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ABSTRACT

Microbes are critical in carbon and nutrient cycling in freshwater ecosystems. Members of
the Verrucomicrobia are ubiquitous in such systems, yet their roles and ecophysiology are
not well understood. In this study, we recovered 19 Verrucomicrobia draft genomes by
sequencing 184 time-series metagenomes from a eutrophic lake and a humic bog that differ
in carbon source and nutrient availabilities. These genomes span four of the seven
previously defined Verrucomicrobia subdivisions, and greatly expand the known genomic
diversity of freshwater Verrucomicrobia. Genome analysis revealed their potential role as
(poly)saccharide-degraders in freshwater, uncovered interesting genomic features for this
life style, and suggested their adaptation to nutrient availabilities in their environments.
Between the two lakes, Verrucomicrobia populations differ significantly in glycoside
hydrolase gene abundance and functional profiles, reflecting the autochthonous and
terrestrially-derived allochthonous carbon sources of the two ecosystems respectively.
Interestingly, a number of genomes recovered from the bog contained gene clusters that
potentially encode a novel porin-multiheme cytochrome ¢ complex and might be involved
in extracellular electron transfer in the anoxic humic-rich environment. Notably, most
epilimnion genomes have large numbers of so-called “Planctomycete-specific” cytochrome
c-containing genes, which exhibited nearly opposite distribution patterns with glycoside
hydrolase genes, probably associated with the different environmental oxygen availability
and carbohydrate complexity between lakes/layers. Overall, the recovered genomes are a
major step towards understanding the role, ecophysiology and distribution of

Verrucomicrobia in freshwater.

IMPORTANCE
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Freshwater Verrucomicrobia are cosmopolitan in lakes and rivers, yet their roles and
ecophysiology are not well understood, as cultured freshwater Verrucomicrobia are
restricted to one subdivision of this phylum. Here, we greatly expand the known genomic
diversity of this freshwater lineage by recovering 19 Verrucomicrobia draft genomes from
184 metagenomes collected from a eutrophic lake and a humic bog across multiple years.
Most of these genomes represent first freshwater representatives of several
Verrucomicrobia subdivisions. Genomic analysis revealed Verrucomicrobia as potential
(poly)saccharide-degraders, and suggested their adaptation to carbon source of different
origins in the two contrasting ecosystems. We identified putative extracellular electron
transfer genes and so-called “Planctomycete-specific” cytochrome c-containing genes, and
found their distinct distribution patterns between the lakes/layers. Overall, our analysis
greatly advances the understanding of the function, ecophysiology and distribution of
freshwater Verrucomicrobia, while highlighting their potential role in freshwater carbon

cycling.

INTRODUCTION

Verrucomicrobia are ubiquitous in freshwater and exhibit a cosmopolitan distribution in
lakes and rivers. They are present in up to 90% of lakes (1), with abundances typically
between <1% and 6% of total microbial community (2-4), but as high as 19% in a humic
lake (5). Yet, in comparison to other freshwater bacterial groups, such as members of the
Actinobacteria, Cyanobacteria and Proteobacteria phyla, Verrucomicrobia have received
relatively less attention, and their functions and ecophysiology in freshwater are not well

understood.
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As a phylum, Verrucomicrobia (V) was first proposed relatively recently, in 1997
(6). Together with Planctomycetes (P), Chlamydiae (C), and sister phyla such as
Lentisphaerae, they comprise the PVC superphylum. In addition to being cosmopolitan in
freshwater, Verrucomicrobia have been found in oceans (7, 8), soil (9, 10), wetlands (11),
rhizosphere (12), and animal guts (13, 14), as free-living organisms or symbionts of
eukaryotes. Verrucomicrobia isolates are metabolically diverse, including aerobes,
facultative anaerobes, and obligate anaerobes, and they are mostly heterotrophs, using
various mono-, oligo-, and poly-saccharides for growth (6, 7, 11, 14-20). Not long ago an
autotrophic verrucomicrobial methanotroph (Methylacidiphilum fumariolicum SolV) was
discovered in acidic thermophilic environments (21).

In marine environments, Verrucomicrobia are also ubiquitous (22) and suggested to
have a key role as polysaccharide degraders (23, 24). Genomic insights gained through
sequencing single cells (24) or extracting Verrucomicrobia bins from metagenomes (25)
have revealed high abundances of glycoside hydrolase genes, providing more evidence for
their critical roles in C cycling in marine environments.

In freshwater, Verrucomicrobia have been suggested to degrade glycolate (26) and
polysaccharides (24). The abundance of some phylum members was favored by high
nutrient availabilities (27, 28), cyanobacterial blooms (29), low pH, high temperature, high
hydraulic retention time (30), and more labile DOC (5). To date, there are very few
freshwater Verrucomicrobia isolates, including Verrucomicrobium spinosum (31) and
several Prosthecobacter spp. (6). Physiological studies showed that they are aerobes,
primarily using carbohydrates, but not amino acids, alcohols, or rarely organic acids for

growth. However, these few cultured isolates only represent a single clade within
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96 subdivision 1. By contrast, 16S rRNA gene based studies discovered a much wider
97  phylogenic range of freshwater Verrucomicrobia, including subdivisions 1, 2, 3, 4, 5, and 6
98 (3-5, 24, 32). Due to the very few cultured representatives and few available genomes from
99  this freshwater lineage, the ecological functions of the vast uncultured freshwater
100  Verrucomicrobia are largely unknown.
101 In this study, we sequenced a total of 184 metagenomes in a time-series study of
102  two lakes with contrasting characteristics, particularly differing in C source, nutrient
103  availabilities, and pH. We recovered a total of 19 Verrucomicrobia draft genomes spanning
104  subdivision 1, 2, 3, and 4 of the seven previously defined Verrucomicrobia subdivisions. We
105 inferred their metabolisms, revealed their adaptation to C and nutrient conditions, and
106  uncovered some interesting and novel features, including a novel putative porin-
107  multiheme cytochrome c system that may be involved in extracellular electron transfer.
108 The gained insights advanced our understanding of the ecophysiology, and suggested
109 potential roles in C cycling and ecological niches of this ubiquitous freshwater bacterial
110  group.
111
112 RESULTS AND DISCUSSION
113  Comparison of the two lakes
114  The two studied lakes exhibited contrasting characteristics (Table 1). The most notable
115 difference is the primary C source and nutrient availabilities. Mendota is an urban
116  eutrophic lake with most of its C being autochthonous (in-lake produced through
117  photosynthesis). By contrast, Trout Bog is a nutrient-poor dystrophic lake, surrounded by

118 temperate forests and sphagnum mats, thus receiving large amounts of terrestrially-
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119  derived allochthonous C that is rich in humic and fulvic acids. Compared to Mendota, Trout
120  Bog features higher DOC levels, but is more limited in nutrient availability, with much
121  higher DOC:TN and DOC:TP ratios (Table 1). Nutrient limitation in Trout Bog is even more
122 extreme than revealed by these ratios because much of the N and P is tied up in complex
123  dissolved organic matter. In addition, Trout Bog has lower oxygenic photosynthesis due to
124  decreased photosynthetically active radiation (PAR) as a result of absorption by DOC (33).
125  Together with the consumption of dissolved oxygen by heterotrophic respiration, oxygen
126  levels decrease quickly with depth in the water column in Trout Bog. Dissolved oxygen
127  levels are below detection in the hypolimnion nearly year-round (34). Due to these
128 contrasts, we expected to observe differences in bacterial C and nutrient use, as well as
129  differences reflecting the electron acceptor conditions between these two lakes. Hence, the
130 retrieval of numerous Verrucomicrobia draft genomes in the two lakes not only allows the
131  prediction of their general functions in freshwater, but also provides an opportunity to
132 study their ecophysiological adaptation to the local environmental differences.

133

134  Verrucomicrobia draft genome retrieval and their distribution patterns

135 A total of 184 metagenomes were generated from samples collected across multiple years,
136 including 94 from the top 12 m of Mendota (mostly consisting of the epilimnion layer,
137  therefor referred to as “ME”), 45 from Trout Bog epilimnion (“TE”), and 45 from Trout Bog
138  hypolimnion (“TH”). Three combined assemblies were generated by co-assembling reads
139 from all metagenomes within the ME, TE, and TH groups, respectively. Using the binning
140 facilitated by tetranucleotide frequency and relative abundance patterns over time, a total

141  of 19 Verrucomicrobia metagenome-assembled genomes (MAGs) were obtained, including
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142  eight from the combined assembly of ME, three from the combined assembly of TE, and
143  eight from the combined assembly of TH (Table 2). The 19 MAGs exhibited a clustering of
144  their tetranucleotide frequency largely based on the two lakes (Fig. S1), suggesting distinct
145  overall genomic signatures associated with each system.

146 Genome completeness of the 19 MAGs ranged from 51% to 95%, as determined by
147  checkM (35). Phylogenetic analysis of these MAGs using a concatenated alignment of their
148 conserved genes indicates that they span a wide phylogenetic spectrum and distribute in
149  subdivisions 1, 2, 3, and 4 of the seven previously defined Verrucomicrobia subdivisions (5,
150 21, 36) (Fig. 1), as well as three unclassified Verrucomicrobia MAGs.

151 Presently available freshwater Verrucomicrobia isolates are restricted to
152  subdivision 1. The recovered MAGs allow the inference of metabolisms and ecology of a
153  considerable diversity within uncultured freshwater Verrucomicrobia. Notably, all MAGs
154  from subdivision 3 were recovered from TH, and all MAGs from subdivision 1, except
155 TH2746, were from the epilimnion (either ME or TE), indicating differences in phylogenetic
156  distribution between lakes and between layers within a lake.

157 We used normalized coverage depth of MAGs within individual metagenomes
158  collected at different sampling time points and different lakes/layers to comparatively infer
159 relative population abundance across time and space (see detailed coverage depth
160 estimation in Supplementary Text). Briefly, we mapped reads from each metagenome to
161  MAGs with a minimum identity of 95%, and used the number of mapped reads to calculate
162  the relative abundance for each MAG based on coverage depth per contig and several
163 normalization steps. Thus, we assume that each MAG represents a distinct population

164  within the lake-layer from which it was recovered (37, 38). This estimate does not directly
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165 indicate the actual relative abundance of these populations within the total community per
166  se; rather it allows us to compare population abundance levels from different lakes and
167  sampling occasions within the set of 19 MAGs. This analysis indicates that Verrucomicrobia
168 populations in Trout Bog were proportionally more abundant and persistent over time
169 compared to those in Mendota in general (Table 2). Verrucomicrobia populations in
170  Mendota boosted their abundances once to a few times during the sampling season and
171  diminished to extremely low levels for the remainder of the sampling season (generally
172 May to November), as reflected by the low median coverage depth of Mendota MAGs and
173  their large coefficient of variation (Table 2)

174

175  Saccharolytic life style and adaptation to different C sources

176  Verrucomicrobia isolates from different environments are known to grow on various
177  mono-, oligo-, and poly-saccharides, but are unable to grow on amino acids, alcohols, or
178  most organic acids (6, 7, 11, 14-20, 39). Culture-independent research suggests marine
179  Verrucomicrobia as candidate polysaccharide degraders with large number of genes
180 involved in polysaccharide utilization (23-25).

181 In the 19 Verrucomicrobia MAGs, we observed rich arrays of glycoside hydrolase
182 (GH) genes, representing a total of 78 different GH families acting on diverse
183  polysaccharides (Fig. S2). Although these genomes have different degrees of completeness,
184 genome completeness was not correlated with the number of GH genes recovered
185  (correlation coefficient = 0.312, p-value = 0.194), or the number of GH families represented
186  in each MAG (i.e. GH diversity, correlation coefficient = 0.278, p-value = 0.250). To compare

187 GH abundance among MAGs, we normalized GH occurrence frequencies by the total
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188 number of genes in each MAG to estimate the percentage of genes annotated as GHs (i.e. GH
189 coding density) to account for the different genome size and completeness. This
190 normalization assumes GH genes are randomly distributed between the recovered and the
191 missing parts of the genome, and it allows us to make some general comparison among
192  these MAGs. GH coding density ranged from 0.4% to 4.9% for these MAGs (Fig. 2a), and in
193  general, was higher in Trout Bog MAGs than in Mendota MAGs. Notably, six TH MAGs had
194  extremely high (~4%) GH coding densities (Fig. 2a), with each MAG harboring 119-239 GH
195 genes, representing 36-59 different GH families (Fig. 3 and S2). Although GH coding
196 density in most ME genomes in subdivisions 1 and 2 was relatively low (0.4-1.6%), it was
197  still higher than in many other bacterial groups (24).

198 The GH abundance and diversity within a genome may determine the width of the
199  substrate spectrum and/or the complexity of carbohydrates used by that organism. For
200 example, there are 20 GH genes in the Rubritalea marina genome, and this marine
201  verrucomicrobial aerobe only uses a limited spectrum of carbohydrate monomers and
202  dimers, but not the majority of (poly)saccharides tested (15). By contrast, 164 GH genes
203  are present in the Opitutus terrae genome, and this soil verrucomicrobial anaerobe can thus
204 grow on a wider range of mono-, di- and poly-saccharides (16). Therefore, it is plausible
205  that the GH-rich Trout Bog Verrucomicrobia populations may be able to use a wider range
206  of more complex polysaccharides than the Mendota populations.

207 The 10 most abundant GH families in these Verrucomicrobia MAGs include GH2, 29,
208 78, 95, and 106 (Fig. 3). These specific GHs were absent or at very low abundances in
209  marine Verrucomicrobia genomes (24, 25), suggesting a general difference in carbohydrate

210  substrate use between freshwater- and marine Verrucomicrobia. Hierarchical clustering of
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211 MAGs based on overall GH abundance profiles indicated a grouping pattern largely
212  separated by lake (Fig. S3). Prominently over-represented GHs in most Trout Bog MAGs
213  include GH2, GH29, 78, 95, and 106. By contrast, over-represented GHs in the Mendota
214  MAGs are GH13, 20, 33, 57, and 77, which have different substrate spectra from GHs over-
215 represented in the Trout Bog MAGs. Therefore, the patterns in GH functional profiles may
216  suggest varied carbohydrate substrate preferences and ecological niches occupied by
217  Verrucomicrobia, probably reflecting the different carbohydrate composition derived from
218  different sources between Mendota and Trout Bog.

219 Overall, GH diversity and abundance profile may reflect the DOC availability,
220  chemical variety and complexity, and suggest microbial adaptation to different C sources in
221  the two ecosystems. We speculate that the rich arrays of GH genes, and presumably
222  broader substrate spectra of Trout Bog populations, partly contribute to their higher
223  abundance and persistence over the sampling season (Table 2), as they are less likely
224  impacted by fluctuations of individual carbohydrates. By contrast, Mendota populations
225 with fewer GHs and presumably more specific substrate spectra are relying on
226  autochthonous C and therefore exhibit a “bloom-and-bust” abundance pattern (Table 2)
227  that might be associated with cyanobacterial blooms as previous suggested (29). On the
228  other hand, bogs experience seasonal phytoplankton blooms (40, 41) that introduce brief
229  pulses of autochthonous C to these otherwise allochthonous-driven systems. Clearly, much
230 remains to be learned about the routes through which C is metabolized by bacteria in such
231 lakes, and comparative genomics is a novel way to use the organisms to tell us about C flow
232 through the ecosystem.

233
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234  Other genome features of the saccharide-degrading life style

235  Seven Verrucomicrobia MAGs spanning subdivisions 1, 2, 3, and 4 possess genes needed to
236  construct bacterial microcompartments (BMCs), which are quite rare among studied
237  bacterial lineages. Such BMC genes in Planctomycetes are involved in the degradation of
238  plant and algal cell wall sugars, and are required for growth on L-fucose, L-rhamnose and
239  fucoidans (42). Genes involved in L-fucose and L-rhamnose degradation cluster with BMC
240  shell protein-coding genes in the seven Verrucomicrobia MAGs (Fig. 4). This is consistent

241  with the high abundance of « -L-fucosidase or « -L-rhamnosidase GH genes (represented

242 by GH29, 78, 95, 106) in most of these MAGs (Fig. 3), suggesting the importance of fucose-
243  and rhamnose-containing polysaccharides for these Verrucomicrobia populations.

244 TonB-dependent receptor (TBDR) genes were found in Verrucomicrobia MAGs, and
245  are present at over 20 copies in TE1800 and TH2519. TBDRs are located on the outer
246  cellular membrane of Gram-negative bacteria, usually mediating the transport of iron
247  siderophore complex and vitamin Bi; across the outer membrane through an active
248  process. More recently, TBDRs were suggested to be involved in carbohydrate transport
249  across the outer membrane by some bacteria that consume complex carbohydrates, and in
250  their carbohydrate utilization (CUT) loci, TBDR genes usually cluster with genes encoding
251 inner membrane transporters, GHs and regulators for efficient carbohydrate
252 transportation and utilization (43). Such novel CUT loci are present in TE1800 and
253 TH2519, with TBDR genes clustering with genes encoding inner membrane sugar
254  transporters, monosaccharide utilization enzymes, and GHs involved in the degradation of
255  pectin, xylan, and fucose-containing polymers (Fig. 5). Notably, most GHs in the CUT loci

256 are predicted to be extracellular or outer membrane proteins (Fig. 5), catalyzing

11
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257  extracellular hydrolysis reactions to release mono- and oligo-saccharides, which are
258  transported across the outer membrane by TBDR proteins. Therefore, such CUT loci may
259  allow these verrucomicrobial populations to coordinately and effectively scavenge the
260  hydrolysis products before they diffuse away.

261 Genes encoding for inner membrane carbohydrate transporters are abundant in
262  Verrucomicrobia MAGs (Fig. S4). The Embden-Meyerhof pathway for glucose degradation,
263  as well as pathways for degrading a variety of other sugar monomers, including galactose,
264 rhamnose, fucose, xylose, and mannose, were recovered (complete or partly-complete) in
265 most MAGs (Fig. 6). As these sugars are abundant carbohydrate monomers in plankton and
266  plant cell walls, the presence of these pathways together with GH genes suggest that these
267  Verrucomicrobia populations may use plankton- and plant-derived saccharides. Machinery
268  for pyruvate degradation to acetyl-CoA and the TCA cycle are also present in most MAGs.
269  These results are largely consistent with their hypothesized role in carbohydrate
270  degradation and previous studies on Verrucomicrobia isolates.

271 Notably, a large number of genes encoding proteins belonging to a sulfatase family
272  (pfam00884) are present in the majority of MAGs (Fig. 2b), similar to the high
273  representation of these genes in marine Verrucomicrobia genomes (24, 25). Sulfatases
274  hydrolyze sulfate esters, which are rich in sulfated polysaccharides. In general, sulfated
275  polysaccharides are abundant in marine algae and plants (mainly in seaweeds) (44), but
276  have also been found in some freshwater cyanobacteria (45) and plant species (46).
277  Sulfatase genes in our Verrucomicrobia MAGs were often located in the same neighborhood
278  as genes encoding for extracellular proteins with a putative pectin lyase activity, proteins

279  with a carbohydrate-binding module (pfam13385), GHs, and proteins with PSCyt domains

12
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280  (Fig. 2c and discussed later). Their genome context lends support for the participation of
281  these genes in C and sulfur cycling by degrading sulfated polysaccharides, which can serve
282  as an abundant source of sulfur for cell biosynthesis as well as C for energy and growth.

283 Previously, freshwater Verrucomicrobia were suggested to use the algal exudate
284  glycolate in humic lakes, based on the retrieval of genes encoding subunit D (glcD) of
285 glycolate oxidase, which converts glycolate to glyoxylate (26). However, these recovered
286  genes might not be bona fide glcD due to the lack of other essential subunits as revealed in
287  our study (see Supplementary Text). Among the MAGs, only TE4605 possesses all three
288  essential subunits of glycolate oxidase (glcDEF) (Fig. S5). However, genetic context analysis
289  suggests that TE4605 likely uses glycolate for amino acid assimilation, instead of energy
290 generation (Fig. S5 and Supplementary Text). These results are consistent with the
291 absence of the glyoxylate shunt and especially the malate synthase, which converts
292  glyoxylate to malate to be used through the TCA cycle for energy generation in the 19
293  Verrucomicrobia MAGs (Fig. S6). Therefore, Verrucomicrobia populations represented by
294  the 19 MAGs are not likely key players in glycolate degradation, but more likely important
295  (poly)saccharide-degraders in freshwater, as suggested by the high abundance of GH,
296  sulfatase, and carbohydrate transporter genes, metabolic pathways for degrading diverse
297  carbohydrate monomers, and other genome features adapted to the saccharolytic life style.
298

299  Nitrogen (N) metabolism and adaptation to different N availabilities

300 Most Verrucomicrobia MAGs in our study do not appear to reduce nitrate or other
301 nitrogenous compounds, and they seem to uptake and use ammonia (Fig. 6), and

302  occasionally amino acids (Fig. S4), as an N-source. Further, some Trout Bog populations

13
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303 may have additional avenues to generate ammonia, including genetic machineries for
304  assimilatory nitrate reduction in TH2746, nitrogenase genes for nitrogen fixation and
305 urease genes in some of the Trout Bog MAGs (Fig. 6), probably as adaptions to N-limited
306 conditions in Trout Bog.

307 Although Mendota is a eutrophic lake, N can become temporarily limiting during the
308 high-biomass period when N is consumed by large amounts of phytoplankton and
309 Dbacterioplankton (47). For some bacteria, when N is temporarily limited while C is in
310 excess, cells convert and store the extra C as biopolymers. For example, the
311  verrucomicrobial methanotroph M. fumariolicum SolV accumulated a large amount of
312  glycogen (up to 36% of the total dry weight of cells) when the culture was N-limited (48).
313  Similar to this verrucomicrobial methanotroph, genes in glycogen biosynthesis are present
314  in most MAGs from Mendota and Trout Bog (Fig. 6). Indeed, a glycogen synthesis pathway
315 is also present in most genomes of cultivated Verrucomicrobia in the public database (data
316 not shown), suggesting that glycogen accumulation might be a common feature for this
317 phylum to cope with the changing pools of C and N in the environment and facilitate their
318  survival when either is temporally limited.

319

320 Phosphorus (P) metabolism and other metabolic features

321 Verrucomicrobia populations represented by these MAGs may be able to survive under low
322 P conditions, as suggested by the presence of genes responding to P limitation, such as the
323 two-component regulator (phoRB), alkaline phosphatase (phoA), phosphonoacetate
324  hydrolase (phnA), and high-affinity phosphate-specific transporter system (pstABC) (Fig.

325  6). Detailed discussion in P acquisition and metabolism and other metabolic aspects, such
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326  as acetate metabolism, sulfur metabolism, oxygen tolerance, and the presence of the
327  alternative complex III and cytochrome c oxidase genes in the oxidative phosphorylation
328 pathway, are discussed in the Supplementary Text (Fig. S6).

329

330 Anaerobic respiration and a putative porin-multiheme cytochrome c system

331 Respiration using alternative electron acceptors is important for overall lake metabolism in
332  the DOC-rich humic Trout Bog, as the oxygen levels decrease quickly with depth in the
333  water column. We therefore searched for genes involved in anaerobic respiration, and
334  found that genes in the dissimilatory reduction of nitrate, nitrite, sulfate, sulfite, DMSO, and
335 TMAO are largely absent in all MAGs (Supplementary Text, Fig. S6). Compared to those
336  anaerobic processes, genes for dissimilatory metal reduction are less well understood. In
337 more extensively studied cultured iron [Fe(IlI)] reducers, outer surface c-type cytochromes
338 (cytc), such as OmcE and OmcS in Geobacter sulfurreducens are involved in Fe(III)
339  reduction at the cell outer surface (49). Further, a periplasmic multiheme cytochrome c
340 (MHC, e.g. MtrA in Shewanella oneidensis and OmaB/OmaC in G. sulfurreducens) can be
341 embedded into a porin (e.g. MtrB in S. oneidensis and OmbB/OmbC in G. sulfurreducens),
342  forming a porin-MHC complex as an extracellular electron transfer (EET) conduit to reduce
343  extracellular Fe(III) (50, 51). Such outer surface cytc and porin-MHC systems involved in
344  Fe(Ill) reduction were also suggested to be important in reducing the quinone groups in
345  humic substances (HS) at the cell surface (52-54). The reduced HS can be re-oxidized by
346  Fe(IIl) or oxygen, thus HS can serve as electron shuttles to facilitate Fe(IIl) reduction (55,
347  56) or as regenerable electron acceptors at the anoxic-oxic interface or over redox cycles

348  (57).
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349 Outer surface cytc or porin-MHC systems homologous to the ones in G.
350  sulfurreducens and S. oneidensis are not present in Verrucomicrobia MAGs. Instead, we
351 identified a novel porin-coding gene clustering with MHC genes in six MAGs (Fig. 7). These
352  porins were predicted to have at least 20 transmembrane motifs, and their adjacent cytc
353  were predicted to be periplasmic proteins with eight conserved heme-binding sites. In
354  several cases, a gene encoding an extracellular MHC is also located in the same gene cluster.
355  As their gene organization is analogous to the porin-MHC gene clusters in G. sulfurreducens
356 and S. oneidensis, we hypothesize that these genes in Verrucomicrobia may encode a novel
357  porin-MHC complex involved in EET.

358 As these porin-MHC gene clusters are novel, we further confirmed that they are
359 indeed from Verrucomicrobia. Their containing contigs were indeed classified to
360 Verrucomicrobia based on the consensus of the best BLASTP hits for genes on these
361  contigs. Notably, the porin-MHC gene cluster was only observed in MAGs recovered from
362  the HS-rich Trout Bog, especially from the anoxic hypolimnion environment. Searching the
363 NCBI and IMG databases for the porin-MHC gene clusters homologous to those in Trout
364 Bog, we identified homologs in genomes within the Verrucomicrobia phylum, including
365  Opitutus terrae PB90-1 isolated from rice paddy soil, Opitutus sp. GAS368 isolated from
366 forest soil, “Candidatus Udaeobacter copiosus” recovered from prairie soil, Opititae-40 and
367  Opititae-129 recovered from freshwater sediment, and Verrucomicrobia bacterium
368 IMCC26134 recovered from freshwater; some of their residing environments are also rich
369 in HS. Therefore, based on the occurrence pattern of porin-MHC among Verrucomicrobia
370 genomes, we hypothesize that such porin-MHCs might participate in EET to HS in anoxic

371  HS-rich environments, and HS may further shuttle electrons to poorly soluble metal oxides
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372  or be regenerated at the anoxic-oxic interface, thereby diverting more C flux to respiration
373 instead of fermentation and methanogenesis, which could impact the overall energy
374 metabolism and green-house gas emission in the bog environment.

375

376  Occurrence of Planctomycete-specific cytochrome ¢ and domains

377 One of the interesting features of Verrucomicrobia and its sister phyla in the PVC
378  superphylum is the presence of a number of novel protein domains in some of their
379 member genomes (58, 59). These domains were initially identified in marine
380 planctomycete Rhodopirellula baltica (58) and therefore, were referred to as
381 “Planctomycete-specific”, although some of them were later identified in other PVC
382 members (59). In our Verrucomicrobia MAGs, most genes containing Planctomycete-
383  specific cytochrome ¢ domains (PSCytl to PSCyt3) also contain other Planctomycete-
384  specific domains (PSD1 through PSD5) with various combinations and arrangements (Fig.
385 8 and S7a). Further, PSCyt2-containing and PSCyt3-containing genes are usually next to
386 two different families of unknown genes, respectively (Fig. S7b). Such conserved domain
387  architectures and gene organizations, as well as their high occurrence frequencies in some
388  of the Verrucomicrobia MAGs are intriguing, yet nothing is known about their functions.
389 However, some of the PSCyt-containing genes also contain protein domains identifiable as
390 carbohydrate-binding modules (CBMs), suggesting a role in carbohydrate metabolism (see
391 detailed discussion in Supplementary Text).

392 The coding density of PSCyt-containing genes indicates that they tend to be more
393 abundant in the epilimnion (either ME or TE) genomes (Fig. 2c) and exhibit an inverse

394  correlation with the GH coding density (r = -0.62). Interestingly, sulfatase-coding genes are
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395 often in the neighborhood of PSCyt-containing genes in ME and TE genomes, whereas
396  sulfatase-coding genes often neighbor with GH genes in TH genomes. The genomic context
397  suggests PSCyt-containing gene functions somewhat mirror those of GHs (although their
398 reaction mechanisms likely differ fundamentally). However, these PSCyt-containing genes
399  were predicted to be periplasmic or cytoplasmic proteins rather than extracellular or outer
400 membrane proteins. Hence, if they are indeed involved in carbohydrate degradation, they
401 likely act on mono- or oligomers that can be transported into the cell. Further, the
402  distribution patterns of GH versus PSCyt-containing genes between the epilimnion and
403  hypolimnion may reflect the difference in oxygen availability and their carbohydrate
404  substrate complexity between the two layers, suggesting some niche differentiation within
405  Verrucomicrobia in freshwater systems. Therefore, we suggest that a combination of
406 carbohydrate composition, electron acceptor availability and C accessibility drive gene
407  distributions in these populations.

408

409 Summary

410 Verrucomicrobia MAGs recovered from the two contrasting lakes greatly expanded the
411 known genomic diversity of freshwater Verrucomicrobia, revealed the ecophysiology and
412 some interesting adaptive features of this ubiquitous yet less understood freshwater
413 lineage. The overrepresentation of GH, sulfatase, and carbohydrate transporter genes, the
414  genetic potential to use various sugars, and the microcompartments for fucose and
415 rhamnose degradation suggest that they are potentially (poly)saccharide degraders in
416 freshwater. Most of the MAGs encode machineries to cope with the changing availability of

417 N and P and can survive nutrient limitation. Despite these generalities, these
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418  Verrucomicrobia differ significantly between lakes in the abundance and functional profiles
419  of their GH genes, which may reflect different C sources of the two lakes. Interestingly, a
420 number of MAGs in Trout Bog possess gene clusters potentially encoding a novel porin-
421  multiheme cytochrome c complex, and might be involved in extracellular electron transfer
422  in the anoxic humic-rich environment. Intriguingly, large numbers of Planctomycete-
423  specific cytochrome c-containing genes are present in MAGs from the epilimnion,
424  exhibiting nearly opposite distribution patterns with GH genes. Future studies are needed
425  to elucidate the functions of these novel and fascinating genomic features.

426 In this study, we focused on using genome information to infer ecophysiology of
427  Verrucomicrobia. The rich time-series metagenome dataset and the many diverse
428  microbial genomes recovered in these two lakes also provide an opportunity for the future
429  study of Verrucomicrobia population dynamics in the context of the total community and
430  their interactions with environmental variables and other microbial groups.

431 As some of the MAGs analyzed here represent first genome representatives of
432  several Verrucomicrobia subdivisions from freshwater, an interesting question is whether
433  populations represented by the MAGs are native aquatic residents and active in aquatic
434  environment, or merely present after having been washed into the lake from surrounding
435  soil. Previous studies on freshwater Verrucomicrobia were largely based on 16S rRNA
436  genes, yet 16S rRNA genes were not recovered in most MAGs, making it difficult to directly
437  link our MAGs to previously identified freshwater Verrucomicrobia. Notably, our MAGs
438 were only distantly related to the ubiquitous and abundant soil Verrucomicrobia,
439  “Candidatus Udaeobacter copiosus” (10) (Fig. 1). In addition, Verrucomicrobia were

440 abundant in Trout Bog and other bogs from a five-year bog lake bacterial community
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441 composition and dynamics study (60), with average relative abundance of 7.1% and 8.6%,
447  and maximal relative abundance of 25.4% and 39.5% in Trout Bog epilimnion and
443  hypolimnion respectively. Since the MAGs were presumably from the most abundant
444  Verrucomicrobia populations, they were not likely soil immigrants due to their high
445  abundance in the aquatic environment. To confirm their aquatic origin, future experiments
446  should be designed to test their activities and physiology in the aquatic environment based
447  onthe genomic insights gained in this study.

448

449

450 MATERIALS AND METHODS

451  Study sites. Samples for metagenome sequencing were collected from two temperate lakes
452  in Wisconsin, USA, Lake Mendota and Trout Bog Lake, during ice-off periods of each year
453 (May to November). Mendota is an urban eutrophic lake with most of its C being
454  autochthonous (in-lake produced), whereas Trout Bog is a small, acidic and nutrient-poor
455  dystrophic lake with mostly terrestrially-derived (allochthonous) C. General lake
456  characteristics are summarized in Table 1.

457

458  Sampling. For Mendota, we collected depth-integrated water samples from the surface 12
459 m (mostly consisting of the epilimnion layer) at 94 time points from 2008 to 2012, and
460 samples were referred to as “ME” (38). For Trout Bog, we collected the integrated
461 hypolimnion layer at 45 time points from 2007 to 2009 and the integrated epilimnion layer
462  at 45 time points from 2007 to 2009, and samples were referred to as “TH” and “TE”,

463  respectively (37). All samples were filtered through 0.22 u m polyethersulfone filters and
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464  stored at -80°C until extraction. DNA was extracted from the filters using the FastDNA kit
465 (MP Biomedicals) according to manufacturer’s instruction with some minor modifications
466  as described previously (34).

467

468 Metagenome sequencing, assembly, and draft genome recovery. Details of
469 metagenome sequencing, assembly, and binning were described in Bendall et al. (37) and
470 Hamilton et al (61). Briefly, shotgun Illumina HiSeq 2500 metagenome libraries were
471  constructed for each of the DNA samples. Three combined assemblies were generated by
472  co-assembling reads from all metagenomes within the ME, TE, and TH groups, respectively.
473  Binning was conducted on the three combined assemblies to recover “metagenome-
474  assembled genomes” (MAGs) based on the combination of contig tetranucleotide frequency
475 and differential coverage patterns across time points using MetaBAT (62). Subsequent
476  manual curation of MAGs was conducted to remove contigs that did not correlate well with
477  the median temporal abundance pattern of all contigs within a MAG, as described in
478 Bendall etal. (37).

479

480 Genome annotation and completeness estimation. MAGs were submitted to the DOE
481 Joint Genome Institute’s Integrated Microbial Genome (IMG) database for gene prediction
482  and function annotation (63). The IMG Taxon Object IDs for Verrucomicrobia MAGs are
483 listed in Table 2. The completeness and contamination of each MAG was estimated using
484  checkM with both the lineage-specific and Verrucomicrobia-specific workflows (35). The
485  Verrucomicrobia-specific workflow provided more accurate estimates (i.e. higher genome

486  completeness and lower contamination) than the lineage-specific workflow when tested on
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487 11 complete genomes of Verrucomicrobia isolates available at IMG during our method
488 validation. We therefore only reported the estimates from Verrucomicrobia-specific
489  workflow (Table 2). MAGs with an estimated completeness lower than 50% were not
490 included in this study.

491

492 Taxonomic and phylogenetic analysis. A total of 19 MAGs were classified to the
493  Verrucomicrobia phylum based on taxonomic assignment by PhyloSift using 37 conserved
494  phylogenetic marker genes (64), as described in Bendall et al. (37). A phylogenetic tree was
495  reconstructed from the 19 Verrucomicrobia MAGs and 24 reference genomes using an
496  alignment concatenated from individual protein alignments of five conserved essential
497  single-copy genes (represented by TIGR01391, TIGR01011, TIGR00663, TIGR00460, and
498 TIGR00362) that were recovered in all Verrucomicrobia MAGs. Individual alignments were
499 first generated with MUSCLE (65), concatenated, and trimmed to exclude columns that
500 contain gaps for more than 30% of all sequences. A maximum likelihood phylogenetic tree
501 was constructed using PhyML 3.0 (66), with the LG substitution model and the gamma
502  distribution parameter estimated by PhyML. Bootstrap values were calculated based on
503 100 replicates. Kiritimatiella glycovorans L21-Fru-AB was used as an outgroup in the
504 phylogenetic tree. This bacterium was initially designated as the first (and so far the only)
505 cultured representative of Verrucomicrobia subdivision 5. However, this subdivision was
506 later proposed as a novel sister phylum associated with Verrucomicrobia (67), making it an
507 ideal outgroup for this analysis.

508
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509 Estimate of metabolic potential. IMG provides functional annotation based on KO (KEGG
510 orthology) term, COG (cluster of orthologous group), pfam, and TIGRfam. To estimate
511 metabolic potential, we primarily used KO terms due to their direct link to KEGG pathways.
512  COG, pfam, and TIGRfam were also used when KO terms were not available for a function.
513  Pathways are primarily reconstructed according to KEGG modules, and MetaCyc pathway is
514 used if a KEGG module is not available for a pathway. As these MAGs are incomplete
515 genomes, a fraction of genes in a pathway may be missing due to genome incompleteness.
516  Therefore, we estimated the completeness of a pathway as the fraction of recovered
517 enzymes in that pathway (e.g. a pathway is 100% complete if all enzymes in that pathway
518 are encoded by genes recovered in a MAG). As some genes are shared by multiple
519 pathways, signature genes specific for a pathway were used to indicate the presence of a
520 pathway. If signature genes for a pathway were missing in all MAGs, that pathway was
521 likely absent in all genomes. Based on this, we established criteria for estimating pathway
522  completeness in each MAG. If a signature gene in a pathway was present, we report the
523  percentage of genes in the pathway that we found. If a signature gene was absent in a MAG,
524  but present in at least one third of all MAGs (i.e. >=7), we still report the pathway
525 completeness for that MAG in order to account for genome incompleteness. Otherwise, we
526  considered the pathway to be absent (i.e. completeness is 0%).

527

528 Glycoside hydrolase identification. Glycoside hydrolase (GH) genes were identified using

529 the dbCAN annotation tool (http://csbl.bmb.uga.edu/dbCAN/annotate.php) (68) using

530 HMMER search against hidden Markov models (HMMs) built for all GHs, with an E-value

531 cutoff of 1le-7, except GH109, for which we found that the HMM used by dbCAN is
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532 pfam01408, which is a small domain at the N-terminus of GH109 proteins, but is not
533  specific for GH109. Therefore, to identify verrucomicrobial GH109, BLASTP was performed
534  using the two GH109 sequences (GenBank accession ACD03864 and ACD04752) from
535 verrucomicrobial Akkermansia muciniphila ATCC BAA-835 listed in the CAZy database
536  (http://www.cazy.org), with E-value cutoff of 1e-6 and query sequence coverage cutoff of
537 50%.

538

539  Other bioinformatic analyses. Protein cellular location was predicted using CELLO v.2.5

540  (http://cello.life.nctu.edu.tw) (69) and PSORTb v.3.0 (http://www.psort.org/psortb) (70).

541 The beta-barrel structure of outer membrane proteins was predicted by PRED-TMBB

542  (http://bioinformatics.biol.uoa.gr//PRED-TMBB) (71).
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806
807  FIGURE LEGENDS

808  Fig. 1. Phylogenetic tree constructed with a concatenated alignment of protein sequences
809 from five conserved essential single-copy genes (represented by TIGR01391, TIGR01011,
810 TIGR00663, TIGR00460, and TIGR00362) that were recovered in all Verrucomicrobia
811 MAGs. ME, TE and TH MAGs are labeled with red, green and blue, respectively. Genome ID
812  in IMG or NCBI is indicated in the bracket. The outgroup is Kiritimatiella glycovorans L21-
813  Fru-AB, which was initially assigned to subdivision 5, but this subdivision was recently
814  proposed as a novel sister phylum to Verrucomicrobia (67).

815

816  Fig. 2. A. Coding densities of glycoside hydrolase genes, B. sulfatase genes, and C.
817  Planctomycete-specific cytochrome ¢ (PSCyt)-containing genes. Data from ME, TE and TH
818  MAGs are labeled with red, green and blue, respectively. The three plots share the same x-
819  axis label as indicated by the genome clustering on the top, which is based on a subtree
820  extracted from the phylogenetic tree in Fig. 1 to indicate the phylogenetic relatedness of
821 the 19 MAGs. The vertical dashed lines divide these MAGs to different subdivisions.

822

823

824  Fig. 3. Gene counts for the top 10 most abundant GH families, total gene counts for all GH
825 families, and the number of GH families represented by these genes. MAGs are ordered as
826  in the clustering in Fig. 2.

827
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828  Fig. 4. Gene clusters encoding bacterial microcompartments (BMCs) involved in L-fucose
829  and L-rhamnose degradation. The vertical line indicates the end of a contig, and IMG gene
830 locus tag for the first gene in each presented gene cluster is indicated in the parentheses.
831 The BMC is schematically represented by a hexagon with the two building blocks labeled in
832 red and green, respectively. The two building blocks and reactions inside the BMC are
833  colored according to their encoding genes’ color labels on the left side.

834

835  Fig. 5. Gene clusters encoding putative tonB-dependent carbohydrate utilization (CUT) loci.
836 IMG gene locus tag for the first gene in each presented gene cluster is indicated in the
837  parentheses. The horizontal solid lines below genes indicate predicted extracellular or
838  outer membrane proteins.

839

840  Fig. 6. Completeness estimates of key metabolic pathways. MAGs are ordered as in the
841 clusteringin Fig. 2. Completeness value of “1” indicates a pathway is complete; “0” indicates
842  no genes were found in that pathway; and “(0)” indicates that although some genes in a
843  pathway are present, the pathway is likely absent because signature genes for that pathway
844  were not found in that draft genome AND signature genes are missing in more than two
845  thirds of all draft genomes.

846

847  Fig. 7. Gene clusters encoding putative porin-multiheme cytochrome ¢ complex (PCC). IMG
848 gene locus tag for the first gene in each presented gene cluster is indicated in the
849  parentheses. The vertical line indicates the end of a contig, and horizontal lines below

850 genes indicate predicted cellular locations of their encoded proteins. These putative PCC
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851 genes are in 18.1, 9.0, 6.1, 18.4, 70.0, 10.6 and 10.8 kbp long contigs, respectively. A
852  hypothesized model of extracellular electron transfer is shown on the right with yellow
853 arrows indicating electron flows. “IM” and “OM” refer to inner and outer membranes,
854 respectively, “ET in IM” refers to electron transfer in the inner membrane, and “EAx” and
855  “EA(req)” refer to oxidized and reduced forms of the electron acceptor, respectively.

856

857 Fig. 8. Domain architecture and occurrence of PSCyt-containing genes. Based on the
858 combination of specific PSCyt and PSD domains, these domain structures can be classified
859 into three groups (I, II, and III). “CBM” refers to carbohydrate-binding modules, which
860 include pfam13385 (Laminin_G_3), pfam08531 (Bac_rhamnosid_N), pfam08305 (NPCBM),
861 pfam03422 (CBM_6), and pfam07691 (PA14). “PPI” refers to protein-protein interaction
862  domains, which include pfam02368 (Big_2), pfam00400 (WD40), and pfam00754
863  (F5_F8_type_C).

864

865

866  LIST OF SUPPLEMENTARY MATERIAL

867  Supplementary Text

868  Supplementary Figures S1 through S8

869

870  Supplementary Figure Legends

871  Fig. S1. A tiled display of an emergent self-organizing map (ESOM) based on the

872  tetranucleotide frequency (TNF) of the 19 Verrucomicrobia MAGs. TNF was calculated with

873  awindow size of 5 kbp, with each dot on the ESOM representing a 5-kbp fragment (or a
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contig if its length is shorter than 5 kbp). Dots (i.e. fragments) are colored according to

MAGs. A numeric ID is assigned to each MAG, and IDs from Mendota are labeled in black

and IDs from Trout Bog labeled in white. A red outline was drawn to indicate the clustering

of MAGs from Mendota on the ESOM.

Fig. S2. Counts of GH genes among the 78 different GH families present in MAGs.

Fig. S3. Heat map based on GH abundance profile patterns showing the clustering of MAGs

by different lakes.

Fig. S4. Counts of carbohydrate and amino acid transporter genes.

Fig. S5. Comparison of glycolate oxidase gene operons in E. coli, C. flavus and TE4605.

Fig. S6. Summary of important metabolic genes and pathways.

Fig. S7. Occurrence and gene organization of Planctomycetes-specific domains, DUF1501,

and DUF1552. (a) Counts of PSCyt, PSD, DUF1501, and DUF1552 domains in the MAGs. (b)

Clustering of PUF1501- and PSCyt2-containing genes, and clustering of PUF1552- and

PSCyt3-containing genes in the genome.
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TABLE 1. Lakes included in this study”

Lake Mendota Trout Bog

GPS location 43.100°N, 89.405°W 46.041°N, 89.686°W
Lake type Drainage lake Seepage lake
Surface area (ha) 3938 1.1

Mean depth (m) 12.8 5.6

Max depth (m) 25.3 7.9

pH 8.3 5.2

Primary carbon source Phytoplankton Terrestrial subsidies
DOC (mg/L) 5.0 20.0

Total N (mg/L) 1.5 1.3

Total P (ug/L) 131 71

DOC/N 3.3 15.6

DOC/P 38.0 281.9
Trophic state Eutrophic Dystrophic

“Data from NTL-LTER https://Iter.limnology.wisc.edu, averaged from the study years. DOC = Dissolved
organic carbon. N = Nitrogen. P = Phosphorus.
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TABLE 2. Summary of Verrucomicrobia MAGs?

. d
Genome Genome Normalized Coverage Depth

Recovered L GC Codin

Genome IMGO'IrIz;xon Subdivision MAG Size Co;l:il:aetless colt;:::g::on Cor:tent B.:;:seg cGoeun; Median Mean ocfo\zfrii;itei::n

(Mbp) (%)° (%)° (%) (%) (%)
ME3880 2582580573 1 1.6 70 2 58 90.9 1585 0.2 2.9 217
TH2746 2582580664 1 6.5 81 3 62 86.7 5430 3.3 4.7 82
ME12612 2582580523 1 2.2 79 3 59 89.0 2335 0.0 0.9 261
ME12173 2582580521 1 2.1 63 3 52 91.3 2070 0.0 0.8 583
TE4605 2582580638 1 4.7 91 0 59 91.1 4380 1.0 4.8 198
ME6381 2582580593 1 2.4 62 0 57 925 2221 0.0 0.4 285
ME8366 2582580607 2 3.6 87 5 63 87.4 3450 0.0 1.2 326
TH2747 2582580665 3 5.2 93 8 58 89.6 4846 1.8 2.8 99
TH3004 2582580668 3 4.5 93 6 57 91.4 3798 1.9 5.8 139
THO0989 2556921153 3 7.2 91 8 62 90.3 5583 6.1 6.3 61
TH2519 2593339181 4 1.8 69 2 42 943 1654 6.2 6.7 60
TE1800 2593339189 4 2.2 84 2 42 943 1998 10.8 11.3 77
TH4590 2582580688 4 3.3 87 1 65 90.7 3132 2.4 3.6 99
ME2014 2582580546 4 1.9 77 5 66 93.7 1700 1.0 3.3 174
ME12657 2582580524 4 1.9 81 7 68 94.0 1838 0.0 0.8 344
TE1301 2582580616 4 2.0 95 0 54 94.7 1943 4.1 14.2 187
TH4093 2582580682 Unclassified 4.7 77 6 48 86.5 3982 43 3.9 61
ME30509 2582580559 Unclassified 1.2 51 2 63 92.3 1160 0.0 0.5 479
TH4820 2582580691 Unclassified 3.0 56 3 63 867 279 10 21 110

aMAGs from Lake Mendota are shaded.
bRecovered MAG size is the sum of the length of all contigs within a MAG.
¢Genome completeness and contamination was estimated with checkM using Verrucomicrobia-specific marker gene sets.
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dNormalized coverage depths of MAGs were calculated from the 94, 45, or 45 individual ME, TE, or TH metagenomes respectively, and
were used to comparatively infer relative population abundance at the different sampling points. In addition to the median and mean
coverage depths, the coefficient of variation is also shown to indicate variation among the sampling points.
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Fig. 1. Phylogenetic tree constructed with a concatenated alignment of protein sequences from five
conserved essential single-copy genes (represented by TIGR01391, TIGR01011, TIGR00663, TIGR00460,
and TIGR00362) that were recovered in all Verrucomicrobia MAGs. ME, TE and TH MAGs are labeled
with red, green and blue, respectively. Genome ID in IMG or NCBI is indicated in the bracket. The
outgroup is Kiritimatiella glycovorans L21-Fru-AB, which was initially assigned to subdivision 5, but

this subdivision was recently proposed as a novel sister phylum to Verrucomicrobia (67).
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Fig. 2. Coding densities of glycoside hydrolase genes (a), sulfatase genes (b) and Planctomycete-
specific cytochrome ¢ (PSCyt)-containing genes (c). Data from ME, TE and TH MAGs are labeled
with red, green and blue, respectively. The three plots share the same x-axis label indicated by the
genome clustering on the top, which is is based on a subtree extracted from the phylogenetic tree in
Fig. 1 to indicate the phylogenetic relatedness of the 19 MAGs. The vertical dashed lines divide
these MAGs to different subdivisions.
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Fig. 4. Gene counts for the top 10 most abundant GH families, total gene counts for all GH families,
and the number of GH families represented by these genes. MAGs are ordered as in the clustering
in Fig. 2.
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Fig. 4. Gene clusters encoding bacterial microcompartments (BMCs) involved in L-fucose and
L-rhamnose degradation. The vertical line indicates the end of a contig, and IMG gene locus tag
for the first gene in each presented gene cluster is indicated in the parenthesis. The BMC is
schematically represented by a hexagon with the two building blocks labeled in red and green,
respectively. The two building blocks and reactions inside the BMC are colored according to their
encoding genes’ color labels on the left side.
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Fig. 5. Gene clusters encoding putative tonB-dependent carbohydrate utilization (CUT) loci. IMG
gene locus tag for the first gene in each presented gene cluster is indicated in the parenthesis. The
horizontal solid lines below genes indicate predicted extracellular or outer membrane proteins.
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Fig. 6. Completeness estimates of key metabolic pathways. MAGs are ordered as in the clustering in
Fig. 2. Completeness value of “1” indicates a pathway is complete; “0” indicates no genes were found
in that pathway; and “(0)” indicates that although some genes in a pathway are present, the pathway is
likely absent because signature genes for that pathway were not found in that draft genome AND
signature genes are missing in more than two thirds of all draft genomes.
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Fig. 7. Gene clusters encoding putative porin-multiheme cytochrome ¢ complex (PCC). IMG gene
locus tag for the first gene in each presented gene cluster is indicated in the parenthesis. The
vertical line indicates the end of a contig, and horizontal lines below genes indicate predicted
cellular locations of their encoded proteins. These putative PCC genes are in 18.1, 9.0, 6.1, 18.4,
70.0, 10.6 and 10.8 kbp long contigs, respectively. A hypothesized model of extracellular electron
transfer is shown on the right with yellow arrows indicating electron flows. “IM” and “OM” refer
to inner and outer membranes, respectively, “ET in IM” refers to electron transfer in the inner
membrane, and “EAx)” and “EAed)” refer to oxidized and reduced forms of the electron acceptor,
respectively.
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Fig. 8. Domain architecture and occurrence of PSCyt-containing genes. Based on the combination
of specific PSCyt and PSD domains, these domain structures can be classified into three groups
(I, I, and III). “CBM” refers to carbohydrate-binding modules, which include pfam13385
(Laminin_G_3), pfam08531 (Bac_rhamnosid N), pfam08305 (NPCBM), pfam03422 (CBM_6),
and pfam07691 (PA14). “PPI” refers to protein-protein interaction domains, which include
pfam02368 (Big_2), pfam00400 (WD40), and pfam00754 (F5_F8 type C).
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