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ABSTRACT

Premise of the Study— Phylogenetic support has been difficult to evaluate within the plant
tree of life partly due to the difficulty of distinguishing conflicted versus poorly informed
branches. As datasets continue to expand in both breadth and depth, new support measures are

needed that are more efficient and informative.

Methods— We describe the Quartet Sampling (QS) method, a quartet-based evaluation
system that synthesizes several phylogenetic and genomic analytical approaches. QS
characterizes discordance in large-sparse and genome-wide datasets, overcoming issues of
alignment sparsity and distinguishing strong conflict from weak support. We test QS with

simulations and recent plant phylogenies inferred from variously sized datasets.

Key Results— QS scores demonstrate convergence with increasing replicates and are not
strongly affected by branch depth. Patterns of QS support from different phylogenies leads to a
coherent understanding of ancestral branches defining key disagreements, including the
relationships of Ginkgo to cycads, magnoliids to monocots and eudicots, and mosses to
liverworts. The relationships of ANA grade angiosperms, major monocot groups, bryophytes, and
fern families are likely highly discordant in their evolutionary histories, rather than poorly

informed. QS can also detect discordance due to introgression in phylogenomic data.

Conclusions— The QS method represents an efficient and effective synthesis of phylogenetic
tests that offer more comprehensive and specific information on branch support than conventional

measures. The QS method corroborates growing evidence that phylogenomic investigations that
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incorporate discordance testing are warranted to reconstruct the complex evolutionary histories

surrounding in particular ANA grade angiosperms, monocots, and non-vascular plants.

Key words: bootstrap; branch support; discordance; introgression; lineage sorting;

phylogenetics; phylogenetic methods; phylogenomics; plant tree of life; quartet sampling

INTRODUCTION

Discordance and uncertainty have emerged as consistent features throughout the history of our
evolving model of the plant tree of life (Crane, 1985; Chase et al., 1993; Palmer et al., 2004; Soltis
et al., 2011; Wickett et al., 2014). Particularly strong contentions often arise at pivotal transitions
in the evolution of plant life on earth, such as the development of vascular tissue (Pryer et al.,
2001; Steemans et al., 2009; Banks et al., 2011), the rise of seed-bearing plants (Chase et al.,
1993; Chaw et al., 1997; Bowe et al., 2000; Qiu et al., 2006; Jiao et al., 2011), and the explosive
radiation of flowering plants (Crane, 1985; The Amborella Genome Project, 2013; Goremykin

et al., 2015; Taylor et al., 2015; Simmons, 2016; Edwards et al., 2016). Modern phylogenomic
datasets, rather than quelling these disagreements, have repeatedly shown that these phylogenetic
conflicts are often the result of biological processes including incomplete lineage sorting (ILS),
introgressive hybridization, and paralog duplication-loss (e.g., Zhong et al., 2013b; Wickett et al.,
2014; Zwickl et al., 2014; Yang et al., 2015; Eaton et al., 2017; Pease et al., 2016b; Goulet et al.,
2017; Walker et al., 2017c). Several methods have been proposed to address these issues during
species tree inference (e.g., Zwickl and Hillis, 2002; Ogden and Rosenberg, 2006;

Shavit Grievink et al., 2010; Anderson et al., 2012; Roure et al., 2012; Hinchliff and Roalson,
2013; Mirarab et al., 2014). However, we lack a generalized framework to quantify phylogenetic
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uncertainty (specifically branch support) that distinguishes branches with low information from
those with multiple highly supported, but mutually exclusive, phylogenetic histories.

One of the most commonly used branch support methods has been the non-parametric
bootstrap (NBS; Felsenstein, 1985) and recent variants like the rapid bootstrap (RBS; Stamatakis
et al., 2008), which resample the original data with replacement assuming that aligned sites are
independent and identically distributed (i.i.d.) samples that approximate the true underlying
distribution (Felsenstein, 1985; Efron, 1992). In practice, the assumptions of NBS (in particular
site independence) may rarely be met and can deteriorate under a variety of conditions
(Felsenstein and Kishino, 1993; Hillis and Bull, 1993; Sanderson, 1995; Andrews, 2000; Alfaro
et al., 2003; Cummings et al., 2003). More recently the UltraFast bootstrap approximation
(UFboot) method, utilizing a likelihood-based candidate tree testing, was proposed to address
speed and score interpretation issues for NBS (Minh et al. 2013; and see comparison in Simmons
and Norton 2014).

The other most common branch support metric has been the Bayesian posterior probability
(PP). PP scores are typically calculated from posterior distributions of trees generated using a
Markov chain Monte Carlo (MCMC) sampler, and summarized using a majority-rule consensus
tree (e.g., Larget and Simon, 1999; Drummond and Rambaut, 2007; Holder et al., 2008; Ronquist
et al., 2012; Larget, 2013). The interpretation of PP values is more straightforward than bootstrap
proportions, as PP values represent the probability that a clade exists in the underlying tree,
conditioned on the model of evolution employed and the prior probabilities. The individual and
relative performance of PP has been well-documented as generally favorable (Wilcox et al., 2002;
Alfaro et al., 2003; Cummings et al., 2003; Huelsenbeck and Rannala, 2004). However, PP may
be excessively high in certain scenarios (e.g., oversimplified substitution models; Suzuki et al.,
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2002; Douady et al., 2003; Nylander et al., 2004). PP also may fail under a multi-species
coalescent framework with conflicting phylogenies (Reid et al., 2013). This is particularly
noteworthy in light of studies showing the disproportionate effects of a few genes on overall
genome-wide phylogenies (Brown and Thomson, 2017; Shen et al., 2017; Walker et al., 2017a).

Ongoing efforts to expand genetic sampling to as many plant species as possible have
produced increasingly species-rich, but data-sparse, alignments (i.e., large-sparse or “fenestrated”
matrices). Meanwhile, the accelerating accretion of new genomes and transcriptomes will
continue to deepen genome-wide datasets with millions of aligned sites. Both axes of dataset
expansion present challenges to the tractability and interpretation of phylogenetic branch-support
analytics. NBS scores are known to perform poorly for large-sparse matrices (Driskell et al.,
2004; Wiens and Morrill, 2011; Smith et al., 2011; Roure et al., 2012; Hinchliff and Roalson,
2013; Hinchliff and Smith, 2014b), where the sampling procedure generates uninformative
pseudo-replicates that mostly omit informative sites (or consist of mostly missing data).
Furthermore, resampling methods (including NBS) approximate the resampling of a larger
idealized population. Genomic datasets contain virtually all available data, and therefore are not
samples of any larger whole. PPs provide an appropriate testing framework and straightforward
interpretation for genomic data, but available Bayesian methods of analysis are not scalable to
genome-wide data under current computational speeds. PPs also may over-estimate support when
models are overly simple, which becomes increasingly problematic as the size and complex of
datasets expand. PP and NBS scores therefore both appear unsuitable for use on large datasets,
the former due to feasibility and the latter due to its assumptions (also discussed in Smith et al.
2009, Hinchliff and Smith 2014b).

As phylogenomics has developed over the last decade, alternative methods have been
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introduced to factor the increased data and inherent gene tree-species tree conflict. These methods
measure the concordance of gene trees (broadly referring to a phylogeny from any sub-sampled
genomic region), including the internode certainty (IC) and tree certainty (TC) scores (Rokas

et al., 2003; Salichos et al., 2014; Kobert et al., 2016; Zhou et al., 2017), Bayesian concordance
factors (Ané et al., 2006), and other concordance measures (Allman et al., 2017). These scores
were developed around the central concept of a branch support statistic that measures
concordance of various trees with a particular tree hypothesis. This perspective offers much for
partitioning phylogenetic discordance and analyzing larger alignments more rapidly in a
phylogenomic coalescent-based framework. Unfortunately, though relevant to genomic datasets,
they may not be as suitable for large-sparse alignments.

Finally, quartet methods—in particular quartet puzzling methods—have been developed for
phylogenetic reconstruction (Strimmer et al., 1997; Strimmer and von Haeseler, 1997; Ranwez
and Gascuel, 2001; Allman and Rhodes, 2004; Chifman and Kubatko, 2014; Mirarab et al., 2014;
Zwickl et al., 2014) and support (e.g., “reliability values”; Strimmer et al., 1997; Strimmer and
von Haeseler, 1997). More recently, quartet procedures have been explored to facilitate sampling
of large-sparse alignments (Misof et al., 2013) and as part of coalescent-based quartet inference
methods (Stenz et al., 2015; Gaither and Kubatko, 2016; Sayyari and Mirarab, 2016). These
quartet methods benefit from the speed advantages of a smaller alignments and the statistical
consistency of quartet trees, which avoid complex lineage sorting issues that occur with more
speciose phylogenies (Rosenberg, 2002; Degnan and Salter, 2005).

Despite the wide array of approaches to branch support quantification briefly discussed above,
few measures (excepting concordance methods) accommodate multiple histories and distinguish

different causes of poor support for a branch in the phylogeny (e.g., multiple
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supported-but-conflicting phylogenetic relationships vs. low information). Being able to identify
a branch as having a strong consensus and a strongly supported secondary evolutionary history
would provide valuable insight into the plant tree of life (among many other groups; see also
Brown and Lemmon, 2007).

Here, we describe the Quartet Sampling (QS) method (summarized in Fig. 1 and Table 1),
which blends aspects of many of the methods described above and leverages the efficiency of
quartet-based evaluation. The goal of the QS method is to dissect phylogenetic discordance and
distinguish among lack of support due to (1) low information (as in NBS and PP), (2) discordance
as a result of lineage sorting or introgression (as in concordance measures), and (3) misplaced or
erroneous taxa (a.k.a. “rogue taxa”; Wilkinson, 1996; Aberer et al., 2012). In many modern
phylogenetic and particularly phylogenomic studies, these causes of discordance are frequently
surveyed and reported separately (e.g., Xi et al., 2014a; Wickett et al., 2014; Yang et al., 2015;
Pease et al., 2016b; Walker et al., 2017c). QS provides a unified method for their execution,
interpretation, and reporting. Additionally, the QS method offers a viable means to describe
branch support in large phylogenies built from sparse alignments (10,000-30,000 tips with >80%
missing data), which are generally intractable for Bayesian analysis (though see tools like
ExaBayes; Aberer et al., 2014).

In this study, we (1) describe the features, parameters, and interpretation of the QS method,
(2) validate the QS method with simulations, and (3) apply the QS method to recently published
large-sparse and phylogenomic datasets at timescales spanning from Viridiplantae to sub-generic
clades. We demonstrate that the QS method is a flexible and computationally tractable method for
examining conflict and support in large datasets. While not a panacea, we argue that the QS

framework makes import steps in addressing many of the issues of branch support discussed
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above, and hope it encourages additional discussion, testing, and innovation of new phylogenetic
evaluation methods. More broadly, the results presented herein contribute to the broader
discussion about moving the plant tree of life beyond the goal of resolving a single, universal
“Species Tree” (Hahn and Nakhleh, 2015; Smith et al., 2015), and into a future where we more
fully explore and appreciate the complex “multiverse” of evolutionary histories manifest

throughout the plant tree of life.

MATERIALS AND METHODS

Quartet Sampling— The Quartet Sampling (QS) procedure outlined here was inspired by
aspects from several quartet-based and concordance methods, most particularly the process
originally outlined by Hinchliff and Smith (2014b). The QS method takes an existing
phylogenetic topology (which can be inferred by any method) and a molecular dataset (not
necessarily the one that generated the phylogeny) and separately evaluates one or more internal
branches on the given phylogeny. The QS method (Fig. 1) was designed to rapidly and
simultaneously assess the confidence, consistency, and informativeness of internal tree
relationships, and the reliability of each terminal branch.

For a given phylogeny, each observed internal tree branch partitions the tree into four
non-overlapping subsets of taxa (Fig. 1A). These four sets of taxa (called a “meta-quartet” by
Zhou et al., 2017) can exist in three possible relationships: the concordant relationship that
matches the configuration in the given topology, and two alternative discordant configurations.
The QS method repeatedly and randomly samples one taxon from each of the four subsets and

then evaluates the likelihood all three possible phylogenies given the sequence data for the
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randomly selected quartet spanning that particular branch.

For each quartet sampled for the focal branch, the likelihood is evaluated (using the aligned
sequence data) for all three possible topologies that these four sampled taxa can take (currently
using RAXML or PAUP#*, though other likelihood calculators could be substituted; Stamatakis,
2014; Swofford and Sullivan, 2003). The quartet topology with the best likelihood is then
recorded and tabulated across all replicates. This process generates a set of counts (across all
replicates per branch) where either the concordant or each of the two discordant relationships had
the best likelihood. This procedure can be carried out by evaluating the likelihood of the complete
alignment for each quartet (i.e., in a single-matrix framework) or by randomly sampling from
individual gene/partition alignments from a multi-gene or genome-wide alignment (i.e., in a
multi-gene tree coalescent framework).

Several refined options can be specified. For example, a minimum number of overlapping
non-empty sites for all four taxa involved in a quartet can be specified to ensure calculations are
performed on data rich subsets. Additionally, a parameter of a minimum likelihood differential
may be set. If the most-likely topology (of the three) does not exceed the likelihood of the
second-most-likely phylogeny by the set threshold, then the quartet is considered “uninformative”
and tabulated separately. In summary, the QS method generates counts of the three possible
topologies (and uninformative replicates) for each internal branch by sampling replicates using
unique quartets of taxa spanning the particular branch.

The QS method uses these resampled quartet tree counts to calculate three scores for each
internal branch of the focal tree (Fig. 1B, Table 1, and Appendix S1; see Supplemental Data with
this article). The QC (Quartet Concordance) score is an entropy-like measure (similar to the ICA

score; Salichos et al. 2014) that quantifies the relative support among the three possible
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resolutions of four taxa. When the most commonly sampled topology is concordant with the input
tree, then QC takes positive values in the range (0,1]. Thus, QC equals 1 when all quartet trees are
concordant with the focal branch. When one of the discordant topologies is the most commonly
resampled quartet, QC takes negative values in the range [-1,0), approaching —1 when all quartet
trees are one of the two discordant phylogenies. When support is evenly split among the three
alternative topologies (or two if only two of the three possible are registered as having an optimal
likelihood across all replicates), QC equals O.

The QD (Quartet Differential) score uses the logic of the f- and D-statistics for introgression
(Reich et al., 2009; Green et al., 2010; Durand et al., 2011; Pease and Hahn, 2015) and measures
the disparity between the sampled proportions of the two discordant topologies (though with
quartet topology proportions, rather than site frequencies). The QD score does not specifically
quantify introgression nor identify introgressing taxa, but does indicate that one alternative
relationship is sampled more often than the other. Low values of QD indicate that there is one
preferred topology among the two discordant topologies, a potential indication on the given
branch of a biased biological process beyond background lineage sorting, including confounding
variables such as introgression, strong rate heterogeneity, heterogeneous base compositions, etc.
QD varies in the range [0,1] with a value of 1 meaning no skew in the proportions of the two
discordant trees and the extreme value of 0 meaning that all discordant trees sampled are only
from one of the two possible alternative relationships.

The QI score (Quartet Informativeness) quantifies for a given branch the proportion of
replicates where the best-likelihood quartet tree has a likelihood value that exceeds the quartet
tree with second-best likelihood value by a given differential cutoff. This ensures that replicates

are not counted as being concordant or discordant when the molecular data are effectively
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equivocal on the topology (i.e., when two of the three possible quartet topologies have nearly
indistinguishable likelihood scores). QI is measured in the range [0,1], which indicates the
proportion of sampled quartets that exceeded the cutoff. A QI value of 1 means all quartets are
informative, while a value of 0 indicates all quartets were uncertain (i.e., no significant
information for the given branch). The QI measure of branch informativeness works in
conjunction with QC and QD to distinguish between branches that have low information versus
those with conflicting information (i.e., high discordance).

Finally, for each terminal taxon, a QF (Quartet Fidelity) score is calculated to report the
proportion of total replicates (across all branches tested) where the given taxon was included in a
quartet resulted in a concordant quartet topology. QF is therefore similar in approach to a “rogue
taxon” test (Wilkinson, 1996; Aberer et al., 2012). However, an important distinction is that
RogueNaRok (Aberer et al., 2012) uses taxonomically complete bootstrap replicates to compute
these scores rather than resampled subtrees, and thus are subject to the same issues as bootstrap
scores themselves in phylogenomic analyses (i.e., RogueNaRok will not report rogue taxa when
all bootstrap scores are 100). For a given taxon, the QF score is measured in the range [0,1] as the
proportion of quartet topologies involving the taxon that are concordant with the focal tree
branch. Therefore, a QF value of 1 indicates a given taxon always produces concordant
topologies across all internal branches where it was sampled for in a quartet. QF values
approaching zero indicate mostly discordant topologies involving this taxon, and may indicate
poor sequence quality or identity, a lineage-specific process that is distorting the phylogeny, or
that the taxon is significantly misplaced in the given tree. Note that QF differs specifically from
QC, QD, and QI by being a taxon-specific test across internal branch tests rather than an internal
branch-specific test.
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Collectively, these four tests represent a means to distinguish the consistency of a branch
(QC), the presence of a secondary evolutionary history (QD), the amount of information
regarding a branch (QI), and the reliability of individual taxa in the tree (QF; Fig. 1B and see
Table 1). Therefore, QS tests disentangle these effects rather than have them conflated under a
summary score as in standard measures of phylogenetic support. A full technical description of

the QS method is included in Appendix S1.

Implementation of QS— We implemented the above procedure in a Python-based program
called quartetsampling, which samples an alignment randomly to generate many representative
quartet topology replicates for each internal branch in a corresponding focal tree
(https://github.com/fephyfofum/quartetsampling). This procedure has a number of advantages
over NBS for larger datasets. First, unlike NBS and RBS, alignment columns are not resampled,
which allows sparse alignments to be used. Second, the number of likelihood calculations that are
required is the number of internal branches in the tree multiplied by the number of replicates per
branch multiplied by three possible topologies. Since computation time scales linearly with the
number of taxa, individual replicates are fast, and the computations can be readily parallelized
across processors and furthermore discretized across systems (with results combined later). This
allows QS to be efficiently applied to large alignments beyond the practical limits of NBS and PP.
The most extensive computational time was for the Zanne et al. (2014b) 31,749 taxon dataset (see
below), which we ran on the Wake Forest University DEAC high-performance cluster using 8
nodes with 16 CPU each. This analysis completed 200 replicates for the full tree in 13 hours.
Smaller genome-wide datasets finished 1000 gene-tree replicates on quad-core desktops

approximately 12 hours. The conventional multi-gene datasets took only a few minutes to a few
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hours to run on a standard desktop.

Although the Shimodaira-Hasegawa-like approximate likelihood ratio test (SH-aLLRT;
Guindon et al., 2010) was by far the fastest method we consider here, the QS was fast enough for
large scale analyses. QS can also be applied separately to individual focal branches, allowing for
more thorough exploration of particular branches of interest. Furthermore, the QS does not
require the tree tested to be the maximum likelihood topology, a requirement for SH-aLLRT. For
our simulated data, we found that performing 200 QS replicates per branch was adequate to
achieve low variance in QS score (Fig. 2A). As would be expected, more replicates per branch
should generally be used for larger trees to sample a greater fraction of the total possible quartets.

Furthermore, some branches, especially in large trees, may be entirely unsupported by the
alignment due to a lack of sampling overlap among appropriate taxa (i.e., no sites in the
alignment contain data from each of the four subsets of taxa; Fig. 1A). Therefore, no
phylogenetic information exists to inform the branch (i.e., they are not “decisive” sensu Steel and
Sanderson, 2010). The QS procedure identifies these branches, rather than discarding them or

ambiguously labeling them as having “low support.”

Guidelines for interpretation of QS support values— An important consideration with any
measure used to ascertain confidence is precise interpretation. We provide a concise visual
description of the tests (Fig. 1) and a table describing example scores and their interpretations
(Table 1). Particularly notable is that the QS method not only can “support” or “fail to support” a
given branch hypothesis, but also can offer “counter-support” for an alternative branch (as in the
IC/ICA scores; Salichos et al., 2014; Kobert et al., 2016; Zhou et al., 2017). Therefore, even

“inaccurate” branch hypotheses can offer information as “counter-support” for an alternative
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quartet topology (i.e., the degree of negativity of the QC score; for examples see Fig. 6).

The QS scores we have described calculate the sensitivity of the resolution of a particular
branch to different combinations of taxa sampled around that branch. Each QS replicate calculates
whether the four sampled taxa support the resolution of the branch found in the tree over the
alternative resolutions. This framework is similar to the interpretation made by those using taxon
jackknife analyses for outgroup sensitivity (e.g., Edwards et al., 2005) and the IC score when used
with incomplete trees (Kobert et al., 2016; Zhou et al., 2017). We argue that this interpretation is
richer in information than the NBS, and, in simulations, the QC score also appears to more
conservatively and accurately assign high support values to branches that are present in the true
tree (i.e., relatively low false positive rates, at least when the likelihood threshold is small, i.e., in
the range of ~2 used here; Appendix S2). QC scores are particularly helpful for clarifying

strength of support for branches with concordant tree frequencies not close to 1 (Appendix S3).

Generation and evaluation of simulated phylogenies— We first tested the method by
generating simulated phylogenies under the pure birth (birth = 1) model of evolution with 50,
100, and 500 tips using pxbdsim from the phyx toolkit (Brown et al., 2017). Using these trees,
we generated 1000 bp alignments (no indels) under the Jukes-Cantor model with INDELible v.
1.03 (Fletcher and Yang, 2009). Trees were scaled so that the average branch lengths were about
0.2, based on the observation that this generated reasonable trees with most branches recovered
correctly from ML analyses. Using the same procedure, we also simulated trees with 500 tips and
associated alignments with ten nucleotide partitions, each with 500 sites under the Jukes-Cantor
model. We simulated both the full alignment with partitions and a modified randomly resampled

sparse alignment to examine the behavior of QS in the presence of missing data (see Appendix S1
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for details). These partitioned and sparse alignments had the same qualitative features as the full
alignment.

Unlike the NBS method, which generates a set of trees from which branch support is
estimated, the QS method requires only a single input topology for which branch support will be
measured. We calculated QC, QD, QI, and QF scores for the true underlying tree as well as the
ML tree generated by RAXxML, but we focus on results for the ML tree. To examine how the
number of replicates impacts the QS precision, we conducted simulations varying the number of
replicates for randomly drawn branches in the simulated trees (Fig. 2A; Appendix S4). Based on
these simulations, we elected to use 200 replicates per branch, since the variance in the QC score
was generally low across all tree sizes when this many replicates were performed. We used
RAXML and PAUP* to estimate the ML for the three alternative topologies for each QS replicate
(using the —f N option and the GTRGAMMA model in RAXML). We also calculated
branch-specific QC/QD/QI and taxon-specific QF scores using likelihood differential cutoffs of
AL = 0 (no filtering) and AL = 2.0, which requires stronger conflicting signal to interpret
branches in the input tree as unsupported.

Additionally, we generated a simulated 20-taxon tree using pxbdsim from phyx (Brown
et al., 2017) with variable branch lengths (Appendix S5). For 100 replicates, we generated twenty
5 kb nucleotide sequences over this tree using ms (Hudson, 2002), inferred a concatenated tree
using RAXML (Stamatakis, 2014), and used this inferred tree and simulated alignment as the
inputs for QS. Population parameters were set at 4 = 1x10~% and N, = 10°. To simulate
increasing amounts of ILS, we shortened the times between speciation events by scaling all
branch lengths by factors ranging from 0.5 to 10 and repeated these simulations (Fig. 2C).

Additionally, using the original tree scaled by a factor of 2, we added introgression of varying
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intensity between “taxon_6" and “taxon_7" (using the migration parameter in ms from O to

1.4/4N, migrants per generation). Additional details can be found in Appendix S1.

Testing of Empirical Datasets— We evaluated five recent large-scale phylogenies, including
(1) a 103-transcriptome dataset spanning Viridiplantae from Wickett et al. (2014, abbreviated
hereafter as “WI12014”), (2) two large-sparse phylogenies spanning land plants from Hinchliff and
Smith (2014b, “HS2014”) and Zanne et al. (2014b, “ZN2014"), and (3) phylogenies spanning
Magnoliophyta (angiosperms) with hundreds of genes from Xi et al. (2014a, “XI12014”") and
Cannon et al. (2015b, “CN2015”). Additionally, to demonstrate the utility of this method at
medium and short time scales, we evaluated two whole transcriptome datasets from the wild
tomato clade Solanum sect. Lycopersicon from Pease et al. (2016b, “PE2016”") and carnivorous
plants from the order Caryophyllales from Walker et al. (2017c¢, “WA2017”). Finally, we tested
this method on a more typical medium-sized multi-locus dataset from Polypodopsida (ferns) from
Pryer et al. (2016b, “PR2016), such as might appear in many phylogenetic studies of large
subgroups. Data for these studies were obtained from datadryad.org and iplant.org (Hinchliff and
Smith, 2014a; Matasci et al., 2014; Xi et al., 2014b; Zanne et al., 2014a; Cannon et al., 2015a;
Pease et al., 2016a; Pryer et al., 2016a; Walker et al., 2017b) (additional details and results in
Appendix S1).

In addition, we analyzed the datasets using 200 individual gene trees for XI2014 and
WA2017, and 1000 gene trees for PE2016 and WI12014. For these datasets, quartets are sampled
as usual, but only the individual gene sequence alignments are assessed. These phylogenies were
all evaluated using a minimum alignment overlap per quartet of 100 bp and a minimum likelihood

differential of 2 (i.e., the optimal tree’s log-likelihood must exceed the second-most likely tree by
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348 a value of at least 2). We also calculated the phylogenies with and without partitioning in

349 RAXML, but in all cases the partitioned datasets did not qualitatively differ from the results of the
350 unpartitioned datasets. These data are provided as supplementary data, but are not shown here.
351 We also either re-calculated other measures of branch support or used values from the

352 published studies for comparison to the QS method for each phylogeny, except HS2014 and

353 ZN2014 where the size and sparseness of the datasets prohibited the calculation of other measures
354 of support. For the datasets from CN2015, PR2016, WA2017, and XI2014 100 replicates each of
355 RAxML NBS and SH-test were performed. Additionally, PP scores for PR2016 were calculated
356 using MrBayes (Ronquist et al., 2012), and IC scores for calculated for Walker et al. (2017c¢). For
357 PE2016 and WI2014, RAXML NBS, MP-EST, or IC scores were taken from published values.
358 Finally, we also calculated QF scores and rogue taxon scores using RogueNaRok (Aberer et al.,
359 2012) to compare these two measures, particular for the large-sparse ZN2014 dataset (for details
360 and results, see Appendix S1). Data and results from the simulations and empirical studies are

361 available at Dryad (http://dx.doi.org/10.5061/dryad.6m20j).

362 RESULTS AND DISCUSSION

363 Simulation analyses— We tested the consistency and reliability of QS on a set of simulated
364 phylogenies. The QC scores converge (with decreasing variance as expected) on a consistent
365 mean value for each branch as the number of replicates increased (Fig. 2A). Sampling 200

366 quartets per branch reduced the variance to less than 0.003 in all cases, and can be seen as a
367 generally a reasonable number of replicates. As these are branch-specific tests, branches of

368 interest can be tested individually at much higher numbers of replicates without the need to re-test
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the entire tree. Additionally, we simulated sequences over a standard phylogeny (Appendix S5),
then simulated increasing ILS by shortening branch lengths and introgression via migration. As
expected, QC scores that measured concordance decreased in both cases due to the increased
presence of discordant sites and QD scores that measure skew in discordance decreased
dramatically with increasing directional introgression (Fig. 2B). We also found that while QC and
QD both measure discordance levels, they are not strictly correlated measures. As QC goes to the
limits of its range [—1,1], QD values tend to have more extreme values that were due to a lack of
discordant trees (QC near 1) or high frequency of one discordant tree (QC near —1). Applying a
minimum log-likelihood differential threshold to small trees tended to push scores toward
extremes, resulting in more Os and 1s (Appendix S2). Finally, we found that those datasets with
lower QF score generally identified more rogue taxa than inferred by RogueNaRok, despite the

different data inputs and analysis frameworks (Appendix S1).

0S analyses of major land plant lineages— The primary goal of this study was to use QS to
reanalyze and compare several recent speciose and phylogenomic datasets to address ongoing
debates of phylogenetic relationships in the plant tree of life. We used QS methods to evaluate
two of the most speciose phylogenies of land plants currently available from Hinchliff and Smith
(2014b, Fig. 3) and Zanne et al. (2014b, Fig. 4), and one of the most comprehensive phylogenies
of Viridiplantae from Wickett et al. (2014, Fig. 5). QS analyses were able to provide a broad scale
summary of the stability of the datasets.

As expected, given the sparsity of the matrices for HS2014 and ZN2014 (96% and 82%

missing characters, respectively), the proportion of informative quartets was low in both cases

(mean QI of 0.15 and 0.35, respectively). Overall, the mean QC for the HS2014 (0.15;
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391 interquartile range (IQR) = [-0.13, 0.46]) and ZN2014 (0.17; IQR = [-0.10, 0.63]) were low

392 compared to the less speciose phylogenies (Fig. 2C; Appendix S6). Notably, we found 33.4% and
393 29.8% of branches in HS2014 and ZN2014, respectively, had QC values less than —0.05 meaning
394 that about a third of the branches in these consensus phylogenies reported not just “low support”
395 for the given branch, but went further to report “counter-support” (i.e., a negative QC score) for
396 one of the two alternative topological arrangements at that branch. Most major plant groups

397 showed strong support in HS2014 and ZN2014 and all major groups showed strong support in
398 WI2014 (Table 2). In contrast to strong support for major groups themselves, we found low

399 support along the “backbone” relating these groups, in a manner consistent with most previous
400 phylogenies of land plants.

401 The relationships among Marchantiophyta, Bryophyta (mosses), Anthocerotophyta,

402 lycophytes, and “euphyllophytes” (i.e., ferns and seed-bearing plants) has been a matter of

403 ongoing debate (Shaw et al., 2011). HS2014 places mosses as sister to the remaining land plants,
404 but indicated counter-support (negative QC=-0.04) for a branch defining a common ancestor of
405 liverworts with all other land plants to the exclusion of mosses (Figs. 3B). This suggested that the
406 most common quartet branch among the replicates was not the branch displayed in the published
407 tree. By contrast WI2014 shows strong support (with a high QC=0.67) for a common ancestor of
408 mosses and liverworts (Fig. 5). ZN2014 shows weak support (low positive QC=0.15) for the

409 branch separating mosses and liverworts from the rest of land plants. Therefore, while the

410 topology of HS2014 was consistent with the order of many previous phylogenies (Nickrent et al.,
411 2000; Qiu et al., 2006; Chang and Graham, 2011), the QS results collectively supported the

412 alternative configuration of mosses and liverworts as sister groups (Fig 6A; see also Renzaglia

413 et al., 2000; Zhong et al., 2013a).

19


https://doi.org/10.1101/148536
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/148536; this version posted August 18, 2017. The copyright holder for this preprint (which was

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

In all three datasets, the monophyly of vascular plants was strongly maintained, even with the
inclusion of Selaginella with its unusual GC content (Banks et al., 2011). The branch leading to
Selaginella often had a lower QD value, possibly because of this biased composition, but a higher
QF value, suggesting that it was not a misplaced (“rogue”) taxon. We also observed substantial
discordance and counter-support for relationships tested among various bryophyte groups and key
taxa in HS2014, possibly indicative of substantially under-appreciated hybridization among

mosses (Nylander et al., 2004).

0S analyses of ferns— The branch establishing a “euphyllophyte” common ancestor of ferns
and seed-bearing plants showed low QC scores and high QD scores in both HS2014 and ZN2014,
indicating only a weak consensus but little indication of an alternative history (Table 2). Within
ferns the arrangement of major clades in ZN2014 (Fig. 4E) was mostly consistent with the
recently published phylogeny by The Pteridophyte Phylogeny Group (PPG I, 2016). Those clades
whose relationships were counter-supported (Marratiales, Salviniales, Hymenophyllales) were
discordant with the PPG-I consensus and other recent phylogenies (Pryer et al., 2004; Testo and
Sundue, 2016) demonstrating the diagnostic utility of QS in highlighting suspect relationships.
Some key areas of known high uncertainty (e.g., Saccoloma, Lindsaea, and Equisetum) were also
highlighted with low or negative QC scores.

While QS was designed for large datasets, we also found that QS can perform well on smaller
multi-gene datasets conventionally used for systematics studies. The QS scores for PR2016, with
a 5778 bp alignment, were more conservative, but confirmed the conclusions of Pryer et al.
(2016b) regarding the monophyly of maidenhair ferns (Adiantum) and its placement in a clade

with the vittarioids. This analysis also revealed some counter-supported nodes (negative QC
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values) within the genus Adiantum.

0S analyses of gymnosperms— Another question that has attracted substantial historical
debate is the relationships among the major gymnosperm lineages and angiosperms. Under QS
evaluation, all four testable datasets indicated strong support for monophyly of gymnosperms
(Table 2). However, the relationships among cone-bearing lineages differed among these four
phylogenies. ZN2014 and WI2014 inferred a common ancestor of Ginkgo and cycads (consistent
with Qiu et al., 2006; Bowe et al., 2000; Lee et al., 2011; Xi et al., 2013). While the HS2014
topology places cycads as sister to the remaining gymnosperms (i.e., not monophyletic with
Ginkgo), the QS evaluation counter-supports this relationship. Therefore, even though HS2014
and WI12014 differed from ZN2014 in the topological relationship of these taxa, the QS analyses
of these datasets indicated a consistent message of a Ginkgo and cycads common ancestor
separate from the rest of gymnosperms (Fig. 6B).

This pattern of disagreeing topologies but consistent QS interpretation was observed again in
the placement of Gnetales relative to the conifer linages (Fig. 6C). ZN2014 showed a common
ancestor of Gnetales and Pinales (consistent with Lee et al. 2011). While a conflicting Gnetales
and Pinaceae ancestor (distinct from other conifers) appeared in both HS2014 and WI2014 (i.e.,
the “Gnepine” hypothesis; Bowe et al., 2000; Xi et al., 2013), the negative-QC/low-QD scores in
both cases (QC/QD=-0.19/0.56 and —0.67/0.0, respectively) indicate counter-support for a
“Gnepine” ancestor and a strongly support alternative history. Collectively, these results suggests
the monophyly of Pinales, but also offer some (albeit weak) evidence that warrants further

examination of possible gene flow between Gnetales and Pinales.
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0S analyses of ANA grade angiosperms— Few issues in angiosperm evolution have garnered
more recent debate than the relationship among the so-called “ANA grade” angiosperms (Qiu
et al., 1999), which include Amborella, Nymphaeales, and Austrobaileyales. Two questions
surround the evolutionary history of the ANA grade angiosperms. First, what are the relationships
among these lineages? Second, are the longstanding disagreements in inference of these
relationships the result of genuine biological conflict (i.e., introgression, horizontal transfer, etc.),
limitations in the data, or a methodological artifact (i.e., due to the depth of this branch, the
monotypic status of Amborella, and/or the rapidity of the angiosperm radiation)?

On the first question, QS analyses of the datasets here lack support for “Nymphaeales-first”
but finds support for both Amborella+Nymphaeales and “Amborella-first” (as found also by The
Amborella Genome Project, 2013). While the resolutions of consensus phylogenies differ
between the four testable datasets (WI12014 with “Amborella-first” hypothesis, ZN2014 with
“Nymphaeales-first”, and HS2014 and X12014 with Amborella+Nymphaeales), the branches
surrounding the ANA-grade were all counter-supported (QC<0) and biased in their discordance
(QD<0.2; Fig. 6D). ZN2014 offers weak support for Amborella+Nymphaeales, while X12014
counter-supports this relationship. If this question is to be resolved, our results indicate additional
datasets and analyses will be required.

On the second question, our analyses show low QD values that suggest a conflicting
phylogenetic history may be present. Other studies have found bryophyte mitochondrial
sequences present in Amborella (Rice et al., 2013; Taylor et al., 2015), which establishes the
potential for introgression in these lineages. Overall, (1) the intense efforts to address these
relationships without a resulting broad community consensus, (2) evidence of long-range
introgression, and (3) the QS results shown here together suggest that a greater understanding of
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ANA-grade evolution likely lies in an examination of complex evolutionary histories rather than
in a continuation of the debate over appropriate sampling or models (see also discussion in Shen

etal., 2017).

0S analyses of “core angiosperms”— The three “core angiosperm” lineages (eudicots,
monocots, and magnoliids) have transformed the biosphere, and thus a better understanding of the
timing and order of their origins is of key concern. Consensus topologies disagree between
ZN2014, WI2014, and X12014 (with magnoliid+eudicot clade Figs. 4B, 5, 6E, Appendix S7) and
HS2014 (with eudicot+monocots Fig. 3B). However, the QS analyses of HS2014 showed
counter-support of an exclusive common ancestor of eudicots and monocots, suggesting that,
despite disagreement among topologies, QS scores support a common ancestor for magnoliids
and eudicots to the exclusion of monocots. Additionally, the placement of Chloranthaceae seems
inextricably linked with the relationships of the three core angiosperm groups (see discussion in
Eklund et al., 2004). However, the placement of this family remains unresolved by QS, since all

tested configurations showed negative QC-value counter-support (Table 2).

0S analyses of monocots— In general, the arrangement of monocot orders in both HS2014
(Fig. 3C) and ZN2014 (Fig. 4C) agreed with recent consensus phylogenies (Givnish et al., 2010;
Barrett et al., 2015; Givnish et al., 2016; McKain et al., 2016). Two exceptions are the placement
of Liliales (Table 2), and general inconsistency of commelinid orders. From the QS results, we
would cautiously infer that (1) the relationships among the commelinids are still unknown, (2)
there may be uncharacterized secondary evolutionary history distorting the phylogenetic

placement of these groups, and (3) likely the variable data from both Liliales and Arecales
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together have a joint effect that is causing inconsistency in the phylogenetic inference.

In Poaceae, QS analyses highlight the well-characterized discordance and complex
relationships (e.g., Washburn et al., 2015; McKain et al., 2016). Even if someone were
completely unfamiliar with the known controversies in monocots, QS scores would make
abundantly clear this area of the phylogeny had highly conflicted data. The “BOP” clade itself
and many clades with in the “PACMAD” clade were counter-supported by negative QC values in
HS2014 and ZN2014. However, low QI values were observed in both HS2014 and ZN2014 for
this clade, indicating that both datasets contain poor information. Therefore, QS serves as an

effective diagnostic tool for identifying conflicted portions of larger phylogenies.

0S analyses of non-rosid/asterid eudicots— QS analyses are capable of identifying conflict
and discordance due to rapid radiations. This is demonstrated well for the relationships among the
superasterid groups (Caryophyllales, Berberidopsidales, Santalales, and asterids). A common
pattern was found in HS2014, W12014, X12014, and ZN2014 of near-zero QC values (-0.03 to
0.08) that indicate weak consensus for the given relationships, strong QD values (0.97-1) that
indicate no strongly competing alternative history, and low QI values (0.14-0.51) that indicate
low information for branches. This led to a consensus QS interpretation of simple poor
phylogenetic information, likely as a result of the rapid radiation of these lineages. Generally,
these phylogenies tended to support weakly the controversial placement of Caryophyllales as

most closely related to the eudicot ancestor.

0S analyses of rosids and asterids— Analysis of the rosids confirms that the QS method is

capable of identifying rogue taxa. The QS scores identified a poorly supported relationship in
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HS2014 between Cynomorium and Cucurbitales (QC=-0.31). Cynomorium, a non-photosynthetic
parasitic plant with unusual morphology, has been placed tenuously and variably in groups as
diverse as Rosales (Zhang et al., 2009) and Saxifragales (Nickrent et al., 2005), so its poor score
here was expected. This “rogue” status was corroborated by a below-average QF score of
QF=0.18 (mean 0.21 for HS2014). This means that for quartets that include Cynomorium as a
randomly sampled taxon, only 18% produced a quartet topology concordant with the HS2014
tree.

Published phylogenies of asterids indicate disagreement and substantial discordance (Soltis
et al., 2011; Beaulieu et al., 2013; Refulio-Rodriguez and Olmstead, 2014). QS scores from
ZN2014 supported the unusual hypothesis of a common Ericales+Cornales ancestor, weakly
support the campanulid clade, and counter-support a common lamiid ancestor. The arrangement
of families within Asterales either roughly conforms to Soltis et al. (2011) and Beaulieu et al.
(2013), or counter-supports branches (QC<0) that do not agree with these consensus phylogenies.
However, most of the branches that define the relationships among asterid orders in ZN2014 were
counter-supported by the data, though most have QC and QD values close to zero. This indicates

a scenario of a rapid radiation rather than hybridization (though these are not mutually exclusive).

0S of shallow-timescale phylotranscriptomic datasets— So far, we have demonstrated the
utility of quartet sampling on large, sparse, and conventional multi-gene alignments, which are
often computationally intractable with other support measures. We have also shown for WI2014
that a relatively large and full occupied matrix from deep-timescale transcriptomic data can also
be evaluated by QS. However, the QS method also can be used to rapidly evaluate phylogenetic

support on genome-wide datasets with little missing data for shorter evolutionary timescales. We
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tested the QS method on two phylotranscriptomic datasets for the wild and domesticated tomato
clade Solanum sect. Lycopersicon (Fig. 8 A; Pease et al., 2016b) and carnivorous plants spanning
the Caryophyllales (Fig. 8B; Walker et al., 2017c¢).

The Solanum phylogeny from Pease et al. (2016b) was inferred from the alignment of
33,105,168 nucleotide sites for 30 populations spanning all 13 wild and domesticated tomato
species, and two outgroup species. As described in Pease et al. 2016b, this dataset contains a high
level of phylogenetic discordance, but had a consensus phylogeny with 100% NBS support at all
but two branches. However, gene tree analysis of this group showed evidence of massive
phylogenetic discordance. When we applied QS to this phylogeny using the entire alignment,
scores for many branches were also perfect (i.e., 1/-/1; Table 1). However, several of the other
branches in the “Peruvianum group” species complex had lower QS scores in the full alignment
(Fig. 8A). When gene trees were used (a random gene and quartet of taxa were chosen for 1000
QS replicates), all branches had QC<1 in a manner consistent with the gene tree discordance
found previously in this clade. We also observed the presence of low QD values within the major
subgroups reported for this clade, indicating the presence of introgressive gene flow. In contrast,
nodes defining the major subgroups showed high QC and QD values, indicate strong monophyly.
This accurately captures the low discordance between groups versus high discordance within the
major groups found by Pease et al. (2016b).

Most notably, the tree shown in Fig. 8A includes S. huaylasense accession LA1360. This
accession has been known (both from Pease et al. (2016b) and other datasets) to mostly likely be
a hybrid between populations from the green-fruited and red-fruited lineages (essentially those
accessions above and below LLA1360, respectively, in Fig. 8A). Thus, the inclusion of this

putative hybrid lineage distorted the phylogeny as tree inference methods tried to cope with
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inherited and introgressed alleles from two separate groups to place this accession in a consensus
location on the tree. While NBS scores were high for the branches surrounding the placement of
LA1360, QS showed negative QC scores and low QD scores (QD=0 for full alignment). The low
QD supports the presence of the alternative phylogenetic history that has been previously
corroborated by other studies and the negative QC indicates counter support for the placement of
this accession (see additional discussion in the Supplementary Results of Pease et al. 2016b).
These data show that QS was able to distinguish between consistently supported relationships and
branches known to have conflict due to introgression (whereas NBS does not).

An analysis of transcriptomes of carnivorous plants from Caryophyllales (Fig. 8B; Walker
et al. 2017c) also highlighted the ability to dissect the dataset more effectively. The near-zero QC
scores and low QD (0.32) scores for the ancestor of a clade containing Plumbago and Nepenthes
for gene trees supported the hypothesis of Walker et al. (2017c¢) that introgressive gene flow may
have occurred among these lineages. Evidence for placing Drosophyllum among the carnivorous
Caryophyllales has been previously tenuous, and the QS analysis showed not only a low QF value
of 0.76 (compared to the WA2017 mean QF of 0.89) for this taxon, but also low-QC/low-QD
values for the two branches that form the clade with Ancistrocladus and Nepenthes. As with the
tomato example above, this example demonstrates how QS scores can highlight an entire region
that may be distorted by the inclusion of a taxon with a strong potential for a secondary

evolutionary history (i.e., possible introgression).

Limitations and directions forward— Quartet Sampling is designed to efficiently evaluate
phylogenetic information and to highlight conflict for one or more branches in a phylogeny. In the

presentation here, QS is used to evaluate a single topology, and not for comparing alternatives
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topologies or performing any optimizations that might maximize QS scores. Therefore, QS does
not suggest topological rearrangements and is purely evaluative. These and other directions
should be explored in future studies as researchers develop more ways to examine uncertainty in
large datasets.

Concurrently with our study, Zhou et al. (2017) have proposed the Q-IC method, a similar
approach to QS. Both approaches use quartets to evaluate a focal tree. Both approaches can be
used in a single-matrix or multi-gene tree framework, implemented in Q-IC by sampling from
either a single tree distribution or from a gene tree set, and implemented in QS by analyzing either
the whole alignment or by also randomly sampling individual gene-quartet combinations (as
shown in Fig. 8). One key difference is that QS evaluates the relative likelihood of all three
possible quartet configurations for each branch based on the alignment dataset, while Q-IC
evaluates only the quartet topologies sampled from a dataset of topologies from “evaluation trees”
(i.e., individual gene trees or a bootstrap/posterior distribution). These differences in data
evaluation might make these approaches sensitive to different error types (e.g., gene tree
topological estimation error versus likelihood estimation errors). Overall, we find these
approaches complementary and their appropriateness dependent upon the data available and types

question being asked.

CONCLUSION

We reanalyzed several long-contested, key conflicts in the plant tree of life and describe a
framework for distinguishing several causes of low phylogenetic branch support. For large

datasets, traditional measures such as the bootstrap or posterior probabilities can be
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computationally intractable, may exhibit irregular behavior, or report high confidence despite
substantial conflict. The QS framework provides a tractable means to analyze sparse datasets with
tens of thousands of taxa but poor sequence overlap. QS provides a key function that has been
missing from other support measures, namely the ability to distinguish among difference causes
of low support that commonly occur in modern molecular phylogenies. We demonstrate this by
reporting the existence of multiple conflicting but supported evolutionary histories at several key
points in the plant tree of life (e.g., the placement of Amborella, possible widespread gene flow in
the monocots, and notoriously difficult-to-place groups like Cynomorium). We hope that our
discussions here will also lead to the development of other means for parsing the information
contained within exponentially expanding molecular datasets. The artist Man Ray once remarked
that ““We have never attained the infinite variety and contradictions that exist in nature.” Overall,
the picture painted by QS is one of substantial contradiction, but this conflict can be a richly
informative (not just confounding) illustration of the interwoven evolutionary histories contained

within the plant tree of life.
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Table 1: Quartet Sampling (QS) score interpretation. See text for details.
Example QS Score Interpretation

(QC/QD/QD*

1.0/-/1.0 Full support: All sampled quartet replicates support the focal branch
(QC=1) with all trees informative when likelihood cutoffs are used (QI=1).

0.5/0.98/0.97 Strong support: A strong majority of quartets support the focal branch

(QC=0.5) and the low skew in discordant frequencies (QD~1) indicate no
alternative history is favored.

0.7/0.1/0.97 Strong support with discordant skew: A strong majority of quartets sup-
port the focal branch (QC=0.7), but the skew in discordance (QD=0.1) indi-
cates the possible presence of a supported secondary evolutionary history.

0.05/0.96/0.97 Weak support: Only a weak majority of quartets support the focal branch
(QC=0.05), and the frequency of all three possible topologies are similar
(QD=1).

0.1/0.1/0.97 Weak support with discordant skew: Only a weak majority of quartets

support the focal branch (QC=0.1), and the skew in discordance (QD=0.1)
indicates the possible presence of a supported secondary evolutionary his-
tory.

-0.5/0.1/0.93 Counter-support: A strong majority of quartets support one of the alter-
native discordant quartet arrangements history (QC<0; QD expected to be
low).

1/0.97/0.05 Poorly informed: Despite supportive QC/QD values, only 5% of quartets
passed the likelihood cutoff (QI=0.05), likely indicating few informative
sites.

0.0/0.0/1.0 Perfectly conflicted: The (unlikely) case where the frequency of all three
possible trees was equal with all trees informative, indicating a rapid radia-
tion or highly complex conflict.

961 Notes: * QC = Quartet Concordance; QD = Quartet Differential; QI = Quartet Informativeness.
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Table 2: Quartet Sampling scores for key branches in the plant tree of life

QC
Branch HS2014 7ZN2014 WI2014 X12014 Consensus Interpretation
embrophytes (land plants) 0.35 n.t. 1.0 n.t. strong support
tracheophytes (vascular plants) 0.14 0.31 0.29 n.t. moderate-strong support
euphyllophytes (ferns + seed plants)  0.02 —0.06 0.44 n.t. low/variable support
spermatophytes (seed plants) 0.23 0.36 0.95 n.t. strong support
Acrogymnospermae (gymnosperms) 0.37 0.32 0.92 1.0 strong support
Anthocerotophyta (hornworts) 0.54 0.94 1.0 n.t. strong support
Bryophyta (mosses) 0.41 0.15 1.0 n.t. moderate-strong support
Lycopodiophyta 0.38 0.32 0.89 n.t. strong support
Magnoliophyta (angiosperms) 0.68 0.75 0.92 0.95 strong support
Marchantiophyta (liverworts) 0.15 0.8 1.0 n.t. moderate-strong support
Polypodopsida (ferns) 0.23 0.46 1.0 n.t. moderate support
Chloranthaceae + core angiosperms  —0.26 —0.04 n.m. n.t. counter-supported
Chloranthaceae + eudicots n.m. n.m. —047 n.t counter-supported
magnoliids 0.20 0.31 0.53 0.54 strong support
eudicots 0.16 0.43 0.32 0.71 moderate-strong support
asterids —0.01 0.32 0.63 0.0 low/variable support
rosids 0.05 n.m. 1.0 0.25 low/variable support
monocots (including Acorus) 0.04 0.06 0.38 n.t. low/variable support
monocots (excluding Acorus) 0.01 —0.05 0.39 0.76 low/variable support
Liliales + commelinids 0.03 n.m. n.t. n.t. low support
Liliales + Asparagales n.m. 0.03 n.t. n.t. low support

Notes: n.t. = Not testable with this dataset.; n.m. = Not monophyletic in this tree.
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FIGURE LEGENDS

Fig. 1. Description of the Quartet Sampling method. (A) The focal branch “b” divides the
phylogeny into four subclades {51, S, S3,.54} from which tips (A-J) are sampled. Two replicates
with different sampled tips for the given branch are shown with the three possible unrooted
topologies (one concordant and two discordant). (B) Each internal branch is labeled with a set of
three scores (QC/QD/QI), which offer different, but complementary, information. Terminal
branches are evaluated by the QF score, which reports the frequency of a taxon generating
concordant topologies. (See Materials and Methods for full details and Supplementary Methods

for a technical description.)

Fig. 2. Results of Simulation Testing of the Quartet Sampling Method. (A) QC values converge
on a central value with increasing numbers of replicates from randomly selected branches from
simulated trees with 50, 100, and 500 taxa. (B) Mean QC (solid diamond) and QD (open circle)
values with 5%ile to 95%ile (whiskers) across 100 replicates for branches QS16 (left) and QS12
(middle) for a simulated tree (Appendix S5) where the tree branch lengths were scaled by the
factors on the x-axis (i.e., 1 is the original tree). As expected, shorter branch lengths will increase
the level of incomplete lineage sorting (ILS) and thus lower the QC scores. The right panel shows
branch QS11 from the simulated tree with increasing levels of introgression introduced by
simulation. As expected, QC and QD values decrease with increasing introgression. (C)
Distributions of QC, QI, and QF values for HS2014 (black), ZN2014 (dotted black), and
XI12014/CN2015/PR2016/WA2017 (similar distributions; gray solid). (D) Mean QC values

(diamond) with 5%ile to 95%ile (whiskers) for branches in HS2015 binned by the number of
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subtending taxa (i.e., moving root-ward in the tree left-to-right). Overall mean is shown with

horizontal dotted line.

Fig. 3. Phylogeny from Hinchliff and Smith (2014b). (A) Full phylogeny with heat map
coloration of branches by QC scores for internal branches: dark green (QC>0.2), light green
(0.2<QC>0), light orange (0<QC<-0.05, or dark orange (QC>-0.05). (B) QC/QD/QI scores
(200 replicates of full alignment) for major plant groups and key orders within angiosperms.
QC/QD/QI scores after group names are for the ancestral branch (i.e., the “stem” branch), and a
single QF score is shown for monotypic tips. Major subgroups groups are highlighted with
vertical labels. (C) QS scores for monocots (excluding Acorus). (D,E,F) QS scores for rosids,
Bryophyta, and gymnosperms. Abbreviations: Acro, Acrogymnospermae; ANA, ANA grade;
Aru, Arundinoideae; Bry, Bryophyta, Chl, Chloridoideae; Dan, Danthonioideae; Mar,

Marchantiophyta; Poly, Polypodopsida.

Fig. 4. Phylogeny from Zanne et al. (2014b). (A) Full phylogeny with heat map coloration of
branches by QC scores for internal branches using same color scheme as (Fig. 3). (B) QC/QD/QI
scores (200 replicates of full alignment) for major plant groups and key orders within
angiosperms, using same color scheme as (Fig. 3). (C) QS scores shown for monocots (except
Acorus). (D) QS scores for asterids. (E) QS scores for fern lineages and (F) QS scores for
gymnosperm lineages respectively. Abbreviations: Alseu, Alseuosmiaceae; ANA, ANA grade
angiosperms; Argo, Argophyllaceae; Aster, Asteraceae; Bory, Boryaceae; Caly, Calycanthaceae;
Eriach, Eriachneae; Good, Goodeniaceae; gym, gymnosperms; Hypox, Hypoxidaceae; Isach,

Isachneae; Phell, Phellinaceae; Poly, Polypodopsida.
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Fig. 5. Maximum likelihood phylogeny spanning Viridiplantae from Fig. 2 in Wickett et al.
(2014) with QC/QD/QI scores for 200 replicates of the full alignment. Nodes are colored
according to QC score using same color scheme as (Fig. 3). Bootstrap values (italicized in square
brackets) from Wickett et al. (2014) are shown for comparison. Missing QS or bootstrap values
indicate a perfect score. The three taxa with the lowest QF values are highlighted. Species names

have been excluded or abbreviated in the case where two congeners are included.

Fig. 6. Key phylogenetic disagreements with QC scores using compared across various datasets.
Branches for HS2014 and ZN2014 were resampled with 10000 replicates. Branches for WI2014
and XI2014 were exhaustively sampled (>1000 replicates). Highlighting on QC values follows
the same colors as Fig. 3. “Conifers-II" refers to a hypothesized clade comprising the non-Pinales

orders in Pinidae. Abbreviations: Gnet, Gnetidae; Pin, Pinidae.

Fig. 7. Phylogeny of Pteridaceae ferns from Pryer et al. (2016b) with QC/QD/QI scores for 200
replicates of the full alignment. Nodes are colored according to QC score using same color
scheme as (Fig. 3). Bootstrap/SH-test/posterior probability values (italicized in square brackets)
are shown for comparison. Omitted values indicate a perfect score. The three taxa with the lowest

QF values are highlighted. Abbreviations: Pityro, Pityrogramma.

Fig. 8. QS scores for phylogenies from whole-transcriptome data. Omitted values indicate a
perfect score. Nodes are colored according to QC score using same color scheme as (Fig. 3). (A)

Phylogeny of Solanum sect. Lycopersicon from Pease et al. (2016b) Bootstrap values (italicized
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1031 in square brackets) are shown for comparison. (B) Phylogeny of Caryophyllales from Walker
1032 et al. (2017¢) IC scores (light grey) are shown for comparison (all bootstrap and SH-test scores

1033 were 100). The three taxa with the lowest QF values are highlighted.
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1034 APPENDICES

1035 Appendix S1. Supplementary Methods providing a technical description of the QS method
1036

1037 Appendix S2. Comparison of QC and bootstrap ICA (information criterion-all; Salichos, et al.
1038 2014) scores on trees reconstructed from 100 simulated datasets with 50 taxa with 1,000 base
1039 pairs under a Jukes-Cantor model of evolution. Blue circles represent branches in the true tree,
1040 with the size of the circle proportional to the log of the number of substitutions. Red triangles
1041 represent branches not in the true tree.

1042

1043 Appendix S3. Comparison of the rapid bootstrap and quartet sampling on the ML/PP consensus
1044 tree. For each branch, the RBS, QS (raw concordant frequency (Freql), QC score), SH, and PP
1045 scores are presented (clockwise from top left in each legend). Black dots identify clades that are
1046 not in the true tree.

1047

1048 Appendix S4. Shows the consistency of the frequency of concordant quartets (f;), QC, and QD
1049 toward a central value with increasing number of per-branch replicates for a randomly selected
1050 branch. Trees with 50 taxa (left), 100 taxa (center), and 500 taxa (right) are shown. Boxes show
1051 median 4 IQR. Whiskers show 5%-95" percentile, with values outside this range shown as circle
1052 points.

1053

1054 Appendix SS. Simulated starting phylogeny used for the variation of simulated ILS and

1055 introgression levels shown in Fig. 2B.
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Appendix S6. Histograms (top row) showing the distributions of QC (left), QI (middle), and QF
(right) values for the HS2014 dataset (green), ZN2014 (black), and smaller dataset (X12014,
CN2015, PR2016, WA2017) with similar distributions (orange). Scatter plots (bottom row)
showing the close (but non-linear) relationship between QC and raw concordant quartet frequency
(f1; left), bounded but otherwise uncorrelated relationships between QC and QD (middle), and

QC and QI (right). See main text for dataset abbreviations.

Appendix S7. Phylogeny of angiosperms from Xi et al. (2014a) with QC/QD/QI scores for 200
replicates of the full alignment and for 200 replicates from individual gene trees (in parentheses).
Nodes are colored according to QC score using same color scheme as (Fig. 3). MrBayes
PP/RAXML NBS values (italicized in square brackets) from Xi et al. (2013). are shown for
comparison. Perfect scores for any given test are omitted or shown as ‘*’ indicates bootstrap of

100, while ‘-’ indicates a missing value. The three taxa with the lowest QF values are highlighted.

Appendix S8. Phylogeny from Cannon et al. (2015b) with QC/QD/QI scores for 200 replicates of
the full alignment. Nodes are colored according to QC score using same color scheme as (Fig. 3).
Bootstrap values (italicized in square brackets) are shown for comparison. Perfect scores for any

9

given test are omitted or shown as ‘*’ indicates bootstrap of 100, while indicates a missing

value. The three taxa with the lowest QF values are highlighted.

Appendix S9. Relationship between QC and frequencies of the three possible alternative quartet

topologies from QS runs on simulated data. Points represent branches in the trees, with the “test
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1079 topology” axis identifying the frequency at which the topology consistent with the tree was
1080 recovered across all QS replicates for that branch, and the “alt n” axes identifying the frequencies

1081 of the two alternative (conflicting) topologies.
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- <_| Gentianales (0.08/0.92/0.28;1402)
.. g;//(()) E;;//(()) :2 Lamiales (0.36/0.21/0.67;1873)

- - —<] Solanales (0.14/0.53/0.5;620)

Aster+Caly+Good (0.37/0.62/0.61;2248)

Apodytes+Dendrobangia (0.33/0.29/0.35;2)

Anthocerotophyta (0.92/0/0.96;3)
Selaginella (0.95/0/0.99;13)

Isoetes (0.86/0.5/0.66;4)
Lycopodiales (1.0/-/0.91;17)
Polypodopsida (0.59/0.75/0.66;484)

Acrogymnospermae (0.32/0.97/0.65;593)

0.31/0.14/0.58
-0.06/0.56/0.47

0.36/0.94/0.66
w 075/0.15/0.93 =_ Nymphaeales (0.77/0.67/0.78;48)
Q ; .-O 32'/0 45/0 65 Amborelia (0.16)
2 32/0.48)0. ‘ )
o= -0.04/0.84/0.59 oranthales (9.55/0.75/9.01;
© 8— Ceratophyllum (0.95/0/0.88;3)
£ = - Acorus (1/-/0.76;7)
= 106/0.92/0.62 ’
2 2 0.06/0.92/0.6 Monocots (-0.05/0.61/0.6;7053)
> g 01/085/0.59 magnoliids (0.31/0.87/0.57;1047
s 0.0/0.93/0.53 g (0.31/0.87/0.57;1047)

Ranunculales (0.2/0.91/0.52;620)
Nelumbo (0.75/0/0.6;2)

Proteales (0.41/0.96/0.6;299)
Sabiaceae (0.63/0.75/0.77;12)
Trochodendrales (1/-/0.34;2)
Buxales (0.94/0/0.79;25)
Saxifragales (0.2/0.91/0.52;396)
Tetrastigma (0.6)

Vitales (0.95/0/0.8;64)

malvids (-0.04/0.66/0.5;3374)
fabids (0.12/0.98/0.56;6174)
Gunnerales (0.61/0.88/0.72;17)
Dilleniales (0.62/0.88/0.74;25)
Santalales (0.44/0.96/0.61;145)
Caryophyllales (0.46/0.46/0.68;1408)
Berberidopsidales (0.6/0.5/0.5;3)

asterids (0.32/0.73/0.58;9743)

0.07/0.98/0.49

eudicots .,

Marattiales (1.0/-/0.03;5)

Psilotales (NA;5)

Ophioglossales (0.87/0.6/0.12;15)
~=m Equisetum (1.0/-/0;13)

- Osmudales (0.91/1.0/0.14;8)
Gleicheniales (1.0/-/0.04;10)
Hymenophyllales (0.76/1.0/0.38;31)
Schizeales (0.86/1.0/0.27;8)
Cyatheales (0.08/1.0/0.12;19)
Salviniales (0.29/0.79/0.48;23)
Saccoloma (0.91/1/0.07;2)
Lindsaea (1.0/-/0;3)

Pteridaceae (0.95/1/0.16;50)
Dennstaedtiaceae (0.11/0.46/0.41;14)
Aspleniaceae (0.54/1.0/0.44;135)
Eupolypods | (-0.4/0.84/0.63;114)
Eupolypods Il (0.51/0.0/0.61;29)

-0.58/0.17/0.36
0.84/0.8/0.72

0.19/0.86/0.2
0.6/0.67/0.51
-0.03/0.72/0.43

Polypodales

F. Acrogymnospermae

Cycadales (0.9/0.67/0.77;121)
0.38/0.72/0.56 Ginkgo (0.25)

Gnetidae (0.4/0.93/0.71;39)
Pinaceae (0.83/0.29/0.85;186)
Araucariaceae (0.84/1/0.83;39)
Podocarpaceae (0.92/0.67/0.94;88)
Sciadopitys (0.44)

Cupressaceae (0.83/0.33/0.72;100)
Cephalotaxus (1.0/-/0.82;4)
Amentotaxus (1.0/-/0.74;2)

Torreya (1.0/-/0.77;4)

Taxaceae (0.23/0.92/0.38;10)

0.25/0.16/0.77

0.68/0.44/0.49
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0.75/1/0.96 [99]
0.21/0.25/0.95 [E
-0.23/0/0.8

0.5/0.93/0.86E

0.9/0.5/0.99E

0.9/1/0.99

-0.44/0.08/0.96

0.95/0/1E
0.92/0/1

Streptophyta

Anthocerotophyta
Marchantiophyta ...

0.54/0.25/0.97

embryophytes ...

e

-0.17/0.72/0.98

Bryophyta -~

-0.38/0.17/0.98

0.69/0/1%
0.29/0.34/0.98 0.18/0/0.97
—9 Polypodopsida
»
E‘ o
s 0.73/0.57/0.98 £—
@ 0.44/0/0.99 0.95/077
f% —®  Acrogymnospermae.. ~0.92/01
= $ 0.92/0/1

E‘ 0.2/0.25/0.99_ .......

g 0.89/0/0.99

= 0.95/0/0.99

= -0.56/070.98

[oX

3 0.92/0/1 0.09/0/0.95 [91]

Magnoliophyta -..

-0.53/0.01/1 [92]
0.86/0.33/0.97

0.53/0.97/0.99{5
0.95/0/0.98

O
0.11/0.47/0.98

0.86/0/1

-0.3/0.11/0.97 [50]

Mvramlmonas (0.77)
onomastix éO .62)
Uronema ;
Nephrose mis (0 66)
Mesostigma 8
Spirotaenia ( 83&
Chioro ybus 0.88)
Entransia (0
Klebsorm/d/um (0 84)
Chara (0.6
Chaetosphaerldlum (]0.77)
Coleochaete irr. (0.7
Coleochaete scu. gO 80)
Mesotaenium (0.7
Cyllndrocystls bre. (0.79
Mylmdrocystls cus. (0.7
ougeot/a( 6@]13)
Spirogyra
etrium (0.81)
Roya (0. 3;
Penium (0 8
Cosmarium (0.
Nothoceros aen 0.79)
Nothoceros vin. (0.76)
Bazzania (0.89
Metzgeria (0.92)
S haerocarpos % .93)
lcctocar 0s (
Marchantia pol (0. 91)
Marchantia ema. (0.89)
Sphagnum (0.91
Polytrichum 50 .88)
Physcomitrella gO .84)
Ceratodon (0.8
Hedwigia gO .66)
Bryum E)
Rosulal ryum 0 73)
Leucodon (0.8
Anomodon (O 7 )
Thuidium (0.69)
Rh)/nchoste ium (0.67)
elaginella genome 0.87)
Selaginelia (1KP; 0.88)
Huperzia (0.81
Dendrolycopodium (0.83
Pseudolycopodiella (0.77)
Equisetum (0.73)
Pteridium (0.79)
Alsophila (0. 77&
Anglopter/s gO 6)
Psilotum (0.83
Ophloglossum (0.79)
Ginkgo (0.85)
Zamia (0.88)
Cycas rum. (0.83)
Cycas mic. (0.88)
Prumnopltys 60 .85)
Sciado, It s ( 87)
Taxus (0
Cunnlnghamla 0.88)
Juniperus (0.86
Cedrus (0.81)
Pinus (0.81)
Ephedra g) 72)
Gnetum 3
Welwitschia (0.74)
Amborella 0.74)
Nuphar (0 %
Kadsura (0 52)
Acorus (0.74)
Dioscorea (0. 67)
Smilax (0.65
Colchicum (0.71)
Yucca (0.47)
Sabal ( 69)
Zea (0.76)
Sorghum (0.76)
Brachypodium (0.76)
Oryza (0.76)
Liriodendron (0.83)
Persea (0. 82
Houttuynia (0
Saruma (0.83,
Sarcandra (0. 50)
Eschscholzia (0.85
Podophylium (0.86
Aquilegia (0.85)
Vitis(O. 61%
Larrea(0.58)
Boehmerla (0.63)
Medicago (0.61)
Populus (0.57)
Hibiscus (0.54)
Carica (0.61)
Arabidopsis (0.50)
Kochia (0.65
Diospyros (0. 70%
Tanacetum (0.77)
Inufa (0.79)
Rosmarinus (0.68)
Ipomoea (0.68
atharanthus (0.78)
Allamanda (0.72)
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A. Non-vascular plants
HS2014 Wi2014 ZN2014
Bryophyta VDR 019 _<: Bryophyta

-0. 01 Marchantiophyta 0.22 Marchantiophyta
tracheophytes W Anthocerotophyta
0 28 ;

Anthocerotophyta :>_0_12 0.52 \C Lycopodopsida
non-embryophtes euphyllophytes

B. Ginkgo + cycads C. Gnetidae + conifers
ZN2014 HS2014 ZN2014 HS2014
Wi2014 Ginkgo Pinaceae WI2014
0.24 Cycadalesp /CConifers-Il »... -0.14
0.38 -0.03 (0.22 g

-0.39

Gnet+Pin \q Gnetidae
all other P~ all other "
D. "ANA grade" angiosperms

HS2014 ("Ambo+Nym-first™) WI2014 ("Amborella-first™)

other angiosperms> 0.20
-0.29 Austrobaileyales :
Nymphaeales M
Ui C Amborella -0.10
all other ;>/
ZN2014 ("Nymphaeales first") X12014 ("Ambo+Nym-first")

0 16‘<: other angiosperms /<: magnoliids+eudicots
) Austrobaileyales 0.50

k monocotss
Amborella -0.24 Amborella
& 26\<: Nymphaeales c Nymphaeales

all other euphyllophytes
E. Magnoliids, monocots, and eudicots

/ceudicots HS2014
WI2014 0.10 magnoliidsP.. \~o10
ZN2014 0.00 ;o

XI2014 0.00 monocots®—" ¢
all other >



https://doi.org/10.1101/148536
http://creativecommons.org/licenses/by-nc/4.0/

Cryptogramma crispa (0.8)

0.83/0/0.7 ... Pityro. austroamericana (0.83)
[98/96/1.0] —~— Bommeria hispida (0.8)

Pellaea atropurpurea (0.7)
0.88/0/0.9 Myriopteris covillei (0.74)
0.87/1/0.72 Notholaena grayi (0.77)
Pentagramma triangularis (0.72)
0.94/0/0.77
-0.15/0.33/0.29 Hemionitis paimata (0.69)
[70/73/0.98] Cheilanthes nitidula (0.68)

0.46/0.16/0.57]

[68/74/0.81]

0.95/0/0.93‘

0.15/0.83/0.38 ;70.17/0.46/0.42
[90/95/1.0] | [41/73/0.72]

Adiantum ¢
0.33/0.5/0.52 [-/-/0.85]

Calciphilopteris Judens (0.75)
0.94/0/0.94 Rheopteris cheesmaniae (0.84)
Vaginularia acrocarpa (0.83)
Hecistopteris pumila (0.83)
Haplopteris efongata (0.83)
Monogramma graminea (0.83)
Antrophyum latifolium (0.75)
0.31/0/0.78 Anetium citrifolium (0.73)
[99/99/1.0] Vittaria graminifolia (0.84)
subcordatum (0.69)
digitatum (0.73)
formosum (0.81)
raddianum (0.71)
aethiopicum (0.69)
hispidufum (0.65)
pedatum (0.61)

andicola (0.6)

tenerum (0.63)

tricholepis (0.67)
tetraphylfium (0.69)
peruvianum (0.71)
flabellulatum (0.73)
capillus veneris (0.73)
davidii (0.76)

malesianum (0.8)

0.38/1/0.29.-
[47/9/0.66]

e ®)

-0.33/0.15/0.43[-/-/-]

>>>>>>>>>>22>>>>>
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A. Solanum sect. Lycopersicon

S. lycopersicoides 2951 (0.87,0.42)
(0.87/0.88/0.53) s lycopersicoides 4126 (0.87,0.40)
) (0.61/1/0.52) = S. pennellii 0716 (0.89,0.36)
-~ sect. Lycopersicon S. pennellii 3778 (0.87,0.37)
‘©(0.98/0.67/0.8) (0.06/0.69/0.32 S. habrochaites 0407 (0.9,0.39)
(0.69/0.98/0.58)% S. habrochaites 1777 (0.88,0.37)
(0.11/0.81/0.34)  (0.27/0.96/0.38) { S. chilense 1782 (0.84,0.23)

S. chifense 4117 (0.82,0.23)
peruvianum 2964 (0.84,0.19)
huaylasense 1358 (0.79,0.16)
corneliomuileri 0444 (0.8,0.16)
. cornefiomuileri 0107 (0.82,0.17)
. peruvianum 2744 (0.49,0.16)
huaylasense 1364 (0.57,0.17)
huaylasense 1360 (0.8,0.21)
chmielewskii 1316 (0.92,0.29)
chmielewskii 1028 (0.94,0.29)
arcanum 2172 (0.94,0.25)
neorickii 1322 (0.92,0.26)

S. neorickii 2133 (0.93,0.25)

S. lycopersicum 2933 (0.94,0.20)
S. pimpinelfifolium 1589 (0.94,0.21)
S. pimpinellifolium 1269 (0.91,0.23)
(0.9/0.83/0.6 S. lycopersicum 3475 (0.94,0.25)
(0.72/0.42/0.31 )-4' S. lyco. "Heinz 1706" (0.94,0.23)
(0.17/0.68/0.24) S. cheesmaniae 3124 (0.95,0.21)
(0.19/0.56/0.25) S. cheesmaniae 0429 (0.94,0.18)
S. galapagense 0436 (0.91,0.18)
S. galapagense 3909 (0.93,0.19)

(0_97/0_5/0_3)E S. sitiens 4116 (0.91,0.49)

(0.14/1/0.35) 0.86/0/1

(0.01/1/0.26) 0.61/0/1
[68]

(-0.09/0.51J0.34)
-0.34/0/1 (0/0.97/0.29

0.71/1/1[68]

-0.247071
(-0.12/0.45/0.3)
(-0.07/0.54/0.29)
-0.12/0/1
(-0.06/0.57/0.3)
0/0/1

(0.84/0.92/0.36)
(0.56/0.98/0.5

HDOHOOOHOOnnnnn

(0.12/0.8/0.36)[(0.09/0.93/0.29
(0.24/0.9/0.26)

(0.18/0.56/0.18) =
(0.15/0.48/0.19) 1"

(0.5/0.29/0.04)

B. Caryophyllales

Beta vuigaris (0.89,0.74)
6(1/—/0.94)[0.96] o

Spinacia oleraceae (0.88,0.76)
Frankenia laevis (0.87,0.64)

Reaumuria trigyna (0.89,0.74)
Piumbago auriculata (0.81,0.55)

Ruprechtia salicifolia (0.97,0.57)

(1/-/0.86)[0.83]

(1/-/0.95) [0.96]

(0.74/0.4/0.71)[0.63]

(0.01/0.92/0.44) 0.27/0.32/0.96
Drosera binata (0.98,0.61)

Dionaea muscipula (0.86,0.60)

(0.42/0.91/0.55)
Aldrovanda vesiculosa (0.89,0.53)

Drosophyllum lusitanicum (0.76,0.65)

(0.45/0/0.7)[0.99]

Ancistrocfadus robertsonorium (0.97,0.61)
0.06/0.74/0.52)

(
[0-42]1 "5 0810/1

Nepenthes alata (0.86,0.67)
Nepenthes ampulfaria (0.86,0.64)

"non-core" Caryophyllales -...
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