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Abstract 
Background: Identifying phenotypic correlations between complex traits and diseases can provide useful etiological 
insights. Restricted access to individual-level phenotype data makes it difficult to estimate large-scale phenotypic correla-
tion across the human phenome. State-of-the-art methods, metaCCA and LD score regression, provide an alternative ap-
proach to estimate phenotypic correlation using genome-wide association study (GWAS) summary statistics. 
Results: Here, we present an integrated R toolkit, PhenoSpD, to 1) apply metaCCA (or LD score regression) to esti-
mate phenotypic correlations using GWAS summary statistics; and 2) to utilize the estimated phenotypic correlations to 
inform correction of multiple testing for complex human traits using the spectral decomposition of matrices (SpD). The 
simulations suggest it is possible to estimate phenotypic correlation using samples with only a partial overlap, but as 
overlap decreases correlations will attenuate towards zero and multiple testing correction will be more stringent than in 
perfectly overlapping samples. In a case study, PhenoSpD using GWAS results suggested 324.4 independent tests among 
452 metabolites, which is close to the 296 independent tests estimated using true phenotypic correlation. We further ap-
plied PhenoSpD to estimated 7,503 pair-wise phenotypic correlations among 123 metabolites using GWAS summary 
statistics from Kettunen et al. and PhenoSpD suggested 44.9 number of independent tests for theses metabolites.  
Conclusion: PhenoSpD integrates existing methods and provides a simple and conservative way to reduce dimension-
ality for complex human traits using GWAS summary statistics, which is particularly valuable for post-GWAS analysis 
of complex molecular traits.    
Availability: R code and documentation for PhenoSpD V1.0.0 is available online 
(https://github.com/MRCIEU/PhenoSpD). 
 

Introduction  
Phenotypic correlations between complex human traits and diseases provide useful etiological insights. For GWAS meta-
analysis, a lack of individual-level phenotype data makes it difficult to estimate the phenotypic correlation across human 
traits and diseases. Here we consider two methods that estimate phenotypic correlations using GWAS summary statistics: 
metaCCA (Cichonska et al., 2016) and bivariate LD score regression (Bulik-Sullivan et al., 2015b). The metaCCA 
framework estimates phenotypic correlation between two traits based on a Pearson correlation between two univariate 
regression coefficients (betas) across a set of genetic variants; The bivariate LD score regression approach estimates the 
phenotypic correlation amongst the overlapping samples of two GWAS.  
 
The recently developed MR-Base (Hemani et al.2016) and LD Hub (Zheng et al., 2017) tools include harmonized GWAS 
summary-level results. This provides an opportunity to estimate the phenotypic correlation structure across a wide range 
of high-dimensional, complex molecular traits, such as metabolites, that are potentially highly correlated. Bonferroni cor-
rection would markedly overcorrect for the inflated false-positive rate in such correlated datasets, resulting in a reduction 
in power. An appropriate method to correct for multiple testing among human traits and diseases based on the spectral 
decomposition of matrices (SpD) (Nyholt, 2004; Li and Ji, 2005) is considered in this study. 
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Methods 
Overview of PhenoSpD 
Figure 1 illustrates the key steps of the proposed pipeline, PhenoSpD: step (1) harmonise GWAS summary results fro
the same sample; step (2) apply the harmonized GWAS results to metaCCA or LD score regression to estimate the ph
notypic correlation matrix of the traits; step (3) apply the phenotypic correlation matrix to the SpD approach and estim
the number of independent variables among the traits.  

Figure 1. Flowchart of PhenoSpD.  
 
Simulation and validation of phenotypic correlation estimation 
Firstly, we simulated the influence of the number of single nucleotide polymorphisms (SNPs), sample sizes of two 
GWASs and sample overlap between two GWASs on the accuracy of the phenotypic correlation estimation. As shown
Figure 2, we first created two samples A and B with different number of individuals (from 300 to 10,000 individuals),
where the sample overlap between sample A and B ranged from 10% to 90%. Within each sample, we further assume
complex human traits were influenced by both genetic and environmental factors. We simulated the phenotype data o
two correlated human traits (phenotype 1 and phenotype 2) based on varying numbers of genetic factors (ranging from
to 10,000 SNPs) and 100 environmental factors. We then simulated the genotype data in each sample. After simulatin
the two phenotypic traits and the genotypic data in sample A and B, we then conducted four GWASs (GWASs of phe
type 1 in sample A and B; GWASs of phenotype 2 in sample A and B) and recorded the summary statistics of these 
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GWASs. To measure the accuracy of phenotypic correlation using GWAS summary statistics, we (1) calculated the ob-
servational phenotypic correlation (the Pearson correlation) of trait 1 and trait 2 in sample A and B separately; (2) esti-
mated the phenotypic correlation of trait 1 and trait 2 using GWAS summary statistics of sample A and B separately. We 
simulated step (2) 100 times and estimate the mean and standard deviation of the estimated phenotypic correlations. Fi-
nally, we compared the estimated phenotypic correlation with the observational phenotypic correlation and recorded the 
deviation between observed and estimated correlations. To demonstrate the simulation systematically, we set up 4 groups
of comparisons: (i) tested the influence of sample size; (ii) simulated the influence of sample overlap; (iii) estimated the 
influence of unbalanced sample size in sample A and B; (iv) tested the influence of number of SNPs. The R script for this
simulation were provided as an supplementary file (simulation.R).    
We then tested the accuracy of phenotypic correlation estimation using GWAS summary statistics of 452 metabolites 
from Shin’s (Shin et al, 2014). Shin et al. also reported the observational phenotypic correlation in the supplementary 
table (Table S4), which was used as bench mark of our real case accuracy test.  
Based on the simulation and real case validation, we listed our traits selection criteria in Table S1.  

Figure 2. Demonstration of the simulation. For two samples A and B, we simulated the genotype data and pheno
type data of two correlated human traits, phenotype 1 and phenotype 2. The sample overlap between sample A and
B were ranged from 10% to 90% in this simulation.  

 
Estimating the phenotypic correlations 
Within our GWAS summary results database containing 1094 human traits, we selected 123 metabolites from Kettunen
et al as a real case application (Kettunen et al, 2016) since these complex molecular traits are potentially highly correlat
ed. We then applied metaCCA to these 123 metabolites to estimate the phenotypic correlation matrix (Table S2). Among
the 123 metabolites, we further applied LD score regression to 107 of them (Table S3), which fit the assumptions of LD
score regression (traits with large sample size (e.g. N > 5,000), good SNP coverage (e.g. number of SNPs > 200,000) and
heritable (e.g. SNP heritability > 0.05)). 
Multiple testing correction for human traits 
We applied the SpD approach to correct for multiple testing among the 123 metabolites. We implemented the R code o
the well-known method, SNPSpD (Nyholt, 2004; Li and Ji, 2005), to estimate the number of independent traits using the
phenotypic correlation matrix as input (Fig. 1). The output of the SpD function is the estimated the number of independ
ent tests. 

Results 
Evaluation of phenotypic correlation estimation using simulated and real GWAS summary data 
Table 1 show the influence of number of SNPs, sample sizes of two GWASs and sample overlap between two GWASs
on the accuracy of the phenotypic correlation estimation. We found that the accuracy of phenotypic correlation estimation
is mainly influenced by the number of overlapped individual in two GWAS studies. For example, the deviation between
observed and estimated phenotypic correlation (Deviation_obs_est) improved from 82.1% to 5.8% when the percentage
of sample overlap between two samples increased from 10% to 90%. Base on this simulation, we only applied metaCCA
to GWASs from the same study to maximize the sample overlap between GWASs. In addition, we observed that the
number of SNPs in GWAS will also influence the accuracy of the phenotypic correlation estimation. We should include
as many SNPs as possible to maximize the accuracy of the estimation. Besides, we did not observe any major influence
of the sample size of the GWAS on the accuracy of the estimation, so we included metabolites GWASs with various o
sample sizes.  
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Table 1. The influence of number of SNPs, sample sizes of two GWASs and sample overlap between two GWASs on phenotypic correlation estimation.  
Model N_ind_A N_ind_B N_overlap Overlap_% N_SNPs N_EnvF N_simu y1_y2_A_obs y1_y2_B_obs Mean_y1_y2_est SD_y1_y2_est Deviation_obs_est (%) 

sample size 1 300 300 150 50% 1000 100 100 -0.70 -0.70 -0.46 0.56 34.1% 
sample size 2 500 500 250 50% 1000 100 100 -0.71 -0.70 -0.47 0.56 33.0% 
sample size 3 1000 1000 500 50% 1000 100 100 -0.70 -0.70 -0.47 0.54 33.3% 
sample size 4 3000 3000 1500 50% 1000 100 100 -0.70 -0.70 -0.46 0.54 33.6% 
sample size 5 5000 5000 2500 50% 1000 100 100 -0.70 -0.70 -0.47 0.54 33.2% 
sample size 6 10000 10000 5000 50% 1000 100 100 -0.71 -0.71 -0.47 0.54 33.9% 
sample overlap 1 5000 5000 1000 10% 1000 100 100 -0.70 -0.70 -0.13 0.39 82.1% 
sample overlap 2 5000 5000 2000 20% 1000 100 100 -0.70 -0.70 -0.23 0.47 67.2% 
sample overlap 3 5000 5000 3000 30% 1000 100 100 -0.71 -0.71 -0.33 0.47 54.0% 
sample overlap 4 5000 5000 4000 40% 1000 100 100 -0.71 -0.71 -0.40 0.51 43.2% 
sample overlap 5 5000 5000 5000 50% 1000 100 100 -0.71 -0.71 -0.47 0.53 33.3% 
sample overlap 6 5000 5000 6000 60% 1000 100 100 -0.71 -0.71 -0.53 0.59 25.2% 
sample overlap 7 5000 5000 7000 70% 1000 100 100 -0.70 -0.70 -0.58 0.57 17.5% 
sample overlap 8 5000 5000 8000 80% 1000 100 100 -0.70 -0.70 -0.62 0.65 11.4% 
sample overlap 9 5000 5000 9000 90% 1000 100 100 -0.71 -0.71 -0.67 0.67 5.8% 
unbalance sample 1 5000 5000 9000 90% 1000 100 100 -0.71 -0.71 -0.67 0.67 5.8% 
unbalance sample 2 5000 6000 9000 82% 1000 100 100 -0.71 -0.71 -0.64 0.66 9.8% 
unbalance sample 3 5000 8000 9000 69% 1000 100 100 -0.70 -0.70 -0.58 0.65 17.3% 
unbalance sample 4 5000 10000 9000 60% 1000 100 100 -0.70 -0.70 -0.54 0.62 22.9% 
unbalance sample 5 5000 13000 9000 50% 1000 100 100 -0.70 -0.70 -0.48 0.54 30.9% 
number of SNPs 1 5000 5000 2500 50% 10 100 100 -0.70 -0.70 -0.44 0.73 38.1% 
number of SNPs 2 5000 5000 2500 50% 100 100 100 -0.70 -0.70 -0.48 0.53 34.1% 
number of SNPs 3 5000 5000 2500 50% 500 100 100 -0.70 -0.70 -0.47 0.53 34.3% 
number of SNPs 4 5000 5000 2500 50% 1000 100 100 -0.71 -0.70 -0.47 0.56 33.5% 
number of SNPs 5 5000 5000 2500 50% 5000 100 100 -0.70 -0.70 -0.47 0.55 33.6% 
number of SNPs 6 5000 5000 2500 50% 10000 100 100 -0.71 -0.71 -0.47 0.59 33.7% 

In this simulation, we compared the agreements of the observational (calculated from phenotypes) and estimated phenotypic correlation (estimated using GWAS results) of two human 
traits in two samples A and B. In general, we set up 4 groups of comparisons: (i) tested the influence of sample size; (ii) simulated the influence of sample overlap; (iii) estimated the 
influence of unbalanced sample size in sample A and B; (iv) tested the influence of number of SNPs. More details of the simulation can be found in methods section.     
Abbreviations: N_ind_A and N_ind_B, number of individual in sample A and B. N_overlap, number of overlapped samples in sample A and B. overlap_%, the percentage of over-
lapped samples in A and B. N_SNPs, number of SNPs in GWAS of sample A and B. N_EnvF, number of environmental factors included in the model. N_simu, number of simulations. 
y1_y2_A and y1_y2_B, the observed phenotypic correlation between two traits in sample A and B. Mean_y1_y2_est, the mean value of the estimated phenotypic correlations in 100 
simulations; SD_y1_y2_est, the standard deviation of estimated phenotypic correlations in 100 simulations.  Deviation_obs_est (%), the deviation between observational phenotypic 
correlation and estimated phenotypic correlation in each model of simulation. 
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We also tested the accuracy of phenotypic correlation estimation by comparing the observed phenotypic correlations (Ta
ble S4) and the estimated phenotypic correlation (Table S5) using real data from Shin’s (Shin et al, 2014). Figure 3
showed the estimated phenotypic correlations have a very high agreement with the observed phenotypic correlations (r
=0.89). The only exception is that some metabolites with large observed correlation have estimated correlation towards
null.  
To further investigate this exception, we measured the difference between observed and estimated phenotypic correla
tions by using the sum of errors of phenotypic correlation (the sum of the differences between one metabolites on the res
metabolites). As show in Figure 4, the points with high level of errors (disagreements) are metabolites with limited sam
ple size. The metabolites with limited sample size also have a limited number of sample overlap with other metabolites
which drive the phenotypic correlation estimation towards null.   

Figure 3. The comparison between the observed and estimated phenotypic correlations amongst 452 metabolites from 
Shin et al. Each point is one metabolite. The red line is X=Y line.  
 

 
Figure 4. The relationship between sample size (sample overlap) and errors in 452 metabolites from Shin et al. Each
point in the scatter plot is one metabolite. The x-axis is the sample size of each metabolite GWAS. The sum of errors o
phenotypic correlation (y-axis) is refer to the difference between observed and estimated phenotypic correlations of one
metabolite on the rest of the metabolites.  
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A practical comparison between metaCCA and LD score regression on estimating phenotypic correlation  
Both metaCCA and LD score regression has its advantages and limitations on estimating phenotypic correlation. In this 
section, we summarized the practical difference between the two to inform the PhenoSpD users on how to choose the 
appropriate methods.  
MetaCCA can be applied to almost all GWASs (e.g. in our simulation, the sample size>300 and the number of 
SNPs>1000). However, 1) the genetic effect of SNPs may bias the phenotypic correlation estimation; 2) it only provides 
the central estimate of the phenotypic correlation; 3) it is difficult to quantify the effect of sample overlap.  
LD score regression is designed to estimate genetic correlation between a pair of human traits. As a side product, it also 
provides the pair-wise phenotypic correlation estimation with standard errors. It deals with sample overlap automatically 
(when there is no sample overlap between two GWASs, the phenotypic correlation estimation will be zero). However, its 
application is limited to traits with large sample size (e.g. N > 5,000), good SNP coverage (e.g. number of SNPs > 
200,000) and heritable (SNP heritability at least > 0.05) to fit the assumptions of LD score regression (Bulik-Sullivan et 
al., 2015a).  
  
The phenotypic correlations of the human metabolome 
In a real case study, we applied both metaCCA and LD score regression to the human metabolome. We firstly estimated 
108,978 pair-wise phenotypic correlations among these 123 metabolites from Kettunen et al (Kettunen et al, 2016) and 
452 metabolites from Shin et al (Shin et al, 2014). More details of the metabolites were listed in Table S2. The phenotyp-
ic correlations estimated by metaCCA were presented in Table S5 and S6. Among the 123 metabolites from Kettunen et 
al, we further selected 107 of them (Table S3), which fit the assumptions of LD score regression analysis (details of the 
assumptions were listed in methods section). We then estimated 5,618 pair-wise correlations using LD score regression. 
The phenotypic correlation structure estimated by LD score regression was presented in Table S7. 
 
Multiple testing correction of the human metabolome 
Table 2 shows the number of independent traits for two high-dimensional, complex metabolites datasets. PhenoSpD us-
ing GWAs results suggested 324.4 independent tests among 452 metabolites from Shin et al., which is close to 296 inde-
pendent tests estimated using real phenotypic correlation. For metabolites from Kettunen et al, PhenoSpD suggested 44.9 
number of independent tests for theses metabolites, which greatly reduced the dimensionality for these complex molecu-
lar traits. More details of the multiple testing correction are listed in Table S8.   
 
Table 2. Summary of number of independent traits for the two complex metabolites networks.  

First author Category N_traits N_SNPs N_indep 
Kettunen et al. Metabolites 123 9826292 44.9 

Shin et al. Metabolites 452 2482345 324.4 
Note: N_traits refers to number of traits in each molecular network; N_SNPs refers to number of SNPs in each network; N_indep refers to number of inde-
pendent tests in each network.  
 

Discussion 
In this study, we present an integrative method which allows phenotypic correlation estimation and multiple testing cor-
rection for human phenome using GWAS summary statistics. We illustrate the application of PhenoSpD by estimating 
the phenotypic correlation structure of the correlation structure of 123 metabolites from Kettunen’s study for the very 
first time (Kettunen et al, 2016). These results showcase the ability of PhenoSpD to estimate an appropriate multiple test-
ing correction for complex molecular traits.  
 
Advantages and limitations of PhenoSpD 
There are two key advantages of PhenoSpD. Firstly, PhenoSpD integrated the phenotypic correlation estimation function 
of metaCCA and LD score regression, with the spectral decomposition of matrices, which provides a simple way of cor-
recting multiple testing for the human phenome using only GWAS summary results. Secondly, such multiple testing cor-
rection is still stringent (since limited sample overlap between two GWASs will drive correlated traits towards null), but 
more appropriate than Bonferroni correction, which is particularly valuable for GWAS of complex molecular traits. It can 
also be used as an indicative threshold for post-GWAS data mining tools such as MR-Base and LD Hub. For limitation, 
PhenoSpD can only be used for human traits from the same sample, which is a general limitation of estimating phenotyp-
ic correlation using GWAS summary statistics.  
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Availability of Data and Materials  
Project name: PhenoSpD  
Project home page: https://github.com/MRCIEU/PhenoSpD 
License: PhenoSpD is licensed under GNU GPL v3. 
All data used in this manuscript are publically available and can be downloaded from the following links.  
GWAS results from Shin et al: http://mips.helmholtz-muenchen.de/proj/GWAS/gwas/gwas_server/shin_et_al.metal.out.tar.gz 
GWAS results from Kettunen et al: http://www.computationalmedicine.fi/data#NMR_GWAS 
Operating systems: Linux, OS X, windows  
Programming languages: R 
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