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25
26
27
28
29 ABSTRACT

30  The brain dynamically creates predictions about upcoming stimuli to guide perception

31 efficiently. Recent behavioral results suggest theta-band oscillations contribute to this

32 prediction process, however litter is known about the underlying neural mechanism. Here,
33 we combine fMRI and a time-resolved psychophysical paradigm to access fine temporal-
34 scale profiles of the fluctuations of brain activation patterns corresponding to visual

35  object priming. Specifically, multi-voxel activity patterns in the fusiform face area (FFA)
36  and the parahippocampal place area (PPA) show temporal fluctuations at a theta-band (~5
37  Hz) rhythm. Importantly, the theta-band power in the FFA negatively correlates with

38  reaction time, further indicating the critical role of the observed cortical theta oscillations.
39  Moreover, alpha-band (~10 Hz) shows a dissociated spatial distribution, mainly linked to
40  the occipital cortex. These findings, to our knowledge, are the first fMRI study that

41 indicates temporal fluctuations of multi-voxel activity patterns and that demonstrates

42  theta and alpha rhythms in relevant brain areas.
43
44
45
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48
49
50
51 INTRODUCTION

52  To efficiently interact with an ever-changing environment, it has been proposed that the
53  brain generates perceptual predictions about forthcoming stimuli based on previously

54  primed hypothesis (Heekeren, Marrett, and Ungerleider 2008, Bar 2009, Gorlin et al.

55 2012, Rao and Ballard 1999, Engel, Fries, and Singer 2001, Summerfield et al. 2006). In
56  circumstances containing multiple predictions, it would make sense that multiple

57  predictions are dynamically coded and organized to maximize the efficiency of

58 anticipation. Consistent with this notion, recent human behavioral results, using a visual
59  priming paradigm, reveal that competing perceptual predictions are temporally

60  coordinated in competing theta-band waves (i.e., being conveyed in various phase of the
61 theta-band oscillations) (Huang, Chen, and Luo 2015). However, little is known about the
62  neural mechanisms underlying this rhythmic coordination.

63 Theta-band (3-8 Hz) neuronal oscillations have been demonstrated in perception,
64  memory, and attention (Lisman and Idiart 1995, VanRullen and Koch 2003, Busch and
65 VanRullen 2010, Landau and Fries 2012, Luo et al. 2013, Fiebelkorn, Saalmann, and

66  Kastner 2013, Landau et al. 2015). Here we focus on the neural basis of the rhythmic

67  activities in visual object priming, by examining the temporal dynamics in several related
68  brain areas. First, since a face or a house image was used to be the prime/probe stimulus,
69  we would expect to find theta-band rhythms in the fusiform face area (FFA (Kanwisher,

70  McDermott, and Chun 1997)) and the parahippocampal place area (PPA (Epstein and
3
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71 Kanwisher 1998)). Alternatively, theta rhythms might be also found in early sensory

72  processing brain areas if the theta oscillations are due to rate limitations on sensory

73 sampling. Finally, it is also possible that the rhythm might reflect rate constraints of

74  attentional selection and thus would be revealed in high-level brain areas such as parietal
75  and frontal cortex.

76 Neural oscillations are ubiquitous (Buzséaki 2006) and have been widely studied
77  with electroencephalography (EEG) and magnetoencephalography (MEG) (Luo et al.

78 2013, Landau et al. 2015) in human subjects. Here, we employ a novel method that uses
79  functional magnetic resonance imaging (fMRI) to investigate neural dynamics with

80  millimeter-level spatial resolution across the whole human brain. Specifically, we

81  combined fMRI, multi-voxel pattern decoding (Haxby 2012), and a time-resolved

82  behavioral priming paradigm (Huang, Chen, and Luo 2015, Landau and Fries 2012,

83  Fiebelkorn, Saalmann, and Kastner 2013, Song et al. 2014) to assess the fine spatio-

84  temporal profile. In an object priming experiment, a masked prime (i.e., a face or a house
85  image) initially activates a corresponding perceptual prediction, which is then compared
86  to asubsequent probe (i.e., a face or a house) that is either congruent or incongruent with
87  the perceptual prediction triggered by the prime (Huang, Chen, and Luo 2015). Critically,
88  we varied trial-by-trial stimulus onset asynchrony (SOA) between prime mask and probe
89  in small steps of 20 ms, from 200 ms to 780 ms. Thus, time-resolved profiles of the

90 dependent variables (i.e. behavioral measurements and fMRI responses) can be

91  reconstructed as a function of mask-to-probe SOA in steps of 20 ms (corresponding to a
92 50 Hz sampling frequency), representing the fine temporal course of the prediction

93  conveying processes triggered by the prime. Moreover, by examining the temporal
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94  relationships between congruent and incongruent conditions, we could also study the

95  multi-prediction coordination process. Recent studies used the time-resolved behavioral

96  measurement in combination with transcranial magnetic stimulation (TMS) and MEG

97  (Dugue, Roberts, and Carrasco 2016, Wutz et al. 2016). We were the first to take this

98  approach to fMRI with multi-voxel pattern decoding.

99 Figure 1A shows the experimental design. In each trial, a 150-ms probe was
100  preceded by a 33-ms priming stimulus, which was backward masked by a 100-ms mask
101  stimulus. Participants were asked to maintain fixation on a cross displayed in the center
102  of the screen and to make speeded responses to a probe stimulus (detecting a face or
103  house). The prime and probe were either congruent (prime is a face, probe is a face;
104  prime is a house, probe is a house) or incongruent (prime is a face and probe is a house;
105  orvice versa). For each participant, there were 12 repetitions for each of the four prime-
106  probe conditions at each of the 30 SOAs (from 200 to 780 ms in steps of 20 ms). To
107  avoid potential low-level effects of retinotopic adaptation, the size of the prime and probe
108  were different. We also presented face stimuli and house stimuli at different image
109  contrasts to facilitate the decoding of experimental conditions in brain regions of interest
110  (ROls), including Brodmann area 17 (BA17). Moreover, participants were instructed to
111  use their left and right hands, respectively, to make house and face responses. Therefore,
112  fMRI activity in motor cortex was also tied to corresponding experimental conditions for

113  the majority of correct response trials.
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115 Figurel. Experiment design and behavioral results.

116  (A) Experiment design. L eft: For each trial, a 150-ms probe was preceded by a 33-ms priming
117  stimulus, which was backward masked by a 100-ms mask stimulus. Critically, the mask-to-probe
118  stimulus onset asynchronies (SOAS) ranged from 200 ms to 780 ms in steps of 20 ms. Right: The
119  stimuli included two images, a high-contrast face and a low-contrast house. Prime and probe

120  stimuli were either the same (congruent) or different (incongruent), except that the probe was
121 always smaller than the prime. (B) Behavioral results of when the probe was a face. L eft:

122 Average raw RT time courses as a function of mask-to-probe SOA (200-780 ms in steps of 20
123 ms) for congruent (red, thin line) and incongruent (black, thin line) conditions. Average smoothed
124 (60 ms bin) RT time courses (n =18, mean + SEM) as a function of mask-to-probe SOA, for

125  congruent (red, thick line) and incongruent (black, thick line) conditions, which clearly show an
126  overall priming effect. Middle: Average RT slow trends across all the participants. Right:

127  Average smoothed-and-detrended RT time courses extracted by subtracting slow trends shown in
128  Middle from smoothed (60 ms bin) RT time courses shown in left (thick lines). (C) Behavioral
129  results of when the probe was a house.

130
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RESULTS
Behavioral results
All participants (n=18) performed well on the task (percent correct: 97+0.54%). For each
participant, we excluded reaction times (RTs) that were >3 SD from the mean across all
trials. RT time courses were then plotted as a function of mask-to-probe SOAs. For trials
in which the probe was a face (Figure 1B), effects of priming were clearly observed in
the raw RT time courses averaged across all participants, as the congruent condition (red,
thin line) reliably evoked faster RTs than the incongruent condition (black, thin line). To
estimate the RT time courses, we calculated smoothed RT time courses for each
participants, starting with probes that were presented from 200 ms to 260 ms (60 ms bin)
after the mask, then forward this procedure throughout the mask-to-probe SOAs (200 ms
to 780 ms) in step of 20 ms. Figure 1B shows the smoothed RT time courses averaged
across all participants for congruent condition (red, thick line) and incongruent condition
(black, thick line). To better examine the oscillatory pattern, we extracted slow trends of
RT time courses in each participant by using 2nd order polynomial fit to raw RT time
courses. After removing slow trends from the smoothed RT time courses in each
participant, oscillations of the RT time courses are evident (right panel). This observation
replicates the previous findings (Huang, Chen, and Luo 2015), suggesting the
effectiveness of our approach to study the dynamics of predictive coding in visual object
priming.

Due to perhaps individual differences in exact oscillatory frequency, previous
behavioral study (Huang, Chen, and Luo 2015) showed the oscillatory effect reducing

with increasing SOA in detrended RT time courses. However, no such effect was found
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154  in the present study. Note that while oscillation peaks were the largest during 0-200 ms in
155 that study (Huang, Chen, and Luo 2015), the present study focused on SOAs from 200
156  ms to 780 ms. Although the largest peaks might only occur at the beginning 200 ms of
157  the averaged data, the effect of oscillation apparently lasts longer than that. For trials in
158  which the probe was a house (Figure 1C), no reliable classical priming effect was

159  observed, presumably due to using a low-contrast house image (therefore, much more
160 difficult to detect than a high-contrast face image) and participants may have detected the
161  house probe simply based on it not being a high-contrast face. Accordingly, due to the
162  weak priming effects in house condition, further fMRI analyses focus on trials when the
163  probe was a face. Nonetheless, it is unlikely that our findings are idiosyncratic to face
164  processing, since significant theta-band oscillations were observed for house-probe

165  conditions when we further tested additional subjects with equal contrast face and house
166  images, complementing similar behavioral oscillation results that had been reported for
167  discriminations of other object categories (Drewes et al. 2015).

168 Theta-band oscillationsin fMRI patterns

169  fMRI response patterns were analyzed by using multi-voxel pattern analysis (MVPA) for
170  ROIs including areas in the inferior temporal cortex that are implicated for face

171  processing (FFA (Kanwisher, McDermott, and Chun 1997)) and for house processing
172 (PPA (Epstein and Kanwisher 1998)). Activation patterns in the left motor cortex (IMC),
173  right motor cortex (rMC), BA17, and anterior cingulate cortex (ACC) were also analyzed
174  for comparison. For every trial, the probe was decoded as a face or a house by using

175  MVPA based on fMRI activation patterns in these ROIs. MVPA classification accuracies

176  as a function of SOAs are shown in Figure 2.


https://doi.org/10.1101/148635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/148635; this version posted June 12, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

177 For the raw classification accuracies averaged across all participants, classical
178  priming effects were clearly observed, as the congruent condition (red, thin line) reliably
179  evoked higher classification accuracies than the incongruent condition (black, thin line).
180  To better examine the oscillatory pattern embedded in the MVPA classification

181  accuracies, follow what we have described above for analyzing the behavioral data, we
182  extracted slow trends of classification accuracies. Strikingly, a theta-band rhythm can be
183  clearly seen in the smoothed-and-detrended MVPA results in the FFA, PPA and IMC
184  (Figure 2A, 2C and 2E, right), consistent with the behavioral findings. Furthermore, the
185  oscillations under the congruent and incongruent conditions were in a type of temporally
186  switching relationships (Figure 1B). To examine the out-of-phase relationship between
187  the two conditions, we subtracted the temporal profiles of incongruent conditions (black)
188  from that of congruent conditions (red) for each participant. Oscillations in the effects of
189  priming (congruent — incongruent) averaged across participants are again evident in the

190 FFA, PPA and IMC (Figure 2B, 2D and 2F, left).
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Figure 2. Significant theta-band oscillations of fM RI patternsin the FFA, PPA and IMC.
(A) Results in the FFA. Left: Average raw classification accuracies as a function of mask-to-
probe SOA (200-780 ms) for congruent (red, thin line) and incongruent (black, thin line)
conditions. Average smoothed (60 ms bin) classification accuracies (n=18, mean + SEM) as a
function of mask-to-probe SOA, for congruent (red, thick line) and incongruent (black, thick line)
conditions, which show an overall priming effect. Middle: Average slow trends across all the
participants. Right: Average smoothed-and-detrended classification accuracies extracted by
subtracting slow trends shown in Middle from smoothed (60 ms bin) classification accuracies
shown in left (thick lines). (B) Results of the priming effect (congruent — incongruent) in the
FFA. Left: Average smoothed-and-detrended classification results of the priming effect. Right:
Average spectrum for detrended classification accuracies (extracted by subtracting slow trends
from the raw classification accuracies) as a function of frequency from 0 to 20 Hz for the priming
effect. The statistical threshold of significance (p < 0.05, multiple comparison corrected)
calculated by performing a permutation test was shown with dashed line. (C) Results in the PPA.
(D) Results of the priming effect in the PPA. (E) Results in the IMC. (F) Results of the priming
effect in the IMC.
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209 To further evaluate the periodicity, the detrended (not the smoothed-and-

210  detrended) priming effects were then converted into frequency domain (after zero

211  padding and application of a Hanning window) (Huang, Chen, and Luo 2015, Song et al.
212 2014) by using Fast Fourier transformation (FFT). The results are shown in Figure 2B,
213 2D and 2F. A peak of power in the theta-band is most noticeable. To quantify the

214  significance of the observed spectral power, we next performed a randomization

215  procedure by shuffling time courses of the MVPA classification accuracy for congruent
216  condition and incongruent condition independently for each participant 1000 times. After
217  each randomization, FFT was conducted on surrogate signals, generating a distribution of
218  spectral power for each frequency point from which we obtained statistical thresholds for
219  evaluating significance. The theta-band oscillations of the priming effects were

220  significant in the FFA, PPA and IMC (p < 0.05, multiple comparisons corrected). Results
221  of trials when the probe was a house are shown in Figure 3, no such significant theta-
222  band oscillations were found in the FFA, PPA and IMC (p < 0.05, multiple comparisons

223  corrected), consistent with our behavior results in FigurelB and 1C.

11
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224

225  Figure 3. Resultsof fMRI patternsin the FFA, PPA and IM C when the probe was a house.
226  (A) Results in the FFA. Left: Average raw classification accuracies as a function of mask-to-
227  probe SOA (200-780 ms) for congruent (red, thin line) and incongruent (black, thin line)

228  conditions. Average smoothed (60 ms bin) classification accuracies (n=18, mean + SEM) as a
229  function of mask-to-probe SOA, for congruent (red, thick line) and incongruent (black, thick line)
230  conditions. Middle: Average slow trends across all the participants. Right: Average smoothed-
231  and-detrended classification accuracies extracted by subtracting slow trends shown in Middle
232  from smoothed (60 ms bin) classification accuracies shown in left (thick lines). (B) Results of the
233  priming effect (congruent — incongruent) in the FFA. L eft: Average smoothed-and-detrended
234  classification results of the priming effect. Right: Average spectrum for detrended classification
235  accuracies (extracted by subtracting slow trends from the raw classification accuracies) as a

236  function of frequency from 0 to 20 Hz for the priming effect. The statistical threshold of

237  significance (p < 0.05, multiple comparison corrected) calculated by performing a permutation
238  test was shown with dashed line. (C) Results in the PPA. (D) Results of the priming effect in the
239  PPA. (E) Results in the rMC. (F) Results of the priming effect in the rMC.

240

241 For comparison, no significant theta-band oscillations were found in the rMC,

242  BAL7 and ACC (Figure 4). Note that participants used the right hand to report the face
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243  probe and the left hand to report the house probe. Given that hand movements are mainly
244 controlled by the contralateral hemisphere, our results for the left and right motor cortices
245  are thus also consistent with the behavioral RT results. Corresponding to that the

246  oscillation in RT time courses can be clearly seen when the probe was a face (Figure 1B),
247  there were significant theta-band oscillations in the IMC (Figure 2F); by contrast,

248  corresponding to no oscillation in RT time courses when the probe was a house (Figure
249  1C), there were no significant theta-band oscillations in the rMC (Figure 4B). This

250  contrast suggests that our results were unlikely caused some artifacts or data

251  preprocessing.
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254

255  Figure4. Nosignificant theta-band oscillationsin therM C, BA17 and ACC.

256  (A) Classification results when the probe was a face in the rMC. L eft: Average raw classification
257  accuracies as a function of mask-to-probe SOA (200-780 ms in steps of 20 ms) for congruent
258  (red, thin line) and incongruent (black, thin line) conditions. Average smoothed (60 ms bin)

259  classification accuracies as a function of mask-to-probe SOA, for congruent (red, thick line) and
260  incongruent (black, thick line) conditions. Middle: Average slow trends across all the

261  participants. Right: Average smoothed-and-detrended classification accuracies extracted by

262  subtracting slow trends shown in Middle from smoothed (60 ms bin) classification accuracies
263  shown in left (thick lines). (B) Classification results of the priming effect (congruent —

264  incongruent) when the probe was a face in the rMC. L eft: Average smoothed-and-detrended
265 classification results of the priming effect (congruent — incongruent). Right: Average spectrum
266  for detrended classification accuracies (extracted by subtracting slow trends from the raw

267  classification accuracies) as a function of frequency from 0 to 20 Hz for the priming effect

268  (congruent - incongruent). The statistical threshold of significance (p < 0.05, multiple

269  comparison corrected) calculated by performing a permutation test was shown with dashed line.
270  (C) Results in the BA17. (D) Results of the priming effect (congruent — incongruent) in the

271  BAL17. (E) Results in the ACC. (F) Results of the priming effect (congruent — incongruent) in the
272  ACC.

273

274 Nonetheless, to further demonstrate that the oscillatory components in the present
275  study were not introduced by any non-oscillatory artifacts or data preprocessing, we

276  generated 18 sets of non-oscillatory (peak at 400 ms) surrogate data, and performed the
277  identical analysis as how the real data were analyzed. No significant theta-band

278  oscillations were found with the surrogate data (Figure 5).
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281  Figureb5. Results of surrogate data.

282  (A) Slow trend and surrogate data of one participant. The slow trend is the slow trend of

283  congruent condition in the FFA, there were 18 different slow trends; the surrogate data were

284  generated by adding a Gaussian curve peaked at 400 ms and white noise (different for each

285  participant) to the slow trend for each participant. Thus, 18 sets of surrogate data were generated.
286  Subsequent analyses of these surrogate data are identical to how we analyzed the real data. (B)
287  Left: Averaged surrogate data (n=18, mean + SEM), smoothed (60 ms bin) as a function of mask-
288  to-probe SOA (200-780 ms in steps of 20 ms). Middle: Slow trends averaged across participants.
289  Right: Average smoothed-and-detrended data, extracted by subtracting slow trends shown in
290  Middle from smoothed (60 ms bin) data shown in left (thick lines). (C) Average spectrum for
291  detrended data (extracted by subtracting slow trends from the surrogate data without smoothing).
292  The statistical threshold of significance (p < 0.05, multiple comparison corrected) calculated by
293  performing a permutation test was shown with a dashed line.

294

295 More interestingly, the theta amplitude in the FFA significantly correlates with
296  the behavioral RT results for the face probe trials across participants, suggesting an
297  important functional role of the theta oscillation in mediating behavior. Specifically, a
298  peak was identified for each participant within the theta-band (3-8 Hz) of the priming
299  effect (congruent — incongruent) oscillations. The amplitude of this peak negatively

300 correlates with the RT in the congruent face-face condition (Pearson’s correlation r = -
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301 0.59, p<0.05, Bonferroni corrected) as well as in the incongruent house-face condition
302  (Pearson’s correlation r = -0.62, p < 0.05, Bonferroni corrected). Scatter plots of theta
303  oscillation amplitude and RT are shown in Figure 6. Despite moderate subject numbers, a
304  clear trend is visible for greater theta oscillation amplitude in the FFA corresponding to
305 faster reaction time to detect a face probe, suggesting that theta oscillations in the FFA
306 activity patterns may facilitate predictive coding of faces.
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307
308 Figure®6. Scatter plots of theta amplitude and RT.
309  The theta amplitude in the FFA negatively correlates with the RT in the FF (face-face) condition
310  (Left: Pearson's r = -0.59, p < 0.05, Bonferroni corrected) as well as in the HF (house-face)
311  condition (Right: Pearson's r = -0.62, p < 0.05, Bonferroni corrected).
312
313 Results in the left and right motor cortices of a spectrotemporal analysis on
314  detrended MVPA classification accuracies are shown in Figure 7A. This analysis
315  revealed fine dynamic structures of priming effects (congruent — incongruent), as a
316  function of frequency (0-25 Hz) and time (mask-to-probe SOA: 200-780 ms). Significant
317  (permutation test, p < 0.05, multiple-comparison corrected across frequencies) theta-band
318  oscillations (~5 Hz) were found in the IMC. By contrast, no significant theta-band
319  oscillations were found in the rMC. Figure 7B, left, shows respectively for congruent (red)
320  and incongruent (black) conditions of the power spectrum of detrended MVPA results in
321  the IMC. Significant theta-band power was found for both the congruent and the
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322 incongruent conditions (permutation test, p < 0.05, corrected). Interestingly, further phase
323  analysis revealed that the theta-band power of the congruent condition was reliably out of
324  phase with the incongruent condition (Rayleigh test, p = 0.03), and clustered around a
325 mean of -160.6° (Figure 7B, right), suggesting a competition-like relationship between
326  the two predictions (face and house) in motor cortex.

327 Moreover, when the FFA and PPA MVPA classification accuracies were

328  combined (Figure 7C and 7D), the theta-band power of the congruent condition was

329 reliably out of phase with the incongruent condition (Rayleigh test, p = 0.03), and

330 clustered around a mean of -120.7°. On the one hand, it is possible that combining the
331 FFAand PPA simply increased the statistical power to reveal the out of phase

332 relationship between the congruent and incongruent conditions. On the other hand, this
333  result may imply that decoding face/non-face probe detections could have been benefited
334  from MVPA of not only the FFA but also the PPA -- as for example, while patterns in the
335 FFA may encode faces, patterns in the PPA may contribute to decode that a house (thus

336  nota face) was detected.
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Figure 7. Oscillations of the priming effect (congruent —incongr uent).

(A) Time-frequency power profiles (n=17) for detrended classification accuracies (extracted by
subtracting slow trends from the raw classification accuracies) as a function of mask-to-probe
SOA (200-780 ms) and frequency (0-25 Hz) in the IMC (left) and rMC (right). Areas enclosed by
dashed lines represent statistical significance (p < 0.05, multiple comparison corrected) calculated
by performing permutation tests. (B) Left: Average spectrum for detrended classification
accuracies as a function of frequency from 0 to 20 Hz for congruent (red) and incongruent (black)
conditions in the IMC. Dashed lines represent the statistical thresholds of significance (p < 0.05,
multiple comparison corrected) calculated by performing permutation tests. Right: Polar plots
for the distribution of phase differences between congruent and incongruent conditions in the
theta-band (4-6Hz) in the IMC. The red line indicates the mean congruent — incongruent theta-
band phase difference across participants. (C) Time-frequency power profile for detrended
classification accuracies in the FFA+PPA results. (D) L eft: Average spectrum for detrended
classification accuracies for congruent (red) and incongruent (black) conditions in the FFA+PPA
results. Right: Polar plots for the distribution of phase differences between congruent and
incongruent conditions in the theta-band (4-6Hz).

Distinct cortical distributions of theta and alpha oscillations

To further examine the cortical distribution of theta-band oscillations, a whole-brain
searchlight analysis was conducted. For each participant, voxels were extracted from a
spherical searchlight with a two-voxel radius (33 voxels in each searchlight including the
central voxel), and then MVPA was performed using this spherical searchlight ROI,

which moved throughout each participant’s whole brain gray matter-masked data.
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361  Frequency analyses were conducted for each searchlight ROI to calculate the power of
362 theta-band oscillations, and then the results were assigned to the central voxel of the

363  sphere searchlight. After normalization (Z-score) across all voxels, clusters with

364  significant power (p < 10™) and size (>15 voxels) were localized. Thus, a significant

365 cluster indicates that MVPA classification accuracy of the probe fluctuated as a function
366  of SOA in the theta band.

367 For comparisons, the same searchlight procedure was also performed to map

368  clusters (>15 voxels, except one subject >11 voxels, p < 10™) of significant alpha-band
369  (8-13 Hz) oscillations across the whole brain. Abundant EEG and MEG studies have
370  demonstrated that alpha-band oscillations were predominantly observable in occipital
371  sites (Thut et al. 2006), and we are the first to map the alpha-band oscillations using

372  fMRI. Alpha oscillations correlate with cortical inhibition (Ray and Cole 1985, Palva and
373  Palva 2007), and the ongoing occipital alpha oscillations have been argued to play direct
374  functional roles in attention and perception mechanisms (VanRullen and Koch 2003,
375  Busch and VanRullen 2010, Dugue, Marque, and VanRullen 2011, Jensen, Bonnefond,
376  and VanRullen 2012). Moreover, the cross-frequency coupling between alpha and theta
377  oscillations has been reported recently by using time-resolved RT measurements (Huang,
378  Chen, and Luo 2015, Song et al. 2014).

379 Figure 8A shows percentages (Y-axis) of participants, in whom significant

380 clusters were found based on the searchlight analysis in the occipital, temporal, parietal,
381 and frontal lobes. Remarkably, at least one cluster of theta oscillations was reliably found
382 in the temporal cortex in all participants (100%), whereas at least one cluster of alpha

383  oscillations was reliably found in the occipital cortex of all participants (100%). By
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384  contrast, this level of concentration was not seen for parietal and frontal cortices, given
385 the criterion we used to localize the clusters is fairly stringent and on average only 2.5
386  clusters for theta oscillations and 4.3 clusters for alpha oscillations were found per each
387  participant. Using Freesurfer and an atlas-based automatic surface parcellation (Desikan
388  etal. 2006, Fischl et al. 1999, Fischl et al. 2004), spatial distributions of brain regions that
389  exhibited significant theta-band and alpha-band power are further shown in Figure 8B
390 and 8C, respectively. The magnitude of the color scale in Figure 8B and 8C indicates the
391  number of significant clusters per 1000 mm? that were found in the marked atlas-based
392  anatomical regions of interest. Gray-colored areas indicate there was no significant

393  cluster, whereas yellow indicates there were ~4 significant clusters per 1000 mm?in each
394  of the marked parcellated cortical regions. Differences between the two distributions are
395  obvious: most of the regions with significant theta-band oscillations were in the temporal
396  cortex, and most of the regions with significant alpha-band oscillations were in the

397  occipital cortex.
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399  Figure8. Different spatial distributions of theta-band and alpha-band oscillations.

400  (A) Y-axis indicates the percentages of participants, in whom significant clusters were found
401  based on the searchlight analysis in the occipital, temporal, parietal, and frontal lobes. Significant
402  clusters of theta-band oscillations were found in the temporal lobe of every participant (100%),
403  whereas significant clusters of alpha-band oscillations were found in the occipital lobe of every
404  participant (100%), far more concentrated and robust than any other lobes. (B) The cortical

405  distribution map of theta-band oscillations. The magnitude of the color scale indicates the number
406  of significant clusters per 1000 mm? that were found in the marked atlas-based anatomical

407  regions of interest. Gray-colored areas indicate there was no significant cluster, whereas yellow
408 indicates there were ~4 significant clusters per 1000 mm? in each of the marked parcellated

409  cortical regions. (C) The cortical distribution map of alpha-band oscillations.

410
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DISCUSSION
These combined psychophysical and neuroimaging results provide important constraints
on the hypothesized links between theta rhythms and dynamic predictive coding. Multi-
voxel activation patterns in the FFA and PPA have been suggested to encode object
categories (Haxby 2012, Haxby et al. 2001, Haynes and Rees 2006), and here we also
demonstrated classical priming effects in FFA and PPA. More interestingly, however, our
study revealed that multi-voxel activation patterns in these brain areas are not stationary
but fluctuate as a function of mask-to-probe relation at a theta-band rhythm. This
fluctuation is sustained across the tested SOA periods over which we can discount
hemodynamic lags, since we were comparing trial-by-trial differences as a function of
mask-to-probe SOA, assuming that hemodynamic lags in a same ROl are always
comparable across trials. Thus, rather than bottom-up perceptual responses to the
incoming stimulus, our findings more likely reveal effects of the memory traces (priming)
that mediate predictive coding. This result is consistent with the hypothesis that
perception is modulated by ongoing theta oscillations whose phase is reset by priming
(Huang, Chen, and Luo 2015, Busch, Dubois, and VanRullen 2009, Song et al. 2014,
Romei, Gross, and Thut 2012), but, crucially, is the first to show that theta rhythms in the
fluctuation of multi-voxel activity patterns are linked to predictive coding effects. Indeed,
greater theta oscillation amplitude in the FFA significantly correlated to faster reaction
time to detect a face probe, directly supporting the functional link.

By using fMRI and a whole-brain searchlight analysis, we were further able to
map more precisely the cortical distributions of various brain rhythms. Alpha oscillations

were concentrated in the occipital lobe, which is consistent with previous EEG and MEG
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436  reports (Thut et al. 2006), whereas theta oscillations were concentrated in the temporal
437 lobe, suggesting distinct functional roles theta-band oscillations may play. Moreover,
438  given that an fMRI voxel may contain millions of neurons (Logothetis 2008), fluctuations
439  of activity of a small number of neurons are unlikely to cause fluctuations of multi-voxel
440  fMRI activity patterns. What we have observed through fMRI and MVPA thus

441  presumably reflects rhythmic ensemble responses across distributed populations of

442  neurons (Haxby 2012, Kriegeskorte et al. 2008, Guo and Meng 2015).

443 Note that the temporal profiles of FFA, PPA and IMC are different in phase and
444 frequency, suggesting that the observed theta oscillations were unlikely underlying

445  possible long-range coordination of activity in these brain areas. We thus propose that
446  priming leads to a reset of ongoing theta-band oscillations, which were recently reported
447  to be involved in attention and predictive coding (Huang, Chen, and Luo 2015, Landau
448  and Fries 2012, Fiebelkorn, Saalmann, and Kastner 2013, Song et al. 2014). And because
449  the SOA varied in small steps (20 ms), the subsequent probe was processed at different
450  phase of this reset oscillation, enabling us to observe the periodic neuroimaging pattern.
451  To rule out the possibility that artifacts or data preprocessing could have introduced

452  oscillatory signatures into our results, we generated sets of surrogate non-oscillatory data,
453  and performed the exact analysis procedure as how the real data was analyzed. No

454 significant theta-band oscillations were found with the surrogate data (Figure 5). It

455  remains possible that the fine-scale temporal profiles we found in the FFA, PPA and IMC
456  were not really oscillatory, but only peaking a few times within the limited SOA range

457  that we had examined. Future studies can further investigate this possibility by using a
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458  longer SOA range. Nevertheless, the present study revealed relatively fine-scale temporal
459  dynamics of fMRI activity patterns.

460 Our study provides a feasible strategy that incorporates fMRI and MVPA to

461  investigate the dynamics of ensemble coding across distributed populations of neurons.
462  Despite the hemodynamic lag, fMRI has been combined with novel behavioral paradigms
463  to probe neural responses at the time scale of tens of milliseconds, since neuronal

464  electrical activity and the fMRI signal are reliably coupled at this level of temporal

465  precision (Ogawa et al. 2000, Formisano et al. 2002, Dux et al. 2006). Specifically, one
466  of these previous studies (Dux et al. 2006) compared fMRI responses in two different
467  SOA conditions (a short SOA and a long SOA), demonstrating that fMRI can be used to
468  measure temporal dynamics of visual processing.

469 MVPA has been shown to have better temporal resolution than the univariate
470  measurement of BOLD activity change (Kohler et al. 2013). It is therefore expected that
471  the time-resolved strategy we advocate should be more sensitive than conventional fMRI
472  approaches to detect the dynamics of trial-by-trial fluctuation in population coding as a
473  function of SOA. Consistent with this notion, we conducted the same spectrum analysis
474  with univariate averaged BOLD responses in the FFA, PPA, and IMC (Figure 9). There
475  were no significant theta-band oscillations in the univariate averaged FFA or PPA

476  activity. And while theta-band oscillation was found in the IMC, it did not show

477  significant out-of-phase relationship between the congruent and incongruent conditions
478  (Rayleigh test, p = 0.17). These results differ from the MVPA results shown in Figure 2
479  and Figure 7, confirming that multi-voxel fMRI activity patterns instead of merely

480 averaged fMRI activity fluctuate.
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Figure9. Results of univariate averaged BOL D responsesin the FFA, PPA and IMC.
(A) Results of when the probe was a face in the FFA. Left: Averaged BOLD responses as a
function of mask-to-probe SOA (200-780 ms in steps of 20 ms) for congruent (red, thin line) and
incongruent (black, thin line) conditions. Smoothed (60 ms bin) BOLD responses (n=18, mean +
SEM) as a function of mask-to-probe SOA, for congruent (red, thick line) and incongruent (black,
thick line) conditions, show an overall priming effect (the congruent condition evoked overall
greater BOLD responses than the incongruent condition). Middle: Average slow trends across all
the participants. Right: Average smoothed-and-detrended BOLD responses extracted by
subtracting slow trends shown in Middle from smoothed (60 ms bin) BOLD responses shown in
left (thick lines). (B) Results of the priming effect (congruent — incongruent) when the probe was
a face in the FFA. L eft: Average smoothed-and-detrended BOLD results of the priming effect
(congruent - incongruent). Right: Average spectrum for detrended BOLD responses (extracted
by subtracting slow trends from the raw BOLD responses) as a function of frequency from 0 to
20 Hz for the priming effect (congruent — incongruent). The statistical threshold of significance
(p < 0.05, multiple comparison corrected) calculated by performing a permutation test was shown
with dashed line. (C) Results in the PPA. (D) Results of the priming effect (congruent —
incongruent) in the PPA. (E) Results in the IMC. (F) Results of the priming effect (congruent —
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incongruent) in the IMC. While a significant 15-17 Hz component can also be generally seen in
B, D, and F, as well as B in S1 Figure and B in Figure 2, it may be caused by artifacts from
acoustic noises generated by our EPI sequence (17.5 Hz). We thus choose to not discuss this 15-
17 Hz component further in the main text.

To conclude, we combined fMRI and a time-resolved psychophysical paradigm to
investigate the dynamic neural mechanism underlying visual object priming. Specifically,
multi-voxel activity patterns in the FFA and the PPA show temporal fluctuations at a
theta-band (~5 Hz) rhythm, suggesting the critical role of theta oscillations in the inferior
temporal cortex during visual object priming. Our strategy is obviously not limited to the
theta-band and predictive coding, and future studies may take similar approaches to better

understand other mechanisms underlying brain dynamics.

Materialsand methods

Participants.

Eighteen healthy adults (7 females; mean age 26 years; all right handed) participated in
this two-session fMRI experiment. All participants had normal or corrected-to-normal
visual acuity and gave written informed consent. This study was approved by the
Dartmouth College Committee for the Protection of Human Subjects.

MRI acquisition.

Participants were scanned using a 3T Philips Achieva Intera scanner with a 32-channel
head coil at the Dartmouth Brain Imaging Center. An echo-planar imaging (EPI)
sequence (2000 ms TR; 35 ms TE; 3 x 3 x 3 mm voxel size; 35 slices) was used to
measure the BOLD contrast. For each participant, a high-resolution T1-weighted

anatomical scan was acquired at the beginning (or the end) of each scan session (8.2 ms
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TR; 3.8 ms TE; 1 x 1 x 1 mm voxel size; 222 slices). During the EPI scans, visual stimuli
were presented to a screen located at the back of the scanner via a LCD projector
(Panasonic PT-D4000U) using MATLAB 2011b with Psychtoolbox(Brainard 1997).
Participants viewed the stimuli using a mirror placed within the head coil.

Region of Interest (ROI) localizer runs.

An independent set of gray-scale face and house images was used to localize the ROls.
The localizer scans consisted of an alternating block design, with 5 blocks presenting face
images and 5 blocks presenting house images interleaved with 16-s periods of a blank
screen with a fixation cross in the center of the screen. Each stimulus block was also 16-s
long. In total, each localizer scan run was 336-s long, consisting of 11 periods of fixation
and 10 stimulus blocks. In each stimulus block, 16 faces (or houses) were presented (500
ms per image, with a 500-ms interstimulus interval). Fifteen participants completed two
localizer scans, and three participants completed three localizer scans. During localizer
scans, participants performed a new face (or house) detection task in which they were
asked to use their right hand to make a key-press whenever a new face was presented and
their left hand to make a key-press whenever a new house was presented. Twelve new
faces/houses were presented in each block. This task also allowed us to localize the left
and right motor cortices as ROIs by contrasting BOLD responses corresponding to right-
hand button presses vs. left-hand button presses.

Experimental runs.

Each participant completed 24 experimental scan runs in two sessions on two separate
days. Each experimental scan run was 368-s long, consisting of 90 trials and two 4-s

periods (at the beginning and the end of each run) of a blank screen with a fixation cross
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in the center of the screen. As shown in Figure 1A, each trial was 4-s long, and presented
in a semi-randomized order with a rapid event-related design. In each trial, a 150-ms
probe was preceded by a 33-ms prime stimulus which was backward masked by a 100-ms
mask stimulus. Critically, the mask-to-probe SOAs ranged from 200 to 780 ms in steps of
20 ms, corresponding to a sampling frequency of 50 Hz. The stimuli included two images,
a high-contrast face and a low-contrast house. The high contrast level was defined with
root mean square (RMS) = 0.25 in normalized unit, whereas the low contrast level RMS
= 0.025. Corresponding contrasts of the face image and the house image were made by
using the SHINE toolbox (Willenbockel et al. 2010). The probe and the prime were either
the same (congruent conditions: Face-prime followed by Face-probe; House-prime
followed by House-probe) or different (incongruent conditions: Face-prime followed by
House-probe; House-prime followed by Face-probe), except that the probe (5.8°) was
smaller than the prime (8.7°) to avoid any possible low-level effects of retinotopic
adaptation (Figure 1A). In total, there were 2160 trials for each participant: 12 repetitions
for each of the four prime-probe conditions at each of the 30 SOAs (from 200 to 780 ms
in steps of 20 ms). Participants were asked to report whether the probe was a face (right
hand button press) or a house (left hand button press) with speeded responses.

MR I mage preprocessing.

AFNI (Cox 1996)(http://afni.nimh.nih.gov/afni) was used for preprocessing the MRI data.
EPIs were slice timing corrected, motion corrected to the image acquired closest to the
anatomical images, spatially smoothed with a 4-mm full width at half maximum filter
(FWHM), and temporally filtered to remove baseline drifts. Based on the anatomical

images acquired in each of the two sessions, mean anatomical images were computed to
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572  remove the bias of either session. All EPIs were then aligned to the mean anatomical

573  images.

574  Functional ROI localization.

575  Data from the ROIs localizer scans were further submitted to a General Linear Model
576  (GLM) analysis, which calculated the beta coefficient values associated with block

577  conditions. ROIs were individually defined for each participant based on activation maps
578  from the GLM analysis. Among them, four were defined as a continuous cluster of

579  activated voxels corresponding to the following GLM contrasts: the FFA was defined in
580 the middle fusiform gyrus as responding more strongly to faces than to houses; the PPA
581  was defined in the parahippocampal gyrus as responding more strongly to houses than to
582  faces; the left motor cortex was defined as responding more strongly to right-hand button
583  presses than to left-hand button presses; and the right motor cortex was defined as

584  responding more strongly to left-hand button presses than to right-hand button presses .
585  To control for any potential confounding effects of ROI size, the statistical contrast

586  threshold was adjusted individually (maximum p < 10, uncorrected) to roughly match
587  the size of each of these ROIs (~40 voxels). Using this threshold, however, did not allow
588  for the localization of the motor cortex ROI in one participant. Therefore, subsequent
589 ROl analysis of the motor cortex did not include this participant. Next, data from the ROI
590 localizer scan runs were aligned to Talairach space using the TT_N27 template. For each
591  participant, Brodmann area 17 (BA17) was localized using an anatomical mask based on
592  TT_N27 template as well as GLM activation maps, which include activated voxels in the
593 calcarine sulcus that responded more strongly during stimulation blocks than during

594  fixation periods (maximum p < 10, uncorrected). The size of the BA17 ROl was on
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595 average 100 voxels. Similarly, data from the experimental scan runs were aligned to the
596  Talairach space (TT_N27 template) and were submitted to a GLM analysis to calculate
597 the beta coefficient values associated with congruent conditions (Face-prime followed by
598  Face-probe; House-prime followed by House-probe) and incongruent conditions (Face-
599  prime followed by House-probe; House-prime followed by Face-probe). The GLM

600  activation map corresponding to congruent vs. incongruent differences (p < 107,

601 uncorrected, ~40 voxels) was used to localize the ROI of anterior cingulate cortex (ACC).
602 Univariate averaged BOL D response and multivariate patter n classfication

603 analyses.

604  For each participant, we extracted the averaged activation values across all voxels in each
605 ROI to analyze the univariate BOLD response changes. Percent BOLD signal change was
606 calculated for each trial by using the average of the last TR before and the first TR after
607 the trial onset as the baseline. Subsequent analyses focused on the peak percent signal
608 change amplitude at the third TR (6s) from the trial onset. Multivariate pattern analyses
609 (MVPA) were performed using PYMVPA (Hanke et al. 2009). We extracted the

610 activation values of all voxels in each ROI for each trial, removing the mean intensity of
611 the ROI, to compute the multi-voxel activation pattern based on the third TR (6s) from
612 the trial onset. Pattern classifications of the face probe condition and the house probe

613  condition were then performed with linear support vector machines (SVMs) using a

614  leave-one-trial-out cross-validation procedure.

615 Analysesof frequency and phase.

616  Analyses of frequency and phase were performed with MATLAB (The MathWorks)

617  using functions from the EEGLAB toolbox (Delorme and Makeig 2004) and CircStat
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618  toolbox (Berens 2009). First, we calculated the temporal profile of RTs/averaged BOLD
619  responses/MVPA classification accuracies as a function of SOA from 200 to 780 ms in
620  steps of 20 ms (50 Hz sampling frequency) for each condition (congruent and

621  incongruent). For each participant, in order to extract the slow developing trend, raw
622  RTs/averaged BOLD responses/MVPA classification accuracies of each condition were
623  fitted to a second order polynomial function. We then subtracted the slow trend from
624  corresponding temporal profile for each participant to obtain detrended RTs/averaged
625 BOLD responses/MVPA classification accuracies separately for each condition to

626  remove possible interferences from classical priming and expectancy effects. Next, to
627  further investigate the oscillatory patterns of priming effects, we subtracted the detrended
628  temporal profiles of incongruent conditions from congruent conditions. To investigate the
629  spectral characteristics of the detrended priming effects, we then conducted spectrum
630 analysis separately for each participant. Specifically, we performed a Fast Fourier

631 transformation (FFT) to convert the detrended priming effects into the frequency domain
632  (after zero padding and application of a Hanning window). In this study the FFT length
633  was 160 data points and the window size was 40 data points. Also, to examine the phase
634  relationships between the congruent and incongruent conditions, testing for

635  nonuniformity for congruent — incongruent phase differences in the theta-band (4-6 Hz)
636  across participants was conducted using circular statistics (Rayleigh test for

637  nonuniformity for circular data in CircStats toolbox). We further performed a

638  randomization procedure by shuffling the RTs/averaged BOLD responses/MVPA

639 classification accuracies for congruent condition and incongruent condition respectively

640  within each participant to assess the statistical significance of the observed spectral power
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641 as well as the congruent — incongruent phase relationship. After each randomization, we
642  conducted FFT on surrogate signals, similar to that of the original data analysis; we

643  repeated this procedure 1000 times, arriving at a distribution of spectral power for each
644  frequency point from which we obtained the p < 0.05 threshold (uncorrected). We then
645  applied multiple comparison correction to the uncorrected randomization threshold

646  spectrum profile. Similarly, for each randomization, we conducted the same phase

647  analysis on the surrogate signals by calculating cross-participant coherence in the

648  congruent — incongruent phase difference.

649 Time-frequency analyss.

650 To assess MVPA classification accuracies as a function of time (mask-to-probe SOA)
651 and frequency, the detrended temporal profile for each condition was transformed using
652  the continuous complex Gaussian wavelet (order = 4; e.g., FWHM =1.32 s for 1 Hz

653  wavelet) transforms (Wavelet toolbox, MATLAB), with frequencies ranging from 1 to 25
654  Hz in steps of 2 Hz. The power profile of detrended classification accuracies (squared
655  absolute value) as a function of time and frequency was then extracted from the output of
656  the wavelet transform. Power profiles for priming effects (congruent — incongruent) were
657  calculated for each participant separately. The grand mean of time-frequency power was
658 then calculated by averaging across participants. We further performed a randomization
659  procedure to assess the statistical significance of the power profiles for priming effects
660  (congruent — incongruent), by shuffling the labeling of SOAs. After each randomization,
661 the same time-frequency analysis was performed on the surrogate signals, as that

662  performed in the original data analysis. This procedure was repeated 1000 times and

663  resulted in a distribution of power at each time-frequency point, from which the p < 0.05
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664  threshold (uncorrected) was obtained. The cross-frequency multiple-comparison

665  correction was then further applied to the uncorrected randomization threshold time-

666  frequency map.

667 Whole-brain searchlight analysis.

668 A whole brain searchlight analysis (Kriegeskorte, Goebel, and Bandettini 2006)was

669  conducted to identify brain regions where significant theta-band (3-6 Hz) and alpha-band
670  (8-11 Hz) oscillations occurred. For each participant, voxels were extracted from a

671  spherical searchlight with a two-voxel radius (33 voxels in each searchlight including the
672  central voxel) and then MVVPA was performed using this spherical searchlight ROI. The
673  searchlight moved throughout each participant’s gray matter-masked data using

674 PyMVPA (Hanke et al. 2009). For each searchlight corresponding to a central voxel (i.e.,
675  each voxel across the whole gray matter mask), a linear SVM learning algorithm was
676  trained and tested to examine pair-wise classification performance for face probe vs.

677  house probe conditions. To ensure independence between training and testing, cross-
678  validations were performed between even scan runs and odd scan runs (train on even runs,
679  test on odd runs; and vice versa). Next, frequency analyses were conducted for each

680  searchlight ROI to calculate the power of theta-band and alpha-band oscillations, and
681  then the results were assigned to the central voxel of the sphere searchlight. After

682  normalization (Z-score) across all voxels, clusters with significant power (p < 10™) and
683  size >15 voxels (except one subject for alpha-band cluster >11 voxels) were localized.
684  Percentages of participants with clusters in the temporal, parietal, frontal and occipital
685  lobes were calculated separately for theta-band and alpha-band oscillations. Further, to

686  show the spatial distribution of brain regions that exhibited significant theta-band and
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687  alpha-band power, Freesurfer was used to generate atlas-based automatic surface

688  parcellation and to map the concentration by numbers of theta and alpha oscillation
689  clusters per 1000 mm? in each of the parcellated cortical regions.

690
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