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ABSTRACT 29 

The brain dynamically creates predictions about upcoming stimuli to guide perception 30 

efficiently. Recent behavioral results suggest theta-band oscillations contribute to this 31 

prediction process, however litter is known about the underlying neural mechanism. Here, 32 

we combine fMRI and a time-resolved psychophysical paradigm to access fine temporal-33 

scale profiles of the fluctuations of brain activation patterns corresponding to visual 34 

object priming. Specifically, multi-voxel activity patterns in the fusiform face area (FFA) 35 

and the parahippocampal place area (PPA) show temporal fluctuations at a theta-band (~5 36 

Hz) rhythm. Importantly, the theta-band power in the FFA negatively correlates with 37 

reaction time, further indicating the critical role of the observed cortical theta oscillations. 38 

Moreover, alpha-band (~10 Hz) shows a dissociated spatial distribution, mainly linked to 39 

the occipital cortex. These findings, to our knowledge, are the first fMRI study that 40 

indicates temporal fluctuations of multi-voxel activity patterns and that demonstrates 41 

theta and alpha rhythms in relevant brain areas. 42 
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INTRODUCTION 51 

To efficiently interact with an ever-changing environment, it has been proposed that the 52 

brain generates perceptual predictions about forthcoming stimuli based on previously 53 

primed hypothesis (Heekeren, Marrett, and Ungerleider 2008, Bar 2009, Gorlin et al. 54 

2012, Rao and Ballard 1999, Engel, Fries, and Singer 2001, Summerfield et al. 2006). In 55 

circumstances containing multiple predictions, it would make sense that multiple 56 

predictions are dynamically coded and organized to maximize the efficiency of 57 

anticipation. Consistent with this notion, recent human behavioral results, using a visual 58 

priming paradigm, reveal that competing perceptual predictions are temporally 59 

coordinated in competing theta-band waves (i.e., being conveyed in various phase of the 60 

theta-band oscillations) (Huang, Chen, and Luo 2015). However, little is known about the 61 

neural mechanisms underlying this rhythmic coordination.  62 

Theta-band (3-8 Hz) neuronal oscillations have been demonstrated in perception, 63 

memory, and attention (Lisman and Idiart 1995, VanRullen and Koch 2003, Busch and 64 

VanRullen 2010, Landau and Fries 2012, Luo et al. 2013, Fiebelkorn, Saalmann, and 65 

Kastner 2013, Landau et al. 2015). Here we focus on the neural basis of the rhythmic 66 

activities in visual object priming, by examining the temporal dynamics in several related 67 

brain areas. First, since a face or a house image was used to be the prime/probe stimulus, 68 

we would expect to find theta-band rhythms in the fusiform face area (FFA (Kanwisher, 69 

McDermott, and Chun 1997)) and the parahippocampal place area (PPA (Epstein and 70 
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Kanwisher 1998)). Alternatively, theta rhythms might be also found in early sensory 71 

processing brain areas if the theta oscillations are due to rate limitations on sensory 72 

sampling. Finally, it is also possible that the rhythm might reflect rate constraints of 73 

attentional selection and thus would be revealed in high-level brain areas such as parietal 74 

and frontal cortex. 75 

Neural oscillations are ubiquitous (Buzsáki 2006) and have been widely studied 76 

with electroencephalography (EEG) and magnetoencephalography (MEG) (Luo et al. 77 

2013, Landau et al. 2015) in human subjects. Here, we employ a novel method that uses 78 

functional magnetic resonance imaging (fMRI) to investigate neural dynamics with 79 

millimeter-level spatial resolution across the whole human brain. Specifically, we 80 

combined fMRI, multi-voxel pattern decoding (Haxby 2012), and a time-resolved 81 

behavioral priming paradigm (Huang, Chen, and Luo 2015, Landau and Fries 2012, 82 

Fiebelkorn, Saalmann, and Kastner 2013, Song et al. 2014) to assess the fine spatio-83 

temporal profile. In an object priming experiment, a masked prime (i.e., a face or a house 84 

image) initially activates a corresponding perceptual prediction, which is then compared 85 

to a subsequent probe (i.e., a face or a house) that is either congruent or incongruent with 86 

the perceptual prediction triggered by the prime (Huang, Chen, and Luo 2015). Critically, 87 

we varied trial-by-trial stimulus onset asynchrony (SOA) between prime mask and probe 88 

in small steps of 20 ms, from 200 ms to 780 ms. Thus, time-resolved profiles of the 89 

dependent variables (i.e. behavioral measurements and fMRI responses) can be 90 

reconstructed as a function of mask-to-probe SOA in steps of 20 ms (corresponding to a 91 

50 Hz sampling frequency), representing the fine temporal course of the prediction 92 

conveying processes triggered by the prime. Moreover, by examining the temporal 93 
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relationships between congruent and incongruent conditions, we could also study the 94 

multi-prediction coordination process. Recent studies used the time-resolved behavioral 95 

measurement in combination with transcranial magnetic stimulation (TMS) and MEG 96 

(Dugue, Roberts, and Carrasco 2016, Wutz et al. 2016). We were the first to take this 97 

approach to fMRI with multi-voxel pattern decoding. 98 

Figure 1A shows the experimental design. In each trial, a 150-ms probe was 99 

preceded by a 33-ms priming stimulus, which was backward masked by a 100-ms mask 100 

stimulus. Participants were asked to maintain fixation on a cross displayed in the center 101 

of the screen and to make speeded responses to a probe stimulus (detecting a face or 102 

house). The prime and probe were either congruent (prime is a face, probe is a face; 103 

prime is a house, probe is a house) or incongruent (prime is a face and probe is a house; 104 

or vice versa). For each participant, there were 12 repetitions for each of the four prime-105 

probe conditions at each of the 30 SOAs (from 200 to 780 ms in steps of 20 ms). To 106 

avoid potential low-level effects of retinotopic adaptation, the size of the prime and probe 107 

were different. We also presented face stimuli and house stimuli at different image 108 

contrasts to facilitate the decoding of experimental conditions in brain regions of interest 109 

(ROIs), including Brodmann area 17 (BA17). Moreover, participants were instructed to 110 

use their left and right hands, respectively, to make house and face responses. Therefore, 111 

fMRI activity in motor cortex was also tied to corresponding experimental conditions for 112 

the majority of correct response trials.   113 
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  114 
Figure 1. Experiment design and behavioral results.  115 
(A) Experiment design. Left: For each trial, a 150-ms probe was preceded by a 33-ms priming 116 
stimulus, which was backward masked by a 100-ms mask stimulus. Critically, the mask-to-probe 117 
stimulus onset asynchronies (SOAs) ranged from 200 ms to 780 ms in steps of 20 ms. Right: The 118 
stimuli included two images, a high-contrast face and a low-contrast house. Prime and probe 119 
stimuli were either the same (congruent) or different (incongruent), except that the probe was 120 
always smaller than the prime. (B) Behavioral results of when the probe was a face. Left: 121 
Average raw RT time courses as a function of mask-to-probe SOA (200-780 ms in steps of 20 122 
ms) for congruent (red, thin line) and incongruent (black, thin line) conditions. Average smoothed 123 
(60 ms bin) RT time courses (n =18, mean ± SEM) as a function of mask-to-probe SOA, for 124 
congruent (red, thick line) and incongruent (black, thick line) conditions, which clearly show an 125 
overall priming effect. Middle: Average RT slow trends across all the participants. Right: 126 
Average smoothed-and-detrended RT time courses extracted by subtracting slow trends shown in 127 
Middle from smoothed (60 ms bin) RT time courses shown in left (thick lines). (C) Behavioral 128 
results of when the probe was a house. 129 
 130 
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RESULTS 131 

Behavioral results 132 

All participants (n=18) performed well on the task (percent correct: 97±0.54%). For each 133 

participant, we excluded reaction times (RTs) that were >3 SD from the mean across all 134 

trials. RT time courses were then plotted as a function of mask-to-probe SOAs. For trials 135 

in which the probe was a face (Figure 1B), effects of priming were clearly observed in 136 

the raw RT time courses averaged across all participants, as the congruent condition (red, 137 

thin line) reliably evoked faster RTs than the incongruent condition (black, thin line). To 138 

estimate the RT time courses, we calculated smoothed RT time courses for each 139 

participants, starting with probes that were presented from 200 ms to 260 ms (60 ms bin) 140 

after the mask, then forward this procedure throughout the mask-to-probe SOAs (200 ms 141 

to 780 ms) in step of 20 ms. Figure 1B shows the smoothed RT time courses averaged 142 

across all participants for congruent condition (red, thick line) and incongruent condition 143 

(black, thick line). To better examine the oscillatory pattern, we extracted slow trends of 144 

RT time courses in each participant by using 2nd order polynomial fit to raw RT time 145 

courses. After removing slow trends from the smoothed RT time courses in each 146 

participant, oscillations of the RT time courses are evident (right panel). This observation 147 

replicates the previous findings (Huang, Chen, and Luo 2015), suggesting the 148 

effectiveness of our approach to study the dynamics of predictive coding in visual object 149 

priming.  150 

Due to perhaps individual differences in exact oscillatory frequency, previous 151 

behavioral study (Huang, Chen, and Luo 2015) showed the oscillatory effect reducing 152 

with increasing SOA in detrended RT time courses. However, no such effect was found 153 
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in the present study. Note that while oscillation peaks were the largest during 0-200 ms in 154 

that study (Huang, Chen, and Luo 2015), the present study focused on SOAs from 200 155 

ms to 780 ms. Although the largest peaks might only occur at the beginning 200 ms of 156 

the averaged data, the effect of oscillation apparently lasts longer than that. For trials in 157 

which the probe was a house (Figure 1C), no reliable classical priming effect was 158 

observed, presumably due to using a low-contrast house image (therefore, much more 159 

difficult to detect than a high-contrast face image) and participants may have detected the 160 

house probe simply based on it not being a high-contrast face. Accordingly, due to the 161 

weak priming effects in house condition, further fMRI analyses focus on trials when the 162 

probe was a face. Nonetheless, it is unlikely that our findings are idiosyncratic to face 163 

processing, since significant theta-band oscillations were observed for house-probe 164 

conditions when we further tested additional subjects with equal contrast face and house 165 

images, complementing similar behavioral oscillation results that had been reported for 166 

discriminations of other object categories (Drewes et al. 2015).  167 

Theta-band oscillations in fMRI patterns 168 

fMRI response patterns were analyzed by using multi-voxel pattern analysis (MVPA) for 169 

ROIs including areas in the inferior temporal cortex that are implicated for face 170 

processing (FFA (Kanwisher, McDermott, and Chun 1997)) and for house processing 171 

(PPA (Epstein and Kanwisher 1998)). Activation patterns in the left motor cortex (lMC), 172 

right motor cortex (rMC), BA17, and anterior cingulate cortex (ACC) were also analyzed 173 

for comparison. For every trial, the probe was decoded as a face or a house by using 174 

MVPA based on fMRI activation patterns in these ROIs. MVPA classification accuracies 175 

as a function of SOAs are shown in Figure 2. 176 
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For the raw classification accuracies averaged across all participants, classical 177 

priming effects were clearly observed, as the congruent condition (red, thin line) reliably 178 

evoked higher classification accuracies than the incongruent condition (black, thin line). 179 

To better examine the oscillatory pattern embedded in the MVPA classification 180 

accuracies, follow what we have described above for analyzing the behavioral data, we 181 

extracted slow trends of classification accuracies. Strikingly, a theta-band rhythm can be 182 

clearly seen in the smoothed-and-detrended MVPA results in the FFA, PPA and lMC 183 

(Figure 2A, 2C and 2E, right), consistent with the behavioral findings.  Furthermore, the 184 

oscillations under the congruent and incongruent conditions were in a type of temporally 185 

switching relationships (Figure 1B). To examine the out-of-phase relationship between 186 

the two conditions, we subtracted the temporal profiles of incongruent conditions (black) 187 

from that of congruent conditions (red) for each participant. Oscillations in the effects of 188 

priming (congruent − incongruent) averaged across participants are again evident in the 189 

FFA, PPA and lMC (Figure 2B, 2D and 2F, left). 190 
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 191 

Figure 2. Significant theta-band oscillations of fMRI patterns in the FFA, PPA and lMC.  192 
(A) Results in the FFA. Left: Average raw classification accuracies as a function of mask-to-193 
probe SOA (200-780 ms) for congruent (red, thin line) and incongruent (black, thin line) 194 
conditions. Average smoothed (60 ms bin) classification accuracies (n=18, mean ± SEM) as a 195 
function of mask-to-probe SOA, for congruent (red, thick line) and incongruent (black, thick line) 196 
conditions, which show an overall priming effect. Middle: Average slow trends across all the 197 
participants. Right: Average smoothed-and-detrended classification accuracies extracted by 198 
subtracting slow trends shown in Middle from smoothed (60 ms bin) classification accuracies 199 
shown in left (thick lines). (B) Results of the priming effect (congruent − incongruent) in the 200 
FFA. Left: Average smoothed-and-detrended classification results of the priming effect. Right: 201 
Average spectrum for detrended classification accuracies (extracted by subtracting slow trends 202 
from the raw classification accuracies) as a function of frequency from 0 to 20 Hz for the priming 203 
effect. The statistical threshold of significance (p < 0.05, multiple comparison corrected) 204 
calculated by performing a permutation test was shown with dashed line. (C) Results in the PPA. 205 
(D) Results of the priming effect in the PPA. (E) Results in the lMC. (F) Results of the priming 206 
effect in the lMC.  207 
 208 
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To further evaluate the periodicity, the detrended (not the smoothed-and-209 

detrended) priming effects were then converted into frequency domain (after zero 210 

padding and application of a Hanning window) (Huang, Chen, and Luo 2015, Song et al. 211 

2014) by using Fast Fourier transformation (FFT). The results are shown in Figure 2B, 212 

2D and 2F. A peak of power in the theta-band is most noticeable. To quantify the 213 

significance of the observed spectral power, we next performed a randomization 214 

procedure by shuffling time courses of the MVPA classification accuracy for congruent 215 

condition and incongruent condition independently for each participant 1000 times. After 216 

each randomization, FFT was conducted on surrogate signals, generating a distribution of 217 

spectral power for each frequency point from which we obtained statistical thresholds for 218 

evaluating significance. The theta-band oscillations of the priming effects were 219 

significant in the FFA, PPA and lMC (p < 0.05, multiple comparisons corrected). Results 220 

of trials when the probe was a house are shown in Figure 3, no such significant theta-221 

band oscillations were found in the FFA, PPA and lMC (p < 0.05, multiple comparisons 222 

corrected), consistent with our behavior results in Figure1B and 1C. 223 
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 224 
Figure 3. Results of fMRI patterns in the FFA, PPA and lMC when the probe was a house. 225 
(A) Results in the FFA. Left: Average raw classification accuracies as a function of mask-to-226 
probe SOA (200-780 ms) for congruent (red, thin line) and incongruent (black, thin line) 227 
conditions. Average smoothed (60 ms bin) classification accuracies (n=18, mean ± SEM) as a 228 
function of mask-to-probe SOA, for congruent (red, thick line) and incongruent (black, thick line) 229 
conditions. Middle: Average slow trends across all the participants. Right: Average smoothed-230 
and-detrended classification accuracies extracted by subtracting slow trends shown in Middle 231 
from smoothed (60 ms bin) classification accuracies shown in left (thick lines). (B) Results of the 232 
priming effect (congruent − incongruent) in the FFA. Left: Average smoothed-and-detrended 233 
classification results of the priming effect. Right: Average spectrum for detrended classification 234 
accuracies (extracted by subtracting slow trends from the raw classification accuracies) as a 235 
function of frequency from 0 to 20 Hz for the priming effect. The statistical threshold of 236 
significance (p < 0.05, multiple comparison corrected) calculated by performing a permutation 237 
test was shown with dashed line. (C) Results in the PPA. (D) Results of the priming effect in the 238 
PPA. (E) Results in the rMC. (F) Results of the priming effect in the rMC.  239 
 240 

For comparison, no significant theta-band oscillations were found in the rMC, 241 

BA17 and ACC (Figure 4). Note that participants used the right hand to report the face 242 
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probe and the left hand to report the house probe. Given that hand movements are mainly 243 

controlled by the contralateral hemisphere, our results for the left and right motor cortices 244 

are thus also consistent with the behavioral RT results. Corresponding to that the 245 

oscillation in RT time courses can be clearly seen when the probe was a face (Figure 1B), 246 

there were significant theta-band oscillations in the lMC (Figure 2F); by contrast, 247 

corresponding to no oscillation in RT time courses when the probe was a house (Figure 248 

1C), there were no significant theta-band oscillations in the rMC (Figure 4B). This 249 

contrast suggests that our results were unlikely caused some artifacts or data 250 

preprocessing. 251 

 252 

 253 
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 254 
Figure 4. No significant theta-band oscillations in the rMC, BA17 and ACC.  255 
(A) Classification results when the probe was a face in the rMC. Left: Average raw classification 256 
accuracies as a function of mask-to-probe SOA (200-780 ms in steps of 20 ms) for congruent 257 
(red, thin line) and incongruent (black, thin line) conditions. Average smoothed (60 ms bin) 258 
classification accuracies as a function of mask-to-probe SOA, for congruent (red, thick line) and 259 
incongruent (black, thick line) conditions. Middle: Average slow trends across all the 260 
participants. Right: Average smoothed-and-detrended classification accuracies extracted by 261 
subtracting slow trends shown in Middle from smoothed (60 ms bin) classification accuracies 262 
shown in left (thick lines). (B) Classification results of the priming effect (congruent − 263 
incongruent) when the probe was a face in the rMC. Left: Average smoothed-and-detrended 264 
classification results of the priming effect (congruent − incongruent). Right: Average spectrum 265 
for detrended classification accuracies (extracted by subtracting slow trends from the raw 266 
classification accuracies) as a function of frequency from 0 to 20 Hz for the priming effect 267 
(congruent − incongruent). The statistical threshold of significance (p < 0.05, multiple 268 
comparison corrected) calculated by performing a permutation test was shown with dashed line. 269 
(C) Results in the BA17. (D) Results of the priming effect (congruent − incongruent) in the 270 
BA17. (E) Results in the ACC. (F) Results of the priming effect (congruent − incongruent) in the 271 
ACC. 272 

 273 

Nonetheless, to further demonstrate that the oscillatory components in the present 274 

study were not introduced by any non-oscillatory artifacts or data preprocessing, we 275 

generated 18 sets of non-oscillatory (peak at 400 ms) surrogate data, and performed the 276 

identical analysis as how the real data were analyzed. No significant theta-band 277 

oscillations were found with the surrogate data (Figure 5). 278 
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 279 
 280 
Figure 5. Results of surrogate data.  281 
(A) Slow trend and surrogate data of one participant. The slow trend is the slow trend of 282 
congruent condition in the FFA, there were 18 different slow trends; the surrogate data were 283 
generated by adding a Gaussian curve peaked at 400 ms and white noise (different for each 284 
participant) to the slow trend for each participant. Thus, 18 sets of surrogate data were generated. 285 
Subsequent analyses of these surrogate data are identical to how we analyzed the real data. (B) 286 
Left: Averaged surrogate data (n=18, mean ± SEM), smoothed (60 ms bin) as a function of mask-287 
to-probe SOA (200-780 ms in steps of 20 ms). Middle: Slow trends averaged across participants. 288 
Right: Average smoothed-and-detrended data, extracted by subtracting slow trends shown in 289 
Middle from smoothed (60 ms bin) data shown in left (thick lines). (C) Average spectrum for 290 
detrended data (extracted by subtracting slow trends from the surrogate data without smoothing). 291 
The statistical threshold of significance (p < 0.05, multiple comparison corrected) calculated by 292 
performing a permutation test was shown with a dashed line.  293 
 294 

More interestingly, the theta amplitude in the FFA significantly correlates with 295 

the behavioral RT results for the face probe trials across participants, suggesting an 296 

important functional role of the theta oscillation in mediating behavior. Specifically, a 297 

peak was identified for each participant within the theta-band (3-8 Hz) of the priming 298 

effect (congruent – incongruent) oscillations. The amplitude of this peak negatively 299 

correlates with the RT in the congruent face-face condition (Pearson’s correlation r = -300 
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0.59, p < 0.05, Bonferroni corrected) as well as in the incongruent house-face condition 301 

(Pearson’s correlation r = -0.62, p < 0.05, Bonferroni corrected). Scatter plots of theta 302 

oscillation amplitude and RT are shown in Figure 6. Despite moderate subject numbers, a 303 

clear trend is visible for greater theta oscillation amplitude in the FFA corresponding to 304 

faster reaction time to detect a face probe, suggesting that theta oscillations in the FFA 305 

activity patterns may facilitate predictive coding of faces. 306 

 307 
Figure 6. Scatter plots of theta amplitude and RT. 308 
The theta amplitude in the FFA negatively correlates with the RT in the FF (face-face) condition 309 
(Left: Pearson's r = -0.59, p < 0.05, Bonferroni corrected) as well as in the HF (house-face) 310 
condition (Right: Pearson's r = -0.62, p < 0.05, Bonferroni corrected). 311 
 312 

Results in the left and right motor cortices of a spectrotemporal analysis on 313 

detrended MVPA classification accuracies are shown in Figure 7A. This analysis 314 

revealed fine dynamic structures of priming effects (congruent − incongruent), as a 315 

function of frequency (0-25 Hz) and time (mask-to-probe SOA: 200-780 ms). Significant 316 

(permutation test, p < 0.05, multiple-comparison corrected across frequencies) theta-band 317 

oscillations (~5 Hz) were found in the lMC. By contrast, no significant theta-band 318 

oscillations were found in the rMC. Figure 7B, left, shows respectively for congruent (red) 319 

and incongruent (black) conditions of the power spectrum of detrended MVPA results in 320 

the lMC. Significant theta-band power was found for both the congruent and the 321 
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incongruent conditions (permutation test, p < 0.05, corrected). Interestingly, further phase 322 

analysis revealed that the theta-band power of the congruent condition was reliably out of 323 

phase with the incongruent condition (Rayleigh test, p = 0.03), and clustered around a 324 

mean of -160.6˚ (Figure 7B, right), suggesting a competition-like relationship between 325 

the two predictions (face and house) in motor cortex. 326 

Moreover, when the FFA and PPA MVPA classification accuracies were 327 

combined (Figure 7C and 7D), the theta-band power of the congruent condition was 328 

reliably out of phase with the incongruent condition (Rayleigh test, p = 0.03), and 329 

clustered around a mean of -120.7˚. On the one hand, it is possible that combining the 330 

FFA and PPA simply increased the statistical power to reveal the out of phase 331 

relationship between the congruent and incongruent conditions. On the other hand, this 332 

result may imply that decoding face/non-face probe detections could have been benefited 333 

from MVPA of not only the FFA but also the PPA -- as for example, while patterns in the 334 

FFA may encode faces, patterns in the PPA may contribute to decode that a house (thus 335 

not a face) was detected.  336 
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  337 
Figure 7. Oscillations of the priming effect (congruent – incongruent).  338 
(A) Time-frequency power profiles (n=17) for detrended classification accuracies (extracted by 339 
subtracting slow trends from the raw classification accuracies) as a function of mask-to-probe 340 
SOA (200-780 ms) and frequency (0-25 Hz) in the lMC (left) and rMC (right). Areas enclosed by 341 
dashed lines represent statistical significance (p < 0.05, multiple comparison corrected) calculated 342 
by performing permutation tests. (B) Left: Average spectrum for detrended classification 343 
accuracies as a function of frequency from 0 to 20 Hz for congruent (red) and incongruent (black) 344 
conditions in the lMC. Dashed lines represent the statistical thresholds of significance (p < 0.05, 345 
multiple comparison corrected) calculated by performing permutation tests.  Right: Polar plots 346 
for the distribution of phase differences between congruent and incongruent conditions in the 347 
theta-band (4-6Hz) in the lMC. The red line indicates the mean congruent – incongruent theta-348 
band phase difference across participants. (C) Time-frequency power profile for detrended 349 
classification accuracies in the FFA+PPA results. (D) Left: Average spectrum for detrended 350 
classification accuracies for congruent (red) and incongruent (black) conditions in the FFA+PPA 351 
results. Right: Polar plots for the distribution of phase differences between congruent and 352 
incongruent conditions in the theta-band (4-6Hz).  353 
 354 
Distinct cortical distributions of theta and alpha oscillations 355 

To further examine the cortical distribution of theta-band oscillations, a whole-brain 356 

searchlight analysis was conducted. For each participant, voxels were extracted from a 357 

spherical searchlight with a two-voxel radius (33 voxels in each searchlight including the 358 

central voxel), and then MVPA was performed using this spherical searchlight ROI, 359 

which moved throughout each participant’s whole brain gray matter-masked data. 360 
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Frequency analyses were conducted for each searchlight ROI to calculate the power of 361 

theta-band oscillations, and then the results were assigned to the central voxel of the 362 

sphere searchlight. After normalization (Z-score) across all voxels, clusters with 363 

significant power (p < 10-4) and size (>15 voxels) were localized. Thus, a significant 364 

cluster indicates that MVPA classification accuracy of the probe fluctuated as a function 365 

of SOA in the theta band. 366 

For comparisons, the same searchlight procedure was also performed to map 367 

clusters (>15 voxels, except one subject >11 voxels, p < 10-4) of significant alpha-band 368 

(8-13 Hz) oscillations across the whole brain. Abundant EEG and MEG studies have 369 

demonstrated that alpha-band oscillations were predominantly observable in occipital 370 

sites (Thut et al. 2006), and we are the first to map the alpha-band oscillations using 371 

fMRI. Alpha oscillations correlate with cortical inhibition (Ray and Cole 1985, Palva and 372 

Palva 2007), and the ongoing occipital alpha oscillations have been argued to play direct 373 

functional roles in attention and perception mechanisms (VanRullen and Koch 2003, 374 

Busch and VanRullen 2010, Dugue, Marque, and VanRullen 2011, Jensen, Bonnefond, 375 

and VanRullen 2012). Moreover, the cross-frequency coupling between alpha and theta 376 

oscillations has been reported recently by using time-resolved RT measurements (Huang, 377 

Chen, and Luo 2015, Song et al. 2014).  378 

Figure 8A shows percentages (Y-axis) of participants, in whom significant 379 

clusters were found based on the searchlight analysis in the occipital, temporal, parietal, 380 

and frontal lobes. Remarkably, at least one cluster of theta oscillations was reliably found 381 

in the temporal cortex in all participants (100%), whereas at least one cluster of alpha 382 

oscillations was reliably found in the occipital cortex of all participants (100%). By 383 
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contrast, this level of concentration was not seen for parietal and frontal cortices, given 384 

the criterion we used to localize the clusters is fairly stringent and on average only 2.5 385 

clusters for theta oscillations and 4.3 clusters for alpha oscillations were found per each 386 

participant. Using Freesurfer and an atlas-based automatic surface parcellation (Desikan 387 

et al. 2006, Fischl et al. 1999, Fischl et al. 2004), spatial distributions of brain regions that 388 

exhibited significant theta-band and alpha-band power are further shown in Figure 8B 389 

and 8C, respectively. The magnitude of the color scale in Figure 8B and 8C indicates the 390 

number of significant clusters per 1000 mm2 that were found in the marked atlas-based 391 

anatomical regions of interest. Gray-colored areas indicate there was no significant 392 

cluster, whereas yellow indicates there were ~4 significant clusters per 1000 mm2 in each 393 

of the marked parcellated cortical regions. Differences between the two distributions are 394 

obvious: most of the regions with significant theta-band oscillations were in the temporal 395 

cortex, and most of the regions with significant alpha-band oscillations were in the 396 

occipital cortex. 397 
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  398 
Figure 8. Different spatial distributions of theta-band and alpha-band oscillations.  399 
(A) Y-axis indicates the percentages of participants, in whom significant clusters were found 400 
based on the searchlight analysis in the occipital, temporal, parietal, and frontal lobes. Significant 401 
clusters of theta-band oscillations were found in the temporal lobe of every participant (100%), 402 
whereas significant clusters of alpha-band oscillations were found in the occipital lobe of every 403 
participant (100%), far more concentrated and robust than any other lobes. (B) The cortical 404 
distribution map of theta-band oscillations. The magnitude of the color scale indicates the number 405 
of significant clusters per 1000 mm2 that were found in the marked atlas-based anatomical 406 
regions of interest. Gray-colored areas indicate there was no significant cluster, whereas yellow 407 
indicates there were ~4 significant clusters per 1000 mm2 in each of the marked parcellated 408 
cortical regions. (C) The cortical distribution map of alpha-band oscillations. 409 
 410 

 411 

 412 
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DISCUSSION 413 

These combined psychophysical and neuroimaging results provide important constraints 414 

on the hypothesized links between theta rhythms and dynamic predictive coding. Multi-415 

voxel activation patterns in the FFA and PPA have been suggested to encode object 416 

categories (Haxby 2012, Haxby et al. 2001, Haynes and Rees 2006), and here we also 417 

demonstrated classical priming effects in FFA and PPA. More interestingly, however, our 418 

study revealed that multi-voxel activation patterns in these brain areas are not stationary 419 

but fluctuate as a function of mask-to-probe relation at a theta-band rhythm. This 420 

fluctuation is sustained across the tested SOA periods over which we can discount 421 

hemodynamic lags, since we were comparing trial-by-trial differences as a function of 422 

mask-to-probe SOA, assuming that hemodynamic lags in a same ROI are always 423 

comparable across trials. Thus, rather than bottom-up perceptual responses to the 424 

incoming stimulus, our findings more likely reveal effects of the memory traces (priming) 425 

that mediate predictive coding. This result is consistent with the hypothesis that 426 

perception is modulated by ongoing theta oscillations whose phase is reset by priming 427 

(Huang, Chen, and Luo 2015, Busch, Dubois, and VanRullen 2009, Song et al. 2014, 428 

Romei, Gross, and Thut 2012), but, crucially, is the first to show that theta rhythms in the 429 

fluctuation of multi-voxel activity patterns are linked to predictive coding effects. Indeed, 430 

greater theta oscillation amplitude in the FFA significantly correlated to faster reaction 431 

time to detect a face probe, directly supporting the functional link.  432 

By using fMRI and a whole-brain searchlight analysis, we were further able to 433 

map more precisely the cortical distributions of various brain rhythms. Alpha oscillations 434 

were concentrated in the occipital lobe, which is consistent with previous EEG and MEG 435 
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reports (Thut et al. 2006), whereas theta oscillations were concentrated in the temporal 436 

lobe, suggesting distinct functional roles theta-band oscillations may play. Moreover, 437 

given that an fMRI voxel may contain millions of neurons (Logothetis 2008), fluctuations 438 

of activity of a small number of neurons are unlikely to cause fluctuations of multi-voxel 439 

fMRI activity patterns. What we have observed through fMRI and MVPA thus 440 

presumably reflects rhythmic ensemble responses across distributed populations of 441 

neurons (Haxby 2012, Kriegeskorte et al. 2008, Guo and Meng 2015).  442 

Note that the temporal profiles of FFA, PPA and lMC are different in phase and 443 

frequency, suggesting that the observed theta oscillations were unlikely underlying 444 

possible long-range coordination of activity in these brain areas. We thus propose that 445 

priming leads to a reset of ongoing theta-band oscillations, which were recently reported 446 

to be involved in attention and predictive coding (Huang, Chen, and Luo 2015, Landau 447 

and Fries 2012, Fiebelkorn, Saalmann, and Kastner 2013, Song et al. 2014). And because 448 

the SOA varied in small steps (20 ms), the subsequent probe was processed at different 449 

phase of this reset oscillation, enabling us to observe the periodic neuroimaging pattern. 450 

To rule out the possibility that artifacts or data preprocessing could have introduced 451 

oscillatory signatures into our results, we generated sets of surrogate non-oscillatory data, 452 

and performed the exact analysis procedure as how the real data was analyzed. No 453 

significant theta-band oscillations were found with the surrogate data (Figure 5). It 454 

remains possible that the fine-scale temporal profiles we found in the FFA, PPA and lMC 455 

were not really oscillatory, but only peaking a few times within the limited SOA range 456 

that we had examined. Future studies can further investigate this possibility by using a 457 
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longer SOA range. Nevertheless, the present study revealed relatively fine-scale temporal 458 

dynamics of fMRI activity patterns. 459 

Our study provides a feasible strategy that incorporates fMRI and MVPA to 460 

investigate the dynamics of ensemble coding across distributed populations of neurons. 461 

Despite the hemodynamic lag, fMRI has been combined with novel behavioral paradigms 462 

to probe neural responses at the time scale of tens of milliseconds, since neuronal 463 

electrical activity and the fMRI signal are reliably coupled at this level of temporal 464 

precision (Ogawa et al. 2000, Formisano et al. 2002, Dux et al. 2006). Specifically, one 465 

of these previous studies (Dux et al. 2006) compared fMRI responses in two different 466 

SOA conditions (a short SOA and a long SOA), demonstrating that fMRI can be used to 467 

measure temporal dynamics of visual processing.  468 

MVPA has been shown to have better temporal resolution than the univariate 469 

measurement of BOLD activity change (Kohler et al. 2013).  It is therefore expected that 470 

the time-resolved strategy we advocate should be more sensitive than conventional fMRI 471 

approaches to detect the dynamics of trial-by-trial fluctuation in population coding as a 472 

function of SOA. Consistent with this notion, we conducted the same spectrum analysis 473 

with univariate averaged BOLD responses in the FFA, PPA, and lMC (Figure 9). There 474 

were no significant theta-band oscillations in the univariate averaged FFA or PPA 475 

activity. And while theta-band oscillation was found in the lMC, it did not show 476 

significant out-of-phase relationship between the congruent and incongruent conditions 477 

(Rayleigh test, p = 0.17). These results differ from the MVPA results shown in Figure 2 478 

and Figure 7, confirming that multi-voxel fMRI activity patterns instead of merely 479 

averaged fMRI activity fluctuate.  480 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2017. ; https://doi.org/10.1101/148635doi: bioRxiv preprint 

https://doi.org/10.1101/148635
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

 481 

 482 

 483 
Figure 9. Results of univariate averaged BOLD responses in the FFA, PPA and lMC.  484 
(A) Results of when the probe was a face in the FFA. Left: Averaged BOLD responses as a 485 
function of mask-to-probe SOA (200-780 ms in steps of 20 ms) for congruent (red, thin line) and 486 
incongruent (black, thin line) conditions. Smoothed (60 ms bin) BOLD responses (n=18, mean ± 487 
SEM) as a function of mask-to-probe SOA, for congruent (red, thick line) and incongruent (black, 488 
thick line) conditions, show an overall priming effect (the congruent condition evoked overall 489 
greater BOLD responses than the incongruent condition). Middle: Average slow trends across all 490 
the participants. Right: Average smoothed-and-detrended BOLD responses extracted by 491 
subtracting slow trends shown in Middle from smoothed (60 ms bin) BOLD responses shown in 492 
left (thick lines). (B) Results of the priming effect (congruent − incongruent) when the probe was 493 
a face in the FFA. Left: Average smoothed-and-detrended BOLD results of the priming effect 494 
(congruent − incongruent). Right: Average spectrum for detrended BOLD responses (extracted 495 
by subtracting slow trends from the raw BOLD responses) as a function of frequency from 0 to 496 
20 Hz for the priming effect (congruent − incongruent). The statistical threshold of significance 497 
(p < 0.05, multiple comparison corrected) calculated by performing a permutation test was shown 498 
with dashed line. (C) Results in the PPA. (D) Results of the priming effect (congruent − 499 
incongruent) in the PPA. (E) Results in the lMC. (F) Results of the priming effect (congruent − 500 
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incongruent) in the lMC. While a significant 15-17 Hz component can also be generally seen in 501 
B, D, and F, as well as B in S1 Figure and B in Figure 2, it may be caused by artifacts from 502 
acoustic noises generated by our EPI sequence (17.5 Hz). We thus choose to not discuss this 15-503 
17 Hz component further in the main text. 504 

 505 

To conclude, we combined fMRI and a time-resolved psychophysical paradigm to 506 

investigate the dynamic neural mechanism underlying visual object priming. Specifically, 507 

multi-voxel activity patterns in the FFA and the PPA show temporal fluctuations at a 508 

theta-band (~5 Hz) rhythm, suggesting the critical role of theta oscillations in the inferior 509 

temporal cortex during visual object priming. Our strategy is obviously not limited to the 510 

theta-band and predictive coding, and future studies may take similar approaches to better 511 

understand other mechanisms underlying brain dynamics.  512 

 513 

Materials and methods 514 

Participants.  515 

Eighteen healthy adults (7 females; mean age 26 years; all right handed) participated in 516 

this two-session fMRI experiment. All participants had normal or corrected-to-normal 517 

visual acuity and gave written informed consent. This study was approved by the 518 

Dartmouth College Committee for the Protection of Human Subjects.  519 

MRI acquisition.  520 

Participants were scanned using a 3T Philips Achieva Intera scanner with a 32-channel 521 

head coil at the Dartmouth Brain Imaging Center. An echo-planar imaging (EPI) 522 

sequence (2000 ms TR; 35 ms TE; 3 × 3 × 3 mm voxel size; 35 slices) was used to 523 

measure the BOLD contrast. For each participant, a high-resolution T1-weighted 524 

anatomical scan was acquired at the beginning (or the end) of each scan session (8.2 ms 525 
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TR; 3.8 ms TE; 1 × 1 × 1 mm voxel size; 222 slices). During the EPI scans, visual stimuli 526 

were presented to a screen located at the back of the scanner via a LCD projector 527 

(Panasonic PT-D4000U) using MATLAB 2011b with Psychtoolbox(Brainard 1997). 528 

Participants viewed the stimuli using a mirror placed within the head coil.  529 

Region of Interest (ROI) localizer runs.  530 

An independent set of gray-scale face and house images was used to localize the ROIs. 531 

The localizer scans consisted of an alternating block design, with 5 blocks presenting face 532 

images and 5 blocks presenting house images interleaved with 16-s periods of a blank 533 

screen with a fixation cross in the center of the screen. Each stimulus block was also 16-s 534 

long. In total, each localizer scan run was 336-s long, consisting of 11 periods of fixation 535 

and 10 stimulus blocks. In each stimulus block, 16 faces (or houses) were presented (500 536 

ms per image, with a 500-ms interstimulus interval). Fifteen participants completed two 537 

localizer scans, and three participants completed three localizer scans. During localizer 538 

scans, participants performed a new face (or house) detection task in which they were 539 

asked to use their right hand to make a key-press whenever a new face was presented and 540 

their left hand to make a key-press whenever a new house was presented. Twelve new 541 

faces/houses were presented in each block. This task also allowed us to localize the left 542 

and right motor cortices as ROIs by contrasting BOLD responses corresponding to right-543 

hand button presses vs. left-hand button presses. 544 

Experimental runs.  545 

Each participant completed 24 experimental scan runs in two sessions on two separate 546 

days. Each experimental scan run was 368-s long, consisting of 90 trials and two 4-s 547 

periods (at the beginning and the end of each run) of a blank screen with a fixation cross 548 
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in the center of the screen. As shown in Figure 1A, each trial was 4-s long, and presented 549 

in a semi-randomized order with a rapid event-related design. In each trial, a 150-ms 550 

probe was preceded by a 33-ms prime stimulus which was backward masked by a 100-ms 551 

mask stimulus. Critically, the mask-to-probe SOAs ranged from 200 to 780 ms in steps of 552 

20 ms, corresponding to a sampling frequency of 50 Hz. The stimuli included two images, 553 

a high-contrast face and a low-contrast house. The high contrast level was defined with 554 

root mean square (RMS) = 0.25 in normalized unit, whereas the low contrast level RMS 555 

= 0.025. Corresponding contrasts of the face image and the house image were made by 556 

using the SHINE toolbox (Willenbockel et al. 2010). The probe and the prime were either 557 

the same (congruent conditions: Face-prime followed by Face-probe; House-prime 558 

followed by House-probe) or different (incongruent conditions: Face-prime followed by 559 

House-probe; House-prime followed by Face-probe), except that the probe (5.8˚) was 560 

smaller than the prime (8.7˚) to avoid any possible low-level effects of retinotopic 561 

adaptation (Figure 1A). In total, there were 2160 trials for each participant: 12 repetitions 562 

for each of the four prime-probe conditions at each of the 30 SOAs (from 200 to 780 ms 563 

in steps of 20 ms). Participants were asked to report whether the probe was a face (right 564 

hand button press) or a house (left hand button press) with speeded responses.  565 

MR Image preprocessing.  566 

AFNI (Cox 1996)(http://afni.nimh.nih.gov/afni) was used for preprocessing the MRI data. 567 

EPIs were slice timing corrected, motion corrected to the image acquired closest to the 568 

anatomical images, spatially smoothed with a 4-mm full width at half maximum filter 569 

(FWHM), and temporally filtered to remove baseline drifts. Based on the anatomical 570 

images acquired in each of the two sessions, mean anatomical images were computed to 571 
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remove the bias of either session. All EPIs were then aligned to the mean anatomical 572 

images. 573 

Functional ROI localization.  574 

Data from the ROIs localizer scans were further submitted to a General Linear Model 575 

(GLM) analysis, which calculated the beta coefficient values associated with block 576 

conditions. ROIs were individually defined for each participant based on activation maps 577 

from the GLM analysis. Among them, four were defined as a continuous cluster of 578 

activated voxels corresponding to the following GLM contrasts: the FFA was defined in 579 

the middle fusiform gyrus as responding more strongly to faces than to houses; the PPA 580 

was defined in the parahippocampal gyrus as responding more strongly to houses than to 581 

faces; the left motor cortex was defined as responding more strongly to right-hand button 582 

presses than to left-hand button presses; and the right motor cortex was defined as 583 

responding more strongly to left-hand button presses than to right-hand button presses . 584 

To control for any potential confounding effects of ROI size, the statistical contrast 585 

threshold was adjusted individually (maximum p < 10-4, uncorrected) to roughly match 586 

the size of each of these ROIs (~40 voxels). Using this threshold, however, did not allow 587 

for the localization of the motor cortex ROI in one participant. Therefore, subsequent 588 

ROI analysis of the motor cortex did not include this participant. Next, data from the ROI 589 

localizer scan runs were aligned to Talairach space using the TT_N27 template. For each 590 

participant, Brodmann area 17 (BA17) was localized using an anatomical mask based on 591 

TT_N27 template as well as GLM activation maps, which include activated voxels in the 592 

calcarine sulcus that responded more strongly during stimulation blocks than during 593 

fixation periods (maximum p < 10-4, uncorrected). The size of the BA17 ROI was on 594 
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average 100 voxels. Similarly, data from the experimental scan runs were aligned to the 595 

Talairach space (TT_N27 template) and were submitted to a GLM analysis to calculate 596 

the beta coefficient values associated with congruent conditions (Face-prime followed by 597 

Face-probe; House-prime followed by House-probe) and incongruent conditions (Face-598 

prime followed by House-probe; House-prime followed by Face-probe). The GLM 599 

activation map corresponding to congruent vs. incongruent differences (p < 10-2, 600 

uncorrected, ~40 voxels) was used to localize the ROI of anterior cingulate cortex (ACC).  601 

Univariate averaged BOLD response and multivariate pattern classification 602 

analyses.  603 

For each participant, we extracted the averaged activation values across all voxels in each 604 

ROI to analyze the univariate BOLD response changes. Percent BOLD signal change was 605 

calculated for each trial by using the average of the last TR before and the first TR after 606 

the trial onset as the baseline. Subsequent analyses focused on the peak percent signal 607 

change amplitude at the third TR (6s) from the trial onset. Multivariate pattern analyses 608 

(MVPA) were performed using PyMVPA (Hanke et al. 2009). We extracted the 609 

activation values of all voxels in each ROI for each trial, removing the mean intensity of 610 

the ROI, to compute the multi-voxel activation pattern based on the third TR (6s) from 611 

the trial onset. Pattern classifications of the face probe condition and the house probe 612 

condition were then performed with linear support vector machines (SVMs) using a 613 

leave-one-trial-out cross-validation procedure.  614 

Analyses of frequency and phase.  615 

Analyses of frequency and phase were performed with MATLAB (The MathWorks) 616 

using functions from the EEGLAB toolbox (Delorme and Makeig 2004) and CircStat 617 
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toolbox (Berens 2009). First, we calculated the temporal profile of RTs/averaged BOLD 618 

responses/MVPA classification accuracies as a function of SOA from 200 to 780 ms in 619 

steps of 20 ms (50 Hz sampling frequency) for each condition (congruent and 620 

incongruent). For each participant, in order to extract the slow developing trend, raw 621 

RTs/averaged BOLD responses/MVPA classification accuracies of each condition were 622 

fitted to a second order polynomial function. We then subtracted the slow trend from 623 

corresponding temporal profile for each participant to obtain detrended RTs/averaged 624 

BOLD responses/MVPA classification accuracies separately for each condition to 625 

remove possible interferences from classical priming and expectancy effects. Next, to 626 

further investigate the oscillatory patterns of priming effects, we subtracted the detrended 627 

temporal profiles of incongruent conditions from congruent conditions. To investigate the 628 

spectral characteristics of the detrended priming effects, we then conducted spectrum 629 

analysis separately for each participant. Specifically, we performed a Fast Fourier 630 

transformation (FFT) to convert the detrended priming effects into the frequency domain 631 

(after zero padding and application of a Hanning window). In this study the FFT length 632 

was 160 data points and the window size was 40 data points. Also, to examine the phase 633 

relationships between the congruent and incongruent conditions, testing for 634 

nonuniformity for congruent − incongruent phase differences in the theta-band (4-6 Hz) 635 

across participants was conducted using circular statistics (Rayleigh test for 636 

nonuniformity for circular data in CircStats toolbox). We further performed a 637 

randomization procedure by shuffling the RTs/averaged BOLD responses/MVPA 638 

classification accuracies for congruent condition and incongruent condition respectively 639 

within each participant to assess the statistical significance of the observed spectral power 640 
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as well as the congruent − incongruent phase relationship. After each randomization, we 641 

conducted FFT on surrogate signals, similar to that of the original data analysis; we 642 

repeated this procedure 1000 times, arriving at a distribution of spectral power for each 643 

frequency point from which we obtained the p < 0.05 threshold (uncorrected). We then 644 

applied multiple comparison correction to the uncorrected randomization threshold 645 

spectrum profile. Similarly, for each randomization, we conducted the same phase 646 

analysis on the surrogate signals by calculating cross-participant coherence in the 647 

congruent − incongruent phase difference. 648 

Time-frequency analysis. 649 

To assess MVPA classification accuracies as a function of time (mask-to-probe SOA) 650 

and frequency, the detrended temporal profile for each condition was transformed using 651 

the continuous complex Gaussian wavelet (order = 4; e.g., FWHM =1.32 s for 1 Hz 652 

wavelet) transforms (Wavelet toolbox, MATLAB), with frequencies ranging from 1 to 25 653 

Hz in steps of 2 Hz. The power profile of detrended classification accuracies (squared 654 

absolute value) as a function of time and frequency was then extracted from the output of 655 

the wavelet transform. Power profiles for priming effects (congruent − incongruent) were 656 

calculated for each participant separately. The grand mean of time-frequency power was 657 

then calculated by averaging across participants. We further performed a randomization 658 

procedure to assess the statistical significance of the power profiles for priming effects 659 

(congruent − incongruent), by shuffling the labeling of SOAs. After each randomization, 660 

the same time-frequency analysis was performed on the surrogate signals, as that 661 

performed in the original data analysis. This procedure was repeated 1000 times and 662 

resulted in a distribution of power at each time-frequency point, from which the p < 0.05 663 
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threshold (uncorrected) was obtained. The cross-frequency multiple-comparison 664 

correction was then further applied to the uncorrected randomization threshold time-665 

frequency map. 666 

Whole-brain searchlight analysis.  667 

A whole brain searchlight analysis (Kriegeskorte, Goebel, and Bandettini 2006)was 668 

conducted to identify brain regions where significant theta-band (3-6 Hz) and alpha-band 669 

(8-11 Hz) oscillations occurred. For each participant, voxels were extracted from a 670 

spherical searchlight with a two-voxel radius (33 voxels in each searchlight including the 671 

central voxel) and then MVPA was performed using this spherical searchlight ROI. The 672 

searchlight moved throughout each participant’s gray matter-masked data using 673 

PyMVPA (Hanke et al. 2009). For each searchlight corresponding to a central voxel (i.e., 674 

each voxel across the whole gray matter mask), a linear SVM learning algorithm was 675 

trained and tested to examine pair-wise classification performance for face probe vs. 676 

house probe conditions. To ensure independence between training and testing, cross-677 

validations were performed between even scan runs and odd scan runs (train on even runs, 678 

test on odd runs; and vice versa). Next, frequency analyses were conducted for each 679 

searchlight ROI to calculate the power of theta-band and alpha-band oscillations, and 680 

then the results were assigned to the central voxel of the sphere searchlight. After 681 

normalization (Z-score) across all voxels, clusters with significant power (p < 10-4) and 682 

size >15 voxels (except one subject for alpha-band cluster >11 voxels) were localized. 683 

Percentages of participants with clusters in the temporal, parietal, frontal and occipital 684 

lobes were calculated separately for theta-band and alpha-band oscillations. Further, to 685 

show the spatial distribution of brain regions that exhibited significant theta-band and 686 
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alpha-band power, Freesurfer was used to generate atlas-based automatic surface 687 

parcellation and to map the concentration by numbers of theta and alpha oscillation 688 

clusters per 1000 mm2 in each of the parcellated cortical regions.  689 
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