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Abstract 

 

Accurate annotation of all protein-coding sequences (CDSs) is an essential prerequisite to 

fully exploit the rapidly growing repertoire of completely sequenced prokaryotic genomes. 

However, large discrepancies among the number of CDSs annotated by different resources, 5 

missed functional short open reading frames (sORFs), and overprediction of spurious ORFs 

represent serious limitations.  

Our strategy towards accurate and complete genome annotation consolidates CDSs from 

multiple reference annotation resources, ab initio gene prediction algorithms and in silico 

ORFs in an integrated proteogenomics database (iPtgxDB) that covers the entire protein-10 

coding potential of a prokaryotic genome. By extending the PeptideClassifier concept of 

unambiguous peptides for prokaryotes, close to 95% of the identifiable peptides imply one 

distinct protein, largely simplifying downstream analysis. Searching a comprehensive 

Bartonella henselae proteomics dataset against such an iPtgxDB allowed us to 

unambiguously identify novel ORFs uniquely predicted by each resource, including 15 

lipoproteins, differentially expressed and membrane-localized proteins, novel start sites and 

wrongly annotated pseudogenes. Most novelties were confirmed by targeted, parallel 

reaction monitoring mass spectrometry, including unique ORFs and variants identified in a 

re-sequenced laboratory strain that are not present in its reference genome. We 

demonstrate the general applicability of our strategy for genomes with varying GC content 20 

and distinct taxonomic origin, and release iPtgxDBs for B. henselae, Bradyrhozibium 

diazoefficiens and Escherichia coli as well as the software to generate such proteogenomics 

search databases for any prokaryote.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 21, 2017. ; https://doi.org/10.1101/153213doi: bioRxiv preprint 

https://doi.org/10.1101/153213
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Introduction  25 

Advances in next generation sequencing technology and genome assembly algorithms have 

fueled an exponential growth of completely sequenced genomes, the large majority of which 

(>90%) originate from prokaryotes (Reddy et al. 2015). The accurate annotation of all 

protein-coding genes (interchangeably used with CDSs from here on) is essential to exploit 

this genomic information at multiple levels: from small, focused experiments, up to systems 30 

biology studies, functional screens and accurate prediction of regulatory networks.  

Yet, obtaining a high quality genome annotation is a challenging objective. Pipelines for 

automated de novo annotation of prokaryotic genomes have been developed (Aziz et al. 

2008; Markowitz et al. 2009; Davidsen et al. 2010; Vallenet et al. 2013). Such annotations 

greatly benefit from a manual curation step to catch obvious errors (Richardson and Watson 35 

2012), which is carried out for selected reference genomes by resources like NCBI’s RefSeq 

(Pruitt et al. 2012) or Microscope (Vallenet et al. 2013). Major re-annotation efforts can affect 

hundreds of CDSs (Luo et al. 2009), highlighting the relevance of accurate genome 

annotations (Petty 2010).  

Despite improvements in functional genome annotation, three major issues remain: the 40 

discrepancies of the number of CDSs annotated by different reference annotation resources 

(Poole et al. 2005; Bakke et al. 2009; Cuklina et al. 2016), the over-prediction of spurious 

ORFs that do not encode a functional gene product (Dinger et al. 2008; Marcellin et al. 

2013), and the underrepresentation of short ORFs (sORFs) (Hemm et al. 2008; Warren et al. 

2010; Storz et al. 2014). True sORFs, which often belong to important functional classes like 45 

chaperonins, ribosomal proteins, proteolipids, stress proteins and transcriptional regulators 

(Basrai et al. 1997; Zuber 2001; Hemm et al. 2008), are inherently difficult to differentiate 

from the large amount of spurious sORFs (Dinger et al. 2008; Marcellin et al. 2013).       

Proteogenomics, a research field at the interface of proteomics and genomics (Nesvizhskii 

2014), is one attractive approach to address these problems. The direct protein expression 50 
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evidence provided by tandem mass spectrometry (MS) for CDSs missed in genome 

annotations (proteogenomics) differs from ribosome profiling data: while the latter can 

capture translational activity on a genome-wide scale (Ingolia 2014), the former allows 

detection of stable proteins. First used in the genome annotation effort for Mycoplasma 

mobile (Jaffe et al. 2004), proteogenomics has since been applied to both prokaryotes 55 

(Gupta et al. 2007; de Groot et al. 2009; Payne et al. 2010; Venter et al. 2011; Kumar et al. 

2013; Marcellin et al. 2013; Kucharova and Wiker 2014; Cuklina et al. 2016) and eukaryotes 

(Nesvizhskii 2014; Menschaert and Fenyo 2015). The need for computational solutions to 

apply proteogenomics more broadly has been noted (Castellana and Bafna 2010; Renuse et 

al. 2011; Armengaud et al. 2014; Nesvizhskii 2014). Of particular interest are tools that 60 

create customized databases (DBs) to identify evidence for unannotated ORFs. RNA-seq 

data have been used to limit the protein search DB size to achieve better statistical power 

(Wang et al. 2012; Woo et al. 2013; Zickmann and Renard 2015). Other MS-friendly DB 

solutions that integrate data from different species or strains include MScDB (Marx et al. 

2013), MSMSpdbb (de Souza et al. 2010), and PG Nexus (Pang et al. 2014). Even pipeline 65 

solutions were developed that allow to search proteomics data against a six-frame 

translation based DB, including Peppy (Risk et al. 2013), Genosuite (Kumar et al. 2013) and 

PGP (Tovchigrechko et al. 2014). However, an integration that leverages benefits of 

manually curated reference annotations and a six-frame translation into one highly 

informative, non-redundant and transparent resource has not been accomplished so far. 70 

Here, we address this unmet need of the microbiology and proteomics community and 

present a strategy that takes the MS-friendly DB concept one important step further. Our 

solution integrates and consolidates CDSs from multiple reference annotation resources, ab 

initio gene prediction algorithms and in silico ORFs (a six-frame translation, also considering 

alternative start codons). Identifiers capturing information about overlap and differences 75 

among the resources are created, as well as a GFF (generic feature format) file storing all 

annotations and a highly informative, integrated proteogenomics search database (iPtgxDB). 

Based on an extension of PeptideClassifier’s concept of unambiguous peptides (Qeli and 
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Ahrens 2010) for prokaryotes, close to 95% of the peptides in this search DB unambiguously 

identify one distinct protein sequence. This greatly facilitates downstream analysis by 80 

overcoming the need to dis-entangle protein groups implied by shared peptides. As a first 

proof-of-concept, searching data from a complete, condition-specific expressed proteome 

against a Bartonella henselae iPtgxDB allowed to uncover novel ORFs uniquely predicted by 

each of the resources, illustrating the value of this integrated approach. Of note, the 

expression of the large majority of novel ORFs could be confirmed by independent targeted 85 

parallel reaction monitoring (PRM) MS. Our approach is flexible: iPtgxDBs can be created 

both for model organisms with readily available reference annotations and for newly 

sequenced genomes. We illustrate this benefit using a completely assembled genome of a 

laboratory strain and proteomics data to track evidence for unique, differentially expressed 

proteins down to single amino acid variations (SAAVs). iPtgxDBs were also generated and 90 

evaluated for B. diazoefficiens and E. coli, and the software to create such DBs for any 

prokaryote is released. As open source platform (https://iptgxdb.expasy.org), iPtgxDBs 

enable many research groups to take full advantage of completely sequenced genomes by 

improving genome annotations with proteogenomics.  

95 
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Results 

Experimental evidence underscores the need for a general proteogenomics approach 

We used the α-proteobacterium Bartonella henselae strain Houston-1 (Bhen) to explore how 

genome annotation differences could best be integrated for a proteogenomics approach. A 

comparison of four Bhen reference genome annotations and results from two ab initio gene 100 

prediction tools (see Methods) confirmed reports for other organisms (Poole et al. 2005; 

Bakke et al. 2009; Cuklina et al. 2016) that both the number of predicted ORFs and their 

precise start sites largely differ (see Figure S1). Only 50% of the Bhen CDSs were annotated 

or predicted completely identical by all six resources and 37% were unique to one resource 

(Figure S1A). Of note, 23% of the CDSs of the recent NCBI RefSeq2015 re-annotation 105 

differed from RefSeq2013 (Table S1): 55 CDSs were removed (99 added), 74 CDSs were 

shortened (54 extended), and 64 pseudogenes were removed (15 added).  

To assess the validity of the RefSeq2015 re-annotation, we relied on an ideal dataset: a 

complete prokaryotic proteome (including many low abundant proteins) expressed under two 

conditions that mimic those encountered by Bhen in the arthropod vector midgut (uninduced 110 

condition) and the bloodstream of its mammalian host (induced condition), which had been 

searched against RefSeq2013 (Omasits et al. 2013). A search against a RefSeq2015 protein 

DB provided experimental evidence for many of the re-annotations, including 6 sORFs that 

we had previously identified with a prototype of our proteogenomics approach as novel 

(Table S1), and which have since been added to RefSeq2015. Also, among the 55 removed 115 

CDSs, we found 32 of 52 proteins we had earlier singled out as potential over-predictions 

(Omasits et al. 2013). However, we also found several cases that supported the earlier 

RefSeq2013 annotation, including expression evidence for CDSs that were relabeled as 

pseudogenes and for removed CDSs (Table S1). This highlights the need for an integrated, 

yet general approach to address this fundamental problem of gene annotation inconsistency. 120 
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A general, integrative proteogenomics approach 

An ideal solution to capture the full protein-coding potential of genome sequences should 

therefore i) consider results from different reference genome annotations (Nesvizhskii 2014), 

which often include substantial manual curation efforts from experts, and from ab initio gene 

prediction tools, ii) allow to identify the small fraction of true functional sORFs often missed 125 

by the above annotations or predictions, iii) aid in the annotation of newly sequenced 

genomes, and iv) enable scientists to visualize their experimental proteomics results in the 

context of both the genome and all available annotations.  

To our knowledge, existing tools only address a subset of these requirements. These include 

pipeline solutions that rely on a six-frame translated genome like Peppy (Risk et al. 2013), 130 

which aims to improve the scoring function for peptide spectrum matches (PSMs), Genosuite 

(Kumar et al. 2013), which uses four distinct search algorithms before integrating and 

visualizing the results, and PGP (Tovchigrechko et al. 2014), which draws on the experience 

of many proteogenomics studies (Venter et al. 2011) and highlighted the need for stringent 

criteria to accept novel ORFs. However, these tools do not integrate different annotation 135 

sources. Some MS-friendly integrated DBs accomplish this, such as MScDB (Marx et al. 

2013), which uses a peptide-centric clustering algorithm to combine e.g. cross-species DBs, 

or MSMSpdbb, which allows to create a non-redundant protein DB for multiple closely 

related bacterial strains (de Souza et al. 2010). However, they do not integrate different 

annotations of the same genome. PG Nexus (Pang et al. 2014) uses the NCBI RefSeq 140 

annotation, a Glimmer ab initio prediction (Delcher et al. 2007) and a six-frame translation 

against which peptides are searched with Mascot and later visualized onto the genome. 

However, the annotations are not integrated and consolidated; the boundaries of novel 

ORFs still have to be discovered based on peptide evidence, which requires substantial 

manual effort. In addition, Mascot is not ideal for the task of identifying novel ORFs in 145 

proteogenomics approaches (Omasits et al. 2013; Risk et al. 2013). To address all of the 
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above objectives in one integrated solution, we devised a proteogenomics workflow that 

relies on three steps (Figure 1). 

 

Figure 1. Integrative proteogenomics workflow.  150 

For a completely sequenced prokaryotic genome (Bhen is shown as example with annotated 

CDSs), reference genome annotations (blue containers), results from ab initio gene 

prediction algorithms (green containers), and in silico ORFs (white container), are 

downloaded or computed and integrated in a first pre-processing step (upper panel). All CDS 

and pseudogene annotations are matched, informative gene identifiers are created and 155 

stored in a minimally redundant iPtgxDB (red container; searchable protein sequences in 
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FASTA format, integrated annotations in GFF format). Experimental proteomics data are 

matched to the DB using a target-decoy approach relying on stringent FDR cut-offs (middle 

panel). Identified PSMs and peptides are post-processed to visualize novel candidates 

(lower panel) in the context of experimental data integrated with the GFF file. 160 

 

First, popular reference genome annotations, the results of ab initio prediction algorithms, 

and in silico ORFs from a six-frame genome translation were combined into an integrated 

proteogenomics search database (iPtgxDB) (Figure 1, upper panel) with the aim to capture 

the entire genomic protein-coding potential (see Methods). On top of genome annotations 165 

from NCBI RefSeq, Ensembl and Genoscope, we included results of the ab initio gene 

prediction algorithms Prodigal (Hyatt et al. 2010), which performs well even for genomes 

with high GC content where gene calling is more difficult (Marcellin et al. 2013), and 

ChemGenome. The latter relies on physico-chemical characteristics of codons calculated by 

molecular dynamics simulations (Singhal et al. 2008) and is thus quite different from Prodigal 170 

and similar tools (Pati et al. 2010). Finally, to be able to identify functional sORFs, which are 

often missed due to rather conservative length thresholds for ab initio predicted ORFs, all 

potential in silico ORFs (a modified six-frame translation; see Suppl. Methods) above a 

selectable length threshold were added. A literature search for experimentally validated 

prokaryotic sORFs (Zuber 2001; Rowland et al. 2004; Venter et al. 2011) revealed that novel 175 

sORFs were longer than 20 aa, with very few exceptions (Hemm et al. 2008). To balance 

comprehensiveness and avoid loss of statistical power when searching large DBs (Blakeley 

et al. 2012; Noble 2015), we selected a length threshold of 18 aa.  

In a second step, proteomics data - ideally comprehensive expression data obtained under 

multiple conditions (Ahrens et al. 2010) - is searched against the iPtgxDB and stringently 180 

filtered (Figure 1, middle panel). We used the search engine MS-GF+, which rigorously 

computes E-values of PSMs based on the score distribution of all peptides (Kim and 

Pevzner 2014) and which had performed favorably in our hands for large shotgun 

proteomics datasets (Omasits et al. 2013) as well as in proteogenomics studies (Risk et al. 

2013; Zickmann and Renard 2015; Cuklina et al. 2016).  185 
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In a third step, peptide evidence is visualized in the context of the genome and all 

annotations (contained in a GFF file) using a genome browser such as IGV (Robinson et al. 

2011) (Figure 1, lower panel). Candidates in major classes of novelty include novel ORFs, 

different or additional start sites, and expressed pseudogenes. These can be inspected in 

the context of experimental data (e.g. proteomics and transcriptomics data), functional 190 

annotations and other features to enable a comprehensive assessment and prioritization.  

Creating minimally redundant but maximally informative protein search databases 

A unique aspect of our proteogenomics approach is that almost all MS-identifiable peptides 

of the iPtgxDB unambiguously identify one specific protein (Figure 2). To achieve this, we 

extended our PeptideClassifier concept (Qeli and Ahrens 2010) for prokaryotes. 195 

PeptideClassifier was developed to classify the information content of peptides with respect 

to their originating gene model(s) into six classes; class 1a peptides are most informative 

and allow unambiguous identification at the protein sequence, protein isoform and gene 

model level (Figure S2). Our extension for prokaryotes now treats protein sequences with a 

common stop codon and varying start positions (N-termini) as a protein annotation cluster, 200 

i.e. variants of a prokaryotic gene model (similar to isoforms of a eukaryotic gene model). 

Class 1a peptides remain most informative as they are unique to one entry in a DB, while 

class 1b peptides map uniquely to one annotation cluster with all identical sequences. Class 

2a peptides identify a subset of sequences from an annotation cluster and class 2b peptides 

map to all sequences of an annotation cluster. Class 3a peptides map to identical sequences 205 

from different annotation clusters (typically duplicated genes). Class 3b peptides map to 

different sequences from different annotation clusters and are least informative. 

The stepwise integration of resources, carried out in Figure 2A for Bhen as a model, follows 

a hierarchy: to leverage the quality of manual curation efforts we start with reference 

annotations, then ab initio predictions, then in silico ORFs. The anchor sequence is selected 210 

from the annotation highest up in the hierarchy, i.e. here RefSeq2015, unless no CDS is 

predicted in a given genomic region. Each subsequent resource added new protein clusters, 
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and new extensions or reductions (i.e. alternative start sites) to an existing cluster, while 

identical annotations are collapsed (Table 1). Alternative start codons are captured with our 

approach, even for in silico ORFs (Figure 2A). 215 

 

Annotation source No. of 
annotations 

New 
clusters

New 
extensions 

New 
reductions

Cumulative 
clusters 

Cumulative 
annotations 

1. RefSeq2015 1612 1612 - - 1612 1612

2. RefSeq2013 1612 211 79 66 1823 1968

3. Ensembl 1612 0 1 0 1823 1969

4. Genoscope 2114 476 9 64 2299 2518

5. ChemGenome 2211 688 515 35 2987 3756

6. Prodigal 1643 50 41 63 3037 3910

7. in silico 54,099 32,928 16,514 129 35,965 53,481

Table 1. Result of the stepwise, hierarchical integration of resources for Bhen. The number of 

annotations per source, new protein clusters, new extensions and reductions are shown for each step 

and summarized under cumulative clusters and cumulative annotations. Overall, protein sequences 

for 53,481 annotations mapped to 35,965 annotation clusters. The final iPtgxDB had 51,541 entries, 220 

as sequences < 6 aa (1750), i.e. not identifiable with shotgun proteomics, and indistinguishable 

internal start sites (190) were not considered. 

 

The four distinct sequences (collapsed from eight annotations) of the protein cluster for 

apolipoprotein N-acyltransferase with the anchor sequence BH_RS01095 (Figure 2A) 225 

illustrate this key principle: by only adding the full sequence of the anchor protein plus class 

1a peptides (red in Figure 2A) that can unambiguously identify extensions or internal start 

sites and few class 2a peptides (yellow in Figure 2A) to the iPtgxDB, we minimize 

redundancy and maximize information content of the peptides, compared to adding all 

protein sequences (Figure 2A, lower panels). In the latter case, many peptides classified as 230 

2a or 2b, which imply a subset or all annotations of a CDS cluster, would get added to the 

iPtgxDB. Identification of such shared peptides greatly impedes downstream analysis.  

The protein identifiers of the four distinct sequences transparently capture overlap and 

differences of the annotations (see Methods); they show in which resource(s) the identified 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 21, 2017. ; https://doi.org/10.1101/153213doi: bioRxiv preprint 

https://doi.org/10.1101/153213
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

CDS is annotated, if and how the annotations differ, whether it is a novel ORF or an 235 

alternative start site, again largely improving downstream data analysis (Figure 2A).   

 

Figure 2 

 

Figure 2. Generating an iPtgxDB with informative identifiers and a minimally redundant 240 

protein search DB in FASTA format. 

(A) CDSs and pseudogenes of 7 resources are integrated in a stepwise fashion. Informative 

protein identifiers are created, illustrated for the annotation cluster with the RefSeq2015 

anchor sequence BH_RS01095 shown in bold, where three additional start sites exist. The 

four different proteoforms are added to the protein search DB: the anchor sequence (bold) 245 

with the full protein sequence, the extensions (RefSeq2013 and ChemGenome) add the 

upstream sequence up to the first tryptic cleavage site within the anchor sequence. The 

shorter Prodigal prediction uses an alternative start codon resulting in a distinguishable N-

terminal peptide, and therefore gets also added. The two in silico ORFs are identical to 

annotations higher up in the annotation hierarchy, and therefore are not added. Peptide 250 
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classes are shown for the N-terminal sequences of the CDS annotation cluster (see also Fig. 

2C). (B) Boxplots of protein length for RefSeq2015 and of those proteins that get added in 

each successive step to the protein search DB illustrate that we include many sORFs 

potentially missed in the reference annotations. (C) Bar chart showing the DB complexity 

and the peptide classes for RefSeq2015, all 6 integrated annotations without and with in 255 

silico ORFs, and the final iPtgxDB. The legend shows colors for the six peptide classes.  

 

The identifiers also contain genomic coordinates, allowing to visualize all experimental 

peptide evidence for a novel ORF in its genomic context along with all integrated annotations 

provided in the iPtgxDB GFF file. Peptides implying any other sequence (e.g. one of the 260 

three identifiers below the anchor sequence identifier in Figure 2A) would inform the 

experimentalist at a glance that novel information compared to RefSeq2015 was uncovered 

(see Supplemental Methods for examples how to “interpret” the identifiers).  

A box plot of the lengths of the proteins added to our DB in the stepwise processing 

illustrates that we capture increasingly smaller proteins. Adding in silico ORFs down to a 265 

selectable length threshold allows us to query the entire protein-coding potential of the 

genome (Figure 2B).  

The final Bhen iPtgxDb contains 51,541 entries (Table 1). Importantly, 94% of all 

theoretically MS-identifiable tryptic peptides (6-40 aa) allow unambiguous identification of 

one protein, i.e. class 1a peptides (red, Figure 2C). For RefSeq2015, almost all peptides 270 

mapped uniquely to one protein, which is common for a prokaryote (Figure 2C). Combining 

all 6 annotations resulted in a modest increase of tryptic peptides (23%); however, most 

peptides (85%) now matched at least two annotations: either annotations for an identical 

sequence (class 1b) or annotations of proteins with different length, but of the same 

annotation cluster (class 2a or 2b, i.e. a subset or all of the proteoforms of the cluster), which 275 

would greatly complicate the interpretation of proteomics search results. Adding in silico 

ORFs significantly increased the number of peptides, adding mainly new unique peptides 

(class 1a) for ORFs in regions without annotation (Figure 2C). Our careful integration 

collapses identical sequences and removes 1b and 2b peptides from the iPtgxDB.  
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Defining DB complexity as number of distinct tryptic peptides of 6-40aa length, the 280 

complexity of the resulting iPtgxDB was approximately 50% of that of a full six-frame 

translated genome that Mascot (Perkins et al. 1999) or PG Nexus (Pang et al. 2014) would 

rely on to identify proteogenomic evidence for novel peptides. Despite the relatively large 

number of entries, the DB complexity is only 70% of that of baker’s yeast and below 20% of 

a human protein DB (Table S2). 285 

Searching Bhen proteomics against our iPtgxDB identifies novel ORFs 

We next searched existing data from a comprehensive expressed proteome, an in vitro 

model mimicking interaction of Bhen with the arthropod vector (uninduced condition) or its 

mammalian host (induced condition) (Omasits et al. 2013), against the Bhen iPtgxDB using 

MS-GF+. Relying exclusively on unambiguous class 1a peptides, this allowed to 290 

systematically identify expression evidence for novel ORFs, novel start sites, and CDSs 

wrongly annotated as pseudogenes (Table 2). Importantly, each of the reference genome 

annotations, ab initio gene prediction tools, and in silico predicted ORFs provided unique 

novel hits, underlining the value of our integrated approach (Table 2, Figure S3). These hits 

are novel compared to the most common approach of using the latest reference annotation 295 

as search DB, i.e. RefSeq2015 in this case.  

When searching large datasets, it is imperative to use stringent cut-offs. This is particularly 

relevant for proteogenomics, where correctly identified novel information would require a 

genome annotation change. We relied on an estimated PSM-level false discovery rate (FDR) 

cut-off of 0.01%, which resulted in a peptide-level FDR of 0.12%. This cut-off is about 10-fold 300 

more stringent than in other proteogenomics studies (Krug et al. 2013; Kumar et al. 2013; 

Chapman and Bellgard 2014; Zickmann and Renard 2015), and closer to the cut-offs used 

by Payne and colleagues (peptide level FDR cut-off 0.3%) (Venter et al. 2011). Of particular 

note, the E-value score distribution of PSMs that identify novel features is also bi-modal, 

similar to that of PSMs identifying annotated proteins in the target DB (Figure 3A). To claim a 305 

potential novel ORF, we required at least 3 PSMs to class 1a peptides if predicted by a 
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reference genome annotation/ab initio prediction tool, and 4 PSMs to class 1a peptides for in 

silico ORFs, in line with earlier recommendations (Nesvizhskii 2014). Furthermore, all 

genomic regions encoding novel candidates/start sites were expressed (Table S3).  

 310 

 
Annotation source 

Novel protein-coding ORF  
Evidence for 

alternative NH2- 
terminus 

not in RefSeq2015 pseudogene in 
RefSeq2015 

RefSeq2013 / Ensembl 4 10 5 

Genoscope 4 1 0 

ChemGenome 1 2 5 

Prodigal 3 1 2 

in silico ORFs 10 1 5 

total 22  15 17 

Table 2. Summary of novel information uncovered by the integrated proteogenomics approach. 

Compared to RefSeq2015, each resource added some novelty with respect to Bhen’s overall protein-

coding potential. Overall, close to 80% of the identified novelties could be independently confirmed by 

PRM (Table S3). 
 315 
 

Overall, 37 novel Bhen ORFs (with respect to RefSeq2015) were identified (Table 2, Figure 

S3): 12 annotated by another resource or ab initio prediction tool, 10 in silico only predicted 

ORFs, and 15 with a pseudogene annotation. In addition, 17 alternative start sites were 

identified. The median length of 22 novel ORFs (excluding pseudogenes) was 48 aa, that of 320 

6 novel ORFs previously identified with a prototype versus RefSeq2013 (i.e., prior to the re-

annotation; Table S1) was 80 aa (Figure S4). This confirms that the novel ORFs represent 

sORFs commonly underrepresented in genome annotations. Analysis of the estimated 

expression levels of the novel ORF candidates including pseudogenes (see Methods) 

furthermore indicated that several of the sORFs are well expressed proteins (Figure S4) that 325 

may carry out important functions.  
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Figure 3A 
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Figure 3. Examples of novel information uncovered by integrative proteogenomics. 

(A) E-value distribution of PSMs against proteins of decoy and target DB (red and blue lines, 

left scale) plus the distribution of those PSMs that uncovered novelties (green line, right 345 

scale). A PSM level FDR cut-off of 0.01% was selected per sample. (B-D) Zoomed in views 

of genomic regions that harbor novelties. For illustration, a single frame of the 

forward/reverse strand with possible start (green) and stop codons (red) is shown, along with 

annotations and experimental evidence (spectral counts scaled from 0 to 20). (B) Example of 

a novel sORF of 68 amino acids (BARHE0898, frame +3). (C) Example of a highly 350 

expressed pseudogene (RefSeq2015: BH_RS01070, frame -3). 2244 spectra are mapped to 

117 peptides of NusA, which is annotated as pseudogene in RefSeq2015 for unknown 

reason. There is no experimental evidence for the +8 aa N-terminal extension predicted by 

ChemGenome. (D) Proteomic expression evidence supports a 63 aa longer proteoform of 

BH_RS01750 (frame -3) uniquely predicted by ChemGenome.  355 

 

Examples of novel ORFs included differentially expressed sORFs such as BARHE0898 (68 

aa), that was expressed roughly 6.5-fold higher in the induced condition (Table S3). Peptide 

evidence supported the longer form of this ORF annotated by Genoscope and Prodigal 

(Figure 3B). Another novel sORF of 67 aa, a lipoprotein uniquely predicted by 360 

ChemGenome, was only identified in the uninduced condition (Figure S5A). Even smaller 

ORFs were identified, including a well-expressed (9 peptides, 143 PSMs) sORF of 49 aa 

that was uniquely predicted by Prodigal (Fig S5B, Table S3), and an in silico only predicted 

sORF of 34 aa (Figure S5D). We also identified a highly expressed RefSeq2015 

pseudogene (BH_RS01070, frame -3, Figure 3C) annotated as normal CDS (transcription 365 

elongation factor NusA) by RefSeq2013, Ensembl, and Genoscope. Other mis-annotated 
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pseudogenes included a potassium-efflux transporter (BH10840) and the Bartonella effector 

protein BepD (BH13410, Table S3). Finally, for BH_RS01750 a hypothetical protein encoded 

in a prophage region, only ChemGenome correctly predicted a 63 aa longer proteoform than 

annotated by other resources; its expression was supported by several peptides (Figure 3D). 370 

Proteomic data thus can support novel start sites (even multiple start sites; Figure S5C) and 

distinguish between those predicted by different reference annotations.  

Confirmation of novelties by independent targeted proteomics 

In order to confirm novel ORFs by independent methods, the expression of novel candidates 

at the protein level was assessed by targeted proteomics experiments (Figures 3 B-D and 375 

S5 A-D) with parallel reaction monitoring (PRM) assays (Peterson et al. 2014). For this 

highly sensitive method, cytoplasmic (cyt) and total membrane (TM) extracts were prepared 

from new biological samples as described (Omasits et al. 2013) (see Methods). Overall, we 

were able to validate 107 of 138 targeted peptides (78%; Tables S3, S4), including low 

expressed novel proteins implied by 1 peptide and 3 PSMs. We had previously derived 380 

predominant subcellular localizations (SCL) for all proteins (Stekhoven et al. 2014), which 

we computed here also for the novel candidates (see Supplemental Methods, Table S3). 

Importantly, the SCL data agreed with the PRM evidence in either cyt or TM fractions, 

thereby adding yet another layer of support to the confirmed novel ORFs (Table S3). The 

validation success was 100% for the 6 novel ORFs identified previously by our prototype 385 

(novel with respect to the RefSeq2013 annotation, Figure S4), around 80% for 15 expressed 

pseudogenes and 12 novel ORFs from another genome annotation/prediction, 60% for novel 

in silico ORFs, and around 55% for novel start sites (TableS3).  

Of note, we overall identified 38 of 51 lipoproteins predicted to have a SpII cleavage site 

(LipoP, version 1.0) (Table S5). Two of these were identified among the 12 novel ORFs (one 390 

predicted by Genoscope, one by ChemGenome), and two others among the 6 novel ORFs 

identified previously, which have since been incorporated in Refseq2015. All four candidates 

were validated by PRM (Table S3), and their predominant SCL indicated that they were 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 21, 2017. ; https://doi.org/10.1101/153213doi: bioRxiv preprint 

https://doi.org/10.1101/153213
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

found exclusively in the total membrane or outer membrane fractions (Table S3). 

Lipoproteins could thus represent a class of proteins for which a substantial percentage is 395 

missed in reference genome annotations, which is relevant given their important roles in 

signaling, protein folding and export, virulence, immunity and antibiotic resistance (Kovacs-

Simon et al. 2011). 

De novo assembly and genome comparison of Bhen strains underlines the 

importance of a correct genome sequence 400 

Massively reduced sequencing costs and improved assembly algorithms make it possible to 

determine the actual genome sequence of key bacterial strains used in a laboratory, which 

provides an optimal basis to integrate functional genomics data and to correctly identify 

novel sORFs. We thus explored to what extent our lab strain (MQB277) differed from the 

Bhen reference strain (Alsmark et al. 2004), and whether we could detect protein expression 405 

evidence for novel ORFs in unique genomic regions, and for SAAVs. Conceptually, this 

allowed to test our approach on a newly sequenced genome, now relying on an iPtgxDB 

integrating Prodigal predictions plus in silico ORFs, but without curated reference genome 

annotations. 

We de novo assembled (Chin et al. 2013) the PacBio sequenced genome of the MQB277 410 

lab strain, derived from Bhen CHDE101, a Bhen variant-1 strain (Lu et al. 2013) into one 

1,954,773 bp high quality contig (see Suppl. Methods), i.e. ~23.7 kbp longer than the NCBI 

reference genome (Figure 4A). To compare closely related genomes in the context of 

experimental evidence, we devised a “virtual genome” concept, i.e. a coordinate system that 

integrates sequences from reference genome and de novo assembly (Figure 4). This 415 

allowed us to integrate annotation and experimental data tracks, to efficiently zoom down to 

the single nucleotide level and to inspect all lines of evidence for observed differences.    

Overall, we noted a large inversion translocation (34.4 kbp) close to the terminus of 

replication, previously reported for some Bartonella isolates (Lindroos et al. 2006), and three 

insertions of 22.1, 6.1 and 1.4 kbp in the MQB277 assembly (Table S6). The 22.1 and 1.4 kb 420 
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Figure 4. Comparative analysis in the context of experimental data.  

Integrated visualization of two closely related genomes through a virtual genome concept. 

(A) On the left, the Bhen NCBI RefSeq genome (inner blue circle) is aligned to our de novo 

assembly (outer red circle). A large inversion-translocation (black bracket) is marked; several 425 

insertions or deletions in either genome are shown (white spaces) and a center track for 

single nucleotide variations (SNVs). To the right, the virtual genome (gray) is shown which 

incorporates both genome sequences including all differences into a common coordinate 

system. Unique sequences are shown in blue or red, respectively (the inversion-

translocation present in both genomes is left as is). (B) Zoom into the region harboring a 430 

6088 bp insertion in MQB277 (red bar), showing annotations for RefSeq genome (below the 

virtual genome track) and assembly (above the virtual genome track), plus experimental 

proteomics evidence mapped against both genomes (spectral count scaled from 0-800). 

This region harbors a direct repeat only in the assembly (orange bars). Three CDSs 

(MQB277_12910, MQB277_12920, MQB277_12930) annotated as autotransporters are 435 

highly expressed; the first two (novel CDSs) are only detected (unambiguous 1a peptides) 

with the correct genome sequence available.  
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insertions affected a genomic region encoding the surface protein BH01510, a BadA1 

adhesin (Figure S6), and major pathogenicity factor that mediates binding of B. henselae to 

extracellular matrix proteins and endothelial cells (Riess et al. 2004). A complex repeat 440 

structure in this region of the assembly harbored additional ORFs, whose expression was 

supported by unambiguous peptide evidence. In line with the CDS MQB277_01630 lacking a 

C-terminal membrane anchor, its predominant SCL was cytoplasmic (for more detail, see 

Figure S6). These data help to explain earlier experimental data that had demonstrated lack 

of or much lower BadA surface expression in the Bhen CHDE101 variant strain (Lu et al. 445 

2013). 

Of note, the 6.1 kbp insertion harbored two CDSs predicted to encode autotransporter 

proteins (Figure 4B). Both MQB277_12910 and MQB277_12920 were unique to the high 

quality PacBio assembly, which contains a direct repeat in this region (missing in the 

reference), indicative of a duplication event. Searching against the MQB277-based iPtgxDB, 450 

all 3 proteins were highly expressed (Figure 4B, MQB277 track), compared to only 

BH_RS06340 based on the RefSeq2015 protein DB (NCBI RefSeq track). Importantly, the 

novel CDS MQB277_12910 was among the most upregulated (42-fold) proteins in the 

induced condition (Table S3), even higher than the autotransporter BH_RS06340 (38-fold). 

This data is in line with the dramatic re-organization of the membrane proteome reported 455 

earlier (Omasits et al. 2013). Our SCL data indicated that all three proteins were localized in 

the outer membrane (Table S3).  

The assembly also comprises a genomic region harboring a 1 bp insertion and a 81 bp 

deletion with respect to the reference. Because of the frameshift caused by the insertion, 

protein expression of a CDS annotated as ABC transporter (downstream of the insertion) 460 

was only observed in the lab strain assembly (Figure 5A, Table S6), which is also supported 

by transcriptomics data (see Methods). Due to the frameshift, CDSs in this region were 

either annotated as pseudogenes or as split CDSs (NCBI RefSeq track). This example is 

furthermore noteworthy, as our transcriptomics dataset (Omasits et al. 2013) had been re-

analyzed with an RNA-seq based proteogenomics approach (Zickmann and Renard 2015). 465 
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Figure 5A 
 

 
 
B 470 
 

 

Figure 5. Protein evidence for SAAVs.  

(A) Genomic region encoding an ABC transporter (BH_RS05910). RefSeq and Ensembl 

annotate it as pseudogene, Genoscope as fragmented pseudogene, while Prodigal and 475 

Chemgenome predict 2 CDSs. The reference genome (below gray virtual genome bar; NCBI 

RefSeq track) differs from the MQB277 assembly (MQB277 track above the virtual genome) 

by an insertion of 81 bp and a 1 bp deletion (red boxes); the 1 bp deletion causes a 
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frameshift, evidenced by the lack of protein expression downstream of it (spectral count 

below the virtual genome; scaled from 0 to 800) and by transcriptomic data (reads mapped 480 

to the reference genome all support the insertion; lower panel). In contrast, the protein 

encoded by MQB277_12040 in the assembly is expressed over almost its entire length 

(class 1a peptides; 1 peptide identified by 7 PSMs spans the frameshift region), also 

supported by transcriptomic reads mapping without any mismatch (data not shown). 

(B) Evidence for a SNV causing a non-synonymous SAAV in the CDS of transcription 485 

elongation factor GreA. Four peptides (2, 4, 8, 39 PSMs) confirming this SAAV (Glycine in 

reference to Glutamic acid in our assembly) are mapped to this position in MQB277. 

 

Two novel ORFs were reported, one of which is shown in Figure 5A (orange arrow). 

However, only with the correct assembly at hand can novel ORFs be identified completely 490 

accurately. Our integrated analysis demonstrates that the novel ORF in question is in fact 

longer, and its expression is supported by class 1a peptides (MQB277 track). Of note, we 

found several examples where SNVs led to non-synonymous protein sequence differences, 

as e.g. for transcription elongation factor GreA (Figure 5B). The expression of this and 11 

additional SAAVs (Table S3) was again independently validated by PRM assays. Analysis of 495 

the 274 SNVs observed between the two genomes indicated that they were significantly 

enriched in a limited number of regions encoding surface proteins (114/274), including 4 of 8 

hemagglutinins, and 4 hemolysin activator proteins (HECs) (Table S6). Together, our data 

provide multiple lines of evidence for the earlier postulation that genome rearrangements 

observed in natural Bhen populations affect variation of surface proteins (Lindroos et al. 500 

2006). 

Finally, the search against the assembly-based protein DB led to overall 10,410 more 

assigned PSMs, and 441 peptides (same 0.01% PSM level FDR threshold; Table S7). 

Overall, these results emphasize the value that research groups can gain by sequencing and 

assembling their most important strains.  505 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 21, 2017. ; https://doi.org/10.1101/153213doi: bioRxiv preprint 

https://doi.org/10.1101/153213
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

Integrated proteogenomics approach is generically applicable 

Genome annotation is more difficult and error-prone for genomes with high GC content; they 

contain more spurious ORFs and fewer stop codons, which leads to a reduced accuracy of 

translation start site prediction (Hyatt et al. 2010; Marcellin et al. 2013). To demonstrate that 510 

our approach can work beyond Bhen (38.2% GC), we have applied an earlier prototype on 

genomes with higher GC content: We could identify novel ORFs in the genome of 

Burkholderia kirkii (62.9% GC) including metabolic enzymes missed in a RAST annotation 

(Aziz et al. 2008), which carry out critical functions in the obligate symbiosis with plants of 

the genus Psychotria (Carlier et al. 2013). For Bradyrhizobium diazoefficiens (64.1% GC) 515 

and in combination with dRNA-seq data, we uncovered many novel short ORFs and internal 

start sites expressed under free-living conditions and in symbiosis with soybean (Cuklina et 

al. 2016). Finally, we applied our approach on shotgun proteomics datasets from Escherichia 

coli K-12 BW25113 (50.3% GC) during exponential growth (Krug et al. 2013) or grown under 

multiple conditions (Schmidt et al. 2015) (see Suppl. Methods). Even for the well-annotated 520 

genome of the parental strain of the Keio knockout strain collection (Baba et al. 2006), we 

could identify evidence for novel ORFs. These included 6 pseudogenes with solid 

expression evidence, but also short in silico ORFs, including a highly conserved sORF of 57 

aa (3 peptides, 9 PSMs) plus several novel start sites (Tables S8, S9).  

To enable proteogenomics for a larger microbiology research community with access to 525 

proteomics core facilities, we provide both a set of precomputed iPtgxDBs for several key 

prokaryotic model organisms including founder strains of gene knockout collections, and a 

step by step protocol (Figure 6). This can enable groups with bioinformatics support to 

generate iPtgxDBs for many newly sequenced organisms, e.g. type strains for the 11,000 

named species targeted by the genomic encyclopedia of bacteria and archea (GEBA) 530 

project (Kyrpides et al. 2014) or environmental isolates. These organisms offer unique 

opportunities to study fundamental aspects such as the presence of novel biochemical 

reactions (Montes Vidal et al. 2017) or pathways relevant for biotechnological applications, 
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the development and spread of antibiotics resistance (ABR), and key functionalities of 

important strains isolated from complex microbiomes, whose importance for e.g. human 535 

health (Cho and Blaser 2012) and plant protection from pathogen attack in agricultural 

settings (Berendsen et al. 2012), has been recognized.  

 

 
 540 

Figure 6. Application of our integrated proteogenomics approach 

We release open source iPtgxDBs for several model organisms (https://iptgxdb.expasy.org), 

here for Bhen, E. coli BW25113 and B. diazoefficiens USDA 110 (left panel). Using 

proteomics data from any condition or knockout strain (light brown boxes, here schematically 

shown for E. coli), researchers can identify novelties, and iteratively improve the genome 545 

annotation e.g. in a community-driven genome Wiki approach (Salzberg 2007). The release 

of the software to integrate ab initio predictor(s) and in silico predictions (File S10) can help 

to improve genome annotations of many newly sequenced genomes (right panel).  

 

 550 
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Discussion 

We present a flexible, yet general proteogenomics strategy that allowed us to identify 

novelties in the genome of prokaryotes of different taxonomic origin (α-, β-, γ-proteobacteria) 

and widely ranging GC content. Investing a major effort in a pre-processing step to 

hierarchically integrate reference genome annotations and predictions into an iPtgxDB that 555 

covers the entire protein-coding potential pays off: close to 95% of the peptides 

unambiguously imply one protein (based on an extension of the PeptideClassifier concept 

(Qeli and Ahrens 2010) for prokaryotes), facilitating swift data analysis and mining. On top, 

informative identifiers capture overlap and differences of all resources, start codon and 

genomic coordinate information, such that novel ORFs, start sites or expressed 560 

pseudogenes can readily be identified and visualized. These features are unique to our 

solution. Our iPtgxDBs come in form of a protein search DB and a GFF file containing all 

annotations and identifiers.  

For prokaryotes, the complexity of iPtgxDBs is lower than that of a regular protein search DB 

for e.g. yeast or human (Table S2). In our view, the benefit of generating a single iPtgxDB 565 

against which proteomics data from any condition (or knockout strain) can be searched to 

identify novel ORFs outweigh that of other elegant solutions that were developed for the 

more complex eukaryotes. Both splice graphs (Woo et al. 2013) and RNA-seq data (Wang et 

al. 2012) reduce the complexity and size of the search DB. However, in both cases, DBs 

specific for the conditions studied are generated, requiring bioinformatics expertise and 570 

limiting the general applicability of the resource. While our approach is unique, the GFF file 

can be very valuable for other proteogenomics software solutions like Genosuite (Kumar et 

al. 2013), PGP (Tovchigrechko et al. 2014) and PG Nexus (Pang et al. 2014), which allow 

users to search their data against a six-frame translation and later visualize identified 

peptides onto a genome sequence, but lack integrated and consolidated annotations.  575 

The proteogenomics community is still to agree upon the best practice for required FDR 

thresholds and confirmation of novel candidates. Using very stringent FDR thresholds, as 
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also advocated by Venter and colleagues (Venter et al. 2011), we show that the E-value 

distributions of PSMs for novel hits and target proteins are similar. Furthermore, we invested 

an extra effort to confirm the expression of novel ORFs with selective and sensitive PRM 580 

assays. The validation success (80% overall) ranged from 100% for SAAVs and highly 

expressed novel sORFs to around 55% for novel start sites. Reasons for the lower success 

with start sites can include N-terminal cleavage or modification, both of which can prevent 

detection of the single peptide to be confirmed (Goetze et al. 2009). Identification of internal 

start sites is even more difficult, but greatly benefits from the availability of dRNA-seq data 585 

(Cuklina et al. 2016) and/or N-terminal enrichment steps.  

Focusing on the description of our novel strategy, we did not further characterize or 

functionally validate novel sORFs beyond the PRM confirmation. More effort will be required 

to assess the functional relevance of sORFs, e.g. by individual gene deletion or genome-

wide transposon mutagenesis screens (Christen et al. 2011). Recent work in yeast 590 

suggested that sORFs may represent a pool of proto-genes that are under evolutionary 

pressure and may lead to the birth of novel genes (Carvunis et al. 2012). Indeed, genes that 

emerged more recently tend to be shorter (Tautz and Domazet-Loso 2011).  

Besides identifying missed sORFs, our data indicated that i) the procedures to annotate 

pseudogenes differ between resources (and even releases) and have to be treated with 595 

caution, and ii) likely over-predicted ORFs can be uncovered by relying on complete, 

condition-specific expressed proteomes. Recent advances to comprehensively identify 

expressed proteomes within a few days (Nagaraj et al. 2012; Richards et al. 2015) suggest 

that proteomics data can, at least in part, address this issue of over-prediction. Such 

extensive datasets can also uncover functionally relevant genomic changes down to the 600 

SAAV level, with implications for clinical proteomics and beyond. For example, by tracking 

clinically relevant pathogens either over time (Lee et al. 2017) or comparing different strains, 

genome changes that correlate with higher pathogenicity (de Souza et al. 2011; Nasser et al. 

2014; Malmstrom et al. 2015) can be identified, some of which ideally are supported by 

direct protein expression evidence for SAAVs.  605 
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Importantly, our data show that assembling the correct genome sequence of the strain under 

study is of critical importance: it is the optimal basis not only to comprehensively identify 

expression differences between the conditions studied, but also to accurately identify novel 

sORFs by proteogenomics. An initial de novo assembly should thus be carried out routinely 

for the most important strains, in particular those that form the basis for long-term projects 610 

aiming to integrate functional genomics data.  

We favor a conservative approach to genome re-annotation, ideally carried out by consortia 

that iteratively improve the annotation of their respective model or non-model organisms 

(Armengaud et al. 2014), e.g. relying on a genome Wiki concept (Salzberg 2007) (Figure 6). 

By releasing iPtgxDBs initially for three model organisms (https://iptgxdb.expasy.org) and the 615 

software to create them (File S10), we hope to enable a large user base to apply 

proteogenomics in the initial genome annotation step. This will provide an optimal basis for 

systems-wide functional studies and genome-scale regulatory or metabolic predictions, and 

help to fully capitalize on the genome information and decode its function.  

  620 
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Data access 

All data are publicly available: the genome sequence of Bhen variant-1 strain CHDE101 

(Genbank; acc. # CP020742), the PRM data (Email: panorama+wollscheid@proteinms.net; 

Password:!9QcZ4#T) under https://panoramaweb.org/labkey/Bartonella_Proteogenomics.url, 

and iPtgxDBs for Bhen Houston-1 (RefSeq NC_005956), Bhen CHDE101, E. coli BW25113 625 

and B. diazoefficiens USDA 110 (in both FASTA format and as GFF files to visualize all 

integrated annotations); they can be downloaded from https://iptgxdb.expasy.org (user: 

preview, pw: iptgxdblive). Scripts to generate iPtgxDBs for any prokaryote are available in 

the Supplement (File S10). 
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Methods 

Source of reference genome annotations and ab initio predictors 

Annotations of the Bhen reference genome (Alsmark et al. 2004) were obtained from NCBI’s 645 

RefSeq (Pruitt et al. 2012) (NC_005956.1; from 06/10/2013 called RefSeq2013, and 

07/30/2015, called RefSeq2015), from Ensembl’s Genomes project (GCA_000046705.1, 

Feb/2015), and from Genoscope’s microbial genome annotation & analysis platform 

(Vallenet et al. 2013) (v2.7.3, accessed 03/09/2016). Ab initio gene predictions from Prodigal 

(Hyatt et al. 2010) (v2.6) and ChemGenome (Singhal et al. 2008) were used (v2.0, 650 

http://www.scfbio-iitd.res.in/chemgenome/chemgenomenew.jsp; with parameters: method, 

Swissprot space; length threshold, 70 nt; initiation codons, ATG, CTG, TTG, GTG). Files 

were parsed to extract the identifier, coordinates and sequences of bona fide protein-coding 

sequences (CDS) and pseudogene entries.  

Integrative proteogenomics approach 655 

The annotations were collapsed into singletons (same sequence in all sources) or annotation 

clusters of two or more sequences with the same stop codon but different start sites. For 

clusters, we define an anchor sequence from the annotation highest up in the hierarchy, e.g. 

RefSeq2015. We construct an informative and transparent protein identifier that integrates 

all relevant information: a code is added to the anchor sequence for each identical 660 

annotation (RefSeq2013=rso, Ensembl=ens, Genoscope=geno, Prodigal=prod, 

ChemGenome=chemg, in silico ORF=orf) separated by a pipe sign (e.g. 

BH_RS00220|rso|ens|geno). Identical in silico ORFs are not considered. For alternative start 

sites, the length difference compared to the anchor annotation is added prior to the code 

(e.g. …|-17aa_prod|+6aa_chemg). Finally, chromosome, start and stop position, reading 665 

frame, start codon and CDS length complete the identifier. The anchor sequence identifier 

thus integrates relevant information of the genomic location and all annotation sources for 
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this region, including possible reductions and extensions (see Figure 2A). Identifiers for 

entries with alternative initiation sites contain a reference to the anchor annotation, the 

length difference and the annotation source (e.g. BH_RS00220_+6aa_chemg). To create an 670 

iPtgxDB, we only add the complete sequence of the anchor sequence of a cluster plus 

sequences of N-terminal regions that give rise to identifiable (i.e. different from the anchor 

sequence) tryptic peptides for the additional proteoforms of the cluster. For extensions, the 

N-terminal sequence up to the first tryptic cleavage site in the anchor sequence is added, for 

internal start sites the N-terminal tryptic peptide if it starts from an alternative initiation codon 675 

other than ATG (TTG, GTG, or CTG) giving rise to a N-terminal Met instead of a Leu, Val, or 

Leu, respectively. For pseudogenes, we added the suffix “_p” (e.g. BH_RS02905_p) or 

“_fCDS_p” (e.g. BHGENO0333_fCDS_p; “fragmented CDS”, for Genoscope pseudogenes) 

to the identifier, and a sequence translated to the first stop codon to the protein DB. In silico 

ORFs above a selectable length threshold (18 aa) were added (Suppl. Methods). For the de 680 

novo assembled Bhen MQB277 genome, Prodigal predictions and in silico ORFs were 

integrated (same length cut-off).  

PeptideClassifier analysis of protein search DBs 

The complexity and redundancy of protein search DBs was assessed with the web-based 

PeptideClassifier tool (http://peptideclassifier.expasy.org) to derive an evidence class for 685 

every tryptic peptide of 6 to 40 aa (Figure S2). To deal with multiple different annotations for 

the same gene model, we generated the required gene-annotation mapping files using the 

stop codon coordinates as common gene name across annotations, i.e. an extension of the 

original concept of gene-protein mapping (Qeli and Ahrens 2010) (see text and Figure 2). A 

webservice to support peptide classification for proteogenomics in prokaryotes will soon be 690 

released.  
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Stringent re-analysis of proteomics and transcriptomics data 

Proteomics data (ProteomeXchange, acc.# PXD000153) was searched with MS-GF+ 695 

(v.10.0.72) (Kim and Pevzner 2014) and described parameters (Omasits et al. 2013) against 

the RefSeq2015-based DB, the iPtgxDB (51,541 proteins), and the iPtgxDB of our de novo 

assembly (52,687 proteins). A PSM FDR threshold of 0.01% was used, estimated peptide 

and protein level FDRs were 0.12% and 0.6%, respectively (Table S7). Protein expression 

estimates and differential expression values were computed as described (Omasits et al. 700 

2013). Reads from the matched Bhen transcriptomics dataset (GEO, acc.# GSE44564) were 

stringently re-mapped both to the NCBI reference genome (Alsmark et al. 2004) and to our 

de novo assembly using NovoalignCS v1.06.04 (Novocraft, Selangor, Malaysia). For reads 

supporting coding SNVs, we only considered reads without a mismatch. This allowed us to 

provide transcriptomic support for a substantial amount of observed genomic differences, 705 

both coding and non-coding. For more details, see Suppl. Methods.  

Bacterial strains, genomic DNA and protein extracts 

High quality gDNA was extracted from Bhen strains MQB277 and CHDE101 (Schmid et al. 

2004), a close laboratory variant of the NCBI Bhen Houston-1 ATCC49882 reference strain 

(Alsmark et al. 2004) and parental strain of MQB277, using Sigma’s GenElute kit. Both were 710 

sequenced (PacBio) and assembled into one high quality contig (Suppl. Methods). Protein 

extracts of cytoplasmic (cyt) and total membrane (TM) fractions were prepared from bacterial 

cells grown under uninduced and induced conditions as described (Omasits et al. 2013).  

Protein features, functional annotation, conservation 

Several protein features including signal peptides, transmembrane topology, lipoproteins, 715 

and protein domains were predicted, and protein sequences functionally annotated by 

EggNOG. Conservation of novel ORFs was assessed with tblastn. Predominant SCL 

information was computed for all proteins (including novel ORFs) similar to (Stekhoven et al. 

2014). For details, see Suppl. Methods.   
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Independent validation by targeted proteomics 720 

Peptides for novel ORFs, start sites, expressed pseudogenes, or assembly-specific changes 

were selected based on spectral count, number of tryptic sites, number of missed cleavage 

sites, and PeptideRank prediction (Qeli et al. 2014). Heavy-labeled reference peptides were 

purchased from JPT Peptide Technologies GmbH (Berlin, Germany) and used to set up 

PRM assays (Peterson et al. 2014). Specific transitions were measured in cyt and TM 725 

extracts of biological replicates of both conditions (new fractions). Only traces within a mass 

accuracy of 10 ppm were evaluated; we excluded transition interference by manually 

validating co-elution of peptide traces. For details of the sample preparation and MS set-up 

see Suppl. Methods. 
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