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Abstract
Summary: Exome  sequencing  approach  is  extensively  used  in  research  and  diagnostic  laboratories  to  discover
pathological variants and study genetic architecture of human diseases. However, a significant proportion of identified
genetic variants are actually false positive calls, and this pose serious challenges for variants interpretation. Here, we
propose a new tool named GARFIELD-NGS (Genomic vARiants FIltering by dEep Learning moDels in NGS), which rely
on deep learning models to dissect false and true variants in exome sequencing experiments performed with Illumina or
ION platforms. GARFIELD-NGS showed strong performances for both SNP and INDEL variants (AUC 0.71 - 0.98) and
outperformed established hard filters. The method is robust also at low coverage down to 30X and can be applied on
data  generated  with  the  recent  Illumina  two-colour  chemistry.  GARFIELD-NGS  processes  standard  VCF  file  and
produces a regular VCF output. Thus, it can be easily integrated in existing analysis pipeline, allowing application of
different thresholds based on desired level of sensitivity and specificity.

Availability: GARFIELD-NGS available at https://github.com/gedoardo83/GARFIELD-NGS

Contact: edoardo.giacopuzzi@unibs.it 
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Introduction 
DNA analysis through exome sequencing is now the main tool to discover disease related variants (Koboldt
et al., 2013; Wang et al., 2013). However, variants identified by exome sequencing often carries a significant
proportion  of  false  positive  calls,  especially  INDELs,  and  this  pose  serious  challenges  for  variants
interpretation  (Zhang  et al., 2015; Jiang  et al., 2015; Damiati  et al., 2016). Advanced methods based on
machine learning have been developed for large datasets, while few effective solutions are available for
small experiments. Here, we propose a new tool, Genomic vARiants FIltering by dEep Learning moDels in
NGS (GARFIELD-NGS), that rely on deep learning models to effectively classify true and false variants in
exome sequencing experiments performed on both Illumina or ION platforms.

Methods
Starting  from  23  high-coverage  exome  sequencing  experiments  on  NA12878  reference  sample,  we
assembled two pools of  178,450 Illumina variants  (173,116 SNVs /  5,334 INS/DELs) and 181,479 ION
variants  (177,362  SNVs  /  4,117  INS/DELs).  True  and  false  variants  were  determined  based  on  the
comparison with NA12878 high confidence calls from NIST v.3.3.2 (Zook et al., 2014). Variants in each group
were splitted randomly in 4 independent datasets (pre-training, training, validation and test). Additional 60X
and 30X test sets were produced by random subsampling of the original sequencing data, while HiSeqX test
set was based on 3 experiments produced on HiSeq X platform. We evaluated 18 features for ION variants
and 10 for Illumina variants (Supplementary Table S1) to generate 4 distinct prediction models based on
multilayer perceptron algorithm as implemented in H2O v.3.10.4.5 deep learning method (http://www.h2o.ai):
Illumina INS/DELs, Illumina SNVs, ION INS/DELs, and ION SNVs. After hyper-parameters optimization using
random search, performances of the final models were assessed on test sets and validated on the replication
sets, composed by 4 additional experiments not used in model development. GARFIELD-NGS performances
on test and replication sets were compared to well established hard-filters, including GATK VQSR method for
Illumina data (Van der Auwera et al., 2013) and previously published hard-filters for ION data (Damiati et al.,
2016). Finally, we assessed how our models filter variants from data not processed by our pipeline, including
35 Illumina and 32 ION WES experiments, as well as a set of 211 variants previously validated by Sanger
sequencing. Detailed methods are reported in supplementary materials.

Results
Prediction models performances
Using H2O deep learning algorithm, we developed 4 prediction models optimized for INS/DELs and SNVs for
Illumina and ION platforms (Supplementary Table S2). Our tool calculates for each variant a confidence
probability (CP) ranging from 0.0 to 1.0, with higher values associated with true variants. AUROC values >
0.90 are obtained for Illumina INS/DELs, ION INS/DELs and ION SNVs, while Illumina SNVs model shows
slightly reduced performances with AUROC 0.7998 (Figure 1). Accuracy is > 0.90 for all variants categories
(Supplementary  Table  S3).  GARFIELD-NGS  correctly  classifies  more  than  95%  of  true  variants  and
significantly reduces false positive variants (Supplementary Fig. S1). These performances were confirmed
when applying GARFIELD-NGS on the low-coverage sets (60X / 30X) and HiSeqX set (Figure 1), as well as
on  the  replication  sets  (Supplementary  Table  S4).  GARFIELD-NGS models  perform well  also  on  WES
experiments not processed with our pipeline (Supplementary Fig. S2) and on a set of Sanger validated
variants from real-world diagnostic setting. Here, we obtain 0.958 and 0.878 accuracy on Illumina INS/DELs
and  SNVs,  respectively;  and  0.804  and  0.955  accuracy  for  ION  INS/DELs  and  SNVs,  respectively
(Supplementary Table S5).   Additional results including models details,  analysis of  features contribution,
detailed description of performances and characterization of filtered variants are provided in supplementary
materials.

Fig. 1. ROC curves of GARFIELD-NGS final models on test datasets. Performance of prediction models were assessed using ROC curves on test sets,
60X and 30X downsampled sets, and HiSeqX sets. Values of area under the receiver operating characteristic curve (AUROC) are indicated in the graphical
plots.
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Comparison with hard-filters and VQSR

GARFIELD-NGS  outperforms  hard-filters  in  Illumina  INS/DELs,  ION  INS/DELs  and  ION  SNVs  groups,
showing higher accuracy, while it obtains comparable performances on Illumina SNVs (Supplementary Fig.
S3 and Supplementary Table S3). Largest improvements are seen for INS/DELs. Accuracy of GARFIELD-
NGS reaches 0.93  and  0.91  for  Illumina  and  ION INS/DELs,  respectively,  compared  to  0.86  and  0.80
calculated  using  hard-filters.  When  applied  on  INS/DELs  variants  GARFIELD-NGS  outperforms  GATK
VQSR, as well. VQLOD reaches an AUROC value of 0.6783, while GARFIELD-NGS reaches 0.92 AUROC
(Supplementary  Fig.  S4).  Detailed  results  of  performance  comparisons  are  reported  in  supplementary
materials. 

Discussion
Even if alternative pipelines have been proposed such as GotCloud (Jun et al., 2015), SNPSVM (O’Fallon et
al., 2013) and DeepVariant (Poplin et al., 2018), which combine variant calling and machine learning based
variant filtering, the most applied variant callers for Illumina and Ion data are still GATK (Van der Auwera et
al., 2013; DePristo et al., 2011) and TVC. Only few tools are available to directly refine SNVs and INS/DELs
called using these widely adopted variant callers. GARFIELD-NGS can be applied directly to variant callers
output and outperforms previous filtering strategies, obtaining robust performances even on low coverage
data. The maximum accuracy thresholds retain > 95 % of true calls, while reducing false calls by 36-80 %,
depending  on  variant  category.  Even  at  0.99  TPR,  GARFIELD-NGS maintains  >  0.86  accuracy.  When
applied to a canonical pipeline for prioritization of disease related variants, GARFIELD-NGS significantly
reduces the  proportion  of  false  candidates,  thus  improving  identification  of  diagnostic  relevant  variants.
These  results  define  GARFIELD-NGS  as  a  robust  tool  for  all  type  of  Illumina  and  ION  exome  data.
GARFIELD-NGS script performs automated variant scoring on VCF files and it can be easily integrated in
existing analysis pipelines.
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