5]. Manual annotation
ensures the quality of the gene sets but is slow, can be tedious, and leads to gene sets with certain
biases [6]. Furthermore, while a small set of primary model organisms has received substantial
curator effort, other organisms remain sparsely annotated. Accurately transferring annotations
across organisms using computational prediction algorithms remains challenging, particularly for
biological processes [7]. Due to the limited availability and sparse coverage of gene sets, the
potential of gene set analysis remains limited for most non-traditional model organisms.

In contrast to the paucity of carefully curated gene sets specific to these non-traditional models,
the amount of genome-wide gene expression data has grown rapidly, especially for microbes
which have a relatively small transcriptome and are inexpensive to assay [8]. For single-cell
organisms, a complete compendium of public data ideally captures expression under numerous
conditions. We may expect these compendia to extensively characterize many of the organism’s
transcriptional regulatory processes and to be well-suited targets for the extraction of pathway-
like signatures.

We previously developed ADAGE, an algorithm that extracts meaningful gene sets from
genome-wide gene expression compendia [9]. ADAGE models are unsupervised neural network
models of large publicly available gene expression compendia. Specifically, ADAGE models are
denoising autoencoder neural networks [10,11]. ADAGE first encodes gene expression data into
neural network nodes and then decodes those nodes to reconstruct the original expression levels.
The denoising term in the name comes from the fact that random noise is added to the input
while encoding individual samples. This results in a model that is able to reconstruct expression
levels without noise and has been shown to make models more robust [11]. These neural network
nodes describe features of the input data that capture essential patterns, i.e. those robust to noise.
Our analysis of the genes that most influence each node previously revealed that they form gene
sets that resemble human-annotated biological processes and pathways, which often exhibit
consistent coexpression in large gene expression compendia [9,12]. We have termed such gene
sets ADAGE signatures. We developed eADAGE, which summarizes multiple ADAGE models
into an ensemble model, to more robustly capture pathways and found that it covered
significantly more biological pathways more precisely [12]. In addition to signatures that match
curated pathways, eADAGE also extracts signatures that group genes that match known but
uncurated pathways and others that may represent undiscovered biological processes.

To fully leverage signatures built by eADAGE or other robust feature construction approaches,
we introduce an ADAGE signature analysis pipeline. ADAGE signature analysis aims to identify
one or more signatures that respond to an experimental treatment. As with gene set analyses,
these signatures represent biological processes that may be perturbed by the treatment. The
approach is similar to traditional gene set analysis but replaces human-annotated gene sets with
ADAGE-learned signatures. ADAGE signature analysis complements pathway-style analysis in
any organism by providing an unsupervised perspective, and is usable for non-traditional model
organisms or other organisms for which curated pathways are unavailable. Here we demonstrate
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ADAGE signature analysis in the bacterial pathogen Pseudomonas aeruginosa. We chose P.
aeruginosa as our model organism because it has sufficient public gene expression data to
construct a model and a dedicated research community. Though sparsely curated in the recent
past, its pathway annotations have been growing rapidly due to a community annotation initiative
[13]. This allows us to validate the biological relevance of gene signatures learned by ADAGE,
while also demonstrating its ability to identify as yet unannotated biological processes. To
facilitate the use of ADAGE signature analysis, we developed both an R package for users with
bioinformatics background and an easy-to-use web server intended for use by bench biologists.

Methods

ADAGE signature analysis workflow

ADAGE signature analysis has three major steps: data preparation, active signature detection,
and signature interpretation (Figure 1). In addition to the input dataset to be analyzed, ADAGE
signature analysis also requires an ADAGE model and the gene expression compendium of an
organism from which the model was built. The P. aeruginosa compendium and (¢€)ADAGE
models can be built following instructions in [9,12].

Data preparation

Gene expression data must be normalized to be compatible with the ADAGE model. Raw
microarray data measured on the same chip platform as the compendium are analyzed with
Robust Multi-array Average (RMA) [14]. RMA includes background correction, quantile
normalization, and probe summarization; however, quantile normalization is performed against
the quantile distribution of the compendium so that the resulting expression values are
comparable with the compendium. Other types of gene expression data must first be processed
into gene-level expression values. Gene identifiers used in the input data are mapped to the gene
identifiers used in the compendium. We next impute the expression of missing genes using k-
nearest neighbors - the neighbors are computed based on similarity in the compendium. For
processed microarray data, we apply quantile normalization using the compendium’s quantiles.
For RNA-seq data, expression values are normalized to the compendium via TDM [15]. The last
step in data preparation for all types of input data is a zero-one linear transformation using the
compendium as reference. Measurements outside the range observed in the compendium are set
to zero or one according to whether they are below or above the range. After processing, the
dataset is ready for ADAGE signature analysis.

Active signature detection

The concept of ADAGE signature was first introduced in [12]. To recap, in an ADAGE model,
genes connect to nodes via weights and this vector of weights characterizes each node (Figure 2).
The distribution of the weight vector centers near zero and is close to normal, with a small
number of genes contributing high weights. We group genes with weights more extreme than 2.5
standard deviations from the mean on the positive side and the negative side of the weight
distribution separately. These two gene sets form the positive signature and negative signature of
a node and are simply named as “NodeXXpos” and “NodeXXneg”. The positive and negative
signatures of the same node are not always related. As opposed to a simple set of genes, the
signature is a gene set with a weight value for each gene that indicates the gene’s importance to
the set. For simplicity and because the positive and negative sides of the distribution are already
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separated, we ignore the signs of weight values.

After data preparation, we calculate each signature’s activity for every sample in the input
dataset. The signature’s activity reflects how active that signature is in each sample and is
defined as the average expression values of signature genes weighted by genes’ absolute weights
in the signature. This results in a matrix of activity values, where each row is a signature and
each column is a sample, which can be shown in an activity heatmap (Figure 1). To detect
signatures associated with an experimental treatment, we apply statistical tests to signature
activities. The most appropriate statistical test depends on the experimental design. After
applying the selected test, we can identify a list of the signatures with the greatest changes in
activity in response to a particular experimental treatment.

We have observed that multiple signatures can share many genes. Signature overlap may be due
in part to the random noise added during training; however, we cannot rule out the possibility
that the subtle differences between two overlapping signatures are biologically meaningful.
Therefore, we must carefully handle signature overlap to remove redundant signatures but retain
those relevant to a specific dataset. To accomplish this, we calculate marginal activities of every
combination of two signatures. The marginal activity for a signature pair is the activity of one
signature after removing genes that it overlaps with the second signature. After removal, we test
whether the marginal activities still respond significantly to the treatment. We ignore signatures
when their activity is no longer significant after removing the effect of another signature, as long
as the other signature is not also removed through this process. In a special case where a group of
signatures all become non-significant after removing each other, we keep the one that is most
significantly altered. This process results in a final list of signatures affected by an experimental
treatment.

Signature interpretation

It is important to note that a benefit of ADAGE signature analysis, as opposed to attempting to
interpret the entire set of signatures, is that investigators only need to examine signatures that are
affected by their experiment. Signatures are gene sets formed based on the expression patterns in
a gene expression compendium. They are not annotated to a specific biological process, but we
have used several strategies to help understand the biological meaning behind a signature. The
most intuitive way is to examine its gene composition. If some genes have been previously
characterized and share a biological theme, they may suggest the biological process represented
by the signature. Users can also link existing curated biological knowledge such as KEGG [16]
pathways and GO terms [17] to signatures through an enrichment test, though such annotations
are not always available. Even when they exist, annotations are not expected to be
comprehensive for non-traditional model organisms. Finally, users can probe a signature by
analyzing the compendium and extracting experiments in which the signature has its largest
activity ranges. We expect these to be experimental conditions in which the biological processes
represented by the signature are perturbed. Taken together or individually, these steps allow
researchers to quickly interpret signatures of interest without curating a complete collection of
pathways.

To visualize which genes are in signatures and how they are related across the overall model, we
construct a gene-gene network using genes in selected signatures of interest. The network is built
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upon gene-gene relationships extracted from an ADAGE model. In the network, two genes are
linked by an edge if the correlation between their weight vectors, i.e. how strongly connected
they are to each node, is higher than a tunable cutoff. Depending on how they are linked with
each other, genes can form modules in the network. These modules highlight functional units of
genes in differentially active signatures. The network can be interactively explored and its use is
facilitated by overlaid information, such as gene descriptions, differential expression in the
experiment being analyzed, and annotations for each gene from GO and KEGG where available.

User interface

There are two ways for users to access ADAGE signature analysis. We provide an R package,
intended for computationally inclined users and a web server intended for those without
familiarity with the R programming language. The R package and the web server are both
preloaded with a Pseudomonas aeruginosa gene expression compendium containing microarray
samples measured on the Pae Gla Affymetrix Pseudomonas aeruginosa array that were
available on the ArrayExpress database [18] before July 31 2015, a previously published
eADAGE model built on this compendium [12], and P.a. gene information retrieved from
NCBTI’s ftp site. Both are open source and licensed freely, so that investigators can add their own
machine learning models and additional organisms. We also plan to expand both resources to
include additional non-traditional model organisms.

Web server

We developed a web server that implements the most central components of ADAGE signature
analysis. The web server is designed with a clean separation between a backend API and a
JavaScript application frontend. This allows programmatic access to the server if desired. The
backend is written in Python using the Django framework. The frontend uses AngularJS to
provide a responsive user experience, with Vega and D3 used to provide interactive
visualizations. Both the backend and frontend are available under the permissive 3-clause BSD
open source license. Advanced users can initialize their own instance of the ADAGE web server,
load models of their choosing, and supply this interface to users. Our public instance of the
ADAGE web server is hosted on Amazon Web Services. Here we describe the main features
provided by the web server. Users first need to choose a machine learning model on the
homepage and all the following analyses are model specific. Then users can explore assays and
experiments and perform signature analysis (Analyze), explore genes’ similarities in the model
through a gene-gene network (GeneNetwork), explore signatures in the model (Signature), and
obtain annotations for the underlying sample compendium (Download).

Analyze: The Analyze feature guides users to perform the entire ADAGE signature analysis
pipeline (Figure 3). To begin the analysis, users first search experiments or samples with a
keyword. Next users identify experiments or samples of interest and add them to the analysis
basket. Clicking the analysis basket takes users to the Sample page, where sample information is
listed. A heatmap is plotted showing signature activities in all samples and can be clustered by
sample or signature. To compare two groups of samples, users assign samples to either a
treatment (yellow) or a control (purple) group. Then a differential activation test between the
two groups is performed and its result is presented in a volcano plot showing difference in mean
activity in the x-axis and significance p-value in the y-axis. Signatures with positive activity
differences are active in the comparison group. Users choose signatures that are highly
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differentially active and examine them either in the Signature page or the GeneNetwork page
described below.

GeneNetwork: The GeneNetwork feature allows users to investigate a gene or a group of genes
in an ADAGE-derived gene-gene network. Users input genes of interest from the organism
associated with that machine learning model. A network including input genes and their
connecting genes drawn from the machine learning model will be shown. The default view
presents genes connected by an absolute edge correlation higher than 0.5. Users can adjust the
correlation range to examine more strongly or weakly connected genes. Another way to obtain
genes of interest is from a two-group comparison through the Analysis feature as described
above. If the gene-gene network results from this process, then the color of each gene in the
network reflects gene expression fold change. Otherwise, the node color is grey. Gene
information such as names and function description are provided when clicking on a node.
Signatures shared by two connecting genes are shown when clicking on an edge.

Signature: The Signature feature helps users to interpret the biological meaning of an ADAGE
signature. After choosing a machine learning model, users can directly examine a signature in the
model. The Signature page lists each gene in a signature and its known functions. It also presents
a table of GO and KEGG pathways associated with the signature. To help identify other public
datasets that have the signature active, it also shows experiments with the highest activity range
for that signature.

Download: The Download feature allows users to download sample annotations. These
annotations are manually curated experimental information for each sample in the training
compendium [12].

R package

We built an R package called ADAGEpath to perform ADAGE signature analysis. It is written
exclusively in R [19] using the devtools package [20] and is available on github
(https://github.com/greenelab/ADAGEpath) under the BSD-3-clause license. Here we describe
the main functions in the package.

The function load dataset() loads and processes an input dataset from local machine or directly
from the ArrayExpress database if an accession number is provided. The recommended input
format is a set of raw CEL files, which can be directly processed from the probe level with the
help of the affy [21], affyio [22], and preprocessCore [23] packages from Bioconductor. When
CEL files are not available or the input dataset is measured by RNAseq, load_dataset() also
accepts processed expression values at the gene level. Missing values in processed data are
imputed with the impute Bioconductor package. RNAseq measurements are further transformed
using the TDM package [24]. Since ADAGE uses expression values between 0 and 1, input
expression values are linearly transformed to be between 0 and 1 using the function
zeroone_norm().

The function calculate _activity() calculates each signature's activity for each sample in the
dataset. To identify signatures with differential activities, we suggest using the Bioconductor
package limma [25], particularly when sample size is small. Limma builds linear models to test
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differential activation and estimates variance more robustly than the t-test. To facilitate the most
frequently used two-group comparison, we wrap a limma-based two-group differential activation
test into the function build limma(). The test significance and the activity difference between
two groups can be visualized using plot volcano(). The function get active signatures()
supports three ways to prioritize most activated signatures: filtering by significance, sorting by
absolute activity difference, and optimizing significance and activity difference simultaneously
through choosing signatures lying on the top Pareto fronts. In multi-objective optimization, if
there is no other solution that outperforms a specific solution over all objectives, that solution is
said to be Pareto optimal. All such solutions make up the Pareto front. Limma also supports
many types of experimental designs, such as factorial design and time-course experiments. We
provide examples of analyzing a time-course experiment and a factorial-design experiment using
limma in the package vignettes. Users can also apply other statistical tests to identify activated
signatures if desired. The function plot_activity heatmap() generates a heatmap showing how
signature activity changes across samples.

To remove redundant signatures, users can calculate the marginal activity for each permutation
of two signatures using calculate_marginal _activity(). When the comparison is between two
groups of samples, the function plot marginal activation() helps visualize whether a signature is
still strongly active after the impact of another signature has been removed and the function
remove_redundant signatures() returns non-redundant active signatures for a dataset. Users can
check how signatures overlap with each other in their gene compositions using the function
plot_signature overlap().

To get a detailed view of a signature or a group of signatures, users can retrieve their constituent
genes using annotate_genes_in_signatures(). Users can also download existing GO terms and
KEGG pathways [16] from the TRIBE web server [26] using fetch geneset() and associate
signatures to known GO and KEGG pathways using annotate signatures with_genesets(). The
TRIBE web server also allows users to build and share their own custom gene sets, so the
connection to this resource enables custom gene set analysis as well. Lastly, users can visualize
signatures via gene-gene networks using the function visualize gene network(). The network is
built with the help of the R package igraph [27] and made interactive with the package
visNetwork [28].

ADAGEpath is built upon many existing R packages. In addition to the packages mentioned
above, ADAGEpath uses functions from gplots [29], corrplot [30], leaflet [31], and plotly [32]
for plotting; httr [33] and jsonlite [34] for data querying; readr [35], data.table [36], tibble [37],
dplyr [38], magrittr [39], R.utils [40], and reshape2 [41].

A comparison between two user interfaces

The web server and R package target users with different backgrounds and needs. For bench
scientists, the web server is straightforward to use and does not require familiarity with any
programming language. For bioinformaticians, the R package provides more flexibility. It allows
programmatic access and integration with other analysis pipelines. Powered by rich statistical
resources in R, the R package tests the differential activation using the more robust linear model
(provided by the limma R package). The web server currently supports the two-sample t-test for
differential activation. Therefore, it's normal to get slightly different results from the two
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platforms. To avoid security and privacy issues with data storage and management, the web
server currently supports only public datasets. The overlapping signature removal function is not
available in the web server at this time. Users who wish to automatically filter overlapping
signatures or analyze datasets that are not publicly available should use the R package.

Results

Here we demonstrate ADAGE signature analysis on an example dataset (GSE67006). This
dataset contains wild-type and Aanr mutant grown as biofilms on the Cystic Fibrosis genotype
bronchial epithelial cells (CFBE) in order to model cystic fibrosis airways infections. Anr is a
transcriptional regulator responsible for the aerobic to anaerobic transition [42]. We performed
ADAGE signature analysis to identify biological processes that were affected by Anr on CFBE
cells. The script that reproduces the following analysis is available on Github
(https://github.com/greenelab/Signature Analysis-CaseStudy).

We first ran a two-group limma test between wild-type samples and mutant samples to detect
signatures with significantly different activities. We visualized test results as a volcano plot with
activity difference on the x-axis and test significance on the y-axis (Figure 4A). Many signatures
passed the 0.05 significance cutoff. To focus on the most differentially active signatures, we
considered both activity differences and statistical significance by selecting signatures that were
on the top 10 layers of Pareto fronts. This resulted in 36 signatures and their activities in each
sample were visualized with a heatmap in which yellow indicated high activity and blue
indicated low activity (Figure 4B).

Because signatures could overlap in their gene compositions, we evaluated the effects of
ADAGE parameters on overlap. We observed that signatures tend to have more overlapping
genes when the model is trained with higher corruption level (the amount of noise added) (Figure
S1A, B). For each overlap, we cannot rule out the possibility that subtle differences are
biologically meaningful. Supporting the potential biological distinctions between similar
signatures, models trained with more noise also cover more biological pathways within a
reasonable corruption range (0% to 25% corruption) (Figure S1C). For this reason, we employed
a data-driven process to remove overlapping signatures before performing detailed investigation
of specific signatures.

We calculated the marginal activity for each combination of signature pairs and tested its
significance in differentiating the wild-type and deletion strains. Figure 4C shows the test
significance (adjusted p-values in the -log10 scale) when the signature in each column was
removed from the signature in the row and the diagonal shows the significance of each signature.
A cross sign indicates non-significant p-values. We define a signature to be redundant if it
becomes non-significant after removing the effect of another signature. Following these rules, we
dropped the following signatures: Nodel 19pos, Node214neg, Node299pos, Node130pos,
Node250neg, Nodel54pos, Node63neg, Node39neg, Node228pos, Nodel58neg, Node140pos,
Node269neg, Node3 1neg, Nodel185neg, Node275pos, Node278pos, and Node285neg.
Interestingly, Node34pos and Node28neg shared many genes (Figure 4D), but they each
contained additional genes and both remained significant in the marginal activation test. This
result highlighted the importance of viewing signature overlap in the context of a dataset. At this
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stage, there were 19 differentially active signatures remaining. These were visualized together in
a gene-gene network (edge correlation cutoff = 0.5) (Figure 5A); the edges between genes in this
network revealed sets of genes that have transcriptional relationships as detected in the ADAGE
model. Network modules, discrete clusters within the network, can reveal regulons. For example,
the sets of genes involved in denitrification (Figure 5C).

Table 1: Signatures selected by ADAGE signature analysis for the example dataset and their
associated KEGG pathways.

Pathway  Pathway
association activation
significance significance
(adj.p.val) (adj.p.val)
Node276neg  KEGG-Module-M00156: Cytochrome ¢ oxidase, cbb3-type 1.10E-03  0.00E+00*

Node34pos KEGG-Module-M00156: Cytochrome ¢ oxidase, cbb3-type 4.20E-03 1.00E-04*

Signature Pathway

Node28neg  KEGG-Module-M00529: Denitrification, nitrate => nitrogen 1.00E-04 4.00E-04*

KEGG-Pathway-pae00460: Cyanoamino acid metabolism -

- - k
Node276neg e — 2.10E-03  9.00E-04
Node57neg KEGG-Module-M00240: Iron complex transport system 2.00E-04 7.50E-03*
Nodel55neg KEGG-Module-M00240: Iron complex transport system 4.50E-03 1.48E-02*
il S5 KEGG-Pathway-pae01053: Biosynthesis of siderophore group 0.00E+00 1.50E-02*

nonribosomal peptides - Pseudomonas aeruginosa PAO1

KEGG-Pathway-pae01053: Biosynthesis of siderophore group

- k
nonribosomal peptides - Pseudomonas aeruginosa PAO1 R AL G 9o

Node57neg

KEGG-Pathway-pae01053: Biosynthesis of siderophore group

- k
nonribosomal peptides - Pseudomonas aeruginosa PAO1 N

Node66pos

KEGG-Pathway-pae01053: Biosynthesis of siderophore group

ey nonribosomal peptides - Pseudomonas aeruginosa PAO1

0.00E+00 1.53E-02*

KEGG-Pathway-pae01053: Biosynthesis of siderophore group
nonribosomal peptides - Pseudomonas aeruginosa PAO1

KEGG-Module-M00644: Vanadium resistance, efflux pump
Node33neg MexGHI-OpmD 3.00E-04  2.88E-01

Nodel55neg KEGG-Module-M00242: Zinc transport system 1.35E-02  1.00E+00
KEGG-Pathway-pae01503: Cationic antimicrobial peptide

Node27neg 2.40E-03  1.59E-02*

Node276neg (CAMP) resistance - Pseudomonas aeruginosa PAO1 0.00E+00  1.00E+00
KEGG-Pathway-pae00520: Amino sugar and nucleotide sugar
Node276neg metabolism - Pseudomonas aeruginosa PAO1 2.40E-03 1.00E+00
KEGG-Module-M00721: Cationic antimicrobial peptide (CAMP)
Node276neg resistance, arnBCADTEF operon 0.00E+00  1.00E+00
Node9pos KEGG-Pathway-pae00260: Glycine, serine and threonine S 10E-03  1.00E-+00

metabolism - Pseudomonas aeruginosa PAO1
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KEGG-Pathway-pae00630: Glyoxylate and dicarboxylate

metabolism - Pseudomonas aeruginosa PAO1 6.20E-03  1.0OE+00

Node9pos

The significance of a pathway’s association with a signature and the significance of the
pathway'’s activity difference between Aanr mutant and wild-type are provided respectively.
Adjusted p-values were rounded off to three decimal digits. A star indicates a significantly active
pathway with adjusted p-value <=0.05. Pathways detected both by ADAGE signature analysis
and GSEA (Table 2) are colored correspondingly.

Table 2: GSEA result for the example dataset.

Enrichment
significanc
Pathway Pathwa  Enrichmen e%FDR q-
y size t score val)
KEGG-MODULE-M00178: RIBOSOME, BACTERIA 56 0.622 0.00E+00*
KEGG-PATHWAY-PAE03010: RIBOSOME -
PSEUDOMONAS AERUGINOSA PAO1 56 0.622 0.00E+00*

KEGG-PATHWAY-PAE03070: BACTERIAL SECRETION
SYSTEM - PSEUDOMONAS AERUGINOSA PAO1 90 -0.609 4.29E-04*
KEGG-PATHWAY-PAE01053: BIOSYNTHESIS OF

SIDEROPHORE GROUP NONRIBOSOMAL PEPTIDES -

PSEUDOMONAS AERUGINOSA PAO1 6 -0.995 1.13E-03*
KEGG-MODULE-M00331: TYPE Il GENERAL
SECRETION PATHWAY 33 -0.664 3.35E-03*

KEGG-MODULE-M00156: CYTOCHROME C OXIDASE,

CBB3-TYPE 8 -0.877 7.24E-03*
KEGG-MODULE-M00332: TYPE III SECRETION SYSTEM 18 -0.722 9.69E-03*
KEGG-MODULE-M00529: DENITRIFICATION, NITRATE

=> NITROGEN 10 -0.81 1.06E-02*
KEGG-MODULE-M00023: TRYPTOPHAN
BIOSYNTHESIS, CHORISMATE => TRYPTOPHAN 9 -0.808 2.99E-02*

KEGG-PATHWAY-PAE00280: VALINE, LEUCINE AND
ISOLEUCINE DEGRADATION - PSEUDOMONAS

AERUGINOSA PAO1 48 -0.562 3.64E-02*
KEGG-PATHWAY-PAE00970: AMINOACYL-TRNA
BIOSYNTHESIS - PSEUDOMONAS AERUGINOSA PAOI 27 0.623 4.38E-02*
KEGG-PATHWAY-PAE00460: CYANOAMINO ACID
METABOLISM - PSEUDOMONAS AERUGINOSA PAO1 11 -0.675 2.04E-01
KEGG-MODULE-M00240: IRON COMPLEX TRANSPORT
SYSTEM 10 -0.661 2.63E-01

Adjusted p-values were rounded off to three decimal digits. Pathways significantly enriched
(FDR g-val <= 0.05) are highlighted by stars. Pathways detected both by ADAGE signature
analysis (Table 1) and GSEA are colored correspondingly.

We next performed analyses designed to suggest the biological basis of the activated signatures.
We linked signatures to KEGG pathways through enrichment tests. Twelve of the nineteen
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signatures were significantly enriched for one or more of fourteen KEGG pathways (Table 1,
pathway association significance). We then tested whether these KEGG pathways were
differentially active between wild-type and Aanr mutants using only genes shared by signatures
and their associated pathways. Genes in seven of the fourteen KEGG pathways were
significantly activated (adjusted p-value <=0.05) (Table 1, pathway activation significance). As a
comparison, we also performed the popular gene set enrichment analysis (GSEA) [43] and
considered pathways with FDR g-values lower than 0.05 in GSEA’s permutation test (Table 2).
Five pathways were detected by both GSEA and ADAGE: Type VI secretion system;
Cytochrome ¢ oxidase, cbb3-type; Nitrogen metabolism; Denitrification, nitrate => nitrogen;
Biosynthesis of siderophore group nonribosomal peptides. These pathways have been shown to
be regulated by Anr [44]. Eight pathways were only detected by GSEA (Table 2, pathways with
white background). Many are large pathways including the Ribosome and bacterial secretion
system pathways (size of 56 and 90 respectively). GSEA has been found to be biased towards
large gene sets [45]. Three of the GSEA-only pathways were associated with signatures that
nearly met the signature selection criteria (Figure S2), and two were not associated with any
ADAGE signatures. Nine KEGG pathways were not significantly enriched in GSEA but were
associated with active ADAGE signatures (Table 1, pathways with white background). Among
them, two pathways (Cyanoamino acid metabolism and Iron complex transport system) were
considered activated by ADAGE signature analysis and also achieved high enrichment scores in
GSEA (Table 2). The other seven pathways did not appear activated in this dataset. This
primarily occurred when one signature was associated with several KEGG pathways, though
sometimes only one or two of the pathways were strongly activated in this dataset. The fact that
several pathways are grouped into one signature indicates that their expression frequently co-
varies across the compendium. Therefore, pathways that are associated with active signatures but
are not active themselves in a dataset should be viewed critically. They could be co-regulated
pathways whose activities did not peak at the time of experiment or pathways that are co-
regulated but only under conditions not relevant to this experiment.

ADAGE built not only signatures resembling existing pathways but also novel signatures that are
unavailable in traditional pathway analysis. Seven differentially active signatures were not
enriched for KEGG pathways, including Node35pos (Figure 5B), the most active signature in the
Aanr mutant (Figure 4A). We also attempted to interpret Node35pos using GO terms but, as with
our KEGG analysis, found it associated with no existing GO terms. Node35pos contains genes
mexEF and oprN, which encode multidrug efflux protein, and many uncharacterized genes. The
majority of the genes in Node35pos were highly expressed in Aanr mutants. To examine whether
or not Node35pos captured a regulatory module, we analyzed the three most highly differentially
expressed uncharacterized genes (PA4881, PA3229, and PA2486) in the STRING network [46]
and found that they all returned similar networks that were subsets of Node35pos (Figure S3).
Interestingly, these STRING networks were primarily built upon text mining. The reference
papers used by STRING that performed a transcriptional profiling either did not release data [47]
or used RNA-seq [48] and thus they were not included in the eADAGE model training set.
Therefore, we concluded that signature Node35pos captured a transcriptional process, which was
independently supported by the STRING network. MexEF-OprN is known to be regulated by
MexT [49], which is connected to genes in Node35pos but is not in Node35pos itself (Figure
5B). Further examination showed that genes in Node35pos overlapped the MexT regulon (FDR
q-value of 8.7e-23, MexT regulon obtained from CollecTF database [50]). The link between
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MexT and Anr has not been explicitly studied before. In strains lacking anr, the expression of
mexT and MexT-regulated genes was higher. Because it has been shown that the MexT regulon,
including the mexEF-oprN operon, is induced in response to nitrosative stress [51], we predict
that the lack of the Anr- regulated denitrification genes nar, nir, and nor reduced detoxification
of endogenously generated reactive nitrogen species [52—54], thereby activating MexT. The
strong up-regulation of MexT, a redox-responsive regulator, may also be more active in Aanr
mutant due to other changes in intracellular redox [55].

Through examining the overlapping genes in the seven uncharacterized signatures, we divided
them into two groups (Figure S4). Group 1 contains MexT regulatory programs as represented
by Node35pos. Group 2 contains many quorum sensing controlled genes, which are lower in the
Aanr mutant. Interestingly, the visualization of these pathways in output generated by this tool
prompted the examination of connections between the MexT regulon and quorum sensing.
Indeed, high expression of mexEF-oprN is associated with decreased quorum sensing due to the
efflux of the QS molecule HHQ [56]. At the time we retrieved KEGG pathways and performed
this analysis, signatures in Group 2 were still uncharacterized in KEGG. An updated analysis
showed that signatures in Group 2 were now associated with KEGG pathways quorum sensing
and phenazine biosynthesis, which were added to KEGG on 8-1-2016 and 3-27-2017
respectively. Signatures in Group 1 were still uncharacterized in the updated analysis. Quorum
sensing and phenazine biosynthesis have been studied for a long time in P. aeruginosa with
many well-characterized genes. The time lag in their annotation hinders their usage in traditional
pathway analysis, yet ADAGE identified them directly from public data and grouped them into
signatures. This again highlights the strength of ADAGE-based signature analysis: it does not
rely on pre-defined pathways but uses regulatory patterns directly extracted from large
compendia of gene expression data.

Discussion

Researchers performing ADAGE signature analysis reverse the steps of traditional gene set
analysis: they first identify signatures with statistically significant differential expression patterns
before attempting interpretation. These researchers then only need to focus on signatures relevant
to their experiments. This is important for organisms with incomplete or absent gene sets,
because the alternative would be to curate every possible gene set before performing any
analysis. The lag from discovery to gene set annotation also hinders the application of traditional
gene set analysis to organisms with available curated resources. Our analysis revealed that even
well characterized process, e.g. quorum sensing, can lack annotation in some resources and thus
would not be detectable in traditional gene set analysis. However, biologists working in a field
can often readily identify and interpret these differentially active ADAGE signatures. ADAGE
signatures may also be comprised entirely of uncharacterized genes. Though such signatures
would be difficult to interpret, they may represent novel biological processes. Thus ADAGE
signature analysis is well suited to hypothesis generation in organisms about which little is
known.

Constructing high-quality signatures in an unsupervised manner requires two key components:
sufficient data and suitable feature extraction algorithms. The ideal data compendium should be a
broad survey of an organism probed under many conditions. Signature analysis is unlikely to
detect pathways that have never been perturbed in a compendium, and a heavily biased
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compendium would result in limited detection of biological processes. Though it is difficult to
directly measure data comprehensiveness, both data quantity and a broad set of contributing
research groups are expected to positively correlate with comprehensiveness. Quantity is
important because more overall conditions are likely to have been measured, and the number of
contributing research groups is important because they are likely to be studying different aspects
of an organism’s biology. As genome-wide measurements continue to grow, we expect such
methods to be more broadly applied to reveal perturbed biological processes and pathways.

Good feature extraction algorithms are also needed to best utilize the available data. Many
feature extraction approaches have been applied on biological data, such as PCA [57-59], ICA
[60—62], and NMF [63—65]. We previously developed ADAGE, a neural network-based
approach, and found it to outperform PCA and ICA in representing biological states [9] and
capturing KEGG pathways [12] in P. aeruginosa. However, it is still challenging to
comprehensively evaluate the “effectiveness” of features built by different approaches,
especially for less-studied organisms. Because every method has its own underlying assumptions
and objectives, we expect them to learn different types of features and complement each other.
The concept of gene set analysis with data-defined gene sets is not limited to ADAGE signatures.
Future work will focus on expanding this analysis pipeline to more feature types and providing
support for more organisms.

Conclusions

Gene set analysis has been a powerful tool for interpreting the results of high throughput
experiments. However, curating biologically important gene sets requires tremendous effort. As
a result, many organisms, including those that are widely used to study certain processes, remain
unannotated. In contrast with the sparsity of gene set annotations, high-throughput experimental
data has accumulated rapidly. Unsupervised analysis of these data can reveal gene sets that
parallel human-curated biological pathways. We introduced ADAGE signature analysis, a gene
set analysis method powered by signatures built directly from expression data by ADAGE or
other unsupervised feature construction methods. The approach includes three major steps: data
preparation, differentially active signature detection, and signature interpretation. We compared
this approach with GSEA on an example dataset and observed that ADAGE signature analysis
and GSEA detected similar curated KEGG pathways. However, ADAGE signature analysis also
identified a novel regulatory relationship unannotated in KEGG. This result highlights the
advantage of ADAGE signature analysis: it does not depend on curated knowledgebases but
instead the breadth of existing public data. ADAGE signature analysis is implemented in an R
package and a web server for users with different backgrounds and needs. For those without a
specific dataset to analyze, we also provided a gene-gene network view to explore transcriptional
regulatory modules learned by ADAGE.

List of abbreviations

ADAGE: Analysis using Denoising Autoencoders for Gene Expression data
CFBE: Cystic Fibrosis genotype bronchial epithelial cells

GO: Gene Ontology

ICA: Independent Component Analysis

KEGG: Kyoto Encyclopedia of Genes and Genomes

NMEF: Non-negative Matrix Factorization


https://doi.org/10.1101/156620
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/156620; this version posted June 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

PCA: Principal Component Analysis
RMA: Robust Multi-array Average

Declarations
Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Availability of data and material
The anr mutant dataset analyzed during the current study are available in the GEO repository,
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67006.

Competing interests
The authors declare that they have no competing interests.

Funding

This work was funded in part by a grant from the Gordon and Betty Moore Foundation (GBMF
4552) to CSG, a grant from the Cystic Fibrosis Foundation (STANTO15R0) to CSG and DAH,
and a grant from the National Institutes of Health (NIH) grant RO1-AI091702 to DAH.

Authors' contributions

JT and CSG conceived and designed the method. JT built the ADAGEpath R package and
performed computational analyses. MH, DH, and RAZ developed the ADAGE web server. DAH
analyzed the biological relevance of ADAGE signatures. JT, DAH, and CSG wrote the
manuscript. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank Greg Way, Jaclyn Taroni, and Kurt Wheeler for helpful code
review. The authors also would like to thank Georgia Doing for testing the R package.

References

1. Khatri P, Sirota M, Butte AJ, Glazko G, Emmert-Streib F, Green M, et al. Ten Years of
Pathway Analysis: Current Approaches and Outstanding Challenges. Ouzounis CA, editor. PLoS
Comput. Biol. Public Library of Science; 2012;8:¢1002375.

2. Ramanan VK, Shen L, Moore JH, Saykin AJ. Pathway analysis of genomic data: concepts,
methods, and prospects for future development. Trends Genet. 2012;28:323-32.

3. Tarca AL, Bhatti G, Romero R, Schena M, Shalon D, Davis R, et al. A Comparison of Gene
Set Analysis Methods in Terms of Sensitivity, Prioritization and Specificity. Chen L, editor.
PLoS One. Public Library of Science; 2013;8:€79217.

4. The Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids
Res. Oxford University Press; 2015;43:D1049-56.

5. The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and
resources. Nucleic Acids Res. Oxford University Press; 2017;45:D331-8.

6. Schnoes AM, Ream DC, Thorman AW, Babbitt PC, Friedberg I. Biases in the experimental


https://doi.org/10.1101/156620
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/156620; this version posted June 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

annotations of protein function and their effect on our understanding of protein function space.
PLoS Comput. Biol. 2013;9:e1003063.

7. Jiang Y, Oron TR, Clark WT, Bankapur AR, D’Andrea D, Lepore R, et al. An expanded
evaluation of protein function prediction methods shows an improvement in accuracy. Genome
Biol. BioMed Central; 2016;17:184.

8. Greene CS, Foster JA, Stanton BA, Hogan DA, Bromberg Y. Computational Approaches to
Study Microbes and Microbiomes. Pac Sym Biocomput. 2016;557—-67.

9. Tan J, Hammond JH, Hogan DA, Greene CS. ADAGE-Based Integration of Publicly
Available Pseudomonas aeruginosa Gene Expression Data with Denoising Autoencoders
[lluminates Microbe-Host Interactions. Gilbert JA, editor. mSystems. American Society for
Microbiology Journals; 2016;1:¢00025-15.

10. Vincent P, Larochelle H, Bengio Y, Manzagol P-A. Extracting and composing robust
features with denoising autoencoders. Proc. 25th Int. Conf. Mach. Learn. - ICML ’08. New
York, New York, USA: ACM Press; 2008. p. 1096-103.

11. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A. Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising criterion.
J. Mach. Learn. Res. JMLR. org; 2010;11:3371-408.

12. Tan J, Doing G, Lewis KA, Price CE, Chen KM, Cady KC, et al. Unsupervised extraction of
functional gene expression signatures in the bacterial pathogen Pseudomonas aeruginosa with
eADAGE. bioRxiv. Cold Spring Harbor Labs Journals; 2016;78659.

13. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FSL. Enhanced annotations
and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome
database. Nucleic Acids Res. Oxford University Press; 2016;44:D646-53.

14. Trizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al.
Exploration, normalization, and summaries of high density oligonucleotide array probe level
data. Biostatistics. 2003;4:249-64.

15. Thompson JA, Tan J, Greene CS. Cross-platform normalization of microarray and RNA-seq
data for machine learning applications. Peer]. Peer]J Inc.; 2016;4:¢1621.

16. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res.
Oxford Univ Press; 2000;28:27-30.

17. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology:
tool for the unification of biology. Nat. Genet. Nature Publishing Group; 2000;25:25-9.

18. Rustici G, Kolesnikov N, Brandizi M, Burdett T, Dylag M, Emam I, et al. ArrayExpress
update--trends in database growth and links to data analysis tools. Nucleic Acids Res.
2013;41:D987-90.

19. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria;
2016.

20. Wickham H, Chang W. devtools: Tools to Make Developing R Packages Easier. 2016.

21. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy--analysis of Affymetrix GeneChip data at
the probe level. Bioinformatics. 2004;20:307—15.

22. Bolstad BM. affyio: Tools for parsing Affymetrix data files.

23. Bolstad BM. preprocessCore: A collection of pre-processing functions.

24. Thompson JA. TDM: TDM. 2015.

25. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. Oxford
University Press; 2015;43:e47.


https://doi.org/10.1101/156620
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/156620; this version posted June 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

26. Zelaya RA, Wong AK, Frase AT, Ritchie MD, Greene CS. Tribe: The collaborative platform
for reproducible web-based analysis of gene sets. bioRxiv. 2016;

27. Csardi G, Nepusz T. The igraph software package for complex network research.
InterJournal. 2006;Complex Sy:1695.

28. Almende B.V., Thieurmel B. visNetwork: Network Visualization using “vis.js” Library.
2016.

29. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, et al. gplots:
Various R Programming Tools for Plotting Data. 2016.

30. Wei T, Simko V. corrplot: Visualization of a Correlation Matrix. 2016.

31. Cheng J, Xie Y. leaflet: Create Interactive Web Maps with the JavaScript “Leaflet” brary.
2016.

32. Sievert C, Parmer C, Hocking T, Chamberlain S, Ram K, Corvellec M, et al. plotly: Create
Interactive Web Graphics via “plotly.js.” 2016.

33. Wickham H. httr: Tools for Working with URLs and HTTP. 2016.

34. Ooms J. The jsonlite Package: A Practical and Consistent Mapping Between JSON Data and
R Objects. arXiv:1403.2805 [stat.CO]. 2014;

35. Wickham H, Hester J, Francois R. readr: Read Tabular Data. 2016.

36. Dowle M, Srinivasan A. data.table: Extension of “data.frame". 2016.

37. Wickham H, Francois R, Miiller K. tibble: Simple Data Frames. 2016.

38. Wickham H, Francois R. dplyr: A Grammar of Data Manipulation. 2016.

39. Bache SM, Wickham H. magrittr: A Forward-Pipe Operator for R. 2014.

40. Bengtsson H. R.utils: Various Programming Utilities. 2016.

41. Wickham H. Reshaping Data with the {reshape} Package. J. Stat. Softw. 2007;21:1-20.

42. Zimmermann A, Reimmann C, Galimand M, Haas D. Anaerobic growth and cyanide
synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with finr of
Escherichia coli. Mol. Microbiol. 1991;5:1483-90.

43. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set
enrichment analysis: a knowledge-based approach for interpreting genome-wide expression
profiles. Proc. Natl. Acad. Sci. U. S. A. 2005;102:15545-50.

44. Hammond JH, Dolben EF, Smith TJ, Bhuju S, Hogan DA. Links between Anr and quorum
sensing in Pseudomonas aeruginosa biofilms. J. Bacteriol. 2015;197:2810-20.

45. Damian D, Gorfine M. Statistical concerns about the GSEA procedure. Nat. Genet. Nature
Publishing Group; 2004;36:663—663.

46. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al.
STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids
Res. 2015;43:D447-52.

47. Tian Z-X, Fargier E, Mac Aogain M, Adams C, Wang Y-P, O’Gara F. Transcriptome
profiling defines a novel regulon modulated by the LysR-type transcriptional regulator MexT in
Pseudomonas aeruginosa. Nucleic Acids Res. 2009;37:7546-59.

48. Wang D, Seeve C, Pierson LS, Pierson EA. Transcriptome profiling reveals links between
ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in
Pseudomonas aeruginosa. BMC Genomics. 2013;14:618.

49. Maseda H, Uwate M, Nakae T. Transcriptional regulation of the mexEF-oprN multidrug
efflux pump operon by MexT and an unidentified repressor in nfxC-type mutant of Pseudomonas
aeruginosa. FEMS Microbiol. Lett. 2010;311:36-43.

50. Kili¢ S, White ER, Sagitova DM, Cornish JP, Erill I. CollecTF: a database of experimentally


https://doi.org/10.1101/156620
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/156620; this version posted June 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

validated transcription factor-binding sites in Bacteria. Nucleic Acids Res. 2014;42:D156-60.
51. Fetar H, Gilmour C, Klinoski R, Daigle DM, Dean CR, Poole K. mexEF-oprN Multidrug
Efflux Operon of Pseudomonas aeruginosa: Regulation by the MexT Activator in Response to
Nitrosative Stress and Chloramphenicol. Antimicrob. Agents Chemother. 2011;55:508-14.

52. Arai H, Igarashi Y, Kodama T. Expression of the nir and nor genes for denitrification of
Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in
addition to ANR. FEBS Lett. 1995;371:73-6.

53. Ye RW, Haas D, Ka JO, Krishnapillai V, Zimmermann A, Baird C, et al. Anaerobic
activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an
analog of Fnr. J. Bacteriol. 1995;177:3606-9.

54. Trunk K, Benkert B, Quéick N, Miinch R, Scheer M, Garbe J, et al. Anaerobic adaptation in
Pseudomonas aeruginosa: definition of the Anr and Dnr regulons. Environ. Microbiol.
2010;12:1719-33.

55. Fargier E, Mac Aogain M, Mooij MJ, Woods DF, Morrissey JP, Dobson ADW, et al. MexT
functions as a redox-responsive regulator modulating disulfide stress resistance in Pseudomonas
aeruginosa. J. Bacteriol. American Society for Microbiology; 2012;194:3502—11.

56. Lamarche MG, Déziel E. MexEF-OprN efflux pump exports the Pseudomonas quinolone
signal (PQS) precursor HHQ (4-hydroxy-2-heptylquinoline). Otto M, editor. PLoS One.
2011;6:¢24310.

57. Roden JC, King BW, Trout D, Mortazavi A, Wold BJ, Hart CE, et al. Mining gene
expression data by interpreting principal components. BMC Bioinformatics. BioMed Central,
2006;7:194.

58. Ma S, Kosorok MR. Identification of differential gene pathways with principal component
analysis. Bioinformatics. 2009;25:882-9.

59. Raychaudhuri S, Stuart JM, Altman RB. Principal components analysis to summarize
microarray experiments: application to sporulation time series. Pac. Symp. Biocomput.
2000;455-66.

60. Lutter D, Langmann T, Ugocsai P, Moehle C, Seibold E, Splettstoesser WD, et al. Analyzing
time-dependent microarray data using independent component analysis derived expression
modes from human macrophages infected with F. tularensis holartica. J. Biomed. Inform.
2009;42:605-11.

61. Chen L, Xuan J, Wang C, Shih I-M, Wang Y, Zhang Z, et al. Knowledge-guided multi-scale
independent component analysis for biomarker identification. BMC Bioinformatics. BioMed
Central; 2008;9:416.

62. Frigyesi A, Veerla S, Lindgren D, Hoglund M, Quackenbush J, Jutten C, et al. Independent
component analysis reveals new and biologically significant structures in microarray data. BMC
Bioinformatics. BioMed Central; 2006;7:290.

63. Stein-O’Brien GL, Carey JL, Lee WS, Considine M, Favorov A V., Flam E, et al.
PatternMarkers &amp; GWCoGAPS for novel data-driven biomarkers via whole transcriptome
NMF. Bioinformatics. 2017;7:175.

64. Wu S, Joseph A, Hammonds AS, Celniker SE, Yu B, Frise E. Stability-driven nonnegative
matrix factorization to interpret spatial gene expression and build local gene networks. Proc.
Natl. Acad. Sci. U. S. A. National Academy of Sciences; 2016;113:4290-5.

65. Brunet J-P, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery
using matrix factorization. Proc. Natl. Acad. Sci. U. S. A. National Academy of Sciences;
2004;101:4164-9.


https://doi.org/10.1101/156620
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/156620; this version posted June 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Figure legends

Figure 1: ADAGE signature analysis workflow.

An input dataset is first processed to be compatible with a provided ADAGE model trained on
the provided expression compendium. Raw microarray measurements are transformed by RMA,
while processed data first have missing values imputed and then are normalized to the
compendium. The second step is detecting active signatures in the dataset. Signature activity for
each sample in the dataset is computed. Statistical test on the signature activity is used to identify
signatures respond to an experimental treatment. Redundant signatures are further removed. The
last step is interpreting the biological meaning of active signatures through evaluating genes in
the signatures, pathways associated with the signatures, datasets related to the signatures, and a
gene-gene network built upon the signatures.

Figure 2: ADAGE model and gene signatures.

In an ADAGE model, every gene is linked to every node through an edge. The edge weight is
fixed after model training and its magnitude is reflected by edge thickness. The distribution of
gene weights to a node is centered at zero and close to normal. Genes giving weights higher than
the positive high-weight (HW) cutoff together form the positive gene signature for that node
(genes in the orange circle). Similarly, genes giving weights lower than the negative HW cutoff
together form negative gene signature for that node (genes in the blue circle).

Figure 3: ADAGE web server interface and analysis workflow.

The ADAGE web server interface has six tabs on the top. The signature analysis pipeline starts
with choosing a machine learning model on the homepage (step1) and choosing to explore assays
and experiments (step2). In the Analyze page, users can search datasets or samples using
keywords (step3). After clicking the “+” button beside each dataset or sample, the dataset with
all samples in it or an individual sample is added into the analysis basket (step4). After users add
samples, clicking the basket brings users to the Sample page (step5). The Sample page provides
experimental information about each sample and a signature activity heatmap. Users can define a
two-group comparison by selecting samples and assigning them to either treatment (yellow)
group or control (purple) group (step6). The signatures that are differentially active between two
groups of samples can be examined in a volcano plot (step7). Next users select signatures in the
volcano plot (step8) and further inspect them in the Signature page (step9). The Signature page
provides information about gene composition, gene set association, and related datasets of a
signature. Lastly, users can visualize their interested signatures in a gene-gene network (step10).
Users can also directly examine genes in the gene-gene network through the GeneNetwork tab
and examine a signature through the Signature tab.

Figure 4: ADAGE signature analysis for the example dataset.

A: A volcano plot showing both the activity difference and the statistical test significance in the
activation test between Aanr mutant and wild-type. Signatures that lie on the top 10 layers of
Pareto fronts are labeled and highlighted in red. The red dotted line indicates the significance of
—log10(0.05).

B: A heatmap showing the absolute activity difference of signatures detected in panel A.

C: A non-symmetric heatmap reflecting the marginal activation significance (adjusted p value in
—log10 scale) between every signature pair in panel A. For two signatures, one in the row and the
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other in the column, the heatmap color depicts how strong the signature in the row is
differentially activated after the genes it shares with the signature in the column have been
depleted. A cross sign indicates a non-significant activation (adjusted p-value > 0.05). The
diagonal shows the activation significance of a signature without overlapping gene removal.

D: A symmetric heatmap reflecting signature similarity between every signature pair in panel A.
The heat color represents the odds ratio that two signatures overlap in their gene contents.
Because comparing a signature with itself would result in an odds ratio of infinity, values on the
diagonal are replaced by the highest odds ratio among all signature pairs.

Figure 5: The gene-gene network for the example dataset.

A: The ADAGE gene-gene network subset by genes in the selected active signatures. Each
vertex in the network is a gene. Vertex color corresponds to gene expression fold change
between Aanr mutant and wild-type (red: high in Aanr mutant; blue: low in Aanr mutant). Genes
with black border are genes that have KEGG pathway annotations. The thickness of edges
reflects how strong gene-gene relationships are in the ADAGE model.

B: The network module of genes in Node35pos.

C: The network module of genes involved in denitrification.

Figure S1: The relationship between corruption level used in building ADAGE models and the
redundancy of signatures derived from the models. The plot summarized results from 100
ADAGE models built at each corruption level.

A: The number of signature pairs with gene compositions significantly overlapped increases with
corruption level until the corruption level reaches 30%.

B: As corruption level increases, the number of signatures in a model that enriched of the same
KEGG pathway also increases on average, indicating the signatures become more redundant.

C: ADAGE models tend to capture more unique KEGG pathways (pathway coverage) when
more noise was added during training until the corruption level is higher than 25%.

Figure S2: KEGG pathways enriched in the GSEA analysis but not associated with selected
signatures in the ADAGE signature analysis. In the same volcano plot as Figure 4A, signatures
associated with GSEA-only pathways are highlighted in blue while signatures lie on the first 10
Pareto fronts are highlighted in Red. Node137pos, Node252neg, and Nodel13neg obtained high
significances in the activation test and would be considered if we lose the activation cutoff.
Pathways Tryptophan biosynthesis, chorismate => tryptophan (KEGG-Module-M00023) and
Aminoacyl-trna biosynthesis (KEGG-Pathway-pae00970) are not associated with any signature,
so they were not labeled in the plot.

Figure S3: Validation of Node35pos as a transcriptional program via the STRING network.
A: The largest connected module of the gene-gene network subset by genes in Node35pos.

B: Gene-gene networks returned by STRING when searching PA2486, PA3229, and PA4881
respectively. The STRING networks of the three genes are subsets of the Node35pos network.

Figure S4: Groups of signatures that are uncharacterized by KEGG.

A: The signature similarity heatmap of uncharacterized signatures. Heatmap color reflects the
odds ratio that two signatures overlap in their gene contents. Signatures are divided into two
groups based on their similarity.
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B: The largest connected module in the gene-gene network subset by genes in Group1
signatures. This module contains the MexT regulatory program.

C: The largest connected module in the gene-gene network subset by genes in Group2
signatures. This module contains many genes involved in quorum sensing.
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