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Abstract

Summary: Exome sequencing approach is extensively used in research and diagnostic laboratories to discover
pathological variants and study genetic architecture of human diseases. However, a significant proportion of identified
genetic variants are actually false positive calls, and this pose serious challenges for variants interpretation. Here, we
propose a new tool named GARFIELD-NGS (Genomic VARiants Flltering by dEep Learning moDels in NGS), which rely
on deep learning models to dissect false and true variants in exome sequencing experiments performed with lllumina or
ION platforms. GARFIELD-NGS showed strong performances for both SNP and INDEL variants (AUC 0.71 - 0.98) and
outperformed established hard filters. The method is robust also at low coverage down to 30X and can be applied on
data generated with the recent lllumina two-colour chemistry. GARFIELD-NGS processes standard VCF file and
produces a regular VCF output. Thus, it can be easily integrated in existing analysis pipeline, allowing application of
different thresholds based on desired level of sensitivity and specificity.

Availability: GARFIELD-NGS available at https://github.com/gedoardo83/GARFIELD-NGS
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Introduction

DNA analysis through exome sequencing is how the main tool to discover disease related variants (Koboldt
et al., 2013; Wang et al., 2013). However, variants identified by exome sequencing often carries a significant
proportion of false positive calls, especially INDELs, and this pose serious challenges for variants
interpretation (Zhang et al., 2015; Jiang et al., 2015; Damiati et al., 2016). Advanced methods based on
machine learning have been developed for large datasets, while few effective solutions are available for
small experiments. Here, we propose a new tool, Genomic vVARiants Flltering by dEep Learning moDels in
NGS (GARFIELD-NGS), that rely on deep learning models to effectively classify true and false variants in
exome sequencing experiments performed on both Illumina or ION platforms.

Methods

Starting from 23 high-coverage exome sequencing experiments on NA12878 reference sample, we
assembled two pools of 178,450 lllumina variants (173,116 SNVs / 5,334 INS/DELs) and 181,479 ION
variants (177,362 SNVs / 4,117 INS/DELs). True and false variants were determined based on the
comparison with NA12878 high confidence calls from NIST v.3.3.2 (Zook et al., 2014). Variants in each group
were splitted randomly in 4 independent datasets (pre-training, training, validation and test). Additional 60X
and 30X test sets were produced by random subsampling of the original sequencing data, while HiSegX test
set was based on 3 experiments produced on HiSeq X platform. We evaluated 18 features for ION variants
and 10 for Illumina variants (Supplementary Table S1) to generate 4 distinct prediction models based on
multilayer perceptron algorithm as implemented in H20 v.3.10.4.5 deep learning method (http://www.h20.ai):
lllumina INS/DELSs, Illlumina SNVs, ION INS/DELs, and ION SNVs. After hyper-parameters optimization using
random search, performances of the final models were assessed on test sets and validated on the replication
sets, composed by 4 additional experiments not used in model development. GARFIELD-NGS performances
on test and replication sets were compared to well established hard-filters, including GATK VQSR method for
Illumina data (Van der Auwera et al., 2013) and previously published hard-filters for ION data (Damiati et al.,
2016). Finally, we assessed how our models filter variants from data not processed by our pipeline, including
35 lllumina and 32 ION WES experiments, as well as a set of 211 variants previously validated by Sanger
sequencing. Detailed methods are reported in supplementary materials.

Results

Prediction models performances

Using H20 deep learning algorithm, we developed 4 prediction models optimized for INS/DELs and SNVs for
lllumina and ION platforms (Supplementary Table S2). Our tool calculates for each variant a confidence
probability (CP) ranging from 0.0 to 1.0, with higher values associated with true variants. AUROC values >
0.90 are obtained for lllumina INS/DELs, ION INS/DELs and ION SNVs, while Illumina SNVs model shows
slightly reduced performances with AUROC 0.7998 (Figure 1). Accuracy is > 0.90 for all variants categories
(Supplementary Table S3). GARFIELD-NGS correctly classifies more than 95% of true variants and
significantly reduces false positive variants (Supplementary Fig. S1). These performances were confirmed
when applying GARFIELD-NGS on the low-coverage sets (60X / 30X) and HiSegX set (Figure 1), as well as
on the replication sets (Supplementary Table S4). GARFIELD-NGS models perform well also on WES
experiments not processed with our pipeline (Supplementary Fig. S2) and on a set of Sanger validated
variants from real-world diagnostic setting. Here, we obtain 0.958 and 0.878 accuracy on Illumina INS/DELs
and SNVs, respectively; and 0.804 and 0.955 accuracy for ION INS/DELs and SNVs, respectively
(Supplementary Table S5). Additional results including models details, analysis of features contribution,
detailed description of performances and characterization of filtered variants are provided in supplementary
materials.
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Fig. 1. ROC curves of GARFIELD-NGS final models on test datasets. Performance of prediction models were assessed using ROC curves on test sets,
60X and 30X downsampled sets, and HiSegX sets. Values of area under the receiver operating characteristic curve (AUROC) are indicated in the graphical
plots.


http://www.h2o.ai/
https://doi.org/10.1101/149146
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/149146; this version posted April 12, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Comparison with hard-filters and VQSR

GARFIELD-NGS outperforms hard-filters in lllumina INS/DELs, ION INS/DELs and ION SNVs groups,
showing higher accuracy, while it obtains comparable performances on Illlumina SNVs (Supplementary Fig.
S3 and Supplementary Table S3). Largest improvements are seen for INS/DELs. Accuracy of GARFIELD-
NGS reaches 0.93 and 0.91 for lllumina and ION INS/DELs, respectively, compared to 0.86 and 0.80
calculated using hard-filters. When applied on INS/DELs variants GARFIELD-NGS outperforms GATK
VQSR, as well. VQLOD reaches an AUROC value of 0.6783, while GARFIELD-NGS reaches 0.92 AUROC
(Supplementary Fig. S4). Detailed results of performance comparisons are reported in supplementary
materials.

Discussion

Even if alternative pipelines have been proposed such as GotCloud (Jun et al., 2015), SNPSVM (O’Fallon et
al., 2013) and DeepVariant (Poplin et al., 2018), which combine variant calling and machine learning based
variant filtering, the most applied variant callers for lllumina and lon data are still GATK (Van der Auwera et
al., 2013; DePristo et al., 2011) and TVC. Only few tools are available to directly refine SNVs and INS/DELs
called using these widely adopted variant callers. GARFIELD-NGS can be applied directly to variant callers
output and outperforms previous filtering strategies, obtaining robust performances even on low coverage
data. The maximum accuracy thresholds retain > 95 % of true calls, while reducing false calls by 36-80 %,
depending on variant category. Even at 0.99 TPR, GARFIELD-NGS maintains > 0.86 accuracy. When
applied to a canonical pipeline for prioritization of disease related variants, GARFIELD-NGS significantly
reduces the proportion of false candidates, thus improving identification of diagnostic relevant variants.
These results define GARFIELD-NGS as a robust tool for all type of lllumina and ION exome data.
GARFIELD-NGS script performs automated variant scoring on VCF files and it can be easily integrated in
existing analysis pipelines.
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