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Abstract

Motivation: DNA methylation has been used to identify functional changes at transcriptional enhancers
and other cis-regulatory modules (CRMs) in tumors and other disease tissues. Our R/Bioconductor
package ELMER (Enhancer Linking by Methylation/Expression Relationships) provides a systematic
approach that reconstructs altered gene regulatory networks (GRNs) by combining enhancer methylation
and gene expression data derived from the same sample set.
Results: We present a completely revised version 2 of ELMER that provides numerous new features
including an optional web-based interface and a new Supervised Analysis mode to use pre-defined sample
groupings. We show that this approach can identify GRNs associated with many new Master Regulators
including KLF5 in breast cancer.
Availability: ELMER v.2 is available as an R/Bioconductor package at http://bioconductor.org/

packages/ELMER/

1 Introduction

Motivated by the identification of transcription factor binding sites (TFBSs), enhancers, and other
cis-regulatory modules (CRMs) from DNA methylation data in tumor samples (Berman et al., 2012;
Hovestadt et al., 2014; Johann et al., 2016), and the strong association between DNA methylation and
target gene expression in tumors (Aran et al., 2013; Aran and Hellman, 2013), we previously developed an
R/Bioconductor package ELMER (Enhancer Linking by Methylation/Expression Relationships) to infer
regulatory element landscapes and GRNs from cancer methylomes (Yao et al., 2015). ELMER version 1
has been adopted by other groups (Dhingra et al., 2017; Mishra and Guda, 2017; Malta et al., 2018),
and remains the only publicly available software tool to use matched DNA methylation and expression
profiles to reconstruct TF networks (reviewed in Teschendorff and Relton, 2018). Other tools such as
TENET (Rhie, 2016) and RegNetDriver (Dhingra et al., 2017) have incorporated ELMER principles and
code into cancer network analysis.

We present here a substantially re-written ELMER v. 2 (Fig. 1A) that implements new features
and improvements including: (i) support for Infinium HM450 or EPIC arrays and RNA-seq using the
gold-standard MultiAssayExperiment (MAE) data structure, (ii) integration with our TCGABiolinks
package (Colaprico et al., 2015) for cohort selection and data importing from the NCI Genomic Data
Commons (Grossman et al., 2016), (iii) integration with our TCGABiolinksGUI tool (Silva et al., 2018) to
run ELMER via a web-based interface, (iv) output of all results in a single interactive HTML file include
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Figure 1. (A) ELMER architecture, showing external data sources (gray) and Bioconductor pack-
ages (blue). (B) Association of enhancer probe methylation and expression of the nearby GATA3
gene, showing sample groups used in the Unsupervised vs. Supervised analysis modes. In Unsupervised
mode, the 20% of samples with the lowest (blue) and highest (red) methylation levels are compared; in
Supervised mode, the predefined Luminal A (blue) and Basal-like (red) tumors are compared. (C) A
selected set of subtype-specific Master Regulator candidates identified from TCGA BRCA, comparing
Unsupervised vs. various Supervised analysis runs. The complete table is available as Supplementary
Table S3. (D) StateHub chromatin state enrichment analysis for 1, 076 regulatory elements identified
in the Unsupervised analysis. (E) Master Regulator analysis for the top motif in the Unsupervised
analysis, FOXA2. All TFs are ranked by their correlation with methylation changes of distal probes
within 250 bp of a FOXA2 binding motif. Colored dots indicate the top 3 most anti-correlated TFs
(FOXA1, GATA3 and ESR1 ), and all TFs classified in the same family as FOXA2.

all data tables, figures, and source code, (v) adoption of software engineering best practices including unit
testing and better exception handling, (vi) annotation of cell-type specific chromatin context for resulting
genomic elements, and (vii) a new Supervised mode where the user can explicitly define sample groups
for comparison. In this brief Note, we highlight several of these new features by analyzing TCGA Breast
Cancer data to identify molecular subtype-specific networks. A complete description of new methods
and features, along with computational benchmarking, is presented in the Supplementary Methods and
Notes (Supplementary Figures 1-16 and Supplementary Tables S1-S5). ELMER v. 2 has been publicly
available starting with v. 2.2.7 in Bioconductor Release 3.6 (October 2017). Complete result reports for
the BRCA analyses are available in the Supplemental Materials and at http://bit.ly/ELMER_reports.

2 Feature highlights

Supervised vs Unsupervised mode

ELMER first identifies Differentially Methylated CpGs (DMCs) occurring at distal (non-promoter) probes
(Step 1), then searches for downstream gene targets for each DMC (Step 2), and finally identifies Master
Regulator TFs based on enriched binding motifs and TF expression (Step 3), as shown in Supplementary
Fig. 1. ELMER v. 1 identified DMCs by comparing methylation in all cancer vs. non-cancer samples,
while the subsequent steps used correlation between methylation and expression in the n% of tumors
with the most extreme methylation values (by default, n=20). The rationale was that any particular
GRN might only be altered in a subset of tumors with a specific molecular phenotype, which would not
always be known a priori. While 20% was an arbitrary definition, we found this to be a useful exploratory
strategy given the heterogeneity of cancer molecular phenotypes.

In ELMER v. 2, we continue to support this original Unsupervised strategy. However, we have found
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many practical use cases where the group structure is known in advance, and a Supervised search strategy
is preferable. This is especially true for ”case-control” experimental designs such as treated vs. untreated
samples. The major difference is that in Supervised mode, all samples must be contained in one of the
two comparison groups, whereas Unsupervised mode still uses only the n% most extreme. Furthermore,
this subset of samples with the most extreme methylation values changes from one genomic locus to the
next.

To compare Supervised vs. Unsupervised modes, we used ELMER v. 2.4.3 to analyze TCGA BRCA
(Breast Invasive Carcinoma) data (Supplementary Figures 2-15 and Supplementary Tables 2-3). Based on
enhancer-gene pairing, Unsupervised mode had lower statistical power (Fig. 1B), but was able to identify
molecular subtype-specific networks without explicit a priori subtype labels (Fig. 1C). As expected,
Supervised mode is best suited to explore well-understood molecular phenotypes, while Unsupervised
mode can be a powerful tool to discover networks in unknown tumor subtypes. When molecular subtypes
are known, the two modes can be used in conjunction and compared (as we have done in Supplemental
Table S3).

Functional interpretation of chromatin states

While ELMER v.1 was limited to analyze only probes overlapping known enhancers, ELMER v.2 analyzes
all distal probes, and thus it is now important to provide a functional interpretation of the resulting
regions. We perform a chromatin state enrichment analysis using states automatically downloaded from
the (http://StateHub.org) database, a publicly-available resource that integrates histone modification
and other publicly-available epigenomic data for over 1,000 different human samples (Coetzee et al.,
2018). Enrichment of these states is calculated against a randomly sampled background set drawn from
the same distal probe set used as input. We used ELMER 2 to perform this state enrichment analysis for
the BRCA dataset, yielding insights into the cell-type specificity of the genomic regions identified (Fig.
1D, and Supplementary Fig. 5). The strongest enrichment was for active enhancer and promoter states
having cell-type specificity for MCF7, a Luminal Breast Cancer cell line.

Motif enrichment analysis and identification of Master Regulator TFs

The final step of ELMER identifies enriched TF binding motifs within candidate regulatory regions,
followed by correlation with TF expression to identify upstream Master Regulators (Supplementary Fig.
1). ELMER v. 1 used a hand-curated selection of 145 TF motifs, which were grouped into binding
domain families manually. We re-implemented these sections in ELMER v. 2 to use publicly available
databases for these steps, making the package more comprehensive and easier to update in future versions.
ELMER v. 2 uses 771 human binding models from HOCOMOCO v11 (Kulakovskiy et al., 2017). Each of
these is associated with one or more of 1,639 transcription factors defined in (Lambert et al., 2018), which
are grouped into 82 different binding domain families and 331 sub-families using the TFClass database
(Wingender et al., 2017). We use the Fisher's exact test and Benjamini-Hochberg multiple hypothesis
correction to compare the frequency of each motif flanking the positive CpG probes to a background
defined by all distal probes on the array, plotting the top hits as odds ratios with 95% confidence intervals
(Supplementary Fig. 13).

For each enriched motif, we then calculate a mean DNA methylation value for all probes having a motif
instance within ±250bp, and correlate this value to each of the 1, 639 TFs in our database. This helps to
distinguish between different members of the same TF family, which often have nearly indistinguishable
binding motifs. For instance, in the BRCA analysis, the most highly enriched motif corresponded to
FOXA2, but our this Master Regulator (MR) analysis showed the likely family member to be FOXA1
(Fig. 1E), which has been extensively validated as a MR in luminal subtypes of breast cancer (Meyer
and Carroll, 2012; Nakshatri and Badve, 2009). We ran the same analysis with the Supervised mode to
compare explicit changes in each of the known molecular subtypes from (Ciriello et al., 2015), which
had a significant overlap with the Unsupervised analysis but yielded many additional MRs (Fig. 1C,
Supplementary Table S3). Two examples of were SOX11 and KLF5, whose functional roles in basal-like
BRCA were recently described (Shepherd et al., 2016; Ben-Porath et al., 2008), and Androgen Receptor
(AR), which has been implicated in ER-positive BRCA (Feng et al., 2017; Vera-Badillo et al., 2013). In
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addition to these known regulators, many completely unexplored TFs were identified as candidate MRs
(Supplementary Table S3), highlighting the power of Unsupervised analysis.

3 Conclusions and Future Directions

ELMER v. 2 has been substantially re-written based on Bioconductor standards and user needs. The
new Supervised mode and improved TF analysis identified additional known and novel Master Regulators
candidates in TCGA BRCA analyses. ELMER v. 2 has only been tested on data from Illumina
methylation arrays, which cover only 5-15% of all enhancer regions based on whole-genome bisulfite
sequencing (WGBS). While ELMER does not currently support WGBS due to lack of sufficient test data,
the number of WGBS datasets is quickly growing, and we expect the same basic ELMER approach will
scale well in the future to take advantage of this more comprehensive data type.
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Introduction

In addition to the details below, a complete HTML output report for the two runs described in the Use
case Section is available at http://bit.ly/ELMERv2_reports. This document contains all source code,
parameters used, Methods descriptions, output tables, and output plots.

ELMER workflow

The complete ELMER workflow is shown in Supplementary Fig. 1.

6/34

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2018. ; https://doi.org/10.1101/148726doi: bioRxiv preprint 

http://bit.ly/ELMERv2_reports
https://doi.org/10.1101/148726
http://creativecommons.org/licenses/by/4.0/


createMAE

DNA methylation object

Gene expression object

Multi Assay Ex-
periment object

get.diff.meth

GetNearGenes

get.pair

get.enriched.motif

get.TFs

Probes.motif

motif.relevant.TFs

human.TFs

get.feature.probe

distal probes

ENSEMBL TSS

BioMart

Probes metadata

enrich.segmentsStatehub tracks

Data input

Identifying differentially
methylated probes

Identifying putative
probe-gene pairs

Motif enrichment
analysis

Identifying regulatory TFs

ELMER.data

Select probes
±2Kb distant
from TSS

TFClass database

Lambert, Samuel A., et al.

E
L
M

E
R

p
a
c
k
a
g
e

GDCprepare

GDCdownload

GDCquery

TCGAanalyze EAcomplete

TCGAanalyze Pathview

TCGAvisualize oncoprint

Subtype information

Molecular data

Clinical data

Mutation data

T
C
G
A
b
io
lin

k
s/

T
C
G
A
b
io
lin

k
sG

U
I
p
a
c
k
a
g
e
s

GDC database

StateHub/StatePaintR/funcivar package

ENCODE database

ROADMAP database

BLUEPRINT database

Supplementary Fig. 1. ELMER workflow: ELMER receives as input a DNA methylation array
object and a gene expression object (matrices or SummarizedExperiment objects) and a Genomic
Ranges (GRanges) object with distal probes to be used as filter which can be retrieved using the
get.feature.probe function. The function createMAE will create a Multi Assay Experiment object keep-
ing only samples that have both DNA methylation and gene expression data. Genes will be mapped
to genomic position and annotated using ENSEMBL database (Aken et al., 2016), while for probes
it will add annotation from Zhou et al. (http://zwdzwd.github.io/InfiniumAnnotation) . This MAE
object will be used as input to the next analysis functions. First, it identifies differentially methylated
probes followed by the identification of their nearest genes (10 upstream and 10 downstream) through
the get.diff.meth and GetNearGenes functions respectively. For each probe, it will verify if any of the
nearby genes were affected by its change in the DNA methylation level and a list of gene and probes
pairs will be outputted from get.pair function. For the probes in those pairs, it will search for enriched
regulatory Transcription Factors motifs with the get.enriched.motif function. Finally, the enriched
motifs will be correlated with the level of the transcription factor through the get.TFs function. In
the figure green Boxes represents user input data, blue boxes represent output object, orange boxes
represent auxiliary pre-computed data and gray boxes are functions.
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Main differences between ELMER old version (ELMER 1) and the new version (ELMER
2)

The main differences between ELMER 1 and ELMER 2 are summarized in the Supplementary Table S1.

Table S1. Main differences between ELMER old version (v.1) and the new version (v.2)

Features ELMER Version 1 ELMER Version 2

Primary data structure mee object (custom data structure)
MAE object (Bioconductor data struc-
ture)

Auxiliary data Manually created Programmatically created

Number of human TFs 1,982
1,639 (curated list from Lambert,
Samuel A., et al.)

Number of TF motifs 145 771 (HOCOMOCO v11 database)

TF classification 78 families
82 families and 331 subfamilies
(TFClass database, HOCOMOCO)

Analysis performed Normal vs tumor samples Group 1 vs group 2

Statistical grouping Unsupervised only
Unsupervised or supervised using la-
beled groups

TCGA data source
The Cancer Genome Atlas (TCGA)
(not available)

The NCI’s Genomic Data Commons
(GDC)

Genome of reference GRCh37 (hg19) GRCh37 (hg19)/GRCh38 (hg38)

DNA methylation plat-
forms

HM450 EPIC and HM450

Graphical User Interface
(GUI)

None TCGAbiolinksGUI

Automatic report None HTML summarizing results

Annotations None StateHub

Organization of data as a MultiAssayExperiment object

To facilitate the analysis of experiments and studies with multiple samples, the Bioconductor team created
the SummarizedExperiment class (Huber et al., 2015), a data structure able to store data and metadata
for a single experiment but not for data spanning several experiments for the same sample. To overcome
this problem, recently, the MultiAssay Special Interest Group (SIG) created the MultiAssayExperiment
class (Ramos et al., 2017) a data structure to manage and preprocess multiple assays for integrated
genomic analysis. This data structure is now an input for all main functions of ELMER and can be
generated by the createMAE function.

To perform ELMER analyses, we populate a MultiAssayExperiment with a DNA methylation
matrix or SummarizedExperiment object from HM450K or EPIC platform; a gene expression matrix or
SummarizedExperiment object for the same samples; a matrix mapping DNA methylation samples to
gene expression samples; and a matrix with sample metadata (i.e. clinical data, molecular subtype, etc.).
TCGA or other GDC data can be imported by TCGAbiolinks (Supplementary Fig. 1), in which case the
necessary data structures are automatically created. Based on the genome of samples selected, metadata
for the DNA methylation probes, such as genomic coordinates, are added from (Zhou et al., 2016); and
metadata for gene annotation is added from the ENSEMBL database (Yates et al., 2015) using biomaRt
(Durinck et al., 2009). Use of these standardized import packages allows ELMER v.2 to take advantage
of all current datasets. For instance, TCGABiolinks will soon be able to read from the International
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Cancer Genome Consortium (ICGC) repository, and similar importers can be written for other disease
databanks.

If using non-TCGA data, the matrix with sample metadata should be provided with at least a column
with a subject identifier and another one identifying its group which are used for analysis, if samples
in the methylation and expression matrices are not ordered and with same names, a matrix mapping
for each patient identifier their DNA methylation samples and their gene expression samples should be
provided to the createMAE function.

Selecting distal probes

Probes from HumanMethylationEPIC (EPIC) array and Infinium HumanMethylation450 (HM450) array
are removed based on the default filtering manifests from (Zhou et al., 2017). Briefly, probes are masked
from the analysis if they have either internal SNPs close to the 3′ end of the probe; non-unique mapping
to the bisulfite-converted genome; or off-target hybridization due to partial overlap with non-unique
elements. Probe metadata information is available as ELMER.data package, populated from the source
file at http://zwdzwd.github.io/InfiniumAnnotation (Zhou et al., 2017).

For analysis of distal elements, probes located in regions of ±2kb around transcription start sites
(TSSs) are removed.
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Supervised vs. Unsupervised modes

ELMER is designed to identify differences between two sets of samples within a given dataset. In Yao
et al., the first step (identification of DMCs) was hard-coded to identify DMCs between non-cancer vs.
cancer samples, and the subsequent step was unsupervised, identifying changes within any subset of
tumors. In ELMER v.2, we generalize these strategies so that they are applicable to any paired dataset,
including disease vs. healthy tissue for any disease type, untreated vs. treated samples, etc. We now
support two modes, with the Unsupervised mode based on the original method from Yao et al.. Here, the
user defines Group 1 and Group 2 samples, but an assumption is made that only a subset of samples
differs between the two groups. By default, this subset includes the most extreme 20% of samples within
the group, and this is an input parameter can be modified. The new mode is the Supervised mode, in
which all available samples from each group are used. This mode should be used when pre-determined
phenotypes or molecular subtypes are known in advance, such as the treated vs. untreated case. The
advantage is that this greatly increases statistical power because of all samples from each group. This
can be extremely important, given the large burden of multiple hypothesis testing involved in ELMER.

Identification of differentially methylated CpGs (DMCs)

The first step is the identification of differentially methylated CpGs (DMCs). In the Supervised mode,
we compare the DNA methylation level of each distal CpG for all samples in Group 1 compared to all
samples Group 2, using an unpaired one-tailed t-test. In the Unsupervised mode, the samples of each
group (Group 1 and Group 2) are ranked by their DNA methylation beta values for the given probe, and
those samples in the lower quintile (20% samples with the lowest methylation levels) of each group are
used to identify if the probe is hypomethylated in Group 1 compared to Group 2. The reverse applies for
the identification of hypermethylated probes. It is important to highlight that in the Unsupervised mode,
each probe selected may be based on a different subset the samples, and thus probe sets from multiple
molecular subtypes may be represented. In the Supervised mode, all tests are based on the same sample
grouping.

The 20% is a parameter to the diff.meth function called minSubgroupFrac. For the unsupervised
analysis, this is set to 20% as in (Yao et al., 2015), because we wanted to be able to detect a specific
molecular subtype among samples; these subtypes often make up only a minority of samples, and 20%
was chosen as a lower bound for the purposes of statistical power (high enough sample numbers to yield
t-test p-values that could overcome multiple hypotheses corrections, yet low enough to be able to capture
changes in individual molecular subtypes occurring in 20% or more of the cases.) This number can
be set as an input to the diff.meth function and should be tuned based on sample sizes in individual
studies. The parameter value is always shown in the Settings section of the ELMER HTML output
report. In the Supervised mode, where the comparison groups are implicit in the sample set and labeled,
the minSubgroupFrac parameter is set to 100%. An example would be a cell culture experiment with 5
replicates of the untreated cell line, and another 5 replicates that include an experimental treatment.

To identify hypomethylated DMCs, a one-tailed t-test is used to rule out the null hypothesis:
µgroup1 ≥ µgroup2, where µgroup1 is the mean methylation within the lowest group 1 quintile (or another
percentile as specified by the minSubgroupFrac parameter) and µgroup2 is the mean within the lowest
group 2 quintile. Raw p-values are adjusted for multiple hypothesis testing using the Benjamini-Hochberg
method (Benjamini and Hochberg, 1995), and probes are selected when they had adjusted p-value less
than 0.01 (which can be configured using the pvalue parameter). For additional stringency, probes are
only selected if the methylation difference: ∆ = µgroup1 − µgroup2 was greater than 0.3. This can be
configured with the sig.diff parameter. The same method is used to identify hypermethylated DMCs,
except we use the upper quintile, and the opposite tail in the t-test is chosen.

Identification of putative target gene(s)

For each differentially methylated distal probe (DMC), the closest 10 upstream genes and the closest 10
downstream genes are tested for inverse correlation between methylation of the probe and expression of
the gene, which is the same basic strategy employed in ELMER version 1. However, we now import all
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gene annotations programmatically using the Biomart (Durinck et al., 2005, 2009) package. This allows
easy extensibility to use any annotations desired (our default uses Ensembl annotations).

This step also differs between the Supervised and Unsupervised modes. In the Unsupervised mode, as
in ELMER v.1, for each probe-gene pair, the samples (all samples from both groups) are divided into
two groups: the M group, which consist of the upper methylation quintile (the 20%of samples with the
highest methylation at the enhancer probe), and the U group, which consists of the lowest methylation
quintile (the 20% of samples with the lowest methylation). In the new Supervised mode, the U and M
groups are defined strictly by sample group labels, and all samples in each group are used. The Supervised
mode can greatly increase statistical power, as illustrated in Supplementary Fig. 2.

For each differentially methylated distal probe (DMC), the closest 10 upstream genes and the closest
10 downstream genes are tested for inverse correlation between methylation of the probe and expression
of the gene (the number 10 can be changed using the numFlankingGenes parameter). To select these
genes, the probe-gene distance is defined as the distance from the probe to the transcription start site
specified by the ENSEMBL gene level annotations (Yates et al., 2015) accessed via the R/Bioconductor
package biomaRt (Durinck et al., 2009, 2005). By choosing a constant number of genes to test for each
probe, our goal is to avoid systematic false positives for probes in gene rich regions. This is especially
important given the highly non-uniform gene density of mammalian genomes.

Thus, exactly 20 statistical tests were performed for each probe, as follows.
For each candidate probe-gene pair, the Mann-Whitney U test is used to test the null hypothesis that

overall gene expression in group M is greater than or equal than that in group U . This non-parametric
test was used in order to minimize the effects of expression outliers, which can occur across a very wide
dynamic range.

In the Unsupervised mode, for each probe-gene pair tested, the raw p-value Pr is corrected for multiple
hypothesis using a permutation approach as follows. The gene in the pair is held constant, and x random
methylation probes are chosen to perform the same one-tailed U test, generating a set of x permutation
p-values Pp. We chose the x random probes only from among those that were ”distal” (farther than 2kb
from an annotated transcription start site), in order to draw these null-model probes from the same set
as the probe being tested (Sham and Purcell, 2014). An empirical p-value Pe value was calculated using
the following formula (which introduces a pseudo-count of 1):

Pe =
num(Pp ≤ Pr) + 1

x+ 1
(1)

In the supervised mode, for each probe-gene pair tested, the raw p-value Pr is corrected for multiple
hypothesis using Benjamini-Hochberg procedure. Also, notice that in the Supervised mode, no additional
filtering is necessary to ensure that the M and U group segregate by sample group labels. The two sample
groups are segregated by definition, since these probes were selected for their differential methylation,
with the same directionality, between the two groups.
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Supplementary Fig. 2. Supervised mode maximizes statistical power. Difference of groups U and
M definition in Supervised and Unsupervised mode. A: Unsupervised mode; when minSubgroupFrac
argument is set to 40%, the methylated group is defined as the highest quintile and the unmethylated
group as the lowest quintile; B: Supervised mode; methylated and unmethylated group are defined as
one of the known molecular subtypes. For example, the unmethylated group is represented by all the
LumA samples while the methylated group is represented by all the Basal samples. The t-test p-value
achieved for the Unsupervised mode is 1.2E − 24, while the Supervised mode is : 2.7E − 44.
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Characterization of chromatin state context of enriched probes using StateHub

While ELMER version 1 was limited to searching within annotated enhancer elements, we have since
found that this constraint was not necessary to achieve statistical power. Thus ELMER v.2 by default
searches all distal elements in the genome (distal elements are those greater than ±2kb from a TSS; By
changing ELMER default settings, it is possible to analyze TSS-proximal probes, either together with
distal probes or separately. See ELMER Bioconductor documentation for details).

Because ELMER can now search essentially all probes on the array, it is important to understand
the context of the probes that result from an ELMER analysis. Typically, these are enhancer probes,
but some regulatory changes may involve unannotated promoters, insulators, etc. We used the StateHub
(http://statehub.org/) (Coetzee et al., 2017) and FunciVar (https://github.com/Simon-Coetzee/
funcivar) Bioconductor packages to characterize enrichment of the various cell-type-specific chromatin
states in the significant BRCA-hypomethylated probes.

The Statehub Focused Poised Promoter Model (Decision Matrix) (Supplementary Fig. 4) is used to
define the chromatin state of a region based on several marks. For example, an ”Active region” (AR) is
defined as overlapping one of the two ”active” marks (either H3K9/14ac or H3K27ac) but neither the
canonical promoter mark (H3K4me3) or the canonical enhancer mark (H3K4me1). If it has one of these
marks, it is characterized either as an ”Active Enhancer” (EAR) or ”Active Promoter” (PAR). Also, a
”Weak Enhancer” (EWR) state, has the enhancer regulatory mark (H3K4me1) but not the active mark
H3K27ac. Also, Supplementary Fig. 3 shows the Statehub tracks used in the enrichment analysis and
Supplementary Fig. 5 shows the its results.

Importantly, the MCF-7 cell line, and ER-positive breast cancer cell line, is much more strongly
enriched for all enhancer and promoter classes than other cell types. As more reference cell types become
available, this analysis will be useful in characterizing tumor GRN changes that reflect particular cell
types or co-opted developmental programs.

All methods are described here: https://www.simoncoetzee.com/bioc2017.html FunciVar by
default calculates a likelihood based on the beta-binomial distribution, returning a 95% credible interval
(optionally set by the ”CI” argument) for the range of differences between the two populations of
variants (i.e. foreground and background). Specifically, it calculates a distribution of true enrichment (as
probability of overlap) for both sets of variants in the genomic features based on the observed number of
overlaps:

θfgBeta(Sfg + α,Nfg + β) (2a)

θbgBeta(Sbg + α,Nbg + β) (2b)

for S successes in N trials. FunciVar uses an uninformative Jeffreys prior c(α=0.5, β=0.5) to compare
the two distributions directly by subtracting permuted samples to obtain the distribution of differences.
The prior can be overridden in special cases.
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Supplementary Fig. 3. Statehub tracks for encode samples having H3K27ac, H3K4me1, H3K4me3
and CTCF marks for hg38 were used in Use cases. Retrieved from http://statehub.org/.
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Supplementary Fig. 4. Tracks are available for approximately 1,000 human cell types in the State-
Hub portal, and some are shown in Supplemental Figure 3. States are defined by multi-mark model,
such as the Focused Poised Promoter Model shown in Supplementary Figure 4. For example, an
”Active region” (AR) is defined as overlapping one of the two ”active” marks (either H3K9/14ac
or H3K27ac) but neither the canonical promoter mark (H3K4me3) or the canonical enhancer mark
(H3K4me1). If it has only one of these marks, it is characterized either as an ”Active Enhancer”
(EAR) or ”Active Promoter” (PAR). Also, a ”Weak Enhancer” (EWR) state, has the enhancer regu-
latory mark (H3K4me1) but not the active mark H3K27ac. Supplementary Figure 5 shows the enrich-
ment plot.
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Supplementary Fig. 5. Enrichment of paired probes and chromatin states of ENCODE cells. The
plot shows enrichment for enhancer active region, weak enhancer and active promoter region for MCF-
7 cell. Acronyms - AR: Active region, EAR: active enhancer, EWR: Weak Enhancer, EPR: poised
enhancer, PAR: active promoter, PWR: Weak Promoter, PPR: poised promoter, PPWR: Weak Poised
Promoter, CTCF: architectural complex, TRS: transcribed, HET: heterochromatin, SCR: Polycomb
Repressed Silenced. Y-axis shows the probability difference in overlap for the foreground class vs.
random probes (Confidence Interval based on beta-binomial distribution, see methods).
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Motif enrichment analysis

In order to identify enriched motifs and potential upstream regulatory TFs, first, HOCOMOCO (HOmo
sapiens COmprehensive MOdel COllection) v11 (Kulakovskiy et al., 2016, 2017) TF binding models,
available at http://hocomoco.autosome.ru/downloads, were used as input for HOMER (Hypergeo-
metric Optimization of Motif EnRichment) (Heinz et al., 2010) to find motif occurrences in a ±250bp
region around each probe from EPIC and HM450 arrays.

For each probe set tested (i.e. the set of all probes occurring in significant probe-gene pairs), we
quantify enrichments using Fisher's exact test (where a is the number of probes within the selected probe
set that contains one or more motif occurrences; b is the number of probes within the selected probe
set that do not contain a motif occurrence; c and d are the same counts within the entire array probe
set drawn from the same set of distal-only probes using the same definition as the primary analysis).
Multiple testing correction with the Benjamini-Hochberg procedure (Fisher, 1922) is then applied to the
Fisher's results.

A probe set was considered significantly enriched for a particular motif if the 95% confidence interval
of the Odds Ratio was greater than 1.1 (specified by option lower.OR, 1.1 is default), the motif occurred
at least 10 times (specified by option min.incidence, 10 is default) in the probe set and FDR < 0.05.

Identification of Master Regulator TFs

When a group of enhancers is coordinately altered in a specific sample subset, this is often the result
of an altered upstream master regulator transcription factor in the gene regulatory network. ELMER
identifies master regulator TFs corresponding to each of the TF binding motifs enriched from the previous
analysis step. For each enriched motif, ELMER takes the mean DNA methylation of all distal probes (in
significant probe-gene pairs) that contain that motif occurrence (within a ±250bp region), and compares
this mean DNA methylation to the expression of each gene annotated as a human TF by (Lambert et al.,
2018). The TFClass database (Wingender et al., 2013, 2017) is used to identify significantly associated
TFs which are in the same DNA binding domain family or sub-family as the motif TF, information that
is displayed in all output plots (Figure 1E) and HTML reports.

In the Unsupervised mode, a statistical test is performed for each motif-TF pair, as follows. All
samples are divided into two groups: the M group, which consists of the 20% of samples with the
highest average methylation at all motif-adjacent probes, and the U group, which consisted of the 20%
of samples with the lowest methylation. This step is performed by the get.TFs function, which takes
minSubgroupFrac as an input parameter, again with a default of 20%. For each candidate motif-TF pair,
the Mann-Whitney U test is used to test the null hypothesis that overall gene expression in group M
is greater or equal than that in group U . This non-parametric test was used in order to minimize the
effects of expression outliers, which can occur across a very wide dynamic range. For each motif tested,
this results in a raw p-value (Pr) for each of the human TFs.

The new Supervised mode uses the same approach as described for the identification of putative target
gene(s) step. The U and M groups are one of the the label group of samples and the minSubgroupFrac
parameter is set to 100% to use all samples from both groups in the statistical test. This also can result
in greater statistical power when using the Supervised mode.
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Comparing inferred results with MCF-7 ChIA-PET

As in our earlier paper (Yao et al., 2015), we compared CRM / gene pairs identified by Unsupervised
analysis of TCGA Breast Cancer cases to chromatin loops derived from deep-sequenced ChIA-PET data
from ER+ Breast Cancer MCF7 cells (Li et al., 2012). ELMER pairs were enriched for ChIA-PET loops
by roughly 3-fold over random pairs (Supplementary Fig. 6), consistent with our earlier results.

First, we identify the number of ELMER pairs overlapping the ChIA-PET loops, then we repeat
using randomly generated pairs with properties similar to the ELMER pairs. For each true ELMER
probe in a probe-gene pair, we randomly select a different probe from the complete set of distal probes.
We then choose the nth nearest gene to the random probe, where n is the same as the adjacency of the
true ELMER probe (i.e. if the true probe is linked to the second gene upstream, the random probe will
also be linked to its second gene upstream). Thus, the random linkage set has both the same number of
probes and the same number of linked genes as the true set. One hundred such random datasets were
generated to arrive at a 95% CI (±1.96 ∗ SD). The result is shown in Supplementary Fig. 6. Of the 2118
putative pairs identified in breast cancer tumors, 223 (≈ 10.75%) were also identified as loops in the
MCF7 ChIA-PET data. This was a three-fold enrichment over randomized probe-gene pairs.

Supplementary Fig. 6. The graph shows the comparison of the number of probe-gene pairs identi-
fied within MCF7 ChIA-PET data using the putative pairs from BRCA vs. random pairs.
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Graphical User Interface

To enable user access to the methodologies offered in ELMER and to give users the flexibility of
point-and-click style analysis without the need to learn R, we have implemented a full graphical user
interface (GUI) through the R/Bioconductor package TCGAbiolinksGUI (Silva et al., 2017) available
at http://bioconductor.org/packages/TCGAbiolinksGUI/. This tool allows definition of sample
groupings based on user-defined clinical attributes in the supported databanks, including TCGA and
TARGET, and GDC. A tutorial detailing the steps needed to use the tools through the GUI is available
at https://bioinformaticsfmrp.github.io/Bioc2017.TCGAbiolinks.ELMER/index.html

ELMER can now be run directly from within TCGABiolinksGUI. Supplementary Figures 7,8 and 9
show the three ELMER menus.

Supplementary Fig. 7. ELMER graphical user interface in TCGAbiolinksGUI: MAE creation
menu.
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Supplementary Fig. 8. ELMER graphical user interface in TCGAbiolinksGUI: analysis menu.

Supplementary Fig. 9. ELMER graphical user interface in TCGAbiolinksGUI: visualization menu.
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Interactive HTML output reports

While ELMER version 1 had functions to create individual output plots, we have completely revamped
and added to the set of functions that create automatic output plots, which were used to generate all the
Figures and Supplemental Figures in this article. We also now output a single HTML file which contains
all source code used, output tables, and plots for an individual ELMER run. This HTML file is indexed
via a table of contents, and individual sections can be expanded and compressed to expose additional
detail.

Supplementary Figures 10 and 11 show the single interactive HTML file output for the TCGA
Breast Cancer Unsupervised analysis described below. This and the HTML file for the Supervised anal-
ysis can both be downloaded at https://github.com/tiagochst/ELMER_supplemental/raw/master/

supplemental_files.zip.

Supplementary Fig. 10. Single HTML file output report example, showing generation of the com-
prehensive heatmap plot.
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Supplementary Fig. 11. Single HTML file output report example, showing generation of the
genome browser plot.

22/34

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2018. ; https://doi.org/10.1101/148726doi: bioRxiv preprint 

https://doi.org/10.1101/148726
http://creativecommons.org/licenses/by/4.0/


The following Use Cases describe two ELMER runs for the same TCGA Breast Cancer dataset,
one using Unsupervised mode, and the other using Supervised. The full HTML reports for these runs,
including all source code used, output tables, and plots, can be downloaded here: https://github.com/
tiagochst/ELMER_supplemental/raw/master/supplemental_files.zip.

Use Case 1: Breast Invasive Carcinoma (Unsupervised mode)

We performed ELMER (v 2.4.3) analysis comparing 778 Breast Invasive Carcinoma (Primary solid tumor)
samples to 83 samples of normal tissue adjacent to the tumor. In this use case we wanted to be able to
detect non pre-determined molecular subtypes among the tumor samples, so the percentage of samples
used to identify the differentially methylated probes in function get.diff.meth was set to 20% and the
mode in function get.pair and in function get.TFs which was set to ”unsupervised”. In this mode we
define the U (unmethylated) group as the samples with lowest quintile of DNA methylation levels and
the M (methylated) group as the highest quintile.

This analysis showed that the set of hypomethylated CpG probes (DMCs) in the tumors and linked
to the expression of a nearby gene (Supplementary Fig. 12) had an enrichment for TFBS motifs for FOX
family transcription factors (FOXA2, FOXA3, FOXA1, etc.) (Supplementary Fig. 13). For the most
highly enriched motif FOXA2, the master regulator analysis identified FOXA1 as the top candidate
among all TFs in the human genome (Supplementary Fig. 14), with the collaborating factors GATA3
and ESR1 as the next best candidates (Supplementary Fig. 15). This illustrates the important point
that in vitro defined motifs from public TFBS databases are not always bound by the same TF family
member in vivo. This was the same as the results from Yao et al. (2015), where we showed that ELMER
identification of FOXA1, GATA3, and ESR1 were driven specifically by the ER+ (luminal A and luminal
B) tumors. However, our unsupervised analysis (both in Yao et al. and here) did not reveal Master
Regulators for the other Breast Cancer molecular subtypes, such as Basal-like, HER2+, etc.
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Supplementary Fig. 12. The comprehensive heatmap view shows all probe / gene pairs identi-
fied by ELMER, clustered according to similarity. This plot is based on the Unsupervised analysis of
Breast Invasive Carcinoma (Primary solid tumor) samples to 83 samples of normal tissue adjacent to
the tumor (Solid Tissue Normal). The inverse correlation between methylation and expression can be
observed.
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Supplementary Fig. 13. Motif enrichment plot shows the enrichment levels (OR ≥ 2.0) for the
most significant motifs based on the TCGA Breast Cancer Unsupervised analysis. A number of less
significant motifs meet our default OR threshold of 1.1 (lower.or = 1.1), which can be browsed in our
full Supplemental output report.
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Supplementary Fig. 14. TF ranking plot: For a given enriched motif, all human TF are ranked
by the statistical −log10(P − value) assessing the anti-correlation level of candidate Master Regulator
TF expression with average DNA methylation level for sites with the given motif. As a result, the
most anti-correlated TFs will be ranked in the first positions. For example, the figure shows the TFs
ranking for the (FOXA2 ) motif in which the TF FOXA1 is ranked in the first position, meaning
it is the most anti-correlated TF according to the statistical test. By default, the top 3 most anti-
correlated TFs (FOXA1, GATA3 and ESR1 ), and all TF classified by TFClass database in the same
family (Forkhead box factors) and subfamily (FOXA) are highlighted with colors blue, red and orange,
respectively. The complete anti-correlation data for the top three candidates (FOXA1, GATA3, and
ESR1 ) is expanded in Supplementary Fig. 15

.

Supplementary Fig. 15. FOXA1, GATA3 and ESR1 were identified as the most significant Mas-
ter Regulator candidates for the top motif (FOXA2 ). All FOX factors belonging to the same TFClass
binding family are highlighted.
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Use Case 2: BRCA molecular subtypes analysis (Supervised mode)

Several studies identified distinct molecular Breast Cancer molecular subtypes including luminal-like
(Luminal A and Luminal B) subclasses, which are Estrogen receptor-positive (ER-positive), and the
basal-like, ErbB2-positive and normal-like subclasses (ER-negative) (Perou et al., 2000; Yersal and
Barutca, 2014; Sørlie et al., 2001).

We performed pairwise analysis comparing known molecular subtypes (Her2, Luminal A, Luminal B
and Basal-like) using the TCGA BRCA dataset and classifications retrieved from (Ciriello et al., 2015).
Supplementary Table S2 shows the number of samples of each molecular subtype of breast cancer and
Supplementary Table S3 summarizes the candidate MRs identified.

The Unsupervised analysis of the same sample identified several Luminal type Master Regulators
(MRs) such as FOXA1, GATA3, and ESR1. In order to identify MRs for the other subtypes, we created
a table (Supplementary Table S3) of candidate MRs identified by each pairwise ELMER run (complete
results can be found in the supplemental HTML file described in the Supplementary Methods section).

Interestingly, several new MRs are identified for the Basal-like group, and these were mostly consistent
in comparisons against Luminal and HER2+ subtypes. One group of MRs identified are the SOX10
and SOX9 TF signatures. For these signatures, the regulatory TF candidate identified are the SOX9
(Sry-related HMG box-9) TF and SOX11 (Sry-related HMG box-11) TF; this correlation between
basal-like and SOX11 was recently described by Shepherd et al. and SOX9 was described by (Gong
et al., 2015). Most interestingly, we found KLF5 to be a consistently predicted MR for the Basal-like
breast subtype. KLF5 is a master pluripotency factor of embryonic stem cells, and has been associated
with a number of different cancers. In breast cancer, its overexpression has been linked to aggressive,
ER-negative and basal-like breast cancers (Ben-Porath et al., 2008).

Table S2. Number of samples of the molecular subtypes of breast cancer

Molecular subtype Number of samples
Basal 85
Her2 34

LumA 288
LumB 117

Normal-like 22
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Table S3. Candidate master regulator TFs (MRs) identified in the supervised analysis (Tumor
vs Normal) and unsupervised analysis (pairwise comparison between molecular subtypes: LumA,
LumB,Her2, Normal-like,Basal-like). Each column shows a pairwise analysis, identifying the MRs
active in the first group. TFs were ordered by the first analysis column where they appear, then by
the second one, etc.
Un

super
vised

Supervised

TF
Tumor

vs
Normal

LumA
vs

Basal

LumB
vs

Basal

LumA
vs

Her2

LumB
vs

Her2

LumA
vs

Normal

LumB
vs

Normal

Her2
vs

Basal

Basal
vs

LumA

Basal
vs

LumB

Basal
vs

Her2

Basal
vs

Normal

Normal
vs

LumA

Normal
vs

LumB

Normal
vs

Basal

Normal
vs

Her2

ESR1 x x x x x x
EMX1 x x x x x
FOXA1 x x x x x x
GATA3 x x x x x
MYB x x x x x
PBX1 x x x x x
RARA x x x x x

TRERF1 x x x x x
ZNF467 x x x x x
ZNF552 x x x x x x
ZNF587 x x x x x

ZSCAN32 x x x x x
AR x x x x

LMX1B x x x x
PATZ1 x x x x
ZBTB42 x x x x x
ZNF446 x x x x
ZNF587B x x x x
ZNF814 x x x x
HOMEZ x x x x
NR2E3 x x x
ZNF652 x x x x

ZKSCAN2 x x x x
ZNF24 x x x x
ZNF764 x x x x
NR2F6 x x x
SOX12 x x x
ZNF281 x x x
OVOL2 x x
ZNF20 x x
ZNF586 x x
ZNF75A x x
ZNF768 x x
SIX4 x x

ZNF468 x x
ZNF138 x x
PGR x x x x

FOXN1 x x x
SALL2 x x x
ZNF680 x x x x
ZNF799 x x x
FOXP1 x x x
GATA2 x x
GLI3 x x x

HOXB1 x x x
HOXB2 x x x
MSX2 x x x

NFATC4 x x
ZNF44 x x
ZNF442 x x x
ZNF563 x x
ZNF689 x x
ZNF776 x x
ZNF844 x x x
MEIS3 x
RORC x
ZBTB4 x x x
ZBTB7A x
ZNF175 x x
ZNF423 x x
ZNF671 x
ZNF763 x x x
FOXD2 x x x
VEZF1 x x x
IRX5 x x
ARID2 x x
HOXC5 x
SPDEF x
ZNF484 x
ZNF721 x

ZSCAN29 x
MAZ x x

POU2F1 x x
TRPS1 x x
ZNF30 x x
ZNF443 x x
ZNF233 x
ZNF687 x
ADNP x
FOXK2 x
FOXM1 x
MYBL1 x
MYBL2 x
PRDM4 x
ZBTB2 x
ZFP30 x
ZNF28 x
ZNF525 x
BCL11A x x x x x x
CEBPB x x
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Table S3. Candidate master regulator TFs (MRs) identified in the supervised analysis (Tumor
vs Normal) and unsupervised analysis (pairwise comparison between molecular subtypes: LumA,
LumB,Her2, Normal-like,Basal-like). Each column shows a pairwise analysis, identifying the MRs
active in the first group. TFs were ordered by the first analysis column where they appear, then by
the second one, etc.
Un

super
vised

Supervised

TF
Tumor

vs
Normal

LumA
vs

Basal

LumB
vs

Basal

LumA
vs

Her2

LumB
vs

Her2

LumA
vs

Normal

LumB
vs

Normal

Her2
vs

Basal

Basal
vs

LumA

Basal
vs

LumB

Basal
vs

Her2

Basal
vs

Normal

Normal
vs

LumA

Normal
vs

LumB

Normal
vs

Basal

Normal
vs

Her2

ELF5 x x x
ETV6 x x x x

NFE2L3 x x x
NFIB x x x
NFIL3 x x
RUNX3 x x
SOX11 x x
SOX9 x x x
TEAD4 x x
ZIC1 x x x
ZIC4 x x x

ZNF286A x x x
CEBPG x
EN1 x

NKX1-2 x
SOX14 x
TLX3 x

ZNF124 x
ZNF280A x
ZNF639 x
ARNTL2 x x
BATF3 x
E2F3 x x
ETS2 x x x
ETV3L x x x x
FOSL1 x
HIF3A x x x
KLF14 x x
KLF5 x x
OSR1 x x x x
OVOL3 x x
PLAGL1 x x x x
RELB x
SOX6 x x
SOX8 x x
SPIB x

ZNF667 x x x
ATOH8 x
BNC1 x x x
DBX2 x
E2F5 x
EGR1 x x x
EGR2 x x x
EGR3 x x
EPAS1 x
ERG x x
ETV3 x
ETV5 x
FEZF2 x
GLI1 x x
HIC1 x x

HOXB3 x
HOXB5 x
HOXB6 x
HOXC10 x
HOXC11 x
KLF2 x
KLF6 x x
KLF9 x
MLXIP x
MNX1 x
MYC x

NKX2-2 x
NPAS3 x
NPAS4 x x x
PRDM6 x
PROX1 x
RARB x
RARG x
RFX3 x
RFX5 x
TAL1 x
TCFL5 x
TFAP2B x
THRA x
THRB x
VENTX x
ZBTB47 x x
ZBTB7C x x
ZFP82 x
ZNF157 x x
ZNF232 x
ZNF280B x
ZNF286B x
ZNF319 x
ZNF329 x
ZNF333 x
ZNF350 x
ZNF362 x
ZNF366 x
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Table S3. Candidate master regulator TFs (MRs) identified in the supervised analysis (Tumor
vs Normal) and unsupervised analysis (pairwise comparison between molecular subtypes: LumA,
LumB,Her2, Normal-like,Basal-like). Each column shows a pairwise analysis, identifying the MRs
active in the first group. TFs were ordered by the first analysis column where they appear, then by
the second one, etc.
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Normal
vs

LumB

Normal
vs

Basal

Normal
vs

Her2

ZNF502 x x
ZNF516 x
ZNF521 x x x
ZNF595 x
ZNF613 x
ZNF615 x
ZNF701 x
ZNF846 x
ZNF853 x
ZNF860 x
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Software engineering best practices

To improve the software error handling we included in this new version: i) unit testing which ensures
that our tool is working as expected and any modification in the code does introduce bugs, ii) TryCatch
blocks to handle exceptions which will provide user with more information in case a exception is reached,
iii) Continuous Integration (CI) services such as Travis (https://travis-ci.org/tiagochst/ELMER)
and Appveyor (https://ci.appveyor.com/project/tiagochst/elmer), which not only ensures our
tool is installable, free of bugs, passes unit tests and that its documentation can be created after any
code modification, but also reduces the time to identify possible platform specific problems. iv) the
documentation has been revised and improved by changing the format of a PDF presentation to an
HTML-navigable page (Supplementary Fig. 16), v) The data package now has all the code required to
easily create all auxiliary objects from publicly available databases, which was not available for ELMER
v1.

Supplementary Fig. 16. New ELMER documentation available at http://bioconductor.org/

packages/devel/bioc/vignettes/ELMER/inst/doc/index.html
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Computational efficiency

To compare the new version with the old one (ELMER v1 vs ELMER v2), we performed the Unsupervised
analysis of the TCGA breast cancer data set in an Ubuntu 16.04.3 LTS, 32Gb Intel Precision Tower 5810
Intel (R) Xeon (R) of RAM, CPU E5- 1650 v3 @ 3.50GHz, using 10 cores for code parallelization. The
times for each one of the main functions are shown in Supplementary Table S4.

Some functions had an increase in the time due to changes either in the data or method. As the number
of TF binding models used in this new version increased from 91 to 771 it was expected that the function
get.TFs would increase the time to run, as more iterations will be performed. Also, the enriched.motif
now performs and Fisher's exact test for each motif increasing the time to execute the function. Overall
ELMER v2 decrease 55% the time to run the analysis compared to ELMER v1. The code used to run
ELMER v2 is the same provided in the HTML reports and the code to run ELMER v1 can be found in
this gist (https://gist.github.com/tiagochst/04c2c61b1f3f34f892cd0d0e12a81be6).

Also, Supplementary Table S5 shows the time required to run each ELMER Supervised analysis.
Only runs that executed all functions were included, that means, if a analysis was not able to identify
differential methylated probes it was excluded from the table. Although the larger the number of samples
resulted in longer execution time, it is worth remembering that the unsupervised mode uses all samples
in all the steps, while the supervised mode uses only a quintile of samples in each group which will reduce
its run time.

Table S4. Performance comparison between ELMER v1 vs ELMER v2. All values shown are in
seconds.

Function Time elapsed ELMERv1 Time elapsed ELMERv2
get.diff.meth 163 s 52 s
GetNearGenes 174 s 267 s
get.pair 29468 s 12790 s
get.enriched.motif 2 s 23 s
get.TFs 110 s 301 s
All functions 29917 s (≈ 8h18min) 13433 s (≈ 3h45min)

Table S5. Performance comparison between each supervised analysis using ELMER v2. All values
shown are in seconds.

Probes hypermethylated in group 1 vs group 2 Probes hypomethylated in group 1 vs group 2

Function
Basal
vs

Her2

Basal
vs

Normal

LumA
vs

Basal

LumB
vs

Basal

LumB
vs

Normal

Basal
vs

Her2

LumA
vs

Basal

LumA
vs

Normal

LumB
vs

Basal

LumB
vs

Normal

Normal
vs

Her2
get.diff.meth 65 62 62 64 63 63 65 62 62 62 66
GetNearGenes 4 2 11 16 7 6 15 3 26 22 3
get.pair 211 113 2493 2618 891 611 3953 314 2901 1138 104
get.enriched.motif 10 10 13 15 11 11 15 10 15 12 10
get.TFs 20 49 75 85 98 50 190 58 231 163 100
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