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Abstract

Accurate annotation of all protein-coding sequences (CDSs) is an essential prerequisite to
fully exploit the rapidly growing repertoire of completely sequenced prokaryotic genomes.
However, large discrepancies among the number of CDSs annotated by different resources,
missed functional short open reading frames (sORFs), and overprediction of spurious ORFs
represent serious limitations.

Our strategy towards accurate and complete genome annotation consolidates CDSs from
multiple reference annotation resources, ab initio gene prediction algorithms and in silico
ORFs in an integrated proteogenomics database (iPtgxDB) that covers the entire protein-
coding potential of a prokaryotic genome. By extending the PeptideClassifier concept of
unambiguous peptides for prokaryotes, close to 95% of the identifiable peptides imply one
distinct protein, largely simplifying downstream analysis. Searching a comprehensive
Bartonella henselae proteomics dataset against such an iPtgxDB allowed us to
unambiguously identify novel ORFs uniquely predicted by each resource, including
lipoproteins, differentially expressed and membrane-localized proteins, novel start sites and
wrongly annotated pseudogenes. Most novelties were confirmed by targeted, parallel
reaction monitoring mass spectrometry, including uniqgue ORFs and variants identified in a
re-sequenced laboratory strain that are not present in its reference genome. We
demonstrate the general applicability of our strategy for genomes with varying GC content
and distinct taxonomic origin, and release iPtgxDBs for B. henselae, Bradyrhozibium
diazoefficiens and Escherichia coli as well as the software to generate such proteogenomics

search databases for any prokaryote.
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Introduction

Advances in next generation sequencing technology and genome assembly algorithms have
fueled an exponential growth of completely sequenced genomes, the large majority of which
(>90%) originate from prokaryotes (Reddy et al. 2015). The accurate annotation of all
protein-coding genes (interchangeably used with CDSs from here on) is essential to exploit
this genomic information at multiple levels: from small, focused experiments, up to systems
biology studies, functional screens and accurate prediction of regulatory networks.

Yet, obtaining a high quality genome annotation is a challenging objective. Pipelines for
automated de novo annotation of prokaryotic genomes have been developed (Aziz et al.
2008; Markowitz et al. 2009; Davidsen et al. 2010; Vallenet et al. 2013). Such annotations
greatly benefit from a manual curation step to catch obvious errors (Richardson and Watson
2012), which is carried out for selected reference genomes by resources like NCBI's RefSeq
(Pruitt et al. 2012) or Microscope (Vallenet et al. 2013). Major re-annotation efforts can affect
hundreds of CDSs (Luo et al. 2009), highlighting the relevance of accurate genome
annotations (Petty 2010).

Despite improvements in functional genome annotation, three major issues remain: the
discrepancies of the number of CDSs annotated by different reference annotation resources
(Poole et al. 2005; Bakke et al. 2009; Cuklina et al. 2016), the over-prediction of spurious
ORFs that do not encode a functional gene product (Dinger et al. 2008; Marcellin et al.
2013), and the underrepresentation of short ORFs (sORFs) (Hemm et al. 2008; Warren et al.
2010; Storz et al. 2014). True sORFs, which often belong to important functional classes like
chaperonins, ribosomal proteins, proteolipids, stress proteins and transcriptional regulators
(Basrai et al. 1997; Zuber 2001; Hemm et al. 2008), are inherently difficult to differentiate
from the large amount of spurious sORFs (Dinger et al. 2008; Marcellin et al. 2013).
Proteogenomics, a research field at the interface of proteomics and genomics (Nesvizhskii

2014), is one attractive approach to address these problems. The direct protein expression
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evidence provided by tandem mass spectrometry (MS) for CDSs missed in genome
annotations (proteogenomics) differs from ribosome profiling data: while the latter can
capture translational activity on a genome-wide scale (Ingolia 2014), the former allows
detection of stable proteins. First used in the genome annotation effort for Mycoplasma
mobile (Jaffe et al. 2004), proteogenomics has since been applied to both prokaryotes
(Gupta et al. 2007; de Groot et al. 2009; Payne et al. 2010; Venter et al. 2011; Kumar et al.
2013; Marcellin et al. 2013; Kucharova and Wiker 2014; Cuklina et al. 2016) and eukaryotes
(Nesvizhskii 2014; Menschaert and Fenyo 2015). The need for computational solutions to
apply proteogenomics more broadly has been noted (Castellana and Bafna 2010; Renuse et
al. 2011; Armengaud et al. 2014; Nesvizhskii 2014). Of particular interest are tools that
create customized databases (DBs) to identify evidence for unannotated ORFs. RNA-seq
data have been used to limit the protein search DB size to achieve better statistical power
(Wang et al. 2012; Woo et al. 2013; Zickmann and Renard 2015). Other MS-friendly DB
solutions that integrate data from different species or strains include MScDB (Marx et al.
2013), MSMSpdbb (de Souza et al. 2010), and PG Nexus (Pang et al. 2014). Even pipeline
solutions were developed that allow to search proteomics data against a six-frame
translation based DB, including Peppy (Risk et al. 2013), Genosuite (Kumar et al. 2013) and
PGP (Tovchigrechko et al. 2014). However, an integration that leverages benefits of
manually curated reference annotations and a six-frame translation into one highly
informative, non-redundant and transparent resource has not been accomplished so far.

Here, we address this unmet need of the microbiology and proteomics community and
present a strategy that takes the MS-friendly DB concept one important step further. Our
solution integrates and consolidates CDSs from multiple reference annotation resources, ab
initio gene prediction algorithms and in silico ORFs (a six-frame translation, also considering
alternative start codons). Identifiers capturing information about overlap and differences
among the resources are created, as well as a GFF (generic feature format) file storing all
annotations and a highly informative, integrated proteogenomics search database (iPtgxDB).
Based on an extension of PeptideClassifier's concept of unambiguous peptides (Qeli and
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Ahrens 2010) for prokaryotes, close to 95% of the peptides in this search DB unambiguously
identify one distinct protein sequence. This greatly facilitates downstream analysis by
overcoming the need to dis-entangle protein groups implied by shared peptides. As a first
proof-of-concept, searching data from a complete, condition-specific expressed proteome
against a Bartonella henselae iPtgxDB allowed to uncover novel ORFs uniquely predicted by
each of the resources, illustrating the value of this integrated approach. Of note, the
expression of the large majority of novel ORFs could be confirmed by independent targeted
parallel reaction monitoring (PRM) MS. Our approach is flexible: iPtgxDBs can be created
both for model organisms with readily available reference annotations and for newly
sequenced genomes. We illustrate this benefit using a completely assembled genome of a
laboratory strain and proteomics data to track evidence for unique, differentially expressed
proteins down to single amino acid variations (SAAVs). iPtgxDBs were also generated and
evaluated for B. diazoefficiens and E. coli, and the software to create such DBs for any
prokaryote is released. As open source platform (https://iptgxdb.expasy.org), iPtgxDBs
enable many research groups to take full advantage of completely sequenced genomes by

improving genome annotations with proteogenomics.
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Results

Experimental evidence underscores the need for a general proteogenomics approach

We used the a-proteobacterium Bartonella henselae strain Houston-1 (Bhen) to explore how
genome annotation differences could best be integrated for a proteogenomics approach. A
100  comparison of four Bhen reference genome annotations and results from two ab initio gene
prediction tools (see Methods) confirmed reports for other organisms (Poole et al. 2005;
Bakke et al. 2009; Cuklina et al. 2016) that both the number of predicted ORFs and their
precise start sites largely differ (see Figure S1). Only 50% of the Bhen CDSs were annotated
or predicted completely identical by all six resources and 37% were unique to one resource
105  (Figure S1A). Of note, 23% of the CDSs of the recent NCBI RefSeq2015 re-annotation
differed from RefSeq2013 (Table S1): 55 CDSs were removed (99 added), 74 CDSs were
shortened (54 extended), and 64 pseudogenes were removed (15 added).
To assess the validity of the RefSeq2015 re-annotation, we relied on an ideal dataset: a
complete prokaryotic proteome (including many low abundant proteins) expressed under two
110  conditions that mimic those encountered by Bhen in the arthropod vector midgut (uninduced
condition) and the bloodstream of its mammalian host (induced condition), which had been
searched against RefSeq2013 (Omasits et al. 2013). A search against a RefSeq2015 protein
DB provided experimental evidence for many of the re-annotations, including 6 sORFs that
we had previously identified with a prototype of our proteogenomics approach as novel
115 (Table S1), and which have since been added to RefSeq2015. Also, among the 55 removed
CDSs, we found 32 of 52 proteins we had earlier singled out as potential over-predictions
(Omasits et al. 2013). However, we also found several cases that supported the earlier
RefSeq2013 annotation, including expression evidence for CDSs that were relabeled as
pseudogenes and for removed CDSs (Table S1). This highlights the need for an integrated,

120  yet general approach to address this fundamental problem of gene annotation inconsistency.
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A general, integrative proteogenomics approach

An ideal solution to capture the full protein-coding potential of genome sequences should
therefore i) consider results from different reference genome annotations (Nesvizhskii 2014),
which often include substantial manual curation efforts from experts, and from ab initio gene
125  prediction tools, ii) allow to identify the small fraction of true functional sORFs often missed
by the above annotations or predictions, iii) aid in the annotation of newly sequenced
genomes, and iv) enable scientists to visualize their experimental proteomics results in the
context of both the genome and all available annotations.
To our knowledge, existing tools only address a subset of these requirements. These include
130 pipeline solutions that rely on a six-frame translated genome like Peppy (Risk et al. 2013),
which aims to improve the scoring function for peptide spectrum matches (PSMs), Genosuite
(Kumar et al. 2013), which uses four distinct search algorithms before integrating and
visualizing the results, and PGP (Tovchigrechko et al. 2014), which draws on the experience
of many proteogenomics studies (Venter et al. 2011) and highlighted the need for stringent
135 criteria to accept novel ORFs. However, these tools do not integrate different annotation
sources. Some MS-friendly integrated DBs accomplish this, such as MScDB (Marx et al.
2013), which uses a peptide-centric clustering algorithm to combine e.g. cross-species DBs,
or MSMSpdbb, which allows to create a non-redundant protein DB for multiple closely
related bacterial strains (de Souza et al. 2010). However, they do not integrate different
140  annotations of the same genome. PG Nexus (Pang et al. 2014) uses the NCBI RefSeq
annotation, a Glimmer ab initio prediction (Delcher et al. 2007) and a six-frame translation
against which peptides are searched with Mascot and later visualized onto the genome.
However, the annotations are not integrated and consolidated; the boundaries of novel
ORFs still have to be discovered based on peptide evidence, which requires substantial
145 manual effort. In addition, Mascot is not ideal for the task of identifying novel ORFs in

proteogenomics approaches (Omasits et al. 2013; Risk et al. 2013). To address all of the
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above objectives in one integrated solution, we devised a proteogenomics workflow that

relies on three steps (Figure 1).
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150  Figure 1. Integrative proteogenomics workflow.
For a completely sequenced prokaryotic genome (Bhen is shown as example with annotated
CDSs), reference genome annotations (blue containers), results from ab initio gene
prediction algorithms (green containers), and in silico ORFs (white container), are
downloaded or computed and integrated in a first pre-processing step (upper panel). All CDS
155

and pseudogene annotations are matched, informative gene identifiers are created and

stored in a minimally redundant iPtgxDB (red container; searchable protein sequences in
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FASTA format, integrated annotations in GFF format). Experimental proteomics data are
matched to the DB using a target-decoy approach relying on stringent FDR cut-offs (middle
panel). Identified PSMs and peptides are post-processed to visualize novel candidates

160  (lower panel) in the context of experimental data integrated with the GFF file.

First, popular reference genome annotations, the results of ab initio prediction algorithms,
and in silico ORFs from a six-frame genome translation were combined into an integrated
proteogenomics search database (iPtgxDB) (Figure 1, upper panel) with the aim to capture
165 the entire genomic protein-coding potential (see Methods). On top of genome annotations
from NCBI RefSeq, Ensembl and Genoscope, we included results of the ab initio gene
prediction algorithms Prodigal (Hyatt et al. 2010), which performs well even for genomes
with high GC content where gene calling is more difficult (Marcellin et al. 2013), and
ChemGenome. The latter relies on physico-chemical characteristics of codons calculated by
170  molecular dynamics simulations (Singhal et al. 2008) and is thus quite different from Prodigal
and similar tools (Pati et al. 2010). Finally, to be able to identify functional sORFs, which are
often missed due to rather conservative length thresholds for ab initio predicted ORFs, all
potential in silico ORFs (a modified six-frame translation; see Suppl. Methods) above a
selectable length threshold were added. A literature search for experimentally validated
175  prokaryotic sORFs (Zuber 2001; Rowland et al. 2004; Venter et al. 2011) revealed that novel
sORFs were longer than 20 aa, with very few exceptions (Hemm et al. 2008). To balance
comprehensiveness and avoid loss of statistical power when searching large DBs (Blakeley
et al. 2012; Noble 2015), we selected a length threshold of 18 aa.
In a second step, proteomics data - ideally comprehensive expression data obtained under
180  multiple conditions (Ahrens et al. 2010) - is searched against the iPtgxDB and stringently
filtered (Figure 1, middle panel). We used the search engine MS-GF+, which rigorously
computes E-values of PSMs based on the score distribution of all peptides (Kim and
Pevzner 2014) and which had performed favorably in our hands for large shotgun
proteomics datasets (Omasits et al. 2013) as well as in proteogenomics studies (Risk et al.

185  2013; Zickmann and Renard 2015; Cuklina et al. 2016).
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In a third step, peptide evidence is visualized in the context of the genome and all
annotations (contained in a GFF file) using a genome browser such as IGV (Robinson et al.
2011) (Figure 1, lower panel). Candidates in major classes of novelty include novel ORFs,
different or additional start sites, and expressed pseudogenes. These can be inspected in
190 the context of experimental data (e.g. proteomics and transcriptomics data), functional

annotations and other features to enable a comprehensive assessment and prioritization.

Creating minimally redundant but maximally informative protein search databases

A unique aspect of our proteogenomics approach is that almost all MS-identifiable peptides
of the iPtgxDB unambiguously identify one specific protein (Figure 2). To achieve this, we
195 extended our PeptideClassifier concept (Qeli and Ahrens 2010) for prokaryotes.
PeptideClassifier was developed to classify the information content of peptides with respect
to their originating gene model(s) into six classes; class 1a peptides are most informative
and allow unambiguous identification at the protein sequence, protein isoform and gene
model level (Figure S2). Our extension for prokaryotes now treats protein sequences with a
200 common stop codon and varying start positions (N-termini) as a protein annotation cluster,
i.e. variants of a prokaryotic gene model (similar to isoforms of a eukaryotic gene model).
Class 1a peptides remain most informative as they are unique to one entry in a DB, while
class 1b peptides map uniquely to one annotation cluster with all identical sequences. Class
2a peptides identify a subset of sequences from an annotation cluster and class 2b peptides
205 map to all sequences of an annotation cluster. Class 3a peptides map to identical sequences
from different annotation clusters (typically duplicated genes). Class 3b peptides map to
different sequences from different annotation clusters and are least informative.
The stepwise integration of resources, carried out in Figure 2A for Bhen as a model, follows
a hierarchy: to leverage the quality of manual curation efforts we start with reference
210 annotations, then ab initio predictions, then in silico ORFs. The anchor sequence is selected
from the annotation highest up in the hierarchy, i.e. here RefSeq2015, unless no CDS is

predicted in a given genomic region. Each subsequent resource added new protein clusters,

10
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and new extensions or reductions (i.e. alternative start sites) to an existing cluster, while
identical annotations are collapsed (Table 1). Alternative start codons are captured with our

approach, even for in silico ORFs (Figure 2A).

Annotation source No. of New New New Cumulative Cumulative
annotations | clusters | extensions | reductions clusters annotations

1. RefSeq2015 1612 1612 - - 1612 1612

2. RefSeq2013 1612 211 79 66 1823 1968

3. Ensembil 1612 0 1 0 1823 1969

4. Genoscope 2114 476 9 64 2299 2518

5. ChemGenome 2211 688 515 35 2087 3756

6. Prodigal 1643 50 41 63 3037 3910

7. in silico 54,099 32,928 16,514 129 35,965 53,481

Table 1. Result of the stepwise, hierarchical integration of resources for Bhen. The number of
annotations per source, new protein clusters, new extensions and reductions are shown for each step
and summarized under cumulative clusters and cumulative annotations. Overall, protein sequences
for 53,481 annotations mapped to 35,965 annotation clusters. The final iPtgxDB had 51,541 entries,
as sequences < 6 aa (1750), i.e. not identifiable with shotgun proteomics, and indistinguishable

internal start sites (190) were not considered.

The four distinct sequences (collapsed from eight annotations) of the protein cluster for
apolipoprotein N-acyltransferase with the anchor sequence BH_RS01095 (Figure 2A)
illustrate this key principle: by only adding the full sequence of the anchor protein plus class
1a peptides (red in Figure 2A) that can unambiguously identify extensions or internal start
sites and few class 2a peptides (yellow in Figure 2A) to the iPtgxDB, we minimize
redundancy and maximize information content of the peptides, compared to adding all
protein sequences (Figure 2A, lower panels). In the latter case, many peptides classified as
2a or 2b, which imply a subset or all annotations of a CDS cluster, would get added to the
iPtgxDB. Identification of such shared peptides greatly impedes downstream analysis.

The protein identifiers of the four distinct sequences transparently capture overlap and

differences of the annotations (see Methods); they show in which resource(s) the identified

11
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235 CDS is annotated, if and how the annotations differ, whether it is a novel ORF or an

alternative start site, again largely improving downstream data analysis (Figure 2A).

Figure 2
Annotation hierarchy 2
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240 Figure 2. Generating an iPtgxDB with informative identifiers and a minimally redundant
protein search DB in FASTA format.

(A) CDSs and pseudogenes of 7 resources are integrated in a stepwise fashion. Informative
protein identifiers are created, illustrated for the annotation cluster with the RefSeq2015
anchor sequence BH_RS01095 shown in bold, where three additional start sites exist. The
245  four different proteoforms are added to the protein search DB: the anchor sequence (bold)
with the full protein sequence, the extensions (RefSeq2013 and ChemGenome) add the
upstream sequence up to the first tryptic cleavage site within the anchor sequence. The
shorter Prodigal prediction uses an alternative start codon resulting in a distinguishable N-
terminal peptide, and therefore gets also added. The two in silico ORFs are identical to

250 annotations higher up in the annotation hierarchy, and therefore are not added. Peptide
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classes are shown for the N-terminal sequences of the CDS annotation cluster (see also Fig.
2C). (B) Boxplots of protein length for RefSeq2015 and of those proteins that get added in
each successive step to the protein search DB illustrate that we include many sORFs
potentially missed in the reference annotations. (C) Bar chart showing the DB complexity
255 and the peptide classes for RefSeq2015, all 6 integrated annotations without and with in

silico ORFs, and the final iPtgxDB. The legend shows colors for the six peptide classes.

The identifiers also contain genomic coordinates, allowing to visualize all experimental
peptide evidence for a novel ORF in its genomic context along with all integrated annotations
260 provided in the iPtgxDB GFF file. Peptides implying any other sequence (e.g. one of the
three identifiers below the anchor sequence identifier in Figure 2A) would inform the
experimentalist at a glance that novel information compared to RefSeq2015 was uncovered
(see Supplemental Methods for examples how to “interpret” the identifiers).
A box plot of the lengths of the proteins added to our DB in the stepwise processing
265 illustrates that we capture increasingly smaller proteins. Adding in silico ORFs down to a
selectable length threshold allows us to query the entire protein-coding potential of the
genome (Figure 2B).
The final Bhen iPtgxDb contains 51,541 entries (Table 1). Importantly, 94% of all
theoretically MS-identifiable tryptic peptides (6-40 aa) allow unambiguous identification of
270 one protein, i.e. class 1a peptides (red, Figure 2C). For RefSeq2015, almost all peptides
mapped uniquely to one protein, which is common for a prokaryote (Figure 2C). Combining
all 6 annotations resulted in a modest increase of tryptic peptides (23%); however, most
peptides (85%) now matched at least two annotations: either annotations for an identical
sequence (class 1b) or annotations of proteins with different length, but of the same
275 annotation cluster (class 2a or 2b, i.e. a subset or all of the proteoforms of the cluster), which
would greatly complicate the interpretation of proteomics search results. Adding in silico
ORFs significantly increased the number of peptides, adding mainly new unique peptides
(class 1a) for ORFs in regions without annotation (Figure 2C). Our careful integration

collapses identical sequences and removes 1b and 2b peptides from the iPtgxDB.
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280 Defining DB complexity as number of distinct tryptic peptides of 6-40aa length, the
complexity of the resulting iPtgxDB was approximately 50% of that of a full six-frame
translated genome that Mascot (Perkins et al. 1999) or PG Nexus (Pang et al. 2014) would
rely on to identify proteogenomic evidence for novel peptides. Despite the relatively large
number of entries, the DB complexity is only 70% of that of baker’s yeast and below 20% of

285 ahuman protein DB (Table S2).

Searching Bhen proteomics against our iPtgxDB identifies novel ORFs

We next searched existing data from a comprehensive expressed proteome, an in vitro
model mimicking interaction of Bhen with the arthropod vector (uninduced condition) or its
mammalian host (induced condition) (Omasits et al. 2013), against the Bhen iPtgxDB using
290 MS-GF+. Relying exclusively on unambiguous class 1a peptides, this allowed to
systematically identify expression evidence for novel ORFs, novel start sites, and CDSs
wrongly annotated as pseudogenes (Table 2). Importantly, each of the reference genome
annotations, ab initio gene prediction tools, and in silico predicted ORFs provided unique
novel hits, underlining the value of our integrated approach (Table 2, Figure S3). These hits
295 are novel compared to the most common approach of using the latest reference annotation
as search DB, i.e. RefSeq2015 in this case.
When searching large datasets, it is imperative to use stringent cut-offs. This is particularly
relevant for proteogenomics, where correctly identified novel information would require a
genome annotation change. We relied on an estimated PSM-level false discovery rate (FDR)
300  cut-off of 0.01%, which resulted in a peptide-level FDR of 0.12%. This cut-off is about 10-fold
more stringent than in other proteogenomics studies (Krug et al. 2013; Kumar et al. 2013;
Chapman and Bellgard 2014; Zickmann and Renard 2015), and closer to the cut-offs used
by Payne and colleagues (peptide level FDR cut-off 0.3%) (Venter et al. 2011). Of particular
note, the E-value score distribution of PSMs that identify novel features is also bi-modal,
305 similar to that of PSMs identifying annotated proteins in the target DB (Figure 3A). To claim a

potential novel ORF, we required at least 3 PSMs to class 1a peptides if predicted by a
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reference genome annotation/ab initio prediction tool, and 4 PSMs to class 1a peptides for in
silico ORFs, in line with earlier recommendations (Nesvizhskii 2014). Furthermore, all

genomic regions encoding novel candidates/start sites were expressed (Table S3).

310
Novel protein-coding ORF
Annotation source Evidence for
not in RefSeq2015 pseudogene in | iternative NH2-

RefSeq2013 / Ensembl 4 10 5
Genoscope 4 1 0
ChemGenome 1 2 5
Prodigal 3 1 2
in silico ORFs 10 1 5
total 22 15 17
Table 2. Summary of novel information uncovered by the integrated proteogenomics approach.
Compared to RefSeq2015, each resource added some novelty with respect to Bhen’s overall protein-
coding potential. Overall, close to 80% of the identified novelties could be independently confirmed by
PRM (Table S3).

315

Overall, 37 novel Bhen ORFs (with respect to RefSeq2015) were identified (Table 2, Figure
S3): 12 annotated by another resource or ab initio prediction tool, 10 in silico only predicted
ORFs, and 15 with a pseudogene annotation. In addition, 17 alternative start sites were
320 identified. The median length of 22 novel ORFs (excluding pseudogenes) was 48 aa, that of
6 novel ORFs previously identified with a prototype versus RefSeq2013 (i.e., prior to the re-
annotation; Table S1) was 80 aa (Figure S4). This confirms that the novel ORFs represent
sORFs commonly underrepresented in genome annotations. Analysis of the estimated
expression levels of the novel ORF candidates including pseudogenes (see Methods)
325  furthermore indicated that several of the sORFs are well expressed proteins (Figure S4) that

may carry out important functions.
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Figure 3. Examples of novel information uncovered by integrative proteogenomics.

(A) E-value distribution of PSMs against proteins of decoy and target DB (red and blue lines,
345  left scale) plus the distribution of those PSMs that uncovered novelties (green line, right
scale). A PSM level FDR cut-off of 0.01% was selected per sample. (B-D) Zoomed in views
of genomic regions that harbor novelties. For illustration, a single frame of the
forward/reverse strand with possible start (green) and stop codons (red) is shown, along with
annotations and experimental evidence (spectral counts scaled from 0 to 20). (B) Example of
350 a novel sORF of 68 amino acids (BARHE0898, frame +3). (C) Example of a highly
expressed pseudogene (RefSeq2015: BH_RS01070, frame -3). 2244 spectra are mapped to
117 peptides of NusA, which is annotated as pseudogene in RefSeq2015 for unknown
reason. There is no experimental evidence for the +8 aa N-terminal extension predicted by
ChemGenome. (D) Proteomic expression evidence supports a 63 aa longer proteoform of
355 BH_RS01750 (frame -3) uniquely predicted by ChemGenome.

Examples of novel ORFs included differentially expressed sORFs such as BARHE0898 (68
aa), that was expressed roughly 6.5-fold higher in the induced condition (Table S3). Peptide
evidence supported the longer form of this ORF annotated by Genoscope and Prodigal
360 (Figure 3B). Another novel sORF of 67 aa, a lipoprotein uniquely predicted by
ChemGenome, was only identified in the uninduced condition (Figure S5A). Even smaller
ORFs were identified, including a well-expressed (9 peptides, 143 PSMs) sORF of 49 aa
that was uniquely predicted by Prodigal (Fig S5B, Table S3), and an in silico only predicted
sORF of 34 aa (Figure S5D). We also identified a highly expressed RefSeq2015
365 pseudogene (BH_RS01070, frame -3, Figure 3C) annotated as normal CDS (transcription

elongation factor NusA) by RefSeq2013, Ensembl, and Genoscope. Other mis-annotated
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pseudogenes included a potassium-efflux transporter (BH10840) and the Bartonella effector
protein BepD (BH13410, Table S3). Finally, for BH_RS01750 a hypothetical protein encoded
in a prophage region, only ChemGenome correctly predicted a 63 aa longer proteoform than
370 annotated by other resources; its expression was supported by several peptides (Figure 3D).
Proteomic data thus can support novel start sites (even multiple start sites; Figure S5C) and

distinguish between those predicted by different reference annotations.

Confirmation of novelties by independent targeted proteomics

In order to confirm novel ORFs by independent methods, the expression of novel candidates
375 at the protein level was assessed by targeted proteomics experiments (Figures 3 B-D and
S5 A-D) with parallel reaction monitoring (PRM) assays (Peterson et al. 2014). For this
highly sensitive method, cytoplasmic (cyt) and total membrane (TM) extracts were prepared
from new biological samples as described (Omasits et al. 2013) (see Methods). Overall, we
were able to validate 107 of 138 targeted peptides (78%; Tables S3, S4), including low
380 expressed novel proteins implied by 1 peptide and 3 PSMs. We had previously derived
predominant subcellular localizations (SCL) for all proteins (Stekhoven et al. 2014), which
we computed here also for the novel candidates (see Supplemental Methods, Table S3).
Importantly, the SCL data agreed with the PRM evidence in either cyt or TM fractions,
thereby adding yet another layer of support to the confirmed novel ORFs (Table S3). The
385 validation success was 100% for the 6 novel ORFs identified previously by our prototype
(novel with respect to the RefSeq2013 annotation, Figure S4), around 80% for 15 expressed
pseudogenes and 12 novel ORFs from another genome annotation/prediction, 60% for novel
in silico ORFs, and around 55% for novel start sites (TableS3).
Of note, we overall identified 38 of 51 lipoproteins predicted to have a Spll cleavage site
390 (LipoP, version 1.0) (Table S5). Two of these were identified among the 12 novel ORFs (one
predicted by Genoscope, one by ChemGenome), and two others among the 6 novel ORFs
identified previously, which have since been incorporated in Refseq2015. All four candidates

were validated by PRM (Table S3), and their predominant SCL indicated that they were
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found exclusively in the total membrane or outer membrane fractions (Table S3).
395 Lipoproteins could thus represent a class of proteins for which a substantial percentage is
missed in reference genome annotations, which is relevant given their important roles in
signaling, protein folding and export, virulence, immunity and antibiotic resistance (Kovacs-

Simon et al. 2011).

De novo assembly and genome comparison of Bhen strains underlines the

400 importance of a correct genome sequence

Massively reduced sequencing costs and improved assembly algorithms make it possible to
determine the actual genome sequence of key bacterial strains used in a laboratory, which
provides an optimal basis to integrate functional genomics data and to correctly identify
novel sORFs. We thus explored to what extent our lab strain (MQB277) differed from the

405 Bhen reference strain (Alsmark et al. 2004), and whether we could detect protein expression
evidence for novel ORFs in unique genomic regions, and for SAAVs. Conceptually, this
allowed to test our approach on a newly sequenced genome, now relying on an iPtgxDB
integrating Prodigal predictions plus in silico ORFs, but without curated reference genome
annotations.

410 We de novo assembled (Chin et al. 2013) the PacBio sequenced genome of the MQB277
lab strain, derived from Bhen CHDE101, a Bhen variant-1 strain (Lu et al. 2013) into one
1,954,773 bp high quality contig (see Suppl. Methods), i.e. ~23.7 kbp longer than the NCBI
reference genome (Figure 4A). To compare closely related genomes in the context of
experimental evidence, we devised a “virtual genome” concept, i.e. a coordinate system that

415 integrates sequences from reference genome and de novo assembly (Figure 4). This
allowed us to integrate annotation and experimental data tracks, to efficiently zoom down to
the single nucleotide level and to inspect all lines of evidence for observed differences.
Overall, we noted a large inversion translocation (34.4 kbp) close to the terminus of
replication, previously reported for some Bartonella isolates (Lindroos et al. 2006), and three

420 insertions of 22.1, 6.1 and 1.4 kbp in the MQB277 assembly (Table S6). The 22.1 and 1.4 kb
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Figure 4. Comparative analysis in the context of experimental data.

Integrated visualization of two closely related genomes through a virtual genome concept.
(A) On the left, the Bhen NCBI RefSeq genome (inner blue circle) is aligned to our de novo
assembly (outer red circle). A large inversion-translocation (black bracket) is marked; several
insertions or deletions in either genome are shown (white spaces) and a center track for
single nucleotide variations (SNVs). To the right, the virtual genome (gray) is shown which
incorporates both genome sequences including all differences into a common coordinate
system. Unique sequences are shown in blue or red, respectively (the inversion-
translocation present in both genomes is left as is). (B) Zoom into the region harboring a
6088 bp insertion in MQB277 (red bar), showing annotations for RefSeq genome (below the
virtual genome track) and assembly (above the virtual genome track), plus experimental
proteomics evidence mapped against both genomes (spectral count scaled from 0-800).
This region harbors a direct repeat only in the assembly (orange bars). Three CDSs
(MQB277_12910, MQB277_12920, MQB277_12930) annotated as autotransporters are
highly expressed; the first two (novel CDSs) are only detected (unambiguous 1a peptides)

with the correct genome sequence available.
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insertions affected a genomic region encoding the surface protein BH01510, a BadA1
adhesin (Figure S6), and major pathogenicity factor that mediates binding of B. henselae to
440  extracellular matrix proteins and endothelial cells (Riess et al. 2004). A complex repeat
structure in this region of the assembly harbored additional ORFs, whose expression was
supported by unambiguous peptide evidence. In line with the CDS MQB277_01630 lacking a
C-terminal membrane anchor, its predominant SCL was cytoplasmic (for more detail, see
Figure S6). These data help to explain earlier experimental data that had demonstrated lack
445  of or much lower BadA surface expression in the Bhen CHDE101 variant strain (Lu et al.
2013).
Of note, the 6.1 kbp insertion harbored two CDSs predicted to encode autotransporter
proteins (Figure 4B). Both MQB277_12910 and MQB277_12920 were unique to the high
quality PacBio assembly, which contains a direct repeat in this region (missing in the
450 reference), indicative of a duplication event. Searching against the MQB277-based iPtgxDB,
all 3 proteins were highly expressed (Figure 4B, MQB277 track), compared to only
BH_RS06340 based on the RefSeq2015 protein DB (NCBI RefSeq track). Importantly, the
novel CDS MQB277_12910 was among the most upregulated (42-fold) proteins in the
induced condition (Table S3), even higher than the autotransporter BH_RS06340 (38-fold).
455  This data is in line with the dramatic re-organization of the membrane proteome reported
earlier (Omasits et al. 2013). Our SCL data indicated that all three proteins were localized in
the outer membrane (Table S3).
The assembly also comprises a genomic region harboring a 1 bp insertion and a 81 bp
deletion with respect to the reference. Because of the frameshift caused by the insertion,
460 protein expression of a CDS annotated as ABC transporter (downstream of the insertion)
was only observed in the lab strain assembly (Figure 5A, Table S6), which is also supported
by transcriptomics data (see Methods). Due to the frameshift, CDSs in this region were
either annotated as pseudogenes or as split CDSs (NCBI RefSeq track). This example is
furthermore noteworthy, as our transcriptomics dataset (Omasits et al. 2013) had been re-
465 analyzed with an RNA-seq based proteogenomics approach (Zickmann and Renard 2015).
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Figure 5. Protein evidence for SAAVs.
(A) Genomic region encoding an ABC transporter (BH_RS05910). RefSeq and Ensembl

475 annotate it as pseudogene, Genoscope as fragmented pseudogene, while Prodigal and
Chemgenome predict 2 CDSs. The reference genome (below gray virtual genome bar; NCBI
RefSeq track) differs from the MQB277 assembly (MQB277 track above the virtual genome)

by an insertion of 81 bp and a 1 bp deletion (red boxes); the 1 bp deletion causes a
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frameshift, evidenced by the lack of protein expression downstream of it (spectral count

480 below the virtual genome; scaled from 0 to 800) and by transcriptomic data (reads mapped
to the reference genome all support the insertion; lower panel). In contrast, the protein
encoded by MQB277_12040 in the assembly is expressed over almost its entire length
(class 1a peptides; 1 peptide identified by 7 PSMs spans the frameshift region), also
supported by transcriptomic reads mapping without any mismatch (data not shown).

485 (B) Evidence for a SNV causing a non-synonymous SAAYV in the CDS of transcription
elongation factor GreA. Four peptides (2, 4, 8, 39 PSMs) confirming this SAAV (Glycine in

reference to Glutamic acid in our assembly) are mapped to this position in MQB277.

Two novel ORFs were reported, one of which is shown in Figure 5A (orange arrow).
490 However, only with the correct assembly at hand can novel ORFs be identified completely
accurately. Our integrated analysis demonstrates that the novel ORF in question is in fact
longer, and its expression is supported by class 1a peptides (MQB277 track). Of note, we
found several examples where SNVs led to non-synonymous protein sequence differences,
as e.g. for transcription elongation factor GreA (Figure 5B). The expression of this and 11
495  additional SAAVs (Table S3) was again independently validated by PRM assays. Analysis of
the 274 SNVs observed between the two genomes indicated that they were significantly
enriched in a limited number of regions encoding surface proteins (114/274), including 4 of 8
hemagglutinins, and 4 hemolysin activator proteins (HECs) (Table S6). Together, our data
provide multiple lines of evidence for the earlier postulation that genome rearrangements
500 observed in natural Bhen populations affect variation of surface proteins (Lindroos et al.
2006).
Finally, the search against the assembly-based protein DB led to overall 10,410 more
assigned PSMs, and 441 peptides (same 0.01% PSM level FDR threshold; Table S7).
Overall, these results emphasize the value that research groups can gain by sequencing and

505 assembling their most important strains.
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Integrated proteogenomics approach is generically applicable

Genome annotation is more difficult and error-prone for genomes with high GC content; they
contain more spurious ORFs and fewer stop codons, which leads to a reduced accuracy of

510 translation start site prediction (Hyatt et al. 2010; Marcellin et al. 2013). To demonstrate that
our approach can work beyond Bhen (38.2% GC), we have applied an earlier prototype on
genomes with higher GC content: We could identify novel ORFs in the genome of
Burkholderia kirkii (62.9% GC) including metabolic enzymes missed in a RAST annotation
(Aziz et al. 2008), which carry out critical functions in the obligate symbiosis with plants of

515 the genus Psychotria (Carlier et al. 2013). For Bradyrhizobium diazoefficiens (64.1% GC)
and in combination with dRNA-seq data, we uncovered many novel short ORFs and internal
start sites expressed under free-living conditions and in symbiosis with soybean (Cuklina et
al. 2016). Finally, we applied our approach on shotgun proteomics datasets from Escherichia
coli K-12 BW25113 (50.3% GC) during exponential growth (Krug et al. 2013) or grown under

520 multiple conditions (Schmidt et al. 2015) (see Suppl. Methods). Even for the well-annotated
genome of the parental strain of the Keio knockout strain collection (Baba et al. 2006), we
could identify evidence for novel ORFs. These included 6 pseudogenes with solid
expression evidence, but also short in silico ORFs, including a highly conserved sORF of 57
aa (3 peptides, 9 PSMs) plus several novel start sites (Tables S8, S9).

525 To enable proteogenomics for a larger microbiology research community with access to
proteomics core facilities, we provide both a set of precomputed iPtgxDBs for several key
prokaryotic model organisms including founder strains of gene knockout collections, and a
step by step protocol (Figure 6). This can enable groups with bioinformatics support to
generate iPtgxDBs for many newly sequenced organisms, e.g. type strains for the 11,000

530 named species targeted by the genomic encyclopedia of bacteria and archea (GEBA)
project (Kyrpides et al. 2014) or environmental isolates. These organisms offer unique
opportunities to study fundamental aspects such as the presence of novel biochemical

reactions (Montes Vidal et al. 2017) or pathways relevant for biotechnological applications,
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the development and spread of antibiotics resistance (ABR), and key functionalities of
535 important strains isolated from complex microbiomes, whose importance for e.g. human
health (Cho and Blaser 2012) and plant protection from pathogen attack in agricultural

settings (Berendsen et al. 2012), has been recognized.
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Figure 6. Application of our integrated proteogenomics approach

We release open source iPtgxDBs for several model organisms (https://iptgxdb.expasy.org),
here for Bhen, E. coli BW25113 and B. diazoefficiens USDA 110 (left panel). Using
proteomics data from any condition or knockout strain (light brown boxes, here schematically
545  shown for E. coli), researchers can identify novelties, and iteratively improve the genome
annotation e.g. in a community-driven genome Wiki approach (Salzberg 2007). The release
of the software to integrate ab initio predictor(s) and in silico predictions (File S10) can help

to improve genome annotations of many newly sequenced genomes (right panel).

550
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Discussion

We present a flexible, yet general proteogenomics strategy that allowed us to identify
novelties in the genome of prokaryotes of different taxonomic origin (a-, B-, y-proteobacteria)
and widely ranging GC content. Investing a major effort in a pre-processing step to
555 hierarchically integrate reference genome annotations and predictions into an iPtgxDB that
covers the entire protein-coding potential pays off: close to 95% of the peptides
unambiguously imply one protein (based on an extension of the PeptideClassifier concept
(Qeli and Ahrens 2010) for prokaryotes), facilitating swift data analysis and mining. On top,
informative identifiers capture overlap and differences of all resources, start codon and
560 genomic coordinate information, such that novel ORFs, start sites or expressed
pseudogenes can readily be identified and visualized. These features are unique to our
solution. Our iPtgxDBs come in form of a protein search DB and a GFF file containing all
annotations and identifiers.
For prokaryotes, the complexity of iPtgxDBs is lower than that of a regular protein search DB
565 for e.g. yeast or human (Table S2). In our view, the benefit of generating a single iPtgxDB
against which proteomics data from any condition (or knockout strain) can be searched to
identify novel ORFs outweigh that of other elegant solutions that were developed for the
more complex eukaryotes. Both splice graphs (Woo et al. 2013) and RNA-seq data (Wang et
al. 2012) reduce the complexity and size of the search DB. However, in both cases, DBs
570 specific for the conditions studied are generated, requiring bioinformatics expertise and
limiting the general applicability of the resource. While our approach is unique, the GFF file
can be very valuable for other proteogenomics software solutions like Genosuite (Kumar et
al. 2013), PGP (Tovchigrechko et al. 2014) and PG Nexus (Pang et al. 2014), which allow
users to search their data against a six-frame translation and later visualize identified
575 peptides onto a genome sequence, but lack integrated and consolidated annotations.
The proteogenomics community is still to agree upon the best practice for required FDR

thresholds and confirmation of novel candidates. Using very stringent FDR thresholds, as
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also advocated by Venter and colleagues (Venter et al. 2011), we show that the E-value
distributions of PSMs for novel hits and target proteins are similar. Furthermore, we invested
580 an extra effort to confirm the expression of novel ORFs with selective and sensitive PRM
assays. The validation success (80% overall) ranged from 100% for SAAVs and highly
expressed novel sORFs to around 55% for novel start sites. Reasons for the lower success
with start sites can include N-terminal cleavage or modification, both of which can prevent
detection of the single peptide to be confirmed (Goetze et al. 2009). Identification of internal
585  start sites is even more difficult, but greatly benefits from the availability of dRNA-seq data
(Cuklina et al. 2016) and/or N-terminal enrichment steps.
Focusing on the description of our novel strategy, we did not further characterize or
functionally validate novel sORFs beyond the PRM confirmation. More effort will be required
to assess the functional relevance of sORFs, e.g. by individual gene deletion or genome-
590 wide transposon mutagenesis screens (Christen et al. 2011). Recent work in yeast
suggested that sORFs may represent a pool of proto-genes that are under evolutionary
pressure and may lead to the birth of novel genes (Carvunis et al. 2012). Indeed, genes that
emerged more recently tend to be shorter (Tautz and Domazet-Loso 2011).
Besides identifying missed sORFs, our data indicated that i) the procedures to annotate
595 pseudogenes differ between resources (and even releases) and have to be treated with
caution, and ii) likely over-predicted ORFs can be uncovered by relying on complete,
condition-specific expressed proteomes. Recent advances to comprehensively identify
expressed proteomes within a few days (Nagaraj et al. 2012; Richards et al. 2015) suggest
that proteomics data can, at least in part, address this issue of over-prediction. Such
600 extensive datasets can also uncover functionally relevant genomic changes down to the
SAAV level, with implications for clinical proteomics and beyond. For example, by tracking
clinically relevant pathogens either over time (Lee et al. 2017) or comparing different strains,
genome changes that correlate with higher pathogenicity (de Souza et al. 2011; Nasser et al.
2014; Malmstrom et al. 2015) can be identified, some of which ideally are supported by
605  direct protein expression evidence for SAAVSs.
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Importantly, our data show that assembling the correct genome sequence of the strain under
study is of critical importance: it is the optimal basis not only to comprehensively identify
expression differences between the conditions studied, but also to accurately identify novel
sORFs by proteogenomics. An initial de novo assembly should thus be carried out routinely
610 for the most important strains, in particular those that form the basis for long-term projects
aiming to integrate functional genomics data.
We favor a conservative approach to genome re-annotation, ideally carried out by consortia
that iteratively improve the annotation of their respective model or non-model organisms
(Armengaud et al. 2014), e.g. relying on a genome Wiki concept (Salzberg 2007) (Figure 6).

615 By releasing iPtgxDBs initially for three model organisms (https://iptgxdb.expasy.org) and the

software to create them (File S10), we hope to enable a large user base to apply
proteogenomics in the initial genome annotation step. This will provide an optimal basis for
systems-wide functional studies and genome-scale regulatory or metabolic predictions, and

help to fully capitalize on the genome information and decode its function.

620
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Data access

All data are publicly available: the genome sequence of Bhen variant-1 strain CHDE101
(Genbank; acc. # CP020742), the PRM data (Email: panorama+wollscheid@proteinms.net;
Password:!9QcZ4#T) under https://panoramaweb.org/labkey/Bartonella_Proteogenomics.url,
625 and iPtgxDBs for Bhen Houston-1 (RefSeq NC_005956), Bhen CHDE101, E. coli BW25113
and B. diazoefficiens USDA 110 (in both FASTA format and as GFF files to visualize all
integrated annotations); they can be downloaded from https://iptgxdb.expasy.org (user:
preview, pw: iptgxdblive). Scripts to generate iPtgxDBs for any prokaryote are available in

the Supplement (File S10).
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Methods

Source of reference genome annotations and ab initio predictors

645  Annotations of the Bhen reference genome (Alsmark et al. 2004) were obtained from NCBI’s
RefSeq (Pruitt et al. 2012) (NC_005956.1; from 06/10/2013 called RefSeq2013, and
07/30/2015, called RefSeq2015), from Ensembl’s Genomes project (GCA_000046705.1,
Feb/2015), and from Genoscope’s microbial genome annotation & analysis platform
(Vallenet et al. 2013) (v2.7.3, accessed 03/09/2016). Ab initio gene predictions from Prodigal

650 (Hyatt et al. 2010) (v2.6) and ChemGenome (Singhal et al. 2008) were used (v2.0,
http://www.scfbio-iitd.res.in/chemgenome/chemgenomenew.jsp; with parameters: method,
Swissprot space; length threshold, 70 nt; initiation codons, ATG, CTG, TTG, GTG). Files
were parsed to extract the identifier, coordinates and sequences of bona fide protein-coding

sequences (CDS) and pseudogene entries.

655 Integrative proteogenomics approach

The annotations were collapsed into singletons (same sequence in all sources) or annotation
clusters of two or more sequences with the same stop codon but different start sites. For
clusters, we define an anchor sequence from the annotation highest up in the hierarchy, e.g.
RefSeq2015. We construct an informative and transparent protein identifier that integrates
660 all relevant information: a code is added to the anchor sequence for each identical
annotation (RefSeq2013=rso, Ensembl=ens, Genoscope=geno, Prodigal=prod,
ChemGenome=chemg, in silico ORF=orf) separated by a pipe sign (e.g.
BH_RS00220|rsolens|geno). Identical in silico ORFs are not considered. For alternative start
sites, the length difference compared to the anchor annotation is added prior to the code
665 (e.g. ...|-17aa_prod|+6aa_chemg). Finally, chromosome, start and stop position, reading
frame, start codon and CDS length complete the identifier. The anchor sequence identifier

thus integrates relevant information of the genomic location and all annotation sources for
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this region, including possible reductions and extensions (see Figure 2A). ldentifiers for
entries with alternative initiation sites contain a reference to the anchor annotation, the
670 length difference and the annotation source (e.g. BH_RS00220_+6aa_chemg). To create an
iPtgxDB, we only add the complete sequence of the anchor sequence of a cluster plus
sequences of N-terminal regions that give rise to identifiable (i.e. different from the anchor
sequence) tryptic peptides for the additional proteoforms of the cluster. For extensions, the
N-terminal sequence up to the first tryptic cleavage site in the anchor sequence is added, for
675 internal start sites the N-terminal tryptic peptide if it starts from an alternative initiation codon
other than ATG (TTG, GTG, or CTG) giving rise to a N-terminal Met instead of a Leu, Val, or
Leu, respectively. For pseudogenes, we added the suffix “ p” (e.g. BH_RS02905 p) or
“ fCDS_p” (e.g. BHGENOOQ0333 fCDS p; “fragmented CDS”, for Genoscope pseudogenes)
to the identifier, and a sequence translated to the first stop codon to the protein DB. /n silico
680 ORFs above a selectable length threshold (18 aa) were added (Suppl. Methods). For the de
novo assembled Bhen MQB277 genome, Prodigal predictions and in silico ORFs were

integrated (same length cut-off).

PeptideClassifier analysis of protein search DBs

The complexity and redundancy of protein search DBs was assessed with the web-based
685 PeptideClassifier tool (http://peptideclassifier.expasy.org) to derive an evidence class for
every tryptic peptide of 6 to 40 aa (Figure S2). To deal with multiple different annotations for
the same gene model, we generated the required gene-annotation mapping files using the
stop codon coordinates as common gene name across annotations, i.e. an extension of the
original concept of gene-protein mapping (Qeli and Ahrens 2010) (see text and Figure 2). A
690 webservice to support peptide classification for proteogenomics in prokaryotes will soon be

released.
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Stringent re-analysis of proteomics and transcriptomics data

695 Proteomics data (ProteomeXchange, acc.# PXDO000153) was searched with MS-GF+
(v.10.0.72) (Kim and Pevzner 2014) and described parameters (Omasits et al. 2013) against
the RefSeq2015-based DB, the iPtgxDB (51,541 proteins), and the iPtgxDB of our de novo
assembly (52,687 proteins). A PSM FDR threshold of 0.01% was used, estimated peptide
and protein level FDRs were 0.12% and 0.6%, respectively (Table S7). Protein expression

700 estimates and differential expression values were computed as described (Omasits et al.
2013). Reads from the matched Bhen transcriptomics dataset (GEO, acc.# GSE44564) were
stringently re-mapped both to the NCBI reference genome (Alsmark et al. 2004) and to our
de novo assembly using NovoalignCS v1.06.04 (Novocraft, Selangor, Malaysia). For reads
supporting coding SNVs, we only considered reads without a mismatch. This allowed us to

705  provide transcriptomic support for a substantial amount of observed genomic differences,

both coding and non-coding. For more details, see Suppl. Methods.

Bacterial strains, genomic DNA and protein extracts

High quality gDNA was extracted from Bhen strains MQB277 and CHDE101 (Schmid et al.
2004), a close laboratory variant of the NCBI Bhen Houston-1 ATCC49882 reference strain
710  (Alsmark et al. 2004) and parental strain of MQB277, using Sigma’s GenElute kit. Both were
sequenced (PacBio) and assembled into one high quality contig (Suppl. Methods). Protein
extracts of cytoplasmic (cyt) and total membrane (TM) fractions were prepared from bacterial

cells grown under uninduced and induced conditions as described (Omasits et al. 2013).

Protein features, functional annotation, conservation

715  Several protein features including signal peptides, transmembrane topology, lipoproteins,
and protein domains were predicted, and protein sequences functionally annotated by
EggNOG. Conservation of novel ORFs was assessed with tblastn. Predominant SCL
information was computed for all proteins (including novel ORFs) similar to (Stekhoven et al.

2014). For details, see Suppl. Methods.
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720 Independent validation by targeted proteomics

Peptides for novel ORFs, start sites, expressed pseudogenes, or assembly-specific changes
were selected based on spectral count, number of tryptic sites, number of missed cleavage
sites, and PeptideRank prediction (Qeli et al. 2014). Heavy-labeled reference peptides were
purchased from JPT Peptide Technologies GmbH (Berlin, Germany) and used to set up
725 PRM assays (Peterson et al. 2014). Specific transitions were measured in cyt and TM
extracts of biological replicates of both conditions (new fractions). Only traces within a mass
accuracy of 10 ppm were evaluated; we excluded transition interference by manually
validating co-elution of peptide traces. For details of the sample preparation and MS set-up

see Suppl. Methods.
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