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Abstract

Background: Identifying phenotypic correlations between complex traits and diseases can provide useful etiological
insights. Restricted access to individual-level phenotype data makesit difficult to estimate large-scale phenotypic correla-
tion across the human phenome. State-of-the-art methods, metaCCA and LD score regression, provide an alternative ap-
proach to estimate phenotypic correlation using genome-wide association study (GWAS) summary statistics.

Results: Here, we present an integrated R toolkit, PhenoSpD, to 1) apply metaCCA (or LD score regression) to esti-
mate phenotypic correlations using GWAS summary statistics; and 2) to utilize the estimated phenotypic correlations to
inform correction of multiple testing for complex human traits using the spectral decomposition of matrices (SpD). The
simulations suggest it is possible to estimate phenotypic correlation using samples with only a partial overlap, but as
overlap decreases correlations will attenuate towards zero and multiple testing correction will be more stringent than in
perfectly overlapping samples. In a case study, PhenoSpD using GWAS results suggested 324.4 independent tests among
452 metabolites, which is close to the 296 independent tests estimated using true phenotypic correlation. We further ap-
plied PhenoSpD to estimated 7,503 pair-wise phenotypic correlations among 123 metabolites using GWAS summary
statistics from Kettunen et a. and PhenoSpD suggested 44.9 number of independent tests for theses metabolites.
Conclusion: PhenoSpD integrates existing methods and provides a simple and conservative way to reduce dimension-
ality for complex human traits using GWAS summary statistics, which is particularly valuable for post-GWAS analysis
of complex molecular traits.

Availability: R code and documentation  for PhenoSpD V100 is avalable online
(https://github.com/M RCIEU/PhenoSpD).

Introduction

Phenotypic correlations between complex human traits and diseases provide useful etiological insights. For GWAS meta-
analysis, alack of individual-level phenotype data makes it difficult to estimate the phenotypic correlation across human
traits and diseases. Here we consider two methods that estimate phenotypic correlations using GWAS summary statistics:
metaCCA (Cichonska et a., 2016) and bivariate LD score regression (Bulik-Sullivan et al., 2015b). The metaCCA
framework estimates phenotypic correlation between two traits based on a Pearson correlation between two univariate
regression coefficients (betas) across a set of genetic variants, The bivariate LD score regression approach estimates the
phenotypic correlation amongst the overlapping samples of two GWAS.

The recently developed MR-Base (Hemani et al.2016) and LD Hub (Zheng et a., 2017) tools include harmonized GWAS
summary-level results. This provides an opportunity to estimate the phenotypic correlation structure across awide range
of high-dimensional, complex molecular traits, such as metabolites, that are potentially highly correlated. Bonferroni cor-
rection would markedly overcorrect for the inflated false-positive rate in such correlated datasets, resulting in areduction
in power. An appropriate method to correct for multiple testing among human traits and diseases based on the spectral
decomposition of matrices (SpD) (Nyholt, 2004; Li and Ji, 2005) is considered in this study.
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Methods

Overview of PhenoSpD

Figure 1 illustrates the key steps of the proposed pipeline, PhenoSpD: step (1) harmonise GWAS summary results from
the same sample; step (2) apply the harmonized GWAS results to metaCCA or LD score regression to estimate the phe-
notypic correlation matrix of thetraits; step (3) apply the phenotypic correlation matrix to the SpD approach and estimate
the number of independent variables among the traits.
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Figure 1. Flowchart of PhenoSpD.

Simulation and validation of phenotypic correlation estimation

Firstly, we simulated the influence of the number of single nuclectide polymorphisms (SNPs), sasmple sizes of two
GWASs and sample overlap between two GWASSs on the accuracy of the phenotypic correlation estimation. As shown in
Figure 2, we first created two samples A and B with different number of individuals (from 300 to 10,000 individuals),
where the sample overlap between sample A and B ranged from 10% to 90%. Within each sample, we further assume
complex human traits were influenced by both genetic and environmental factors. We simulated the phenotype data of
two correlated human traits (phenotype 1 and phenotype 2) based on varying numbers of genetic factors (ranging from 10
to 10,000 SNPs) and 100 environmental factors. We then simulated the genotype data in each sample. After simulating
the two phenotypic traits and the genotypic data in sample A and B, we then conducted four GWASs (GWASs of pheno-
type 1 in sample A and B; GWAS:s of phenotype 2 in sample A and B) and recorded the summary statistics of these
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GWASs. To measure the accuracy of phenotypic correlation using GWAS summary statistics, we (1) calculated the ob-
servational phenotypic correlation (the Pearson correlation) of trait 1 and trait 2 in sample A and B separately; (2) esti-
mated the phenotypic correlation of trait 1 and trait 2 using GWAS summary statistics of sample A and B separately. We
simulated step (2) 100 times and estimate the mean and standard deviation of the estimated phenotypic correlations. Fi-
nally, we compared the estimated phenotypic correlation with the observational phenotypic correlation and recorded the
deviation between observed and estimated correlations. To demonstrate the simulation systematically, we set up 4 groups
of comparisons: (i) tested the influence of sample size; (ii) simulated the influence of sample overlap; (iii) estimated the
influence of unbalanced sample size in sample A and B; (iv) tested the influence of number of SNPs. The R script for this
simulation were provided as an supplementary file (simulation.R).

We then tested the accuracy of phenotypic correlation estimation using GWAS summary statistics of 452 metabolites
from Shin’s (Shin et al, 2014). Shin et a. also reported the observational phenotypic correlation in the supplementary
table (Table $4), which was used as bench mark of our real case accuracy test.

Based on the simulation and real case validation, we listed our traits selection criteriain Table S1.

Sample A Sample B
genotype A genotype B
phenotype 1_A phenotype 1_B

phenotype 2_A phenotype 2_B

sample overlap

Figure 2. Demonstration of the simulation. For two samples A and B, we simulated the genotype data and pheno-
type data of two correlated human traits, phenotype 1 and phenotype 2. The sample overlap between sample A and
B were ranged from 10% to 90% in this simulation.

Estimating the phenotypic correlations

Within our GWAS summary results database containing 1094 human traits, we selected 123 metabolites from Kettunen
et al asarea case application (Kettunen et al, 2016) since these complex molecular traits are potentialy highly correlat-
ed. We then applied metaCCA to these 123 metabolites to estimate the phenotypic correlation matrix (Table S2). Among
the 123 metabolites, we further applied LD score regression to 107 of them (Table S3), which fit the assumptions of LD
score regression (traits with large sample size (e.g. N > 5,000), good SNP coverage (e.g. number of SNPs > 200,000) and
heritable (e.g. SNP heritability > 0.05)).

Multiple testing correction for human traits

We applied the SpD approach to correct for multiple testing among the 123 metabolites. We implemented the R code of
the well-known method, SNPSpD (Nyholt, 2004; Li and Ji, 2005), to estimate the number of independent traits using the
phenotypic correlation matrix as input (Fig. 1). The output of the SpD function is the estimated the number of independ-
ent tests.

Results

Evaluation of phenotypic correlation estimation using simulated and real GWAS summary data

Table 1 show the influence of number of SNPs, sample sizes of two GWASs and sample overlap between two GWASs
on the accuracy of the phenotypic correlation estimation. We found that the accuracy of phenotypic correlation estimation
is mainly influenced by the number of overlapped individual in two GWAS studies. For example, the deviation between
observed and estimated phenctypic correlation (Deviation_obs _est) improved from 82.1% to 5.8% when the percentage
of sample overlap between two samples increased from 10% to 90%. Base on this simulation, we only applied metaCCA
to GWASs from the same study to maximize the sample overlap between GWASs. In addition, we observed that the
number of SNPsin GWAS will also influence the accuracy of the phenotypic correlation estimation. We should include
as many SNPs as possible to maximize the accuracy of the estimation. Besides, we did not observe any major influence
of the sample size of the GWAS on the accuracy of the estimation, so we included metabolites GWASs with various of
sample sizes.
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Table 1. Theinfluence of number of SNPs, sample sizes of two GWA Ss and sample overlap between two GWASs on phenotypic correlation estimation.

Model N_ind A N_ind B N_overlap Overlap_% N_SNPs  N_EnvF N_smu yl y2 A obs vyl y2 B_obs Mean y1 y2 est SD_yl y2 est Deviation_obs_est (%)
samplesize 1 300 300 150 50% 1000 100 100 -0.70 -0.70 -0.46 0.56 34.1%
samplesize2 500 500 250 50% 1000 100 100 -0.71 -0.70 -0.47 0.56 33.0%
samplesize3 1000 1000 500 50% 1000 100 100 -0.70 -0.70 -0.47 0.54 33.3%
samplesize4 3000 3000 1500 50% 1000 100 100 -0.70 -0.70 -0.46 0.54 33.6%
samplesize5 5000 5000 2500 50% 1000 100 100 -0.70 -0.70 -0.47 0.54 33.2%
samplesize 6 10000 10000 5000 50% 1000 100 100 -0.71 -0.71 -0.47 0.54 33.9%
sampleoverlap 1 5000 5000 1000 10% 1000 100 100 -0.70 -0.70 -0.13 0.39 82.1%
sample overlap 2 5000 5000 2000 20% 1000 100 100 -0.70 -0.70 -0.23 0.47 67.2%
sampleoverlap 3 5000 5000 3000 30% 1000 100 100 -0.71 -0.71 -0.33 0.47 54.0%
sampleoverlap 4 5000 5000 4000 40% 1000 100 100 -0.71 -0.71 -0.40 0.51 43.2%
sampleoverlap 5 5000 5000 5000 50% 1000 100 100 -0.71 -0.71 -0.47 0.53 33.3%
sampleoverlap 6 5000 5000 6000 60% 1000 100 100 -0.71 -0.71 -0.53 0.59 25.2%
sampleoverlap 7 5000 5000 7000 70% 1000 100 100 -0.70 -0.70 -0.58 0.57 17.5%
sampleoverlap 8 5000 5000 8000 80% 1000 100 100 -0.70 -0.70 -0.62 0.65 11.4%
sample overlap 9 5000 5000 9000 90% 1000 100 100 -0.71 -0.71 -0.67 0.67 5.8%
unbalance sample 1 5000 5000 9000 90% 1000 100 100 -0.71 -0.71 -0.67 0.67 5.8%
unbalance sample 2 5000 6000 9000 82% 1000 100 100 -0.71 -0.71 -0.64 0.66 9.8%
unbalance sample 3 5000 8000 9000 69% 1000 100 100 -0.70 -0.70 -0.58 0.65 17.3%
unbalance sample 4 5000 10000 9000 60% 1000 100 100 -0.70 -0.70 -0.54 0.62 22.9%
unbalance sample 5 5000 13000 9000 50% 1000 100 100 -0.70 -0.70 -0.48 0.54 30.9%
number of SNPs 1 5000 5000 2500 50% 10 100 100 -0.70 -0.70 -0.44 0.73 38.1%
number of SNPs 2 5000 5000 2500 50% 100 100 100 -0.70 -0.70 -0.48 0.53 34.1%
number of SNPs 3 5000 5000 2500 50% 500 100 100 -0.70 -0.70 -0.47 0.53 34.3%
number of SNPs 4 5000 5000 2500 50% 1000 100 100 -0.71 -0.70 -0.47 0.56 33.5%
number of SNPs 5 5000 5000 2500 50% 5000 100 100 -0.70 -0.70 -0.47 0.55 33.6%
number of SNPs 6 5000 5000 2500 50% 10000 100 100 -0.71 -0.71 -0.47 0.59 33.7%

In this simulation, we compared the agreements of the observational (calculated from phenotypes) and estimated phenotypic correlation (estimated using GWAS results) of two human
traitsin two samples A and B. In general, we set up 4 groups of comparisons: (i) tested the influence of sample size; (ii) simulated the influence of sample overlap; (iii) estimated the
influence of unbalanced sample size in sample A and B; (iv) tested the influence of number of SNPs. More details of the simulation can be found in methods section.

Abbreviations: N_ind_A and N_ind_B, number of individual in sasmple A and B. N_overlap, number of overlapped samplesin sample A and B. overlap_%, the percentage of over-
lapped samplesin A and B. N_SNPs, number of SNPsin GWAS of sample A and B. N_EnvF, number of environmental factors included in the model. N_simu, number of simulations.
yl y2 A andyl y2 B, the observed phenotypic correlation between two traits in sample A and B. Mean y1 y2 est, the mean value of the estimated phenotypic correlations in 100
simulations; SD_y1 y2 est, the standard deviation of estimated phenotypic correlations in 100 simulations. Deviation_obs_est (%), the deviation between observational phenotypic
correlation and estimated phenotypic correlation in each model of simulation.
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We also tested the accuracy of phenotypic correlation estimation by comparing the observed phenotypic correlations (Ta-
ble $4) and the estimated phenotypic correlation (Table S5) using real data from Shin’'s (Shin et al, 2014). Figure 3
showed the estimated phenotypic correlations have a very high agreement with the observed phenotypic correlations (r*
=0.89). The only exception is that some metabolites with large observed correlation have estimated correlation towards
null.

To further investigate this exception, we measured the difference between observed and estimated phenotypic correla-
tions by using the sum of errors of phenotypic correlation (the sum of the differences between one metabolites on the rest
metabolites). As show in Figure 4, the points with high level of errors (disagreements) are metabolites with limited sam-
ple size. The metabolites with limited sample size also have a limited number of sample overlap with other metabolites,
which drive the phenotypic correlation estimation towards null.
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Observed phenotypic correlation from Shin et al.

Estimated phenotypic correlation using GWAS summary statistics

Figure 3. The comparison between the observed and estimated phenotypic correlations amongst 452 metabolites from
Shin et al. Each point is one metabolite. The red line is X=Y line.
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Figure 4. The relationship between sample size (sample overlap) and errors in 452 metabolites from Shin et al. Each
point in the scatter plot is one metabolite. The x-axis is the sample size of each metabolite GWAS. The sum of errors of
phenotypic correlation (y-axis) is refer to the difference between observed and estimated phenotypic correlations of one
metabolite on the rest of the metabolites.


https://doi.org/10.1101/148627
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/148627; this version posted July 25, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Zheng et al.

A practical comparison between metaCCA and L D score regression on estimating phenotypic correlation
Both metaCCA and LD score regression has its advantages and limitations on estimating phenotypic correlation. In this
section, we summarized the practical difference between the two to inform the PhenoSpD users on how to choose the
appropriate methods.

MetaCCA can be applied to almost all GWASs (e.g. in our simulation, the sample size>300 and the number of
SNPs>1000). However, 1) the genetic effect of SNPs may bias the phenotypic correlation estimation; 2) it only provides
the central estimate of the phenotypic correlation; 3) it is difficult to quantify the effect of sample overlap.

LD score regression is designed to estimate genetic correlation between a pair of human traits. As a side product, it also
provides the pair-wise phenotypic correlation estimation with standard errors. It deals with sample overlap automatically
(when there is no sample overlap between two GWASs, the phenotypic correlation estimation will be zero). However, its
application is limited to traits with large sample size (e.g. N > 5,000), good SNP coverage (e.g. humber of SNPs >
200,000) and heritable (SNP heritability at least > 0.05) to fit the assumptions of LD score regression (Bulik-Sullivan et
al., 2015a).

The phenotypic correlations of the human metabolome

Inarea case study, we applied both metaCCA and LD score regression to the human metabolome. We firstly estimated
108,978 pair-wise phenotypic correlations among these 123 metabolites from Kettunen et al (Kettunen et al, 2016) and
452 metabolites from Shin et a (Shin et al, 2014). More details of the metabolites were listed in Table S2. The phenotyp-
ic correlations estimated by metaCCA were presented in Table S5 and S6. Among the 123 metabolites from Kettunen et
al, we further selected 107 of them (Table S3), which fit the assumptions of LD score regression analysis (details of the
assumptions were listed in methods section). We then estimated 5,618 pair-wise correlations using LD score regression.
The phenotypic correlation structure estimated by LD score regression was presented in Table S7.

M ultiple testing correction of the human metabolome

Table 2 shows the number of independent traits for two high-dimensional, complex metabolites datasets. PhenoSpD us-
ing GWAS results suggested 324.4 independent tests among 452 metabolites from Shin et al., which is close to 296 inde-
pendent tests estimated using real phenotypic correlation. For metabolites from Kettunen et al, PhenoSpD suggested 44.9
number of independent tests for theses metabolites, which greatly reduced the dimensionality for these complex molecu-
lar traits. More details of the multiple testing correction are listed in Table S8.

Table 2. Summary of number of independent traits for the two complex metabolites networks.

First author Category N_traits N_snps N_ndep
Kettunen et al. Metabolites 123 9826292 449
Shinet al. Metabolites 452 2482345 324.4

Note: N_rits refers to number of traits in each molecular network; N_swes refers to number of SNPs in each network; N_jnae refersto number of inde-
pendent tests in each network.

Discussion

In this study, we present an integrative method which allows phenotypic correlation estimation and multiple testing cor-
rection for human phenome using GWAS summary statistics. We illustrate the application of PhenoSpD by estimating
the phenotypic correlation structure of the correlation structure of 123 metabolites from Kettunen’s study for the very
firgt time (Kettunen et al, 2016). These results showcase the ability of PhenoSpD to estimate an appropriate multiple test-
ing correction for complex molecular traits.

Advantages and limitations of PhenoSpD

There are two key advantages of PhenoSpD. Firstly, PhenoSpD integrated the phenotypic correlation estimation function
of metaCCA and LD score regression, with the spectral decomposition of matrices, which provides a simple way of cor-
recting multiple testing for the human phenome using only GWAS summary results. Secondly, such multiple testing cor-
rection is still stringent (since limited sample overlap between two GWASs will drive correlated traits towards null), but
more appropriate than Bonferroni correction, which is particularly valuable for GWAS of complex molecular traits. It can
also be used as an indicative threshold for post-GWAS data mining tools such as MR-Base and LD Hub. For limitation,
PhenoSpD can only be used for human traits from the same sample, which is a general limitation of estimating phenotyp-
ic correlation using GWAS summary statistics.
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Availability of Data and Materials

Project name: PhenoSpD

Project home page: https://github.com/M RCIEU/PhenoSpD

License: PhenoSpD is licensed under GNU GPL v3.

All data used in this manuscript are publically available and can be downloaded from the following links.

GWAS results from Shin et al: http://mips.hel mholtz-muenchen.de/proj/ GWAS/gwas/gwas server/shin et_al.metal.out.tar.gz
GWAS results from Kettunen et al: http://www.computationalmedicine.fi/dats#NMR_GWAS

Operating systems: Linux, OS X, windows

Programming languages: R
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