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ABSTRACT
Identifying asymptomatic older individuals at elevated risk for developing Alzheimer’ sdisease
(AD) isof clinical importance. Among 1,081 asymptomatic older adults, arecently validated
polygenic hazard score (PHS) significantly predicted timeto AD dementia and steeper
longitudinal cognitive decline, even after controlling for APOE €4 carrier status. Older
individualsin the highest PHS percentiles showed the highest AD incidencerates. PHS predicted
longitudinal clinical decline among older individuals with moderate to high CERAD (amyloid)
and Braak (tau) scores at autopsy, even among APOE &4 non-carriers. Beyond APOE, PHS may
help identify asymptomatic individuals at highest risk for developing Alzheimer’s

neurodegeneration.
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INTRODUCTION

Thereisincreasing consensusthat the pathobiological changes associated with late-onset

Alzheimer’s disease (AD) begin years if not decades before the onset of dementia symptoms.*?

Identification of cognitively asymptomatic older adults at elevated risk for AD dementia (i.e.
those with preclinical AD) would aid in evaluation of new AD therapies.? Genetic information,
such as presence of the ¢4 allele of apolipoprotein E (APOE) can help identify individuals who
areat higher risk for AD dementia.® Longitudinal studies have found that APOE e4 status
predicts decline to mild cognitive impairment (M Cl) and dementia’, and steeper cognitive
declinein cognitively normal individuals’.

Beyond APOE &4 carrier status, recent genetic studies have identified numerous single
nucleotide polymorphisms (SNPs), each of which isassociated with asmall increasein AD
dementiarisk.® Using genome-wide association (GWAS) from AD cases and controls, we have
recently developed anovd ‘ polygenic hazard score’ (PHS) for predicting age-specific risk for
AD dementiathat integrates 31 AD-associated SNPs (including APOE €4) with US-population
based AD dementiaincidencerates.” To further evaluate the usefulness of the PHS, in this study,
we prospectively evaluated whether PHS predicts rate of progression to AD dementiaand

cognitive decline in cognitively asymptomatic older adults and individuals with MCI.

METHODS
We evaluated longitudinal clinical and neuropsychological data (from March 2016) from the

National Alzheimer's Coordinating Center (NACC).2 Using the NACC uniform dataset, we

focused on older individuals classified at baseline as cognitively normal (CN), with a Clinical

Dementia Rating® (CDR) of 0 and available genetic information (n =1,081, Table 1). Wealso
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evaluated older individuals classified at baselineas M CI (CDR = 0.5) with available genetic
information (n =571, Table 1). We focused on CN and MCI individuals with age of AD
dementia onset < age 88 to avoid violations of Cox proportional hazards assumption as evaluated
using scaled Schoenfeld residuals (total n = 1,652).

We first investigated the effects of the PHS on progression to AD dementiaby using a
Cox proportional hazards model, with timeto event indicated by age of AD dementia onset. We
resolved ‘ties’ using the Breslow method. We co-varied for effects of sex, APOE €4 status
(binarized ashaving at least 1 €4 allele versus none), education and age at baseline. To prevent
violating the proportional hazards assumptions, we additionally stratified baseline age by
quintiles.’

Next, we employed alinear mixed-effects (LM E) modd to evaluate the relationship
between PHS and longitudinal clinical decline as assessed by change in CDR-Sum of Boxes
(CDR-SB) aswell as by changein Logical Memory test (LMT), Wechsler Adult Intelligence
Scale - Revised (WAIS-R) Digit Symbol, the Boston Naming Test (BNT), Trail-Making Tests A
and B (TMTA/B), forward and backward Digit Span (f/b DST) tests. To maintain cons stent
directionality across all tests, weinverted the scale for Trail-M aking tests such that lower scores
represent decline. We co-varied for sex, APOE &4 status, education, baseline age and all their
respective interactions with time. We examined the main effect of PHS by comparing slopes of
cognitive decline over timein the neuropsychological tests for individuals with high (~84
percentile) and low PHS (~16 percentile), defined by 1 standard deviation above or below the
mean of PHS respectively." We also compared goodness of fit between the LM E models with

and without PHS using likelihood ratio tests.
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Finally, we evaluated the relationship between PHS, APOE and neuropathology in
preclinical AD. Specifically, we conducted LME analysis assessing longitudinal changein CDR-
SB in CN individuals with available neuropathol ogy (specifically, neuritic plaque scores based
on the Consortium to Establish aRegistry for AD (CERAD) and neurofibrillary tangle scores
assessed with Braak stages).

RESULTS
PHS significantly predicted risk of progression from CN to AD dementia (hazard ratio (HR) =
2.36, 95% confidenceinterval (Cl) = 1.38—4.03, p = 1.66x107%) illustrating that polygenic
information beyond APOE &4 can identify asymptomatic older individuals at greatest risk for
developing AD dementia. Individualsin the highest PHS decile had the highest annualized AD
incidence rates (Figure 1). PHS a so significantly influenced risk of progression to AD dementia
in MCl individuals (HR = 1.17, 95% CI = 1.02 — 1.35, p = 2.36x10°?). Using the combined CN
and MCI cohorts (total n = 1,652) to maximize statistical power, we found that PHS significantly
predicted risk of progression from CN and MCI to AD dementia(HR =1.31, 95% Cl =1.14 —
1.51, p = 1.82x10) (Supplemental Figure1). At 50% risk for progressing to AD dementia, the
expected age for developing AD dementiais approximately 85 yearsfor an individual with low
PHS (~16 percentile); however, for an individual with high PHS (~84 percentile), the expected
age of onset isapproximately 78 years (Supplemental Figure 1). In all Cox models, the
proportional hazard assumption was valid for all covariates.

Evaluating clinical progression and cognitive decline within the CN individuals, we
found significant PHS by time interactions for CDR-SB (3= 0.05, standard error (SE) = 0.02, p
=3.64x10%), WAIS-R (R=-0.61, SE = 0.30, p= 4.25x10%), TMTB (R =-2.48, SE=0.99, p=

1.20x10%), and fDST test (B =-0.93, SE = 0.45, p = 3.76x10%) (Supplemental Table 1), with
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significantly steeper slopes for high PHS individualsfor WAIS-R, TMTB, and CDR-SB
(Supplemental Table 2, Figure 2). Evaluating average percentage change across all
neuropsychological tests, we found that PHS predicted cognitive decline (3= 0.84, SE =0.30, p
= 4.50x10°®), with high PHS individuals showing greater rates of decline (3= -1.80, SE =0.89, p
= 4.30x10%) compared to low PHS individuals (3 = -0.12, SE = 0.80, p = 0.88). Goodness of fit
comparison using likelihood ratio tests showed that the full LM E model comprising PHS and
covariates resulted in abetter model fit for predicting declinein CDR-SB, BNT, WAIS-R, fDST
and TMTB (Supplemental Table 3). We found similar results within the MCI individuals and the
combined CN and M CI cohort (Supplemental Tables 1-7, Supplemental Figure 2) illustrating
that polygenic information beyond APOE &4 can identify asymptomatic and mildly symptomatic
individuals at highest risk for clinical and cognitive decline.

Finally, among CN individuals with moderate and frequent CERAD “C” score at
autopsy, we found that PHS predicted changein CDR-SB over time (3= 1.25, SE=0.28, p =
6.63x10°), with high PHS individuals showing a greater rate of increase (3 = 5.62, SE=0.92, p
=1.23x10). In areduced mode without PHS, APOE ¢4 status did not predict changein CDR-
SB (3=0.26, SE =0.50, p=0.61). Furthermore, even in APOE &4 non-carriers, PHS predicted
changein CDR-SB over time (3= 2.11, SE = 0.38, p = 3.06x10®), with high PHS individuals
showing agreater rate of increase (3= 6.11, SE = 1.08, p = 1.60x10®). Similarly, anong CN
individualswith Braak stage Il — 1V at autopsy, PHS predicted changein CDR-SB over time (13
=0.93, SE = 0.24, p = 1.11x10™), with high PHS individuals showing a greater rate of increase

(R=3.98, SE=0.79, p = 4.45x107).
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DISCUSSION

Here, we show that PHS predictstimeto progressto AD dementiaand longitudinal
cognitive declinein both preclinical AD and MCI. Among CN individuals with moderate to high
CERAD and Braak scores at autopsy, we found that PHS predicted longitudinal clinical decline,
even among APOE &4 non-carriers. Beyond APOE, our findingsindicate that PHS can be useful
to identify asymptomatic older individuals at greatest risk for developing AD neurodegeneration.

Theseresultsillustrate the value of leveraging the polygenic architecture of the
Alzheimer’ s disease process. Building on prior work®®, our findingsindicate that polygenic
information may be more informative than APOE for predicting clinical and cognitive
progression in preclinical AD. Although prior studies have used polygenic risk scoresin
preclinical AD,"* by focusing on maximizing differences between ‘ cases’ and ‘ controls’, this
approach isclinically suboptimal for ng an age dependent process like AD dementia
where a subset of ‘controls’ will develop dementia over time (see Figure 1). Furthermore, given
the bias for selecting diseased cases and normal controls, baseline hazard/ri sk estimates derived
from GWAS samples cannot be applied to older individuals from the general population.’® By
employing an age-dependent, survival analysis framework and integrating AD-associated SNPs
with established population-based incidence rates'® PHS provides an accurate estimate of age of
onset risk in preclinical AD.

In our neuropathology analyses, PHS predicted longitudinal clinical declinein older
individuals with moderate to high amyloid or tau pathology indicating that PHS may serve asan
enrichment strategy for secondary prevention trials. Congruent with recent findings that the risk
of dementiaamong APOE £4/4 islower than previously estimated®’, among CNswith moderate
to high amyloid load, we found that APOE did not predict clinical decline and PHS predicted

changein CDR-SB even among APOE &4 non-carriers. Our combined findings suggest that
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beyond APOE, PHS may prove useful both asarisk stratification and enrichment marker to

identify asymptomatic individuals most likely to devel op Alzheimer’ s neurodegeneration.
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Tablel. Cohort demographics

CN (n=1,081) MCI (n=571)
Age+ SD 7119 (6-65) 74.70 (5-85)
Education + SD 16-07 (2:57) 15-70(291)
Sex (% Female) 719 (66-51) 291 (50-96)
APOE &4 carriers (%) 297 (27-47) 347 (60-77)
Converted to AD dementia (%) 38 (3:52) 390 (68-30)
BaselineMMSE + SD 2922 (1.05) 25.67 (3-36)

MMSE: Mini—-Mental Sate Examination
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FIGURE LEGENDS

Figure 1. Annualized or cumulative incidence ratesin CN individuals showing the instantaneous
hazard as a function of PHS percentiles and age.

Figure 2. Differencesin change over timein CDR-SB in CN individuals over timefor low (-1
SD, ~16 percentile) and high (+1 SD, ~84 percentile) polygenic hazard score (PHS) individuals.

Dotted lines around fitted lineindicate estimated standard error.
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SUPPLEMENTAL FIGURE LEGENDS
Supplemental Figure 1. Survivor plot showing progression to AD dementia for low
(-1 SD, ~16 percentile) and high (+1 SD, ~84 percentile) polygenic hazard score
(PHS) individuals who were CN and MCI at baseline. Dotted lines represent 95%

confidence intervals.

Supplemental Figure 2. Differences in percentage change in cognitive performance
in the combined CN + MCI cohort (average over al neuropsychologicd tests) over
time for low (-1 SD, ~16 percentile) and high (+1 SD, ~84 percentile) polygenic
hazard score (PHS) individuals. Dotted lines around fitted line indicate estimated

standard errors.
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Supplemental Figurel

Conversion to AD by PHS

1.0 et

0.8
=
2
-
g 06
c
=]
(=
5
g
2
< PHS

0271 | o High (~84 percentile)

m Low (™16 percentile)
0.0
| T
60 70 80 90

Age


https://doi.org/10.1101/156331
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/156331; this version posted June 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Supplemental Figure 2
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Supplemental Table 1. Effects of polygenic hazard score (PHS) on longitudinal cognitive decline in CN and M CI individuals separ ately.

PHS* Time (CN) PHS*Time (MCI)
3 (SE) p-value n 3 (SE) p-value n
Logical Memory 0-01 (0-6) 0-99 780 -2-12 (1.73) 0.22 444
WAIS-R Digit Symbol -061 (030)  4-25x107 700 -2-44 (0-88) 5.69x10°° 443
Boston Naming Test -0-31 (0-17) 0.07 765 -0-85 (0-62) 017 474
Trail-Making Test A -0-88 (0-73) 0.23 778 -5.08 (2-69) 0.06 477
Trail-Making Test B 248 (099)  1.20x10° 770 -6:50 (2:78) 1.91x10° 442
Digit Span (forward) -093 (045)  3-76x107 780 -0-66 (0-75) 0-38 478
Digit Span (backward) -0-22 (0-59) 0.70 781 0-10 (1-05) 092 477
CDR-SB 005 (0-02) 3.64x10™ 1081 027 (0-07) 8.28x10° 571

WAIS-R: Wechsler Adult Intelligence Scale Revised. CDR-SB: Clinical Dementia Rating Sum of Boxes. Significant interactions are in bold.

9suadI| [euoieulalul 0y AN-AG-DD®
Japun a|qejrene apew si 1| ‘Ainadiad ui Juudaid ayy Aejdsip 01 asuadl| e AIxHolq pajuelb sey oym ‘ispunyioyine ayl si (mainai 1aad Aq palyined
Jou sem yaiym) iiidaud siyy 1oy Japjoy ybuAdod ayl "2T10Z ‘2z aunr palsod UoISIaA SIY) STEEIST/TOTT 0T/B10 10p//:sdny :1op jundaid Aixyolq


https://doi.org/10.1101/156331
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/156331; this version posted June 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Supplemental Table 2. Differences in rates of cognitive decline for low and high

polygenic hazard score (PHS) in CN individuals.

Low PHS (~16 percentile) High PHS (~84 percentile)

3 (SE) p-value 3 (SE) p-value

Logicad Memory 1.97 (161) 0-22 1.99 (1-82) 0-27

WAISR Digit Symbol ~ -2.08 (082)  1.08x102  -330(090)  2-66x10™

Boston Naming Test -0-18 (0-46) 0-69 -0-81 (0-51) 011
Trail-Making Test A -2:19 (1.95) 0-26 -3.96 (2-19) 0-07
Trail-Making Test B -0-85 (2:62) 0-75 581 (296)  4.94x10°
Digit Span (forward) 0:03 (1-19) 0-98 -1.82 (1-33) 0-17
Digit Span (backward) ~ -1-13 (1:57) 0-47 -1.58 (1.77) 0:37
CDR-CB 014 (004)  428x10*  025(005)  <6.03x10°

WAIS-R: Wechsler Adult Intelligence Scale Revised. CDR-SB: Clinical Dementia

Rating Sum of Boxes. Significant interactions are in bold.
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Supplemental Table 3. Goodness of fit improvements for linear mixed-effects
models with the addition of polygenic hazard score (PHS) in CN and M Cl
individuals separ ately using likelihood ratio tests.

CN MCI
x*(2) p-value 2 2(2) p-value

Logicd Memory 0-01 0.99 211 0.35
WAIS-R Digit Symbol 7:08 2.91x107 10-84 4-43x10"
Boston Naming Test 8.78 1-24x10°? 233 031
Trail-Making Test A 401 0.13 7:20 2.73x10°
Trail-Making Test B 14-42 7-40x10° 884 1-20x1072
Digit Span (forward) 6:97 3.07x10? 095 062
Digit Span (backward) 017 0:92 1.00 061
CDR-SB 29-30 4.34x107 22-47 1-32x10°

WAIS-R: Wechsler Adult Intelligence Scale Revised. CDR-SB: Clinical Dementia

Rating Sum of Boxes. Significant interactions are in bold.
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Supplementary Table 4. Differences in rates of cognitive decline for low and high

polygenic hazard score (PHS) in MCI individuals.

Low PHS (~16 percentile)

High PHS (~84 percentile)

3 (SE) p-value 3 (SE) p-value

Logical Memory -7-74 (4-30) 007 21199 (532)  2-44x107
WAISR Digit Symbol  -9.10 (219)  3-19x10°  -13.97 (2.70)  2:29x10’
Boston Naming Test 558 (1.50)  2:04x10°"  -7-28 (1-88) 1-11x10™
Trail-Making Tet A~ -21.48 (6:50) 957x10*  -31.64 (814)  1.01x10™
Trail-Making Test B~ -11.76 (6-29) 0-06 -2478 (8:03)  2.02x10°
Digit Span (forward) ~ -2-71 (1.85) 0-14 -4.04 (2-28) 0-08

Digit Span (backward) -6-49 (258)  1-19x102  -6-27 (3-18) 4-89x10°
CDR-CB 072 (018)  889x10° 127 (0-22) 1-13x10°®

WAIS-R: Wechsler Adult Intelligence Scale Revised. CDR-SB: Clinical Dementia

Rating Sum of Boxes. Significant interactions are in bold.
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Supplementary Table 5. Effects of polygenic hazard score (PHS) on longitudinal
cognitive declinein CN and M CI individuals combined.

PHS*Time
3 (SE) p-value n
Logica Memory -1:51 (0-68) 2.74x10° 1,224
WAIS-R Digit Symbol  -1.53 (0-35) 1-60%x10°° 1,143
Boston Naming Test -0-96 (0-24) 6-98x10° 1,239
Trail-Making Test A -3:25 (1.00) 1.05x10° 1,255
Trail-Making Test B -4.36 (1-04) 2.85x10° 1,212
Digit Span (forward) -1.07 (0-39) 5.47x10°° 1,258
Digit Span (backward)  -0-59 (0-53) 0-26 1,258
CDR-SB 0-22 (0-03) 8-88x10"° 1652

WAIS-R: Wechsler Adult Intelligence Scale Revised. CDR-SB: Clinical Dementia

Rating Sum of Boxes. Significant interactions are in bold.
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Supplementary Table 6. Differences in rates of cognitive decline for low and high

polygenic hazard score (PHS) in CN and M CI individuals combined.
Low PHS (~16 percentile) High PHS (~84 percentile)

3 (SE) p-value 3 (SE) p-value

Logical Memory -3-20 (1-80) 007 -6-22 (2:06) 2:54x10°°
WAIS-R Digit Symbol ~ -5.38 (0-94)  1.20x10®  -844 (1.07)  2:89x10"
Boston Naming Test ~ -3.02 (0-62)  1.28x10°  -494(072)  501x10™
Trail-Making Tet A -10-95 (258)  2:12x10°  -17-46 (296)  3.79x10°
Trail-Making Test B -6-08 (2:67)  226x10°  -14-81 (3-07)  1-46x10°
Digit Span (forward) -1.28 (1-01) 021 -3:43 (1-16) 3.05x10°
Digit Span (backward) -390 (1-38)  454x10°  -5.09 (1.56) 1-27x10°°

CDR-CB 063 (007)  <2x10%° 1-08 (0-09) <2x10™°

WAIS-R: Wechsler Adult Intelligence Scale Revised. CDR-SB: Clinical Dementia

Rating Sum of Boxes. Significant interactions are in bold.
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Supplementary Table 7. Goodness of fit improvements for linear mixed-effects
models with the addition of polygenic hazard score (PHS) in CN and M Cl

individuals combined using likelihood ratio tests.

22(2) p-value

Logicd Memory 6-85 3-26x10°
WAIS-R Digit Symbol 28-16 7:67x107
Boston Naming Test 21.74 1:91x10°
Trail-Making Test A 2158 2.06x10°
Trail-Making Test B 34.41 3:38x10”
Digit Span (forward) 1078 457x10°
Digit Span (backward) 2:78 025

CDR-SB 8833 <2x10™'®

WAIS-R: Wechsler Adult Intelligence Scale Revised. CDR-SB: Clinical Dementia

Rating Sum of Boxes. Significant interactions are in bold.
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