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ABSTRACT 

Identifying asymptomatic older individuals at elevated risk for developing Alzheimer’s disease 

(AD) is of clinical importance. Among 1,081 asymptomatic older adults, a recently validated 

polygenic hazard score (PHS) significantly predicted time to AD dementia and steeper 

longitudinal cognitive decline, even after controlling for APOE ε4 carrier status. Older  

individuals in the highest PHS percentiles showed the highest AD incidence rates. PHS predicted 

longitudinal clinical decline among older individuals with moderate to high CERAD (amyloid) 

and Braak (tau) scores at autopsy, even among APOE ε4 non-carriers. Beyond APOE, PHS may 

help identify asymptomatic individuals at highest risk for developing Alzheimer’s 

neurodegeneration. 
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INTRODUCTION 
 

 

There is increasing consensus that the pathobiological changes associated with late-onset 

Alzheimer’s disease (AD) begin years if not decades before the onset of dementia symptoms.1,2 

Identification of cognitively asymptomatic older adults at elevated risk for AD dementia (i.e. 

those with preclinical AD) would aid in evaluation of new AD therapies.2 Genetic information, 

such as presence of the ε4 allele of apolipoprotein E (APOE) can help identify individuals who 

are at higher risk for AD dementia.3 Longitudinal studies have found that APOE ε4 status 

predicts decline to mild cognitive impairment (MCI) and dementia4, and steeper cognitive 

decline in cognitively normal individuals5. 

Beyond APOE ε4 carrier status, recent genetic studies have identified numerous single 

nucleotide polymorphisms (SNPs), each of which is associated with a small increase in AD 

dementia risk.6 Using genome-wide association (GWAS) from AD cases and controls, we have 

recently developed a novel ‘polygenic hazard score’ (PHS) for predicting age-specific risk for 

AD dementia that integrates 31 AD-associated SNPs (including APOE ε4) with US-population 

based AD dementia incidence rates.7 To further evaluate the usefulness of the PHS, in this study, 

we prospectively evaluated whether PHS predicts rate of progression to AD dementia and 

cognitive decline in cognitively asymptomatic older adults and individuals with MCI. 

 

 

 

METHODS 
 

We evaluated longitudinal clinical and neuropsychological data (from March 2016) from the 

National Alzheimer's Coordinating Center (NACC).8 Using the NACC uniform dataset, we 

focused on older individuals classified at baseline as cognitively normal (CN), with a Clinical 

Dementia Rating9 (CDR) of 0 and available genetic information (n =1,081, Table 1). We also 
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evaluated older individuals classified at baseline as MCI (CDR = 0.5) with available genetic 

information (n = 571, Table 1). We focused on CN and MCI individuals with age of AD  

dementia onset < age 88 to avoid violations of Cox proportional hazards assumption as evaluated 

using scaled Schoenfeld residuals (total n = 1,652). 

We first investigated the effects of the PHS on progression to AD dementia by using a 

Cox proportional hazards model, with time to event indicated by age of AD dementia onset. We 

resolved ‘ties’ using the Breslow method. We co-varied for effects of sex, APOE ε4 status 

(binarized as having at least 1 ε4 allele versus none), education and age at baseline. To prevent 

violating the proportional hazards assumptions, we additionally stratified baseline age by 

quintiles.10
 

Next, we employed a linear mixed-effects (LME) model to evaluate the relationship 

between PHS and longitudinal clinical decline as assessed by change in CDR-Sum of Boxes 

(CDR-SB) as well as by change in Logical Memory test (LMT), Wechsler Adult Intelligence 

Scale - Revised (WAIS-R) Digit Symbol, the Boston Naming Test (BNT), Trail-Making Tests A 

and B (TMTA/B), forward and backward Digit Span (f/b DST) tests. To maintain consistent 

directionality across all tests, we inverted the scale for Trail-Making tests such that lower scores 

represent decline. We co-varied for sex, APOE ε4 status, education, baseline age and all their 

respective interactions with time. We examined the main effect of PHS by comparing slopes of 

cognitive decline over time in the neuropsychological tests for individuals with high (~84 

percentile) and low PHS (~16 percentile), defined by 1 standard deviation above or below the 

mean of PHS respectively.11 We also compared goodness of fit between the LME models with 

and without PHS using likelihood ratio tests. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2017. ; https://doi.org/10.1101/156331doi: bioRxiv preprint 

https://doi.org/10.1101/156331
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

 

 

 

Finally, we evaluated the relationship between PHS, APOE and neuropathology in 

preclinical AD. Specifically, we conducted LME analysis assessing longitudinal change in CDR- 

SB in CN individuals with available neuropathology (specifically, neuritic plaque scores based  

on the Consortium to Establish a Registry for AD (CERAD) and neurofibrillary tangle scores 

assessed with Braak stages). 

RESULTS 
 

PHS significantly predicted risk of progression from CN to AD dementia (hazard ratio (HR) = 

2.36, 95% confidence interval (CI) = 1.38 – 4.03, p = 1.66×10-3) illustrating that polygenic 

information beyond APOE ε4 can identify asymptomatic older individuals at greatest risk for 

developing AD dementia. Individuals in the highest PHS decile had the highest annualized AD 

incidence rates (Figure 1). PHS also significantly influenced risk of progression to AD dementia 

in MCI individuals (HR = 1.17, 95% CI = 1.02 – 1.35, p = 2.36×10-2). Using the combined CN 

and MCI cohorts (total n = 1,652) to maximize statistical power, we found that PHS significantly 

predicted risk of progression from CN and MCI to AD dementia (HR = 1.31, 95% CI = 1.14 – 

1.51, p = 1.82×10-4) (Supplemental Figure 1). At 50% risk for progressing to AD dementia, the 

expected age for developing AD dementia is approximately 85 years for an individual with low 

PHS (~16 percentile); however, for an individual with high PHS (~84 percentile), the expected 

age of onset is approximately 78 years (Supplemental Figure 1). In all Cox models, the 

proportional hazard assumption was valid for all covariates. 

Evaluating clinical progression and cognitive decline within the CN individuals, we 

found significant PHS by time interactions for CDR-SB (ß = 0.05, standard error (SE) = 0.02, p 

= 3.64×10-4), WAIS-R (ß = -0.61, SE = 0.30, p = 4.25×10-2), TMTB (ß = -2.48, SE = 0.99, p = 
 

1.20 ×10-2), and fDST test (ß = -0.93, SE = 0.45, p = 3.76×10-2) (Supplemental Table 1), with 
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significantly steeper slopes for high PHS individuals for WAIS-R, TMTB, and CDR-SB 

(Supplemental Table 2, Figure 2). Evaluating average percentage change across all 

neuropsychological tests, we found that PHS predicted cognitive decline (ß = 0.84, SE = 0.30, p 

= 4.50×10-3), with high PHS individuals showing greater rates of decline (ß = -1.80, SE = 0.89, p 

= 4.30×10-2) compared to low PHS individuals (ß = -0.12, SE = 0.80, p = 0.88). Goodness of fit 

comparison using likelihood ratio tests showed that the full LME model comprising PHS and 

covariates resulted in a better model fit for predicting decline in CDR-SB, BNT, WAIS-R, fDST 

and TMTB (Supplemental Table 3). We found similar results within the MCI individuals and the 

combined CN and MCI cohort (Supplemental Tables 1-7, Supplemental Figure 2) illustrating  

that polygenic information beyond APOE ε4 can identify asymptomatic and mildly symptomatic 

individuals at highest risk for clinical and cognitive decline. 

Finally, among CN individuals with moderate and frequent CERAD “C” score at 

autopsy, we found that PHS predicted change in CDR-SB over time (ß = 1.25, SE = 0.28, p = 

6.63×10-6), with high PHS individuals showing a greater rate of increase (ß = 5.62, SE = 0.92, p 

= 1.23×10-9). In a reduced model without PHS, APOE ε4 status did not predict change in CDR- 

SB (ß = 0.26, SE = 0.50, p = 0.61). Furthermore, even in APOE ε4 non-carriers, PHS predicted 

change in CDR-SB over time (ß = 2.11, SE = 0.38, p = 3.06×10-8), with high PHS individuals 

showing a greater rate of increase (ß = 6.11, SE = 1.08, p = 1.60×10-8). Similarly, among CN 

individuals with Braak stage III – IV at autopsy, PHS predicted change in CDR-SB over time (ß 

= 0.93, SE = 0.24, p = 1.11×10-4), with high PHS individuals showing a greater rate of increase 

(ß = 3.98, SE = 0.79, p = 4.45×10-7). 
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DISCUSSION 
 

Here, we show that PHS predicts time to progress to AD dementia and longitudinal 

cognitive decline in both preclinical AD and MCI. Among CN individuals with moderate to high 

CERAD and Braak scores at autopsy, we found that PHS predicted longitudinal clinical decline, 

even among APOE ε4 non-carriers. Beyond APOE, our findings indicate that PHS can be useful 

to identify asymptomatic older individuals at greatest risk for developing AD neurodegeneration. 

These results illustrate the value of leveraging the polygenic architecture of the 

Alzheimer’s disease process. Building on prior work4,5, our findings indicate that polygenic 

information may be more informative than APOE for predicting clinical and cognitive 

progression in preclinical AD. Although prior studies have used polygenic risk scores in 

preclinical AD,12-14 by focusing on maximizing differences between ‘cases’ and ‘controls’, this 

approach is clinically suboptimal for assessing an age dependent process like AD dementia 

where a subset of ‘controls’ will develop dementia over time (see Figure 1). Furthermore, given 

the bias for selecting diseased cases and normal controls, baseline hazard/risk estimates derived 

from GWAS samples cannot be applied to older individuals from the general population.15 By 

employing an age-dependent, survival analysis framework and integrating AD-associated SNPs 

with established population-based incidence rates16 PHS provides an accurate estimate of age of 

onset risk in preclinical AD. 

In our neuropathology analyses, PHS predicted longitudinal clinical decline in older 

individuals with moderate to high amyloid or tau pathology indicating that PHS may serve as an 

enrichment strategy for secondary prevention trials. Congruent with recent findings that the risk 

of dementia among APOE ε4/4 is lower than previously estimated17, among CNs with moderate 

to high amyloid load, we found that APOE did not predict clinical decline and PHS predicted 

change in CDR-SB even among APOE ε4 non-carriers. Our combined findings suggest that 
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beyond APOE, PHS may prove useful both as a risk stratification and enrichment marker to 

identify asymptomatic individuals most likely to develop Alzheimer’s neurodegeneration. 
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Table 1. Cohort demographics 
 

 CN (n = 1,081) MCI (n = 571) 

Age ± SD 
 

 

Education ± SD 

71·19 (6·65) 
 

 

16·07 (2·57) 

74·70 (5·85) 
 

15·70 (2·91) 

 

Sex (% Female) 
 

APOE ε4 carriers (%) 

Converted to AD dementia (%) 

Baseline MMSE ± SD 

 

719 (66·51) 
 

297 (27·47) 
 

38 (3·52) 
 

29·22 (1·05) 

 

291 (50·96) 
 

347 (60·77) 
 

390 (68·30) 
 

25.67 (3·36) 

MMSE: Mini–Mental State Examination 
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FIGURE LEGENDS 

Figure 1. Annualized or cumulative incidence rates in CN individuals showing the instantaneous 

hazard as a function of PHS percentiles and age. 

Figure 2. Differences in change over time in CDR-SB in CN individuals over time for low (-1 

SD, ~16 percentile) and high (+1 SD, ~84 percentile) polygenic hazard score (PHS) individuals. 

Dotted lines around fitted line indicate estimated standard error. 
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SUPPLEMENTAL FIGURE LEGENDS 
 

Supplemental Figure 1. Survivor plot showing progression to AD dementia for low 

(-1 SD, ~16 percentile) and high (+1 SD, ~84 percentile) polygenic hazard score 

(PHS) individuals who were CN and MCI at baseline. Dotted lines represent 95% 

confidence intervals. 

 

 

Supplemental Figure 2. Differences in percentage change in cognitive performance 

in the combined CN + MCI cohort (average over all neuropsychological tests) over 

time for low (-1 SD, ~16 percentile) and high (+1 SD, ~84 percentile) polygenic 

hazard score (PHS) individuals. Dotted lines around fitted line indicate estimated 

standard errors. 
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Supplemental Table 1. Effects of polygenic hazard score (PHS) on longitudinal cognitive decline in CN and MCI individuals separately. 

PHS*Time (CN) PHS*Time (MCI) 

 

ß (SE) p-value n ß (SE) p-value n 

Logical Memory 0·01 (0·6) 0·99 780 -2·12 (1·73) 0.22 444 

 

WAIS-R Digit Symbol 
 

-0·61 (0·30) 
 

4·25×10-2
 

 

700 
 

-2·44 (0·88) 
 

5·69×10-3
 

 

443 
 

Boston Naming Test 
 

-0·31 (0·17) 
 

0.07 
 

765 
 

-0·85 (0·62) 
 

0·17 
 

474 

 

Trail-Making Test A 
 

-0·88 (0·73) 
 

0.23 
 

778 
 

-5·08 (2·69) 
 

0.06 
 

477 
 

Trail-Making Test B 
 

-2·48 (0·99) 
 

1·20×10-2
 

 

770 
 

-6·50 (2·78) 
 

1·91×10-2
 

 

442 
 

Digit Span (forward) 
 

-0·93 (0·45) 
 

3·76×10-2
 

 

780 
 

-0·66 (0·75) 
 

0·38 
 

478 
 

Digit Span (backward) 
 

-0·22 (0·59) 
 

0.70 
 

781 
 

0·10 (1·05) 
 

0·92 
 

477 
 

CDR-SB 
 

0·05 (0·02) 
 

3·64×10-4
 

 

1081 
 

0·27 (0·07) 
 

8·28×10-5
 

 

571 

WAIS-R: Wechsler Adult Intelligence Scale Revised. CDR-SB: Clinical Dementia Rating Sum of Boxes.  Significant interactions are in bold. 
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Supplemental Table 2. Differences in rates of cognitive decline for low and high 

polygenic hazard score (PHS) in CN individuals. 
 

 

Low PHS (~16 percentile) High PHS (~84 percentile) 
 

 

ß (SE) p-value ß (SE) p-value 

Logical Memory 
 

WAIS-R Digit Symbol 

1·97 (1·61) 
 

-2·08 (0·82) 

0·22 
 

1·08×10-2
 

1·99 (1·82) 
 

-3·30 (0·90) 

0·27 
 

2·66×10-4
 

 

Boston Naming Test 
 

-0·18 (0·46) 
 

0·69 
 

-0·81 (0·51) 
 

0·11 
 

Trail-Making Test A 
 

Trail-Making Test B 

 

-2·19 (1·95) 
 

-0·85 (2·62) 

 

0·26 
 

0·75 

 

-3·96 (2·19) 
 

-5·81 (2·96) 

 

0·07 
 

4·94×10-2
 

 

Digit Span (forward) 
 

0·03 (1·19) 
 

0·98 
 

-1·82 (1·33) 
 

0·17 

 

Digit Span (backward) 

CDR-CB 

 

-1·13 (1·57) 
 

0·14 (0·04) 

 

0·47 
 

4·28×10-4
 

 

-1·58 (1·77) 
 

0·25 (0·05) 

 

0·37 
 

<6·03×10-8
 

WAIS-R: Wechsler Adult Intelligence Scale Revised. CDR-SB: Clinical Dementia 

Rating Sum of Boxes.  Significant interactions are in bold. 
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CN 

  
MCI 

 

χ2(2)  
p-value χ2(2)  

p-value 

Logical Memory 0·01 
 

0.99 2·11 
 

0.35 
 

WAIS-R Digit Symbol 

Boston Naming Test 

Trail-Making Test A 

Trail-Making Test B 

Digit Span (forward) 

 

7·08 
 

8·78 
 

4·01 
 

14·42 
 

6·97 

 

 

2·91×10-2
 

 

1·24×10-2
 

 

0.13 
 

7·40×10-4
 

 

3·07×10-2
 

 

10·84 
 

2·33 
 

7·20 
 

8·84 
 

0·95 

 

 

4·43×10-4
 

 

0·31 
 

2·73×10-2
 

 

1·20×10-2
 

 

0·62 
 

Digit Span (backward) 
 

0·17  

 

0·92 
 

1·00  

 

0·61 
 

CDR-SB 
 

29·30 
 

 

4·34×10-7
 

 

22·47 
 

 

1·32×10-5
 

Supplemental Table 3. Goodness of fit improvements for linear mixed-effects 

models with the addition of polygenic hazard score (PHS) in CN and MCI 

individuals separately using likelihood ratio tests. 

WAIS-R: Wechsler Adult Intelligence Scale Revised. CDR-SB: Clinical Dementia 

Rating Sum of Boxes.  Significant interactions are in bold. 
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Supplementary Table 4. Differences in rates of cognitive decline for low and high 

polygenic hazard score (PHS) in MCI individuals. 
 

 

Low PHS (~16 percentile) High PHS (~84 percentile) 
 

 

 

 

Logical Memory 

ß (SE) 
 

-7·74 (4·30) 

p-value 
 

0·07 

ß (SE) 
 

-11·99 (5·32) 

p-value 
 

2·44×10-2
 

 

WAIS-R Digit Symbol 
 

-9·10 (2·19) 
 

3·19×10-5
 

 

-13·97 (2·70) 
 

2·29×107
 

 

Boston Naming Test 

Trail-Making Test A 

Trail-Making Test B 

 

-5·58 (1·50) 
 

-21·48 (6·50) 
 

-11·76 (6·29) 

 

2·04×10-4
 

 

9·57×10-4
 

 

0·06 

 

-7·28 (1·88) 
 

-31·64 (8·14) 
 

-24·78 (8·03) 

 

1·11×10-4
 

 

1·01×10-4
 

 

2·02×10-3
 

 

Digit Span (forward) 
 

-2·71 (1·85) 
 

0·14 
 

-4·04 (2·28) 
 

0·08 

 

Digit Span (backward) 

CDR-CB 

 

-6·49 (2·58) 

0·72 (0·18) 

 

1·19×10-2
 

 

8·89×10-5
 

 

-6·27 (3·18) 

1·27 (0·22) 

 

4·89×10-3
 

 

1·13×10-8
 

WAIS-R: Wechsler Adult Intelligence Scale Revised. CDR-SB: Clinical Dementia 

Rating Sum of Boxes.  Significant interactions are in bold. 
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PHS*Time 
 

ß (SE) p-value n 

Logical Memory -1·51 (0·68) 2·74×10-2
 1,224 

 

WAIS-R Digit Symbol 
 

-1·53 (0·35) 
 

1·60×10-5
 

 

1,143 
 

Boston Naming Test 
 

-0·96 (0·24) 
 

6·98×10-5
 

 

1,239 
 

Trail-Making Test A 
 

-3·25 (1·00) 
 

1·05×10-3
 

 

1,255 
 

Trail-Making Test B 
 

-4·36 (1·04) 
 

2·85×10-5
 

 

1,212 
 

Digit Span (forward) 
 

-1·07 (0·39) 
 

5·47×10-3
 

 

1,258 
 

Digit Span (backward) 
 

-0·59 (0·53) 
 

0·26 
 

1,258 
 

CDR-SB 
 

0·22 (0·03) 
 

8·88×10-16
 

 

1652 

 

Supplementary Table 5. Effects of polygenic hazard score (PHS) on longitudinal 

cognitive decline in CN and MCI individuals combined. 

WAIS-R: Wechsler Adult Intelligence Scale Revised. CDR-SB: Clinical Dementia 

Rating Sum of Boxes. Significant interactions are in bold. 
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Supplementary Table 6. Differences in rates of cognitive decline for low and high 

polygenic hazard score (PHS) in CN and MCI individuals combined. 

Low PHS (~16 percentile) High PHS (~84 percentile) 
 

 

 

Logical Memory 

WAIS-R Digit Symbol 

ß (SE) 
 

-3·20 (1·80) 
 

-5·38 (0·94) 

p-value 

0·07 

1·20×10-8
 

ß (SE) 
 

-6·22 (2·06) 
 

-8·44 (1·07) 

p-value 
 

2·54×10-3
 

 

2·89×10-15
 

 

Boston Naming Test 
 

-3·02 (0·62) 
 

1·28×10-6
 

 

-4·94 (0·72) 
 

5·01×10-12
 

 

Trail-Making Test A 
 

-10·95 (2·58) 
 

2·12×10-5
 

 

-17·46 (2·96) 
 

3·79×10-9
 

 

Trail-Making Test B 
 

-6·08 (2·67) 
 

2·26×10-2
 

 

-14·81 (3·07) 
 

1·46×10-6
 

 

Digit Span (forward) 
 

-1·28 (1·01) 
 

0·21 
 

-3·43 (1·16) 
 

3·05×10-3
 

 

Digit Span (backward) 
 

-3·90 (1·38) 
 

4·54×10-3
 

 

-5·09 (1·56) 
 

1·27×10-3
 

 

CDR-CB 
 

0·63 (0·07) 
 

<2×10-16
 

 

1·08 (0·09) 
 

<2×10-16
 

WAIS-R: Wechsler Adult Intelligence Scale Revised. CDR-SB: Clinical Dementia 

Rating Sum of Boxes.  Significant interactions are in bold. 
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Logical Memory 

χ2(2) 

 

6·85 

p-value 
 

3·26×10-2
 

 

WAIS-R Digit Symbol 

Boston Naming Test 

Trail-Making Test A 

Trail-Making Test B 

Digit Span (forward) 

 

28·16 
 

21·74 
 

21·58 
 

34·41 
 

10·78 

 

7·67×10-7
 

 

1·91×10-5
 

 

2·06×10-5
 

 

3·38×10-7
 

 

4·57×10-3
 

 

Digit Span (backward) 
 

2·78 
 

0·25 
 

CDR-SB 
 

88·33 
 

<2×10-16
 

Supplementary Table 7. Goodness of fit improvements for linear mixed-effects 

models with the addition of polygenic hazard score (PHS) in CN and MCI 

individuals combined using likelihood ratio tests. 

WAIS-R: Wechsler Adult Intelligence Scale Revised. CDR-SB: Clinical Dementia 

Rating Sum of Boxes.  Significant interactions are in bold. 
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