

1

2 **Fluctuations of fMRI activation patterns reveal theta-band**

3 **dynamics of visual object priming**

4

5

6

7 Bingbing Guo¹, Zhengang Lu², Jessica E. Goold³, Huan Luo^{4,5,*}, Ming Meng^{1,3*}

8

9

10 ¹School of Psychology, South China Normal University, Guangzhou, 510631, China;

11 ²Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, 21218,

12 USA; ³Department of Psychological and Brain Sciences, Dartmouth College, Hanover,

13 NH, 03755, USA; ⁴Department of Psychology, Peking University, Beijing, 100871,

14 China; ⁵IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871,

15 China

16

17 *Corresponding author: ming.meng@dartmouth.edu

18 huan.luo@pku.edu.cn

19

20

21 **AUTHOR CONTRIBUTIONS**

22 B.G., H.L. and M.M. designed research. B.G., Z.L., J-E.G. and M.M. performed research.

23 B.G., H.L. and M.M. analyzed data. B.G., H.L. and M.M. interpreted the results and wrote

24 the paper.

25

26

27

28

29 ABSTRACT

30 The brain dynamically creates predictions about upcoming stimuli to guide perception
31 efficiently. Recent behavioral results suggest theta-band oscillations contribute to this
32 prediction process, however little is known about the underlying neural mechanism. Here,
33 we combine fMRI and a time-resolved psychophysical paradigm to access fine temporal-
34 scale profiles of the fluctuations of brain activation patterns corresponding to visual
35 object priming. Specifically, multi-voxel activity patterns in the fusiform face area (FFA)
36 and the parahippocampal place area (PPA) show temporal fluctuations at a theta-band (~5
37 Hz) rhythm. Importantly, the theta-band power in the FFA negatively correlates with
38 reaction time, further indicating the critical role of the observed cortical theta oscillations.
39 Moreover, alpha-band (~10 Hz) shows a dissociated spatial distribution, mainly linked to
40 the occipital cortex. These findings, to our knowledge, are the first fMRI study that
41 indicates temporal fluctuations of multi-voxel activity patterns and that demonstrates
42 theta and alpha rhythms in relevant brain areas.

43

44

45

46

47

48

49

50

51 **INTRODUCTION**

52 To efficiently interact with an ever-changing environment, it has been proposed that the
53 brain generates perceptual predictions about forthcoming stimuli based on previously
54 primed hypothesis (Heekeren, Marrett, and Ungerleider 2008, Bar 2009, Gorlin et al.
55 2012, Rao and Ballard 1999, Engel, Fries, and Singer 2001, Summerfield et al. 2006). In
56 circumstances containing multiple predictions, it would make sense that multiple
57 predictions are dynamically coded and organized to maximize the efficiency of
58 anticipation. Consistent with this notion, recent human behavioral results, using a visual
59 priming paradigm, reveal that competing perceptual predictions are temporally
60 coordinated in competing theta-band waves (i.e., being conveyed in various phase of the
61 theta-band oscillations) (Huang, Chen, and Luo 2015). However, little is known about the
62 neural mechanisms underlying this rhythmic coordination.

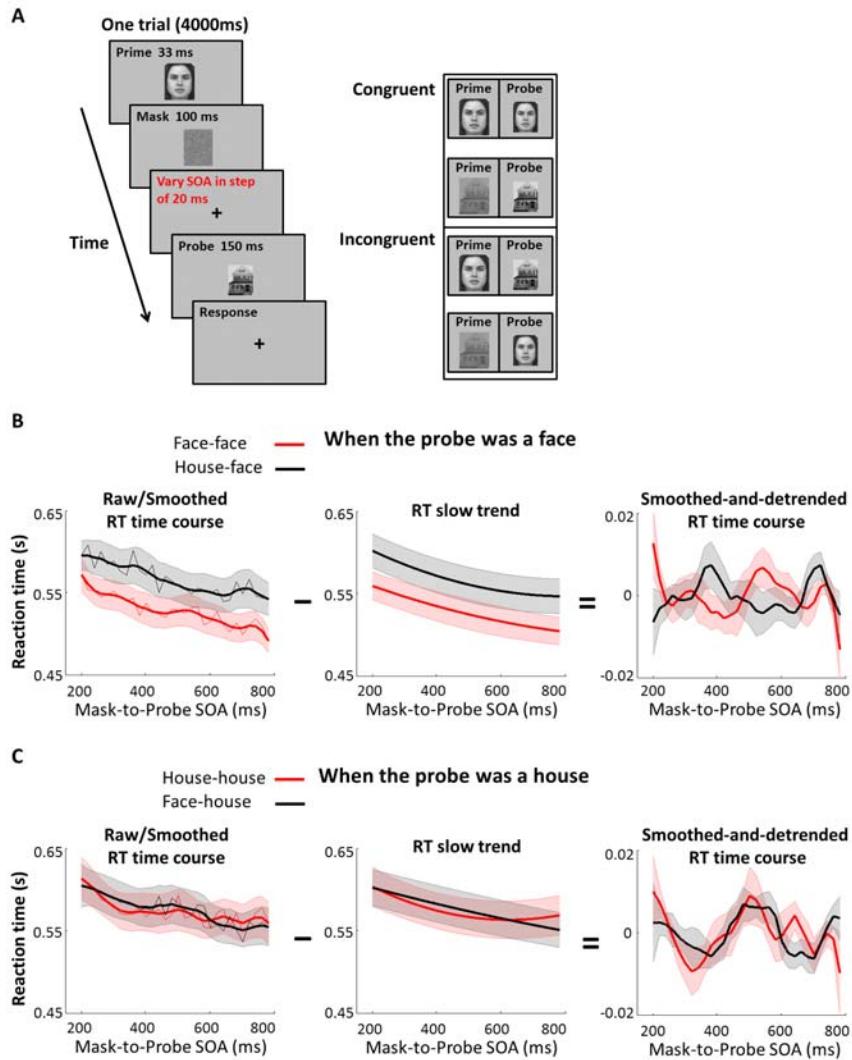
63 Theta-band (3-8 Hz) neuronal oscillations have been demonstrated in perception,
64 memory, and attention (Lisman and Idiart 1995, VanRullen and Koch 2003, Busch and
65 VanRullen 2010, Landau and Fries 2012, Luo et al. 2013, Fiebelkorn, Saalmann, and
66 Kastner 2013, Landau et al. 2015). Here we focus on the neural basis of the rhythmic
67 activities in visual object priming, by examining the temporal dynamics in several related
68 brain areas. First, since a face or a house image was used to be the prime/probe stimulus,
69 we would expect to find theta-band rhythms in the fusiform face area (FFA (Kanwisher,
70 McDermott, and Chun 1997)) and the parahippocampal place area (PPA (Epstein and

71 Kanwisher 1998)). Alternatively, theta rhythms might be also found in early sensory
72 processing brain areas if the theta oscillations are due to rate limitations on sensory
73 sampling. Finally, it is also possible that the rhythm might reflect rate constraints of
74 attentional selection and thus would be revealed in high-level brain areas such as parietal
75 and frontal cortex.

76 Neural oscillations are ubiquitous (Buzsáki 2006) and have been widely studied
77 with electroencephalography (EEG) and magnetoencephalography (MEG) (Luo et al.
78 2013, Landau et al. 2015) in human subjects. Here, we employ a novel method that uses
79 functional magnetic resonance imaging (fMRI) to investigate neural dynamics with
80 millimeter-level spatial resolution across the whole human brain. Specifically, we
81 combined fMRI, multi-voxel pattern decoding (Haxby 2012), and a time-resolved
82 behavioral priming paradigm (Huang, Chen, and Luo 2015, Landau and Fries 2012,
83 Fiebelkorn, Saalmann, and Kastner 2013, Song et al. 2014) to assess the fine spatio-
84 temporal profile. In an object priming experiment, a masked prime (i.e., a face or a house
85 image) initially activates a corresponding perceptual prediction, which is then compared
86 to a subsequent probe (i.e., a face or a house) that is either congruent or incongruent with
87 the perceptual prediction triggered by the prime (Huang, Chen, and Luo 2015). Critically,
88 we varied trial-by-trial stimulus onset asynchrony (SOA) between prime mask and probe
89 in small steps of 20 ms, from 200 ms to 780 ms. Thus, time-resolved profiles of the
90 dependent variables (i.e. behavioral measurements and fMRI responses) can be
91 reconstructed as a function of mask-to-probe SOA in steps of 20 ms (corresponding to a
92 50 Hz sampling frequency), representing the fine temporal course of the prediction
93 conveying processes triggered by the prime. Moreover, by examining the temporal

94 relationships between congruent and incongruent conditions, we could also study the
95 multi-prediction coordination process. Recent studies used the time-resolved behavioral
96 measurement in combination with transcranial magnetic stimulation (TMS) and MEG
97 (Dugue, Roberts, and Carrasco 2016, Wutz et al. 2016). We were the first to take this
98 approach to fMRI with multi-voxel pattern decoding.

99 Figure 1A shows the experimental design. In each trial, a 150-ms probe was
100 preceded by a 33-ms priming stimulus, which was backward masked by a 100-ms mask
101 stimulus. Participants were asked to maintain fixation on a cross displayed in the center
102 of the screen and to make speeded responses to a probe stimulus (detecting a face or
103 house). The prime and probe were either congruent (prime is a face, probe is a face;
104 prime is a house, probe is a house) or incongruent (prime is a face and probe is a house;
105 or vice versa). For each participant, there were 12 repetitions for each of the four prime-
106 probe conditions at each of the 30 SOAs (from 200 to 780 ms in steps of 20 ms). To
107 avoid potential low-level effects of retinotopic adaptation, the size of the prime and probe
108 were different. We also presented face stimuli and house stimuli at different image
109 contrasts to facilitate the decoding of experimental conditions in brain regions of interest
110 (ROIs), including Brodmann area 17 (BA17). Moreover, participants were instructed to
111 use their left and right hands, respectively, to make house and face responses. Therefore,
112 fMRI activity in motor cortex was also tied to corresponding experimental conditions for
113 the majority of correct response trials.



114

115 **Figure 1. Experiment design and behavioral results.**

116 (A) Experiment design. **Left:** For each trial, a 150-ms probe was preceded by a 33-ms priming
 117 stimulus, which was backward masked by a 100-ms mask stimulus. Critically, the mask-to-probe
 118 stimulus onset asynchronies (SOAs) ranged from 200 ms to 780 ms in steps of 20 ms. **Right:** The
 119 stimuli included two images, a high-contrast face and a low-contrast house. Prime and probe
 120 stimuli were either the same (congruent) or different (incongruent), except that the probe was
 121 always smaller than the prime. (B) Behavioral results of when the probe was a face. **Left:**
 122 Average raw RT time courses as a function of mask-to-probe SOA (200-780 ms in steps of 20
 123 ms) for congruent (red, thin line) and incongruent (black, thin line) conditions. Average smoothed
 124 (60 ms bin) RT time courses ($n=18$, mean \pm SEM) as a function of mask-to-probe SOA, for
 125 congruent (red, thick line) and incongruent (black, thick line) conditions, which clearly show an
 126 overall priming effect. **Middle:** Average RT slow trends across all the participants. **Right:**
 127 Average smoothed-and-detrended RT time courses extracted by subtracting slow trends shown in
 128 **Middle** from smoothed (60 ms bin) RT time courses shown in **left** (thick lines). (C) Behavioral
 129 results of when the probe was a house.
 130

131 **RESULTS**

132 **Behavioral results**

133 All participants (n=18) performed well on the task (percent correct: $97 \pm 0.54\%$). For each
134 participant, we excluded reaction times (RTs) that were >3 SD from the mean across all
135 trials. RT time courses were then plotted as a function of mask-to-probe SOAs. For trials
136 in which the probe was a face (Figure 1B), effects of priming were clearly observed in
137 the raw RT time courses averaged across all participants, as the congruent condition (red,
138 thin line) reliably evoked faster RTs than the incongruent condition (black, thin line). To
139 estimate the RT time courses, we calculated smoothed RT time courses for each
140 participants, starting with probes that were presented from 200 ms to 260 ms (60 ms bin)
141 after the mask, then forward this procedure throughout the mask-to-probe SOAs (200 ms
142 to 780 ms) in step of 20 ms. Figure 1B shows the smoothed RT time courses averaged
143 across all participants for congruent condition (red, thick line) and incongruent condition
144 (black, thick line). To better examine the oscillatory pattern, we extracted slow trends of
145 RT time courses in each participant by using 2nd order polynomial fit to raw RT time
146 courses. After removing slow trends from the smoothed RT time courses in each
147 participant, oscillations of the RT time courses are evident (right panel). This observation
148 replicates the previous findings (Huang, Chen, and Luo 2015), suggesting the
149 effectiveness of our approach to study the dynamics of predictive coding in visual object
150 priming.

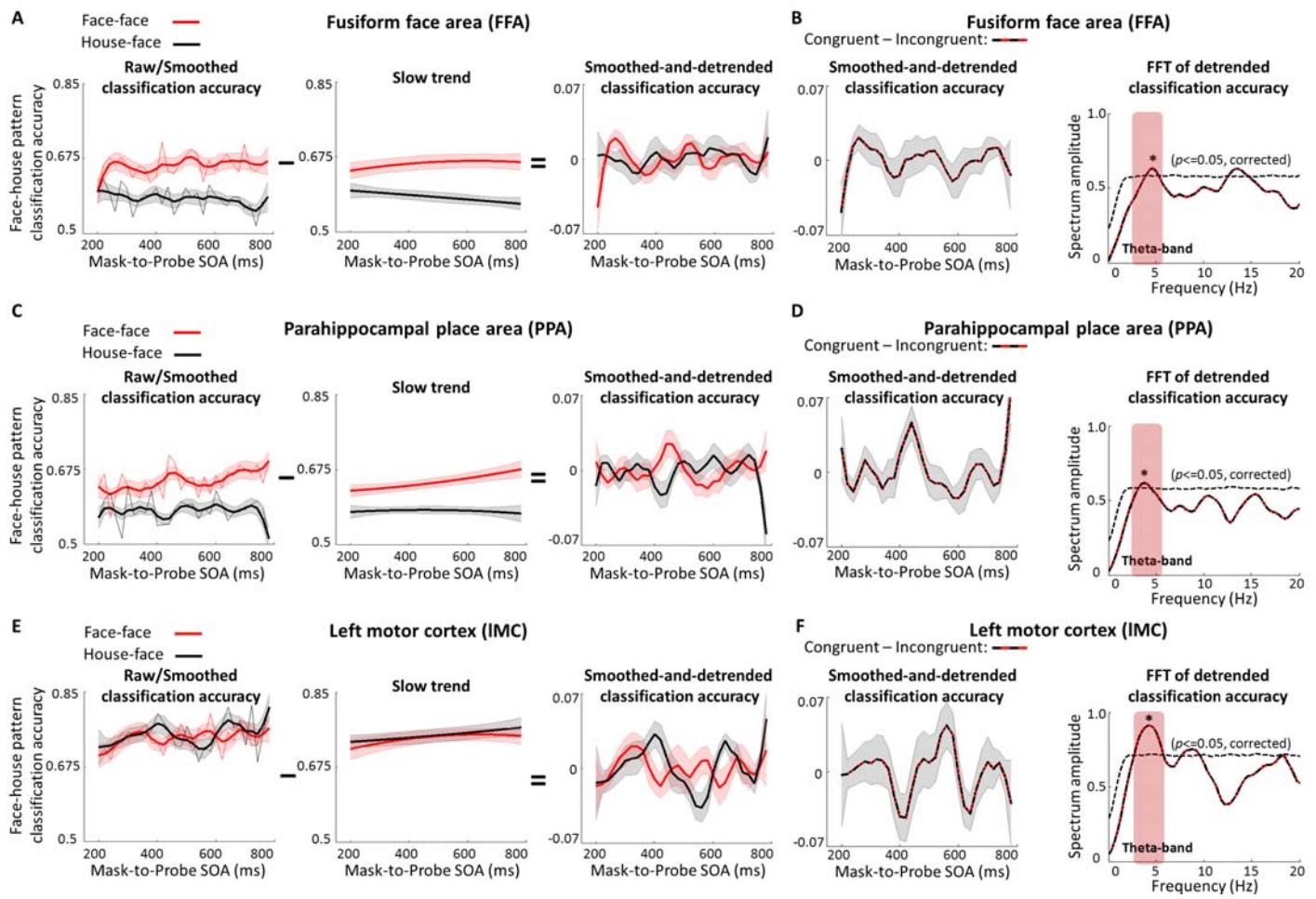
151 Due to perhaps individual differences in exact oscillatory frequency, previous
152 behavioral study (Huang, Chen, and Luo 2015) showed the oscillatory effect reducing
153 with increasing SOA in detrended RT time courses. However, no such effect was found

154 in the present study. Note that while oscillation peaks were the largest during 0-200 ms in
155 that study (Huang, Chen, and Luo 2015), the present study focused on SOAs from 200
156 ms to 780 ms. Although the largest peaks might only occur at the beginning 200 ms of
157 the averaged data, the effect of oscillation apparently lasts longer than that. For trials in
158 which the probe was a house (Figure 1C), no reliable classical priming effect was
159 observed, presumably due to using a low-contrast house image (therefore, much more
160 difficult to detect than a high-contrast face image) and participants may have detected the
161 house probe simply based on it not being a high-contrast face. Accordingly, due to the
162 weak priming effects in house condition, further fMRI analyses focus on trials when the
163 probe was a face. Nonetheless, it is unlikely that our findings are idiosyncratic to face
164 processing, since significant theta-band oscillations were observed for house-probe
165 conditions when we further tested additional subjects with equal contrast face and house
166 images, complementing similar behavioral oscillation results that had been reported for
167 discriminations of other object categories (Drewes et al. 2015).

168 **Theta-band oscillations in fMRI patterns**

169 fMRI response patterns were analyzed by using multi-voxel pattern analysis (MVPA) for
170 ROIs including areas in the inferior temporal cortex that are implicated for face
171 processing (FFA (Kanwisher, McDermott, and Chun 1997)) and for house processing
172 (PPA (Epstein and Kanwisher 1998)). Activation patterns in the left motor cortex (lMC),
173 right motor cortex (rMC), BA17, and anterior cingulate cortex (ACC) were also analyzed
174 for comparison. For every trial, the probe was decoded as a face or a house by using
175 MVPA based on fMRI activation patterns in these ROIs. MVPA classification accuracies
176 as a function of SOAs are shown in Figure 2.

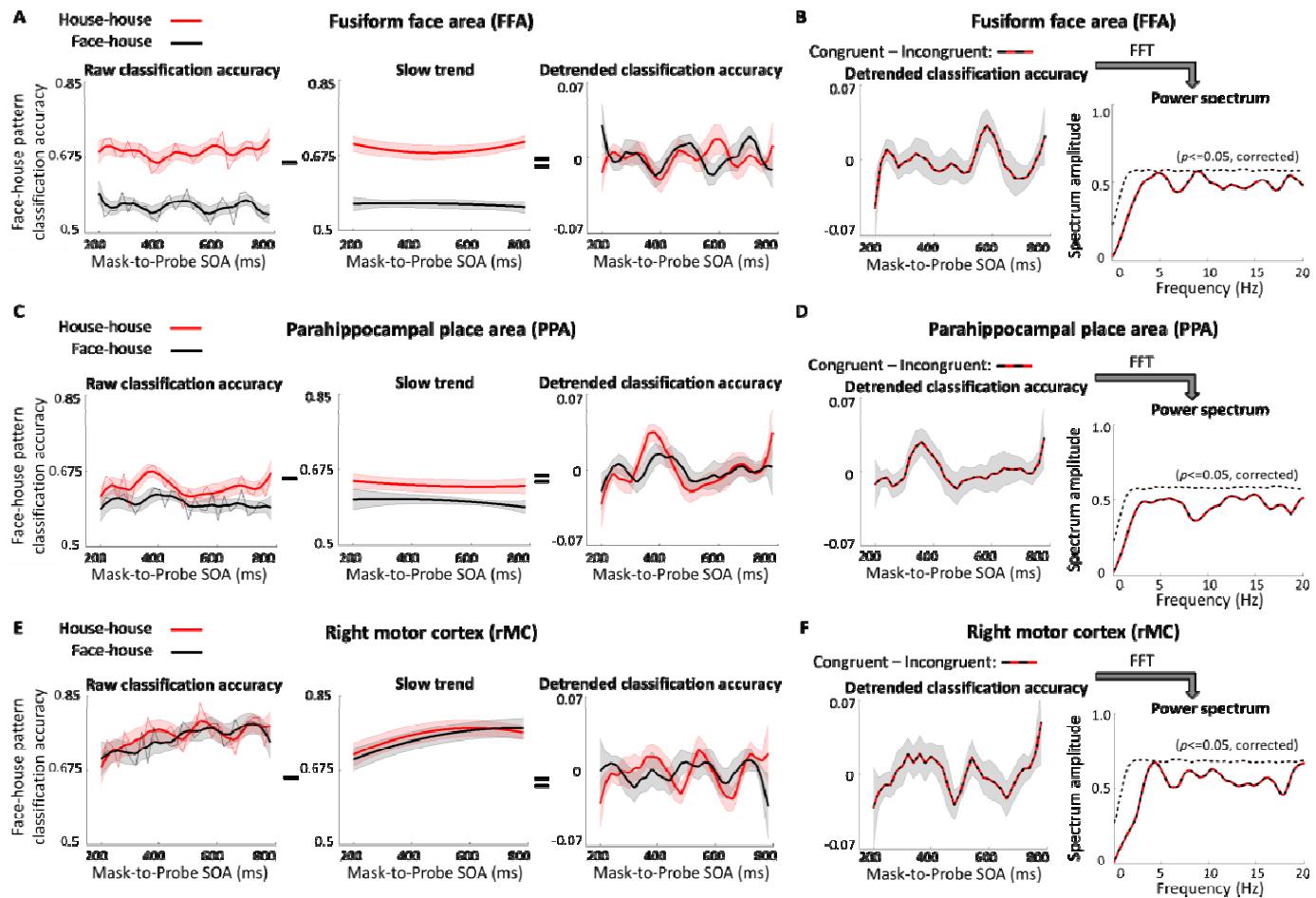
177 For the raw classification accuracies averaged across all participants, classical
178 priming effects were clearly observed, as the congruent condition (red, thin line) reliably
179 evoked higher classification accuracies than the incongruent condition (black, thin line).
180 To better examine the oscillatory pattern embedded in the MVPA classification
181 accuracies, follow what we have described above for analyzing the behavioral data, we
182 extracted slow trends of classification accuracies. Strikingly, a theta-band rhythm can be
183 clearly seen in the smoothed-and-detrended MVPA results in the FFA, PPA and lMC
184 (Figure 2A, 2C and 2E, right), consistent with the behavioral findings. Furthermore, the
185 oscillations under the congruent and incongruent conditions were in a type of temporally
186 switching relationships (Figure 1B). To examine the out-of-phase relationship between
187 the two conditions, we subtracted the temporal profiles of incongruent conditions (black)
188 from that of congruent conditions (red) for each participant. Oscillations in the effects of
189 priming (congruent – incongruent) averaged across participants are again evident in the
190 FFA, PPA and lMC (Figure 2B, 2D and 2F, left).



191

192 **Figure 2. Significant theta-band oscillations of fMRI patterns in the FFA, PPA and IMC.**
193 (A) Results in the FFA. **Left:** Average raw classification accuracies as a function of mask-to-
194 probe SOA (200-780 ms) for congruent (red, thin line) and incongruent (black, thin line)
195 conditions. Average smoothed (60 ms bin) classification accuracies ($n=18$, mean \pm SEM) as a
196 function of mask-to-probe SOA, for congruent (red, thick line) and incongruent (black, thick line)
197 conditions, which show an overall priming effect. **Middle:** Average slow trends across all the
198 participants. **Right:** Average smoothed-and-detrended classification accuracies extracted by
199 subtracting slow trends shown in **Middle** from smoothed (60 ms bin) classification accuracies
200 shown in **left** (thick lines). (B) Results of the priming effect (congruent – incongruent) in the
201 FFA. **Left:** Average smoothed-and-detrended classification results of the priming effect. **Right:**
202 Average spectrum for detrended classification accuracies (extracted by subtracting slow trends
203 from the raw classification accuracies) as a function of frequency from 0 to 20 Hz for the priming
204 effect. The statistical threshold of significance ($p < 0.05$, multiple comparison corrected)
205 calculated by performing a permutation test was shown with dashed line. (C) Results in the PPA.
206 (D) Results of the priming effect in the PPA. (E) Results in the IMC. (F) Results of the priming
207 effect in the IMC.
208

209 To further evaluate the periodicity, the detrended (not the smoothed-and-
210 detrended) priming effects were then converted into frequency domain (after zero
211 padding and application of a Hanning window) (Huang, Chen, and Luo 2015, Song et al.
212 2014) by using Fast Fourier transformation (FFT). The results are shown in Figure 2B,
213 2D and 2F. A peak of power in the theta-band is most noticeable. To quantify the
214 significance of the observed spectral power, we next performed a randomization
215 procedure by shuffling time courses of the MVPA classification accuracy for congruent
216 condition and incongruent condition independently for each participant 1000 times. After
217 each randomization, FFT was conducted on surrogate signals, generating a distribution of
218 spectral power for each frequency point from which we obtained statistical thresholds for
219 evaluating significance. The theta-band oscillations of the priming effects were
220 significant in the FFA, PPA and IMC ($p < 0.05$, multiple comparisons corrected). Results
221 of trials when the probe was a house are shown in Figure 3, no such significant theta-
222 band oscillations were found in the FFA, PPA and IMC ($p < 0.05$, multiple comparisons
223 corrected), consistent with our behavior results in Figure1B and 1C.



224

225 **Figure 3. Results of fMRI patterns in the FFA, PPA and IMC when the probe was a house.**

226 (A) Results in the FFA. **Left:** Average raw classification accuracies as a function of mask-to-
227 probe SOA (200-780 ms) for congruent (red, thin line) and incongruent (black, thin line)
228 conditions. Average smoothed (60 ms bin) classification accuracies ($n=18$, mean \pm SEM) as a
229 function of mask-to-probe SOA, for congruent (red, thick line) and incongruent (black, thick line)
230 conditions. **Middle:** Average slow trends across all the participants. **Right:** Average smoothed-
231 and-detrended classification accuracies extracted by subtracting slow trends shown in **Middle**
232 from smoothed (60 ms bin) classification accuracies shown in **left** (thick lines). (B) Results of the
233 priming effect (congruent – incongruent) in the FFA. **Left:** Average smoothed-and-detrended
234 classification results of the priming effect. **Right:** Average spectrum for detrended classification
235 accuracies (extracted by subtracting slow trends from the raw classification accuracies) as a
236 function of frequency from 0 to 20 Hz for the priming effect. The statistical threshold of
237 significance ($p < 0.05$, multiple comparison corrected) calculated by performing a permutation
238 test was shown with dashed line. (C) Results in the PPA. (D) Results of the priming effect in the
239 PPA. (E) Results in the rMC. (F) Results of the priming effect in the rMC.

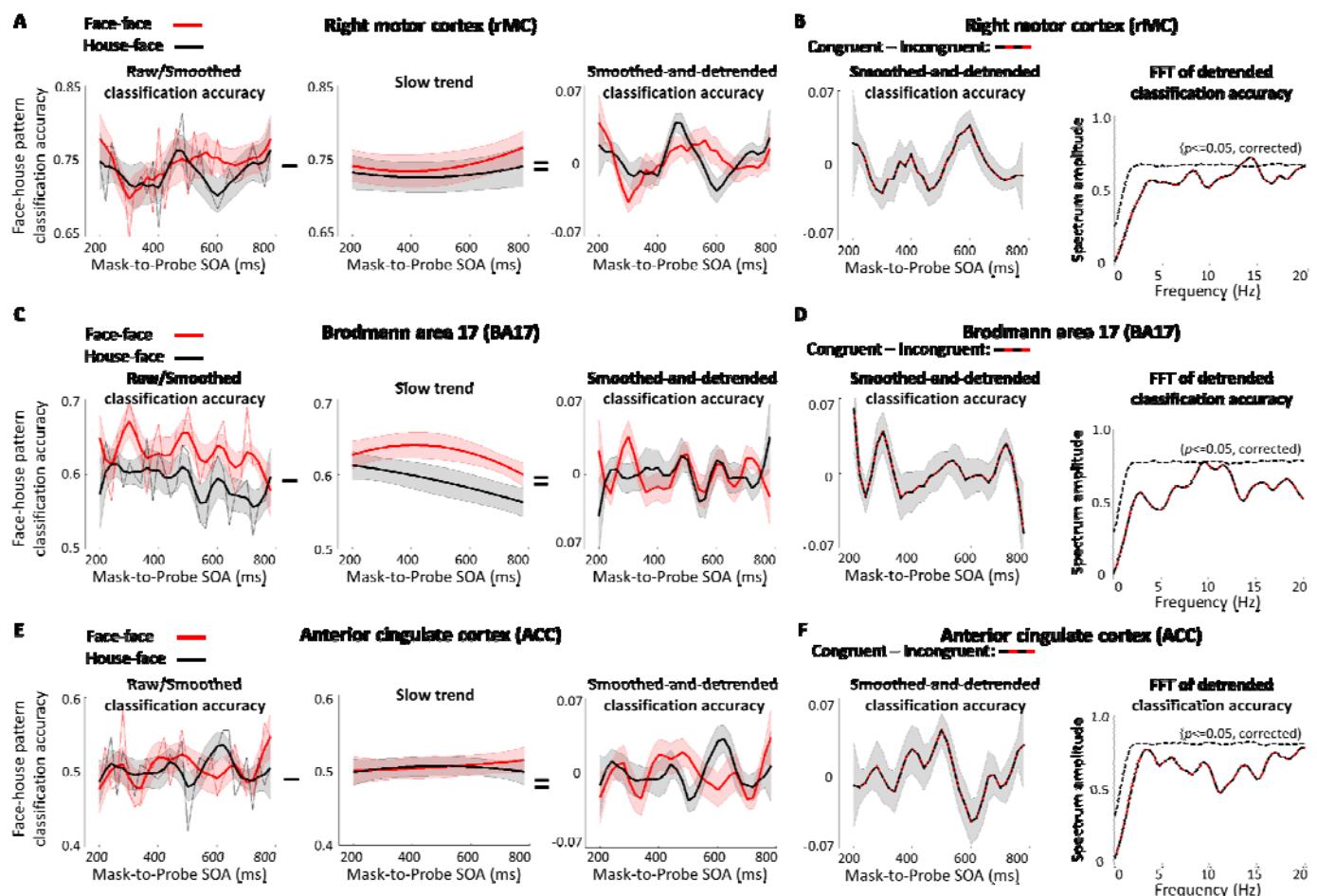
240

241 For comparison, no significant theta-band oscillations were found in the rMC,

242 BA17 and ACC (Figure 4). Note that participants used the right hand to report the face

243 probe and the left hand to report the house probe. Given that hand movements are mainly
244 controlled by the contralateral hemisphere, our results for the left and right motor cortices
245 are thus also consistent with the behavioral RT results. Corresponding to that the
246 oscillation in RT time courses can be clearly seen when the probe was a face (Figure 1B),
247 there were significant theta-band oscillations in the lMC (Figure 2F); by contrast,
248 corresponding to no oscillation in RT time courses when the probe was a house (Figure
249 1C), there were no significant theta-band oscillations in the rMC (Figure 4B). This
250 contrast suggests that our results were unlikely caused some artifacts or data
251 preprocessing.

252



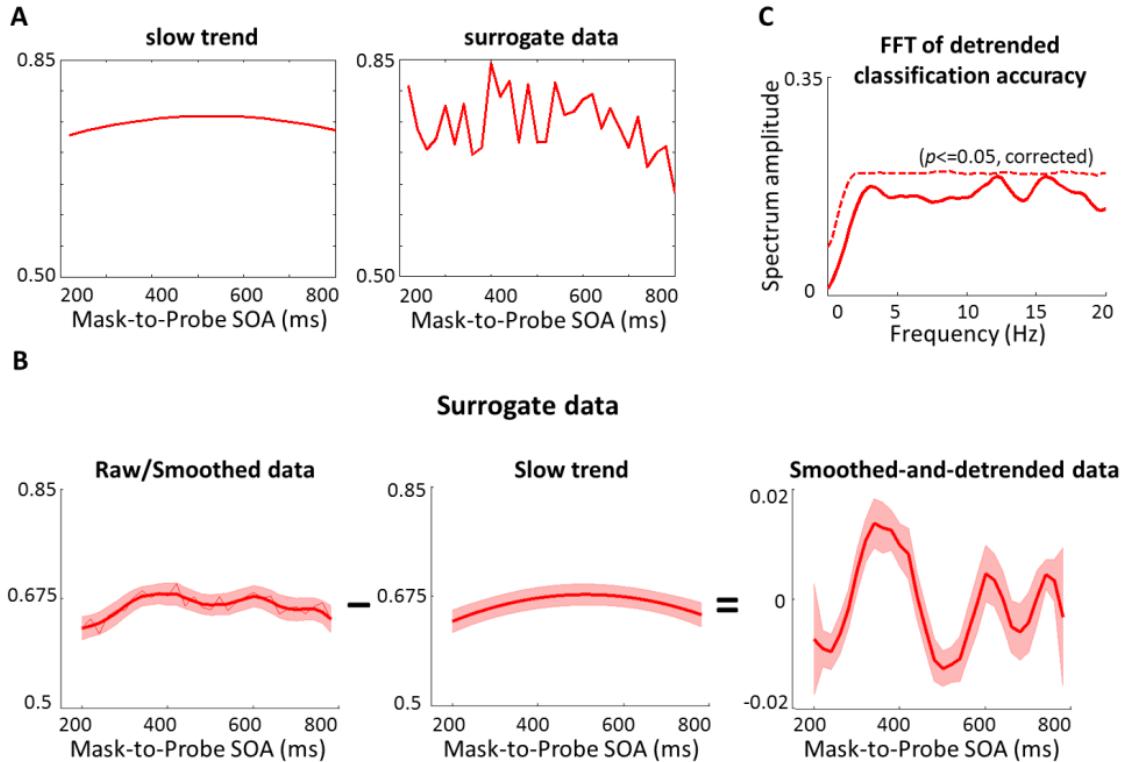
253

254

255 **Figure 4. No significant theta-band oscillations in the rMC, BA17 and ACC.**

256 (A) Classification results when the probe was a face in the rMC. **Left:** Average raw classification
257 accuracies as a function of mask-to-probe SOA (200-780 ms in steps of 20 ms) for congruent
258 (red, thin line) and incongruent (black, thin line) conditions. Average smoothed (60 ms bin)
259 classification accuracies as a function of mask-to-probe SOA, for congruent (red, thick line) and
260 incongruent (black, thick line) conditions. **Middle:** Average slow trends across all the
261 participants. **Right:** Average smoothed-and-detrended classification accuracies extracted by
262 subtracting slow trends shown in **Middle** from smoothed (60 ms bin) classification accuracies
263 shown in **left** (thick lines). (B) Classification results of the priming effect (congruent –
264 incongruent) when the probe was a face in the rMC. **Left:** Average smoothed-and-detrended
265 classification results of the priming effect (congruent – incongruent). **Right:** Average spectrum
266 for detrended classification accuracies (extracted by subtracting slow trends from the raw
267 classification accuracies) as a function of frequency from 0 to 20 Hz for the priming effect
268 (congruent – incongruent). The statistical threshold of significance ($p < 0.05$, multiple
269 comparison corrected) calculated by performing a permutation test was shown with dashed line.
270 (C) Results in the BA17. (D) Results of the priming effect (congruent – incongruent) in the
271 BA17. (E) Results in the ACC. (F) Results of the priming effect (congruent – incongruent) in the
272 ACC.
273

274 Nonetheless, to further demonstrate that the oscillatory components in the present
275 study were not introduced by any non-oscillatory artifacts or data preprocessing, we
276 generated 18 sets of non-oscillatory (peak at 400 ms) surrogate data, and performed the
277 identical analysis as how the real data were analyzed. No significant theta-band
278 oscillations were found with the surrogate data (Figure 5).



279
280

281 **Figure 5. Results of surrogate data.**

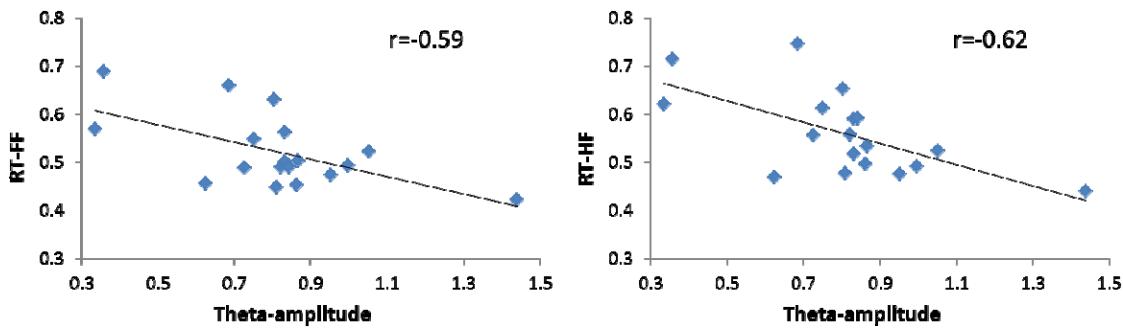
282
283
284
285
286
287
288
289
290
291
292
293
294

(A) Slow trend and surrogate data of one participant. The slow trend is the slow trend of congruent condition in the FFA, there were 18 different slow trends; the surrogate data were generated by adding a Gaussian curve peaked at 400 ms and white noise (different for each participant) to the slow trend for each participant. Thus, 18 sets of surrogate data were generated. Subsequent analyses of these surrogate data are identical to how we analyzed the real data. (B) **Left:** Averaged surrogate data ($n=18$, mean \pm SEM), smoothed (60 ms bin) as a function of mask-to-probe SOA (200-780 ms in steps of 20 ms). **Middle:** Slow trends averaged across participants. **Right:** Average smoothed-and-detrended data, extracted by subtracting slow trends shown in **Middle** from smoothed (60 ms bin) data shown in **left** (thick lines). (C) Average spectrum for detrended data (extracted by subtracting slow trends from the surrogate data without smoothing). The statistical threshold of significance ($p < 0.05$, multiple comparison corrected) calculated by performing a permutation test was shown with a dashed line.

295

More interestingly, the theta amplitude in the FFA significantly correlates with the behavioral RT results for the face probe trials across participants, suggesting an important functional role of the theta oscillation in mediating behavior. Specifically, a peak was identified for each participant within the theta-band (3-8 Hz) of the priming effect (congruent – incongruent) oscillations. The amplitude of this peak negatively correlates with the RT in the congruent face-face condition (Pearson's correlation $r = -$

301 0.59, $p < 0.05$, Bonferroni corrected) as well as in the incongruent house-face condition
302 (Pearson's correlation $r = -0.62$, $p < 0.05$, Bonferroni corrected). Scatter plots of theta
303 oscillation amplitude and RT are shown in Figure 6. Despite moderate subject numbers, a
304 clear trend is visible for greater theta oscillation amplitude in the FFA corresponding to
305 faster reaction time to detect a face probe, suggesting that theta oscillations in the FFA
306 activity patterns may facilitate predictive coding of faces.

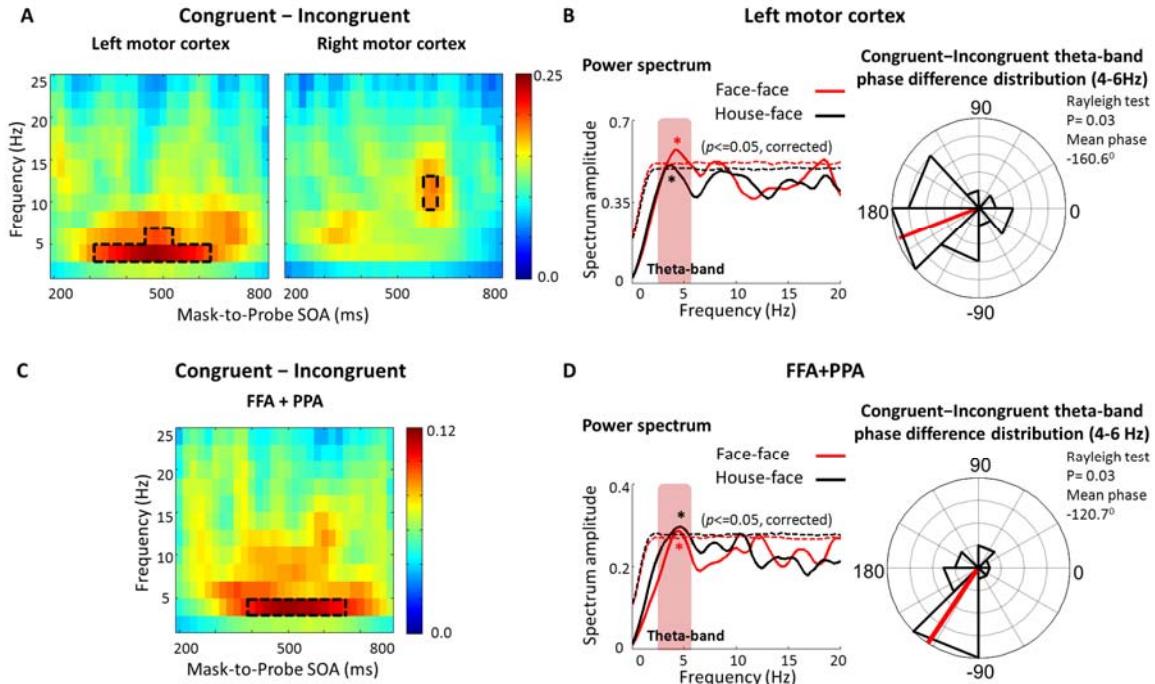


307
308 **Figure 6. Scatter plots of theta amplitude and RT.**
309 The theta amplitude in the FFA negatively correlates with the RT in the FF (face-face) condition
310 (Left: Pearson's $r = -0.59$, $p < 0.05$, Bonferroni corrected) as well as in the HF (house-face)
311 condition (Right: Pearson's $r = -0.62$, $p < 0.05$, Bonferroni corrected).
312

313 Results in the left and right motor cortices of a spectrotemporal analysis on
314 detrended MVPA classification accuracies are shown in Figure 7A. This analysis
315 revealed fine dynamic structures of priming effects (congruent – incongruent), as a
316 function of frequency (0-25 Hz) and time (mask-to-probe SOA: 200-780 ms). Significant
317 (permutation test, $p < 0.05$, multiple-comparison corrected across frequencies) theta-band
318 oscillations (~5 Hz) were found in the lMC. By contrast, no significant theta-band
319 oscillations were found in the rMC. Figure 7B, left, shows respectively for congruent (red)
320 and incongruent (black) conditions of the power spectrum of detrended MVPA results in
321 the lMC. Significant theta-band power was found for both the congruent and the

322 incongruent conditions (permutation test, $p < 0.05$, corrected). Interestingly, further phase
323 analysis revealed that the theta-band power of the congruent condition was reliably out of
324 phase with the incongruent condition (Rayleigh test, $p = 0.03$), and clustered around a
325 mean of -160.6° (Figure 7B, right), suggesting a competition-like relationship between
326 the two predictions (face and house) in motor cortex.

327 Moreover, when the FFA and PPA MVPA classification accuracies were
328 combined (Figure 7C and 7D), the theta-band power of the congruent condition was
329 reliably out of phase with the incongruent condition (Rayleigh test, $p = 0.03$), and
330 clustered around a mean of -120.7° . On the one hand, it is possible that combining the
331 FFA and PPA simply increased the statistical power to reveal the out of phase
332 relationship between the congruent and incongruent conditions. On the other hand, this
333 result may imply that decoding face/non-face probe detections could have been benefited
334 from MVPA of not only the FFA but also the PPA -- as for example, while patterns in the
335 FFA may encode faces, patterns in the PPA may contribute to decode that a house (thus
336 not a face) was detected.



337

338

Figure 7. Oscillations of the priming effect (congruent – incongruent).

339

(A) Time-frequency power profiles ($n=17$) for detrended classification accuracies (extracted by subtracting slow trends from the raw classification accuracies) as a function of mask-to-probe SOA (200-780 ms) and frequency (0-25 Hz) in the IMC (left) and rMC (right). Areas enclosed by dashed lines represent statistical significance ($p < 0.05$, multiple comparison corrected) calculated by performing permutation tests. (B) **Left:** Average spectrum for detrended classification accuracies as a function of frequency from 0 to 20 Hz for congruent (red) and incongruent (black) conditions in the IMC. Dashed lines represent the statistical thresholds of significance ($p < 0.05$, multiple comparison corrected) calculated by performing permutation tests. **Right:** Polar plots for the distribution of phase differences between congruent and incongruent conditions in the theta-band (4-6Hz) in the IMC. The red line indicates the mean congruent – incongruent theta-band phase difference across participants. (C) Time-frequency power profile for detrended classification accuracies in the FFA+PPA results. (D) **Left:** Average spectrum for detrended classification accuracies for congruent (red) and incongruent (black) conditions in the FFA+PPA results. **Right:** Polar plots for the distribution of phase differences between congruent and incongruent conditions in the theta-band (4-6Hz).

354

355

Distinct cortical distributions of theta and alpha oscillations

356

To further examine the cortical distribution of theta-band oscillations, a whole-brain

357

searchlight analysis was conducted. For each participant, voxels were extracted from a

358

spherical searchlight with a two-voxel radius (33 voxels in each searchlight including the

359

central voxel), and then MVPA was performed using this spherical searchlight ROI,

360

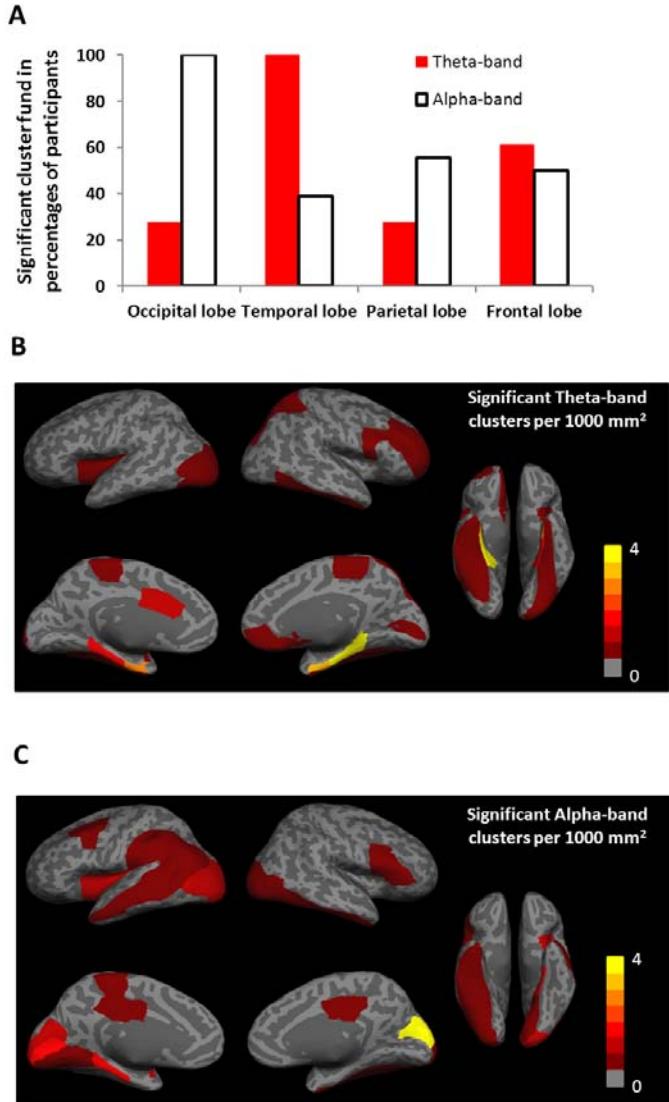
which moved throughout each participant's whole brain gray matter-masked data.

361 Frequency analyses were conducted for each searchlight ROI to calculate the power of
362 theta-band oscillations, and then the results were assigned to the central voxel of the
363 sphere searchlight. After normalization (Z-score) across all voxels, clusters with
364 significant power ($p < 10^{-4}$) and size (>15 voxels) were localized. Thus, a significant
365 cluster indicates that MVPA classification accuracy of the probe fluctuated as a function
366 of SOA in the theta band.

367 For comparisons, the same searchlight procedure was also performed to map
368 clusters (>15 voxels, except one subject >11 voxels, $p < 10^{-4}$) of significant alpha-band
369 (8-13 Hz) oscillations across the whole brain. Abundant EEG and MEG studies have
370 demonstrated that alpha-band oscillations were predominantly observable in occipital
371 sites (Thut et al. 2006), and we are the first to map the alpha-band oscillations using
372 fMRI. Alpha oscillations correlate with cortical inhibition (Ray and Cole 1985, Palva and
373 Palva 2007), and the ongoing occipital alpha oscillations have been argued to play direct
374 functional roles in attention and perception mechanisms (VanRullen and Koch 2003,
375 Busch and VanRullen 2010, Dugue, Marque, and VanRullen 2011, Jensen, Bonnefond,
376 and VanRullen 2012). Moreover, the cross-frequency coupling between alpha and theta
377 oscillations has been reported recently by using time-resolved RT measurements (Huang,
378 Chen, and Luo 2015, Song et al. 2014).

379 Figure 8A shows percentages (Y-axis) of participants, in whom significant
380 clusters were found based on the searchlight analysis in the occipital, temporal, parietal,
381 and frontal lobes. Remarkably, at least one cluster of theta oscillations was reliably found
382 in the temporal cortex in all participants (100%), whereas at least one cluster of alpha
383 oscillations was reliably found in the occipital cortex of all participants (100%). By

384 contrast, this level of concentration was not seen for parietal and frontal cortices, given
385 the criterion we used to localize the clusters is fairly stringent and on average only 2.5
386 clusters for theta oscillations and 4.3 clusters for alpha oscillations were found per each
387 participant. Using Freesurfer and an atlas-based automatic surface parcellation (Desikan
388 et al. 2006, Fischl et al. 1999, Fischl et al. 2004), spatial distributions of brain regions that
389 exhibited significant theta-band and alpha-band power are further shown in Figure 8B
390 and 8C, respectively. The magnitude of the color scale in Figure 8B and 8C indicates the
391 number of significant clusters per 1000 mm^2 that were found in the marked atlas-based
392 anatomical regions of interest. Gray-colored areas indicate there was no significant
393 cluster, whereas yellow indicates there were ~ 4 significant clusters per 1000 mm^2 in each
394 of the marked parcellated cortical regions. Differences between the two distributions are
395 obvious: most of the regions with significant theta-band oscillations were in the temporal
396 cortex, and most of the regions with significant alpha-band oscillations were in the
397 occipital cortex.



398
399
400
401
402
403
404
405
406
407
408
409
410

Figure 8. Different spatial distributions of theta-band and alpha-band oscillations.

(A) Y-axis indicates the percentages of participants, in whom significant clusters were found based on the searchlight analysis in the occipital, temporal, parietal, and frontal lobes. Significant clusters of theta-band oscillations were found in the temporal lobe of every participant (100%), whereas significant clusters of alpha-band oscillations were found in the occipital lobe of every participant (100%), far more concentrated and robust than any other lobes. (B) The cortical distribution map of theta-band oscillations. The magnitude of the color scale indicates the number of significant clusters per 1000 mm^2 that were found in the marked atlas-based anatomical regions of interest. Gray-colored areas indicate there was no significant cluster, whereas yellow indicates there were ~4 significant clusters per 1000 mm^2 in each of the marked parcellated cortical regions. (C) The cortical distribution map of alpha-band oscillations.

411
412

413 **DISCUSSION**

414 These combined psychophysical and neuroimaging results provide important constraints
415 on the hypothesized links between theta rhythms and dynamic predictive coding. Multi-
416 voxel activation patterns in the FFA and PPA have been suggested to encode object
417 categories (Haxby 2012, Haxby et al. 2001, Haynes and Rees 2006), and here we also
418 demonstrated classical priming effects in FFA and PPA. More interestingly, however, our
419 study revealed that multi-voxel activation patterns in these brain areas are not stationary
420 but fluctuate as a function of mask-to-probe relation at a theta-band rhythm. This
421 fluctuation is sustained across the tested SOA periods over which we can discount
422 hemodynamic lags, since we were comparing trial-by-trial differences as a function of
423 mask-to-probe SOA, assuming that hemodynamic lags in a same ROI are always
424 comparable across trials. Thus, rather than bottom-up perceptual responses to the
425 incoming stimulus, our findings more likely reveal effects of the memory traces (priming)
426 that mediate predictive coding. This result is consistent with the hypothesis that
427 perception is modulated by ongoing theta oscillations whose phase is reset by priming
428 (Huang, Chen, and Luo 2015, Busch, Dubois, and VanRullen 2009, Song et al. 2014,
429 Romei, Gross, and Thut 2012), but, crucially, is the first to show that theta rhythms in the
430 fluctuation of multi-voxel activity patterns are linked to predictive coding effects. Indeed,
431 greater theta oscillation amplitude in the FFA significantly correlated to faster reaction
432 time to detect a face probe, directly supporting the functional link.

433 By using fMRI and a whole-brain searchlight analysis, we were further able to
434 map more precisely the cortical distributions of various brain rhythms. Alpha oscillations
435 were concentrated in the occipital lobe, which is consistent with previous EEG and MEG

436 reports (Thut et al. 2006), whereas theta oscillations were concentrated in the temporal
437 lobe, suggesting distinct functional roles theta-band oscillations may play. Moreover,
438 given that an fMRI voxel may contain millions of neurons (Logothetis 2008), fluctuations
439 of activity of a small number of neurons are unlikely to cause fluctuations of multi-voxel
440 fMRI activity patterns. What we have observed through fMRI and MVPA thus
441 presumably reflects rhythmic ensemble responses across distributed populations of
442 neurons (Haxby 2012, Kriegeskorte et al. 2008, Guo and Meng 2015).

443 Note that the temporal profiles of FFA, PPA and IMC are different in phase and
444 frequency, suggesting that the observed theta oscillations were unlikely underlying
445 possible long-range coordination of activity in these brain areas. We thus propose that
446 priming leads to a reset of ongoing theta-band oscillations, which were recently reported
447 to be involved in attention and predictive coding (Huang, Chen, and Luo 2015, Landau
448 and Fries 2012, Fiebelkorn, Saalmann, and Kastner 2013, Song et al. 2014). And because
449 the SOA varied in small steps (20 ms), the subsequent probe was processed at different
450 phase of this reset oscillation, enabling us to observe the periodic neuroimaging pattern.
451 To rule out the possibility that artifacts or data preprocessing could have introduced
452 oscillatory signatures into our results, we generated sets of surrogate non-oscillatory data,
453 and performed the exact analysis procedure as how the real data was analyzed. No
454 significant theta-band oscillations were found with the surrogate data (Figure 5). It
455 remains possible that the fine-scale temporal profiles we found in the FFA, PPA and IMC
456 were not really oscillatory, but only peaking a few times within the limited SOA range
457 that we had examined. Future studies can further investigate this possibility by using a

458 longer SOA range. Nevertheless, the present study revealed relatively fine-scale temporal
459 dynamics of fMRI activity patterns.

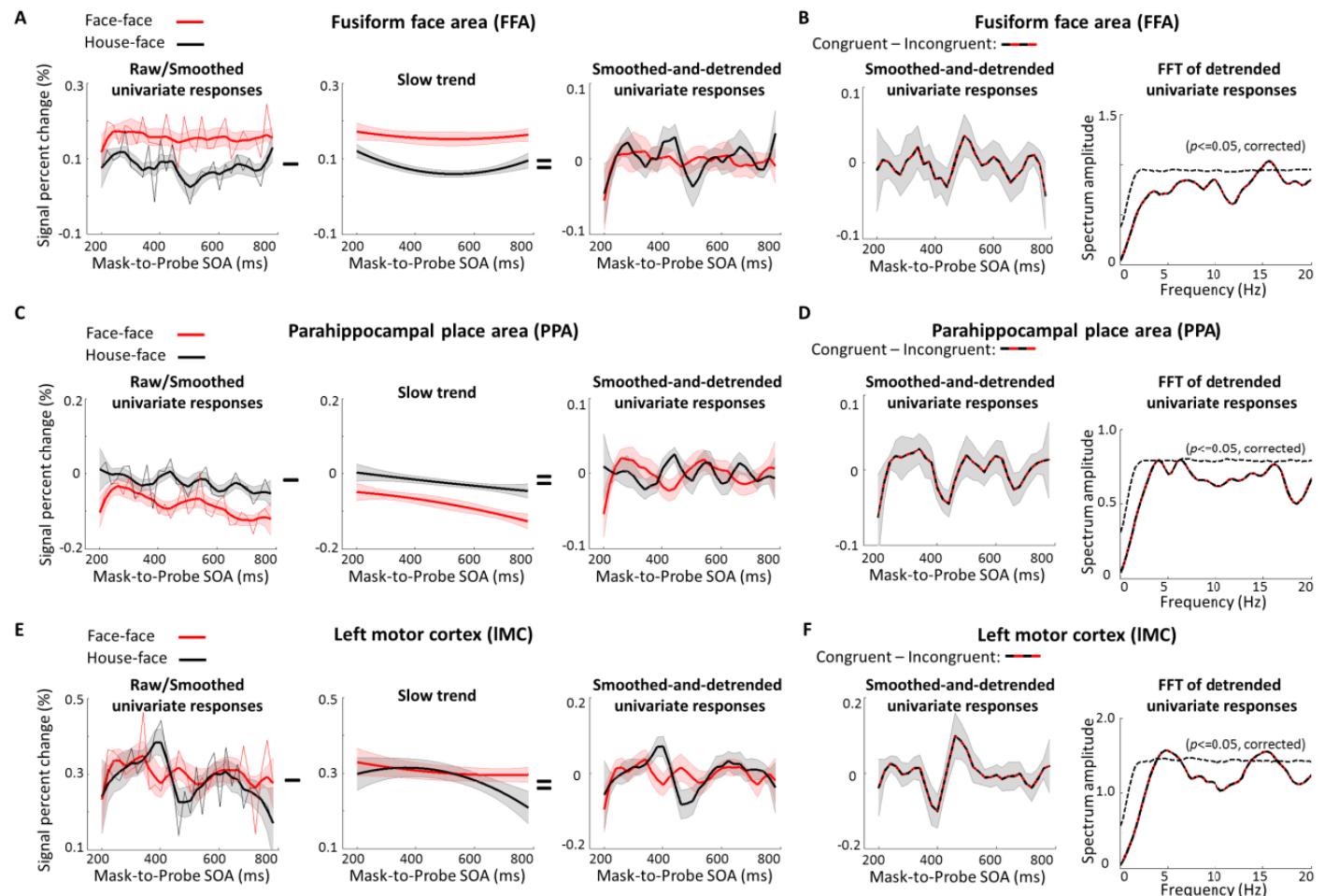
460 Our study provides a feasible strategy that incorporates fMRI and MVPA to
461 investigate the dynamics of ensemble coding across distributed populations of neurons.

462 Despite the hemodynamic lag, fMRI has been combined with novel behavioral paradigms
463 to probe neural responses at the time scale of tens of milliseconds, since neuronal
464 electrical activity and the fMRI signal are reliably coupled at this level of temporal
465 precision (Ogawa et al. 2000, Formisano et al. 2002, Dux et al. 2006). Specifically, one
466 of these previous studies (Dux et al. 2006) compared fMRI responses in two different
467 SOA conditions (a short SOA and a long SOA), demonstrating that fMRI can be used to
468 measure temporal dynamics of visual processing.

469 MVPA has been shown to have better temporal resolution than the univariate
470 measurement of BOLD activity change (Kohler et al. 2013). It is therefore expected that
471 the time-resolved strategy we advocate should be more sensitive than conventional fMRI
472 approaches to detect the dynamics of trial-by-trial fluctuation in population coding as a
473 function of SOA. Consistent with this notion, we conducted the same spectrum analysis
474 with univariate averaged BOLD responses in the FFA, PPA, and lMC (Figure 9). There
475 were no significant theta-band oscillations in the univariate averaged FFA or PPA
476 activity. And while theta-band oscillation was found in the lMC, it did not show
477 significant out-of-phase relationship between the congruent and incongruent conditions
478 (Rayleigh test, $p = 0.17$). These results differ from the MVPA results shown in Figure 2
479 and Figure 7, confirming that multi-voxel fMRI activity patterns instead of merely
480 averaged fMRI activity fluctuate.

481

482



483

484

Figure 9. Results of univariate averaged BOLD responses in the FFA, PPA and IMC.

(A) Results of when the probe was a face in the FFA. **Left:** Averaged BOLD responses as a function of mask-to-probe SOA (200–780 ms in steps of 20 ms) for congruent (red, thin line) and incongruent (black, thin line) conditions. Smoothed (60 ms bin) BOLD responses ($n=18$, mean \pm SEM) as a function of mask-to-probe SOA, for congruent (red, thick line) and incongruent (black, thick line) conditions, show an overall priming effect (the congruent condition evoked overall greater BOLD responses than the incongruent condition). **Middle:** Average slow trends across all the participants. **Right:** Average smoothed-and-detrended BOLD responses extracted by subtracting slow trends shown in **Middle** from smoothed (60 ms bin) BOLD responses shown in **left** (thick lines). (B) Results of the priming effect (congruent – incongruent) when the probe was a face in the FFA. **Left:** Average smoothed-and-detrended BOLD results of the priming effect (congruent – incongruent). **Right:** Average spectrum for detrended BOLD responses (extracted by subtracting slow trends from the raw BOLD responses) as a function of frequency from 0 to 20 Hz for the priming effect (congruent – incongruent). The statistical threshold of significance ($p < 0.05$, multiple comparison corrected) calculated by performing a permutation test was shown with dashed line. (C) Results in the PPA. (D) Results of the priming effect (congruent – incongruent) in the PPA. (E) Results in the IMC. (F) Results of the priming effect (congruent – incongruent) in the IMC.

501 incongruent) in the lMC. While a significant 15-17 Hz component can also be generally seen in
502 B, D, and F, as well as B in S1 Figure and B in Figure 2, it may be caused by artifacts from
503 acoustic noises generated by our EPI sequence (17.5 Hz). We thus choose to not discuss this 15-
504 17 Hz component further in the main text.

505

506 To conclude, we combined fMRI and a time-resolved psychophysical paradigm to
507 investigate the dynamic neural mechanism underlying visual object priming. Specifically,
508 multi-voxel activity patterns in the FFA and the PPA show temporal fluctuations at a
509 theta-band (~5 Hz) rhythm, suggesting the critical role of theta oscillations in the inferior
510 temporal cortex during visual object priming. Our strategy is obviously not limited to the
511 theta-band and predictive coding, and future studies may take similar approaches to better
512 understand other mechanisms underlying brain dynamics.

513

514 **Materials and methods**

515 **Participants.**

516 Eighteen healthy adults (7 females; mean age 26 years; all right handed) participated in
517 this two-session fMRI experiment. All participants had normal or corrected-to-normal
518 visual acuity and gave written informed consent. This study was approved by the
519 Dartmouth College Committee for the Protection of Human Subjects.

520 **MRI acquisition.**

521 Participants were scanned using a 3T Philips Achieva Intera scanner with a 32-channel
522 head coil at the Dartmouth Brain Imaging Center. An echo-planar imaging (EPI)
523 sequence (2000 ms TR; 35 ms TE; $3 \times 3 \times 3$ mm voxel size; 35 slices) was used to
524 measure the BOLD contrast. For each participant, a high-resolution T1-weighted
525 anatomical scan was acquired at the beginning (or the end) of each scan session (8.2 ms

526 TR; 3.8 ms TE; 1 × 1 × 1 mm voxel size; 222 slices). During the EPI scans, visual stimuli
527 were presented to a screen located at the back of the scanner via a LCD projector
528 (Panasonic PT-D4000U) using MATLAB 2011b with Psychtoolbox(Brainard 1997).
529 Participants viewed the stimuli using a mirror placed within the head coil.

530 **Region of Interest (ROI) localizer runs.**

531 An independent set of gray-scale face and house images was used to localize the ROIs.
532 The localizer scans consisted of an alternating block design, with 5 blocks presenting face
533 images and 5 blocks presenting house images interleaved with 16-s periods of a blank
534 screen with a fixation cross in the center of the screen. Each stimulus block was also 16-s
535 long. In total, each localizer scan run was 336-s long, consisting of 11 periods of fixation
536 and 10 stimulus blocks. In each stimulus block, 16 faces (or houses) were presented (500
537 ms per image, with a 500-ms interstimulus interval). Fifteen participants completed two
538 localizer scans, and three participants completed three localizer scans. During localizer
539 scans, participants performed a new face (or house) detection task in which they were
540 asked to use their right hand to make a key-press whenever a new face was presented and
541 their left hand to make a key-press whenever a new house was presented. Twelve new
542 faces/houses were presented in each block. This task also allowed us to localize the left
543 and right motor cortices as ROIs by contrasting BOLD responses corresponding to right-
544 hand button presses vs. left-hand button presses.

545 **Experimental runs.**

546 Each participant completed 24 experimental scan runs in two sessions on two separate
547 days. Each experimental scan run was 368-s long, consisting of 90 trials and two 4-s
548 periods (at the beginning and the end of each run) of a blank screen with a fixation cross

549 in the center of the screen. As shown in Figure 1A, each trial was 4-s long, and presented
550 in a semi-randomized order with a rapid event-related design. In each trial, a 150-ms
551 probe was preceded by a 33-ms prime stimulus which was backward masked by a 100-ms
552 mask stimulus. Critically, the mask-to-probe SOAs ranged from 200 to 780 ms in steps of
553 20 ms, corresponding to a sampling frequency of 50 Hz. The stimuli included two images,
554 a high-contrast face and a low-contrast house. The high contrast level was defined with
555 root mean square (RMS) = 0.25 in normalized unit, whereas the low contrast level RMS
556 = 0.025. Corresponding contrasts of the face image and the house image were made by
557 using the SHINE toolbox (Willenbockel et al. 2010). The probe and the prime were either
558 the same (congruent conditions: Face-prime followed by Face-probe; House-prime
559 followed by House-probe) or different (incongruent conditions: Face-prime followed by
560 House-probe; House-prime followed by Face-probe), except that the probe (5.8°) was
561 smaller than the prime (8.7°) to avoid any possible low-level effects of retinotopic
562 adaptation (Figure 1A). In total, there were 2160 trials for each participant: 12 repetitions
563 for each of the four prime-probe conditions at each of the 30 SOAs (from 200 to 780 ms
564 in steps of 20 ms). Participants were asked to report whether the probe was a face (right
565 hand button press) or a house (left hand button press) with speeded responses.

566 **MR Image preprocessing.**

567 AFNI (Cox 1996)(<http://afni.nimh.nih.gov/afni>) was used for preprocessing the MRI data.
568 EPIs were slice timing corrected, motion corrected to the image acquired closest to the
569 anatomical images, spatially smoothed with a 4-mm full width at half maximum filter
570 (FWHM), and temporally filtered to remove baseline drifts. Based on the anatomical
571 images acquired in each of the two sessions, mean anatomical images were computed to

572 remove the bias of either session. All EPIs were then aligned to the mean anatomical
573 images.

574 **Functional ROI localization.**

575 Data from the ROIs localizer scans were further submitted to a General Linear Model
576 (GLM) analysis, which calculated the beta coefficient values associated with block
577 conditions. ROIs were individually defined for each participant based on activation maps
578 from the GLM analysis. Among them, four were defined as a continuous cluster of
579 activated voxels corresponding to the following GLM contrasts: the FFA was defined in
580 the middle fusiform gyrus as responding more strongly to faces than to houses; the PPA
581 was defined in the parahippocampal gyrus as responding more strongly to houses than to
582 faces; the left motor cortex was defined as responding more strongly to right-hand button
583 presses than to left-hand button presses; and the right motor cortex was defined as
584 responding more strongly to left-hand button presses than to right-hand button presses .

585 To control for any potential confounding effects of ROI size, the statistical contrast
586 threshold was adjusted individually (maximum $p < 10^{-4}$, uncorrected) to roughly match
587 the size of each of these ROIs (~40 voxels). Using this threshold, however, did not allow
588 for the localization of the motor cortex ROI in one participant. Therefore, subsequent
589 ROI analysis of the motor cortex did not include this participant. Next, data from the ROI
590 localizer scan runs were aligned to Talairach space using the TT_N27 template. For each
591 participant, Brodmann area 17 (BA17) was localized using an anatomical mask based on
592 TT_N27 template as well as GLM activation maps, which include activated voxels in the
593 calcarine sulcus that responded more strongly during stimulation blocks than during
594 fixation periods (maximum $p < 10^{-4}$, uncorrected). The size of the BA17 ROI was on

595 average 100 voxels. Similarly, data from the experimental scan runs were aligned to the
596 Talairach space (TT_N27 template) and were submitted to a GLM analysis to calculate
597 the beta coefficient values associated with congruent conditions (Face-prime followed by
598 Face-probe; House-prime followed by House-probe) and incongruent conditions (Face-
599 prime followed by House-probe; House-prime followed by Face-probe). The GLM
600 activation map corresponding to congruent vs. incongruent differences ($p < 10^{-2}$,
601 uncorrected, ~40 voxels) was used to localize the ROI of anterior cingulate cortex (ACC).

602 **Univariate averaged BOLD response and multivariate pattern classification
603 analyses.**

604 For each participant, we extracted the averaged activation values across all voxels in each
605 ROI to analyze the univariate BOLD response changes. Percent BOLD signal change was
606 calculated for each trial by using the average of the last TR before and the first TR after
607 the trial onset as the baseline. Subsequent analyses focused on the peak percent signal
608 change amplitude at the third TR (6s) from the trial onset. Multivariate pattern analyses
609 (MVPA) were performed using PyMVPA (Hanke et al. 2009). We extracted the
610 activation values of all voxels in each ROI for each trial, removing the mean intensity of
611 the ROI, to compute the multi-voxel activation pattern based on the third TR (6s) from
612 the trial onset. Pattern classifications of the face probe condition and the house probe
613 condition were then performed with linear support vector machines (SVMs) using a
614 leave-one-trial-out cross-validation procedure.

615 **Analyses of frequency and phase.**

616 Analyses of frequency and phase were performed with MATLAB (The MathWorks)
617 using functions from the EEGLAB toolbox (Delorme and Makeig 2004) and CircStat

618 toolbox (Berens 2009). First, we calculated the temporal profile of RTs/averaged BOLD
619 responses/MVPA classification accuracies as a function of SOA from 200 to 780 ms in
620 steps of 20 ms (50 Hz sampling frequency) for each condition (congruent and
621 incongruent). For each participant, in order to extract the slow developing trend, raw
622 RTs/averaged BOLD responses/MVPA classification accuracies of each condition were
623 fitted to a second order polynomial function. We then subtracted the slow trend from
624 corresponding temporal profile for each participant to obtain detrended RTs/averaged
625 BOLD responses/MVPA classification accuracies separately for each condition to
626 remove possible interferences from classical priming and expectancy effects. Next, to
627 further investigate the oscillatory patterns of priming effects, we subtracted the detrended
628 temporal profiles of incongruent conditions from congruent conditions. To investigate the
629 spectral characteristics of the detrended priming effects, we then conducted spectrum
630 analysis separately for each participant. Specifically, we performed a Fast Fourier
631 transformation (FFT) to convert the detrended priming effects into the frequency domain
632 (after zero padding and application of a Hanning window). In this study the FFT length
633 was 160 data points and the window size was 40 data points. Also, to examine the phase
634 relationships between the congruent and incongruent conditions, testing for
635 nonuniformity for congruent – incongruent phase differences in the theta-band (4-6 Hz)
636 across participants was conducted using circular statistics (Rayleigh test for
637 nonuniformity for circular data in CircStats toolbox). We further performed a
638 randomization procedure by shuffling the RTs/averaged BOLD responses/MVPA
639 classification accuracies for congruent condition and incongruent condition respectively
640 within each participant to assess the statistical significance of the observed spectral power

641 as well as the congruent – incongruent phase relationship. After each randomization, we
642 conducted FFT on surrogate signals, similar to that of the original data analysis; we
643 repeated this procedure 1000 times, arriving at a distribution of spectral power for each
644 frequency point from which we obtained the $p < 0.05$ threshold (uncorrected). We then
645 applied multiple comparison correction to the uncorrected randomization threshold
646 spectrum profile. Similarly, for each randomization, we conducted the same phase
647 analysis on the surrogate signals by calculating cross-participant coherence in the
648 congruent – incongruent phase difference.

649 **Time-frequency analysis.**

650 To assess MVPA classification accuracies as a function of time (mask-to-probe SOA)
651 and frequency, the detrended temporal profile for each condition was transformed using
652 the continuous complex Gaussian wavelet (order = 4; e.g., FWHM = 1.32 s for 1 Hz
653 wavelet) transforms (Wavelet toolbox, MATLAB), with frequencies ranging from 1 to 25
654 Hz in steps of 2 Hz. The power profile of detrended classification accuracies (squared
655 absolute value) as a function of time and frequency was then extracted from the output of
656 the wavelet transform. Power profiles for priming effects (congruent – incongruent) were
657 calculated for each participant separately. The grand mean of time-frequency power was
658 then calculated by averaging across participants. We further performed a randomization
659 procedure to assess the statistical significance of the power profiles for priming effects
660 (congruent – incongruent), by shuffling the labeling of SOAs. After each randomization,
661 the same time-frequency analysis was performed on the surrogate signals, as that
662 performed in the original data analysis. This procedure was repeated 1000 times and
663 resulted in a distribution of power at each time-frequency point, from which the $p < 0.05$

664 threshold (uncorrected) was obtained. The cross-frequency multiple-comparison
665 correction was then further applied to the uncorrected randomization threshold time-
666 frequency map.

667 **Whole-brain searchlight analysis.**

668 A whole brain searchlight analysis (Kriegeskorte, Goebel, and Bandettini 2006) was
669 conducted to identify brain regions where significant theta-band (3-6 Hz) and alpha-band
670 (8-11 Hz) oscillations occurred. For each participant, voxels were extracted from a
671 spherical searchlight with a two-voxel radius (33 voxels in each searchlight including the
672 central voxel) and then MVPA was performed using this spherical searchlight ROI. The
673 searchlight moved throughout each participant's gray matter-masked data using
674 PyMVPA (Hanke et al. 2009). For each searchlight corresponding to a central voxel (i.e.,
675 each voxel across the whole gray matter mask), a linear SVM learning algorithm was
676 trained and tested to examine pair-wise classification performance for face probe vs.
677 house probe conditions. To ensure independence between training and testing, cross-
678 validations were performed between even scan runs and odd scan runs (train on even runs,
679 test on odd runs; and vice versa). Next, frequency analyses were conducted for each
680 searchlight ROI to calculate the power of theta-band and alpha-band oscillations, and
681 then the results were assigned to the central voxel of the sphere searchlight. After
682 normalization (Z-score) across all voxels, clusters with significant power ($p < 10^{-4}$) and
683 size > 15 voxels (except one subject for alpha-band cluster > 11 voxels) were localized.
684 Percentages of participants with clusters in the temporal, parietal, frontal and occipital
685 lobes were calculated separately for theta-band and alpha-band oscillations. Further, to
686 show the spatial distribution of brain regions that exhibited significant theta-band and

687 alpha-band power, Freesurfer was used to generate atlas-based automatic surface
688 parcellation and to map the concentration by numbers of theta and alpha oscillation
689 clusters per 1000 mm² in each of the parcellated cortical regions.

690

691 ACKNOWLEDGMENTS

692 This work is supported by the National Science Foundation under Grant No. 1157121.

693

694 REFERENCES

695 Bar, M. 2009. "The proactive brain: memory for predictions." *Philos Trans R Soc Lond*
696 *B Biol Sci* 364 (1521):1235-43. doi: 10.1098/rstb.2008.0310.

697 Berens, P. 2009. "CircStat: A MATLAB Toolbox for Circular Statistics." *Journal of*
698 *Statistical Software* 31 (10):1-21.

699 Brainard, D. H. 1997. "The Psychophysics Toolbox." *Spat Vis* 10 (4):433-6.

700 Busch, N. A., J. Dubois, and R. VanRullen. 2009. "The phase of ongoing EEG
701 oscillations predicts visual perception." *J Neurosci* 29 (24):7869-76. doi:
702 10.1523/JNEUROSCI.0113-09.2009.

703 Busch, N. A., and R. VanRullen. 2010. "Spontaneous EEG oscillations reveal periodic
704 sampling of visual attention." *Proc Natl Acad Sci U S A* 107 (37):16048-53. doi:
705 10.1073/pnas.1004801107.

706 Buzsáki, G. 2006. *Rhythms of the brain*. Oxford ; New York: Oxford University Press.

707 Cox, R. W. 1996. "AFNI: software for analysis and visualization of functional magnetic
708 resonance neuroimages." *Comput Biomed Res* 29 (3):162-73.

709 Delorme, A., and S. Makeig. 2004. "EEGLAB: an open source toolbox for analysis of
710 single-trial EEG dynamics including independent component analysis." *J*
711 *Neurosci Methods* 134 (1):9-21. doi: 10.1016/j.jneumeth.2003.10.009.

712 Desikan, R. S., F. Segonne, B. Fischl, B. T. Quinn, B. C. Dickerson, D. Blacker, R. L.
713 Buckner, A. M. Dale, R. P. Maguire, B. T. Hyman, M. S. Albert, and R. J.
714 Killiany. 2006. "An automated labeling system for subdividing the human
715 cerebral cortex on MRI scans into gyral based regions of interest." *Neuroimage*
716 31 (3):968-980. doi: 10.1016/j.neuroimage.2006.01.021.

717 Drewes, J., W. Zhu, A. Wutz, and D. Melcher. 2015. "Dense sampling reveals behavioral
718 oscillations in rapid visual categorization." *Sci Rep* 5:16290. doi:
719 10.1038/srep16290.

720 Dugue, L., P. Marque, and R. VanRullen. 2011. "The phase of ongoing oscillations
721 mediates the causal relation between brain excitation and visual perception." *J*
722 *Neurosci* 31 (33):11889-93. doi: 10.1523/JNEUROSCI.1161-11.2011.

723 Dugue, L., M. Roberts, and M. Carrasco. 2016. "Attention Reorients Periodically." *Curr*
724 *Biol* 26 (12):1595-601. doi: 10.1016/j.cub.2016.04.046.

725 Dux, P. E., J. Ivanoff, C. L. Asplund, and R. Marois. 2006. "Isolation of a central
726 bottleneck of information processing with time-resolved fMRI." *Neuron* 52
727 (6):1109-20. doi: 10.1016/j.neuron.2006.11.009.

728 Engel, A. K., P. Fries, and W. Singer. 2001. "Dynamic predictions: oscillations and
729 synchrony in top-down processing." *Nat Rev Neurosci* 2 (10):704-16. doi:
730 10.1038/35094565.

731 Epstein, R., and N. Kanwisher. 1998. "A cortical representation of the local visual
732 environment." *Nature* 392 (6676):598-601. doi: 10.1038/33402.

733 Fiebelkorn, I. C., Y. B. Saalmann, and S. Kastner. 2013. "Rhythmic sampling within and
734 between objects despite sustained attention at a cued location." *Curr Biol* 23
735 (24):2553-8. doi: 10.1016/j.cub.2013.10.063.

736 Fischl, B., M. I. Sereno, R. B. Tootell, and A. M. Dale. 1999. "High-resolution
737 intersubject averaging and a coordinate system for the cortical surface." *Hum
738 Brain Mapp* 8 (4):272-84.

739 Fischl, B., A. van der Kouwe, C. Destrieux, E. Halgren, F. Segonne, D. H. Salat, E. Busa,
740 L. J. Seidman, J. Goldstein, D. Kennedy, V. Caviness, N. Makris, B. Rosen, and
741 A. M. Dale. 2004. "Automatically parcellating the human cerebral cortex." *Cereb
742 Cortex* 14 (1):11-22.

743 Formisano, E., D. E. Linden, F. Di Salle, L. Trojano, F. Esposito, A. T. Sack, D. Grossi,
744 F. E. Zanella, and R. Goebel. 2002. "Tracking the mind's image in the brain I:
745 time-resolved fMRI during visuospatial mental imagery." *Neuron* 35 (1):185-94.

746 Gorlin, S., M. Meng, J. Sharma, H. Sugihara, M. Sur, and P. Sinha. 2012. "Imaging prior
747 information in the brain." *Proc Natl Acad Sci U S A* 109 (20):7935-40. doi:
748 10.1073/pnas.1111224109.

749 Guo, B., and M. Meng. 2015. "The encoding of category-specific versus nonspecific
750 information in human inferior temporal cortex." *Neuroimage* 116:240-7. doi:
751 10.1016/j.neuroimage.2015.04.006.

752 Hanke, M., Y. O. Halchenko, P. B. Sederberg, S. J. Hanson, J. V. Haxby, and S.
753 Pollmann. 2009. "PyMVPA: A python toolbox for multivariate pattern analysis of
754 fMRI data." *Neuroinformatics* 7 (1):37-53. doi: 10.1007/s12021-008-9041-y.

755 Haxby, J. V. 2012. "Multivariate pattern analysis of fMRI: the early beginnings."
756 *Neuroimage* 62 (2):852-5. doi: 10.1016/j.neuroimage.2012.03.016.

757 Haxby, J. V., M. I. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten, and P. Pietrini. 2001.
758 "Distributed and overlapping representations of faces and objects in ventral
759 temporal cortex." *Science* 293 (5539):2425-30. doi: 10.1126/science.1063736.

760 Haynes, J. D., and G. Rees. 2006. "Decoding mental states from brain activity in
761 humans." *Nat Rev Neurosci* 7 (7):523-34. doi: 10.1038/nrn1931.

762 Heekeren, H. R., S. Marrett, and L. G. Ungerleider. 2008. "The neural systems that
763 mediate human perceptual decision making." *Nat Rev Neurosci* 9 (6):467-479.

764 Huang, Y., L. Chen, and H. Luo. 2015. "Behavioral oscillation in priming: competing
765 perceptual predictions conveyed in alternating theta-band rhythms." *J Neurosci*
766 35 (6):2830-7. doi: 10.1523/JNEUROSCI.4294-14.2015.

767 Jensen, O., M. Bonnefond, and R. VanRullen. 2012. "An oscillatory mechanism for
768 prioritizing salient unattended stimuli." *Trends Cogn Sci* 16 (4):200-6. doi:
769 10.1016/j.tics.2012.03.002.

770 Kanwisher, N., J. McDermott, and M. M. Chun. 1997. "The fusiform face area: a module
771 in human extrastriate cortex specialized for face perception." *J Neurosci* 17
772 (11):4302-11.

773 Kohler, P. J., S. V. Fogelson, E. A. Reavis, M. Meng, J. S. Guntupalli, M. Hanke, Y. O.
774 Halchenko, A. C. Connolly, J. V. Haxby, and P. U. Tse. 2013. "Pattern
775 classification precedes region-average hemodynamic response in early visual
776 cortex." *Neuroimage* 78:249-260.

777 Kriegeskorte, N., R. Goebel, and P. Bandettini. 2006. "Information-based functional
778 brain mapping." *Proc Natl Acad Sci U S A* 103 (10):3863-8. doi:
779 10.1073/pnas.0600244103.

780 Kriegeskorte, N., M. Mur, D. A. Ruff, R. Kiani, J. Bodurka, H. Esteky, K. Tanaka, and P.
781 A. Bandettini. 2008. "Matching categorical object representations in inferior
782 temporal cortex of man and monkey." *Neuron* 60 (6):1126-41. doi:
783 10.1016/j.neuron.2008.10.043.

784 Landau, A. N., and P. Fries. 2012. "Attention samples stimuli rhythmically." *Curr Biol*
785 22 (11):1000-4. doi: 10.1016/j.cub.2012.03.054.

786 Landau, A. N., H. M. Schreyer, S. van Pelt, and P. Fries. 2015. "Distributed Attention Is
787 Implemented through Theta-Rhythmic Gamma Modulation." *Curr Biol* 25
788 (17):2332-7. doi: 10.1016/j.cub.2015.07.048.

789 Lisman, J. E., and M. A. P. Idiart. 1995. "Storage of 7+/-2 Short-Term Memories in
790 Oscillatory Subcycles." *Science* 267 (5203):1512-1515. doi: DOI
791 10.1126/science.7878473.

792 Logothetis, N. K. 2008. "What we can do and what we cannot do with fMRI." *Nature*
793 453 (7197):869-878. doi: 10.1038/nature06976.

794 Luo, H., X. Tian, K. Song, K. Zhou, and D. Poeppel. 2013. "Neural Response Phase
795 Tracks How Listeners Learn New Acoustic Representations." *Curr Biol* 23
796 (11):968-974. doi: 10.1016/j.cub.2013.04.031.

797 Ogawa, S., T. M. Lee, R. Stepnoski, W. Chen, X. H. Zhuo, and K. Ugurbil. 2000. "An
798 approach to probe some neural systems interaction by functional MRI at neural
799 time scale down to milliseconds." *P Natl Acad Sci USA* 97 (20):11026-11031. doi:
800 DOI 10.1073/pnas.97.20.11026.

801 Palva, S., and J. M. Palva. 2007. "New vistas for alpha-frequency band oscillations."
802 *Trends Neurosci* 30 (4):150-8. doi: 10.1016/j.tins.2007.02.001.

803 Rao, R. P., and D. H. Ballard. 1999. "Predictive coding in the visual cortex: a functional
804 interpretation of some extra-classical receptive-field effects." *Nat Neurosci* 2
805 (1):79-87. doi: 10.1038/4580.

806 Ray, W. J., and H. W. Cole. 1985. "EEG alpha activity reflects attentional demands, and
807 beta activity reflects emotional and cognitive processes." *Science* 228
808 (4700):750-2.

809 Romei, V., J. Gross, and G. Thut. 2012. "Sounds reset rhythms of visual cortex and
810 corresponding human visual perception." *Curr Biol* 22 (9):807-13. doi:
811 10.1016/j.cub.2012.03.025.

812 Song, K., M. Meng, L. Chen, K. Zhou, and H. Luo. 2014. "Behavioral oscillations in
813 attention: rhythmic alpha pulses mediated through theta band." *J Neurosci* 34
814 (14):4837-44. doi: 10.1523/JNEUROSCI.4856-13.2014.

815 Summerfield, C., T. Egner, M. Greene, E. Koechlin, J. Mangels, and J. Hirsch. 2006.
816 "Predictive codes for forthcoming perception in the frontal cortex." *Science* 314
817 (5803):1311-4. doi: 10.1126/science.1132028.

818 Thut, G., A. Nietzel, S. A. Brandt, and A. Pascual-Leone. 2006. "Alpha-band
819 electroencephalographic activity over occipital cortex indexes visuospatial
820 attention bias and predicts visual target detection." *J Neurosci* 26 (37):9494-502.
821 doi: 10.1523/JNEUROSCI.0875-06.2006.

822 VanRullen, R., and C. Koch. 2003. "Is perception discrete or continuous?" *Trends Cogn
823 Sci* 7 (5):207-213. doi: 10.1016/S1364-6613(03)00095-0.

824 Willenbockel, V., J. Sadr, D. Fiset, G. O. Horne, F. Gosselin, and J. W. Tanaka. 2010.
825 "Controlling low-level image properties: the SHINE toolbox." *Behav Res
826 Methods* 42 (3):671-84. doi: 10.3758/BRM.42.3.671.

827 Wutz, A., E. Muschter, M. G. van Koningsbruggen, N. Weisz, and D. Melcher. 2016.
828 "Temporal Integration Windows in Neural Processing and Perception Aligned to
829 Saccadic Eye Movements." *Curr Biol* 26 (13):1659-68. doi:
830 10.1016/j.cub.2016.04.070.

831