

1 **Quartet Sampling distinguishes lack of support from conflicting support in the plant tree of**

2 **life¹**

3

4 James B. Pease^{2,5}, Joseph W. Brown³, Joseph F. Walker³, Cody E. Hinchliff⁴, and Stephen A.

5 Smith^{3,5}

6 ²Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, North

7 Carolina 27101, USA

8 ³Department of Ecology and Evolutionary Biology, University of Michigan, 830 North

9 University, Ann Arbor, Michigan 48109, USA

10 ⁴Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051,

11 Moscow, Idaho 83844, USA

12 ⁵Corresponding Authors: peasejb@wfu.edu, eebsmith@umich.edu

13 **Short Title: Quartet Sampling of discordance in the plant tree of life**

¹Manuscript received _____; revision accepted _____.

14 ABSTRACT

15 **Premise of the Study**— Phylogenetic support has been difficult to evaluate within the plant
16 tree of life partly due to the difficulty of distinguishing conflicted versus poorly informed
17 branches. As datasets continue to expand in both breadth and depth, new support measures are
18 needed that are more efficient and informative.

19 **Methods**— We describe the Quartet Sampling (QS) method, a quartet-based evaluation
20 system that synthesizes several phylogenetic and genomic analytical approaches. QS
21 characterizes discordance in large-sparse and genome-wide datasets, overcoming issues of
22 alignment sparsity and distinguishing strong conflict from weak support. We test QS with
23 simulations and recent plant phylogenies inferred from variously sized datasets.

24 **Key Results**— QS scores demonstrate convergence with increasing replicates and are not
25 strongly affected by branch depth. Patterns of QS support from different phylogenies leads to a
26 coherent understanding of ancestral branches defining key disagreements, including the
27 relationships of *Ginkgo* to cycads, magnoliids to monocots and eudicots, and mosses to
28 liverworts. The relationships of ANA grade angiosperms, major monocot groups, bryophytes, and
29 fern families are likely highly discordant in their evolutionary histories, rather than poorly
30 informed. QS can also detect discordance due to introgression in phylogenomic data.

31 **Conclusions**— The QS method represents an efficient and effective synthesis of phylogenetic
32 tests that offer more comprehensive and specific information on branch support than conventional
33 measures. The QS method corroborates growing evidence that phylogenomic investigations that

34 incorporate discordance testing are warranted to reconstruct the complex evolutionary histories
35 surrounding in particular ANA grade angiosperms, monocots, and non-vascular plants.

36 **Key words:** bootstrap; branch support; discordance; introgression; lineage sorting;
37 phylogenetics; phylogenetic methods; phylogenomics; plant tree of life; quartet sampling

38 INTRODUCTION

39 Discordance and uncertainty have emerged as consistent features throughout the history of our
40 evolving model of the plant tree of life (Crane, 1985; Chase et al., 1993; Palmer et al., 2004; Soltis
41 et al., 2011; Wickett et al., 2014). Particularly strong contentions often arise at pivotal transitions
42 in the evolution of plant life on earth, such as the development of vascular tissue (Pryer et al.,
43 2001; Steemans et al., 2009; Banks et al., 2011), the rise of seed-bearing plants (Chase et al.,
44 1993; Chaw et al., 1997; Bowe et al., 2000; Qiu et al., 2006; Jiao et al., 2011), and the explosive
45 radiation of flowering plants (Crane, 1985; The Amborella Genome Project, 2013; Goremykin
46 et al., 2015; Taylor et al., 2015; Simmons, 2016; Edwards et al., 2016). Modern phylogenomic
47 datasets, rather than quelling these disagreements, have repeatedly shown that these phylogenetic
48 conflicts are often the result of biological processes including incomplete lineage sorting (ILS),
49 introgressive hybridization, and paralog duplication-loss (e.g., Zhong et al., 2013b; Wickett et al.,
50 2014; Zwickl et al., 2014; Yang et al., 2015; Eaton et al., 2017; Pease et al., 2016b; Goulet et al.,
51 2017; Walker et al., 2017c). Several methods have been proposed to address these issues during
52 species tree inference (e.g., Zwickl and Hillis, 2002; Ogden and Rosenberg, 2006;
53 Shavit Grievink et al., 2010; Anderson et al., 2012; Roure et al., 2012; Hinchliff and Roalson,
54 2013; Mirarab et al., 2014). However, we lack a generalized framework to quantify phylogenetic

55 uncertainty (specifically branch support) that distinguishes branches with low information from
56 those with multiple highly supported, but mutually exclusive, phylogenetic histories.

57 One of the most commonly used branch support methods has been the non-parametric
58 bootstrap (NBS; Felsenstein, 1985) and recent variants like the rapid bootstrap (RBS; Stamatakis
59 et al., 2008), which resample the original data with replacement assuming that aligned sites are
60 independent and identically distributed (i.i.d.) samples that approximate the true underlying
61 distribution (Felsenstein, 1985; Efron, 1992). In practice, the assumptions of NBS (in particular
62 site independence) may rarely be met and can deteriorate under a variety of conditions
63 (Felsenstein and Kishino, 1993; Hillis and Bull, 1993; Sanderson, 1995; Andrews, 2000; Alfaro
64 et al., 2003; Cummings et al., 2003). More recently the UltraFast bootstrap approximation
65 (UFboot) method, utilizing a likelihood-based candidate tree testing, was proposed to address
66 speed and score interpretation issues for NBS (Minh et al. 2013; and see comparison in Simmons
67 and Norton 2014).

68 The other most common branch support metric has been the Bayesian posterior probability
69 (PP). PP scores are typically calculated from posterior distributions of trees generated using a
70 Markov chain Monte Carlo (MCMC) sampler, and summarized using a majority-rule consensus
71 tree (e.g., Larget and Simon, 1999; Drummond and Rambaut, 2007; Holder et al., 2008; Ronquist
72 et al., 2012; Larget, 2013). The interpretation of PP values is more straightforward than bootstrap
73 proportions, as PP values represent the probability that a clade exists in the underlying tree,
74 conditioned on the model of evolution employed and the prior probabilities. The individual and
75 relative performance of PP has been well-documented as generally favorable (Wilcox et al., 2002;
76 Alfaro et al., 2003; Cummings et al., 2003; Huelsenbeck and Rannala, 2004). However, PP may
77 be excessively high in certain scenarios (e.g., oversimplified substitution models; Suzuki et al.,

78 2002; Douady et al., 2003; Nylander et al., 2004). PP also may fail under a multi-species
79 coalescent framework with conflicting phylogenies (Reid et al., 2013). This is particularly
80 noteworthy in light of studies showing the disproportionate effects of a few genes on overall
81 genome-wide phylogenies (Brown and Thomson, 2017; Shen et al., 2017; Walker et al., 2017a).

82 Ongoing efforts to expand genetic sampling to as many plant species as possible have
83 produced increasingly species-rich, but data-sparse, alignments (i.e., large-sparse or “fenestrated”
84 matrices). Meanwhile, the accelerating accretion of new genomes and transcriptomes will
85 continue to deepen genome-wide datasets with millions of aligned sites. Both axes of dataset
86 expansion present challenges to the tractability and interpretation of phylogenetic branch-support
87 analytics. NBS scores are known to perform poorly for large-sparse matrices (Driskell et al.,
88 2004; Wiens and Morrill, 2011; Smith et al., 2011; Roure et al., 2012; Hinchliff and Roalson,
89 2013; Hinchliff and Smith, 2014b), where the sampling procedure generates uninformative
90 pseudo-replicates that mostly omit informative sites (or consist of mostly missing data).

91 Furthermore, resampling methods (including NBS) approximate the resampling of a larger
92 idealized population. Genomic datasets contain virtually all available data, and therefore are not
93 samples of any larger whole. PPs provide an appropriate testing framework and straightforward
94 interpretation for genomic data, but available Bayesian methods of analysis are not scalable to
95 genome-wide data under current computational speeds. PPs also may over-estimate support when
96 models are overly simple, which becomes increasingly problematic as the size and complex of
97 datasets expand. PP and NBS scores therefore both appear unsuitable for use on large datasets,
98 the former due to feasibility and the latter due to its assumptions (also discussed in Smith et al.
99 2009, Hinchliff and Smith 2014b).

100 As phylogenomics has developed over the last decade, alternative methods have been

101 introduced to factor the increased data and inherent gene tree-species tree conflict. These methods
102 measure the concordance of gene trees (broadly referring to a phylogeny from any sub-sampled
103 genomic region), including the internode certainty (IC) and tree certainty (TC) scores (Rokas
104 et al., 2003; Salichos et al., 2014; Kobert et al., 2016; Zhou et al., 2017), Bayesian concordance
105 factors (Ané et al., 2006), and other concordance measures (Allman et al., 2017). These scores
106 were developed around the central concept of a branch support statistic that measures
107 concordance of various trees with a particular tree hypothesis. This perspective offers much for
108 partitioning phylogenetic discordance and analyzing larger alignments more rapidly in a
109 phylogenomic coalescent-based framework. Unfortunately, though relevant to genomic datasets,
110 they may not be as suitable for large-sparse alignments.

111 Finally, quartet methods—in particular quartet puzzling methods—have been developed for
112 phylogenetic reconstruction (Strimmer et al., 1997; Strimmer and von Haeseler, 1997; Ranwez
113 and Gascuel, 2001; Allman and Rhodes, 2004; Chifman and Kubatko, 2014; Mirarab et al., 2014;
114 Zwickl et al., 2014) and support (e.g., “reliability values”; Strimmer et al., 1997; Strimmer and
115 von Haeseler, 1997). More recently, quartet procedures have been explored to facilitate sampling
116 of large-sparse alignments (Misof et al., 2013) and as part of coalescent-based quartet inference
117 methods (Stenz et al., 2015; Gaither and Kubatko, 2016; Sayyari and Mirarab, 2016). These
118 quartet methods benefit from the speed advantages of a smaller alignments and the statistical
119 consistency of quartet trees, which avoid complex lineage sorting issues that occur with more
120 speciose phylogenies (Rosenberg, 2002; Degnan and Salter, 2005).

121 Despite the wide array of approaches to branch support quantification briefly discussed above,
122 few measures (excepting concordance methods) accommodate multiple histories and distinguish
123 different causes of poor support for a branch in the phylogeny (e.g., multiple

124 supported-but-conflicting phylogenetic relationships vs. low information). Being able to identify
125 a branch as having a strong consensus and a strongly supported secondary evolutionary history
126 would provide valuable insight into the plant tree of life (among many other groups; see also
127 Brown and Lemmon, 2007).

128 Here, we describe the Quartet Sampling (QS) method (summarized in Fig. 1 and Table 1),
129 which blends aspects of many of the methods described above and leverages the efficiency of
130 quartet-based evaluation. The goal of the QS method is to dissect phylogenetic discordance and
131 distinguish among lack of support due to (1) low information (as in NBS and PP), (2) discordance
132 as a result of lineage sorting or introgression (as in concordance measures), and (3) misplaced or
133 erroneous taxa (a.k.a. “rogue taxa”; Wilkinson, 1996; Aberer et al., 2012). In many modern
134 phylogenetic and particularly phylogenomic studies, these causes of discordance are frequently
135 surveyed and reported separately (e.g., Xi et al., 2014a; Wickett et al., 2014; Yang et al., 2015;
136 Pease et al., 2016b; Walker et al., 2017c). QS provides a unified method for their execution,
137 interpretation, and reporting. Additionally, the QS method offers a viable means to describe
138 branch support in large phylogenies built from sparse alignments (10,000–30,000 tips with >80%
139 missing data), which are generally intractable for Bayesian analysis (though see tools like
140 ExaBayes; Aberer et al., 2014).

141 In this study, we (1) describe the features, parameters, and interpretation of the QS method,
142 (2) validate the QS method with simulations, and (3) apply the QS method to recently published
143 large-sparse and phylogenomic datasets at timescales spanning from Viridiplantae to sub-generic
144 clades. We demonstrate that the QS method is a flexible and computationally tractable method for
145 examining conflict and support in large datasets. While not a panacea, we argue that the QS
146 framework makes import steps in addressing many of the issues of branch support discussed

147 above, and hope it encourages additional discussion, testing, and innovation of new phylogenetic
148 evaluation methods. More broadly, the results presented herein contribute to the broader
149 discussion about moving the plant tree of life beyond the goal of resolving a single, universal
150 “Species Tree” (Hahn and Nakhleh, 2015; Smith et al., 2015), and into a future where we more
151 fully explore and appreciate the complex “multiverse” of evolutionary histories manifest
152 throughout the plant tree of life.

153 MATERIALS AND METHODS

154 ***Quartet Sampling***— The Quartet Sampling (QS) procedure outlined here was inspired by
155 aspects from several quartet-based and concordance methods, most particularly the process
156 originally outlined by Hinchliff and Smith (2014b). The QS method takes an existing
157 phylogenetic topology (which can be inferred by any method) and a molecular dataset (not
158 necessarily the one that generated the phylogeny) and separately evaluates one or more internal
159 branches on the given phylogeny. The QS method (Fig. 1) was designed to rapidly and
160 simultaneously assess the confidence, consistency, and informativeness of internal tree
161 relationships, and the reliability of each terminal branch.

162 For a given phylogeny, each observed internal tree branch partitions the tree into four
163 non-overlapping subsets of taxa (Fig. 1A). These four sets of taxa (called a “meta-quartet” by
164 Zhou et al., 2017) can exist in three possible relationships: the concordant relationship that
165 matches the configuration in the given topology, and two alternative discordant configurations.
166 The QS method repeatedly and randomly samples one taxon from each of the four subsets and
167 then evaluates the likelihood all three possible phylogenies given the sequence data for the

168 randomly selected quartet spanning that particular branch.

169 For each quartet sampled for the focal branch, the likelihood is evaluated (using the aligned
170 sequence data) for all three possible topologies that these four sampled taxa can take (currently
171 using RAxML or PAUP*, though other likelihood calculators could be substituted; Stamatakis,
172 2014; Swofford and Sullivan, 2003). The quartet topology with the best likelihood is then
173 recorded and tabulated across all replicates. This process generates a set of counts (across all
174 replicates per branch) where either the concordant or each of the two discordant relationships had
175 the best likelihood. This procedure can be carried out by evaluating the likelihood of the complete
176 alignment for each quartet (i.e., in a single-matrix framework) or by randomly sampling from
177 individual gene/partition alignments from a multi-gene or genome-wide alignment (i.e., in a
178 multi-gene tree coalescent framework).

179 Several refined options can be specified. For example, a minimum number of overlapping
180 non-empty sites for all four taxa involved in a quartet can be specified to ensure calculations are
181 performed on data rich subsets. Additionally, a parameter of a minimum likelihood differential
182 may be set. If the most-likely topology (of the three) does not exceed the likelihood of the
183 second-most-likely phylogeny by the set threshold, then the quartet is considered “uninformative”
184 and tabulated separately. In summary, the QS method generates counts of the three possible
185 topologies (and uninformative replicates) for each internal branch by sampling replicates using
186 unique quartets of taxa spanning the particular branch.

187 The QS method uses these resampled quartet tree counts to calculate three scores for each
188 internal branch of the focal tree (Fig. 1B, Table 1, and Appendix S1; see Supplemental Data with
189 this article). The QC (Quartet Concordance) score is an entropy-like measure (similar to the ICA
190 score; Salichos et al. 2014) that quantifies the relative support among the three possible

191 resolutions of four taxa. When the most commonly sampled topology is concordant with the input
192 tree, then QC takes positive values in the range (0,1]. Thus, QC equals 1 when all quartet trees are
193 concordant with the focal branch. When one of the discordant topologies is the most commonly
194 resampled quartet, QC takes negative values in the range [-1,0), approaching -1 when all quartet
195 trees are one of the two discordant phylogenies. When support is evenly split among the three
196 alternative topologies (or two if only two of the three possible are registered as having an optimal
197 likelihood across all replicates), QC equals 0.

198 The QD (Quartet Differential) score uses the logic of the *f*- and *D*-statistics for introgression
199 (Reich et al., 2009; Green et al., 2010; Durand et al., 2011; Pease and Hahn, 2015) and measures
200 the disparity between the sampled proportions of the two discordant topologies (though with
201 quartet topology proportions, rather than site frequencies). The QD score does not specifically
202 quantify introgression nor identify introgressing taxa, but does indicate that one alternative
203 relationship is sampled more often than the other. Low values of QD indicate that there is one
204 preferred topology among the two discordant topologies, a potential indication on the given
205 branch of a biased biological process beyond background lineage sorting, including confounding
206 variables such as introgression, strong rate heterogeneity, heterogeneous base compositions, etc.
207 QD varies in the range [0,1] with a value of 1 meaning no skew in the proportions of the two
208 discordant trees and the extreme value of 0 meaning that all discordant trees sampled are only
209 from one of the two possible alternative relationships.

210 The QI score (Quartet Informativeness) quantifies for a given branch the proportion of
211 replicates where the best-likelihood quartet tree has a likelihood value that exceeds the quartet
212 tree with second-best likelihood value by a given differential cutoff. This ensures that replicates
213 are not counted as being concordant or discordant when the molecular data are effectively

214 equivocal on the topology (i.e., when two of the three possible quartet topologies have nearly
215 indistinguishable likelihood scores). QI is measured in the range [0,1], which indicates the
216 proportion of sampled quartets that exceeded the cutoff. A QI value of 1 means all quartets are
217 informative, while a value of 0 indicates all quartets were uncertain (i.e., no significant
218 information for the given branch). The QI measure of branch informativeness works in
219 conjunction with QC and QD to distinguish between branches that have low information versus
220 those with conflicting information (i.e., high discordance).

221 Finally, for each terminal taxon, a QF (Quartet Fidelity) score is calculated to report the
222 proportion of total replicates (across all branches tested) where the given taxon was included in a
223 quartet resulted in a concordant quartet topology. QF is therefore similar in approach to a “rogue
224 taxon” test (Wilkinson, 1996; Aberer et al., 2012). However, an important distinction is that
225 RogueNaRok (Aberer et al., 2012) uses taxonomically complete bootstrap replicates to compute
226 these scores rather than resampled subtrees, and thus are subject to the same issues as bootstrap
227 scores themselves in phylogenomic analyses (i.e., RogueNaRok will not report rogue taxa when
228 all bootstrap scores are 100). For a given taxon, the QF score is measured in the range [0,1] as the
229 proportion of quartet topologies involving the taxon that are concordant with the focal tree
230 branch. Therefore, a QF value of 1 indicates a given taxon always produces concordant
231 topologies across all internal branches where it was sampled for in a quartet. QF values
232 approaching zero indicate mostly discordant topologies involving this taxon, and may indicate
233 poor sequence quality or identity, a lineage-specific process that is distorting the phylogeny, or
234 that the taxon is significantly misplaced in the given tree. Note that QF differs specifically from
235 QC, QD, and QI by being a taxon-specific test across internal branch tests rather than an internal
236 branch-specific test.

237 Collectively, these four tests represent a means to distinguish the consistency of a branch
238 (QC), the presence of a secondary evolutionary history (QD), the amount of information
239 regarding a branch (QI), and the reliability of individual taxa in the tree (QF; Fig. 1B and see
240 Table 1). Therefore, QS tests disentangle these effects rather than have them conflated under a
241 summary score as in standard measures of phylogenetic support. A full technical description of
242 the QS method is included in Appendix S1.

243 ***Implementation of QS***— We implemented the above procedure in a Python-based program
244 called *quartetsampling*, which samples an alignment randomly to generate many representative
245 quartet topology replicates for each internal branch in a corresponding focal tree
246 (<https://github.com/fephyfofum/quartetsampling>). This procedure has a number of advantages
247 over NBS for larger datasets. First, unlike NBS and RBS, alignment columns are not resampled,
248 which allows sparse alignments to be used. Second, the number of likelihood calculations that are
249 required is the number of internal branches in the tree multiplied by the number of replicates per
250 branch multiplied by three possible topologies. Since computation time scales linearly with the
251 number of taxa, individual replicates are fast, and the computations can be readily parallelized
252 across processors and furthermore discretized across systems (with results combined later). This
253 allows QS to be efficiently applied to large alignments beyond the practical limits of NBS and PP.
254 The most extensive computational time was for the Zanne et al. (2014b) 31,749 taxon dataset (see
255 below), which we ran on the Wake Forest University DEAC high-performance cluster using 8
256 nodes with 16 CPU each. This analysis completed 200 replicates for the full tree in 13 hours.
257 Smaller genome-wide datasets finished 1000 gene-tree replicates on quad-core desktops
258 approximately 12 hours. The conventional multi-gene datasets took only a few minutes to a few

259 hours to run on a standard desktop.

260 Although the Shimodaira-Hasegawa-like approximate likelihood ratio test (SH-aLRT;
261 Guindon et al., 2010) was by far the fastest method we consider here, the QS was fast enough for
262 large scale analyses. QS can also be applied separately to individual focal branches, allowing for
263 more thorough exploration of particular branches of interest. Furthermore, the QS does not
264 require the tree tested to be the maximum likelihood topology, a requirement for SH-aLRT. For
265 our simulated data, we found that performing 200 QS replicates per branch was adequate to
266 achieve low variance in QS score (Fig. 2A). As would be expected, more replicates per branch
267 should generally be used for larger trees to sample a greater fraction of the total possible quartets.

268 Furthermore, some branches, especially in large trees, may be entirely unsupported by the
269 alignment due to a lack of sampling overlap among appropriate taxa (i.e., no sites in the
270 alignment contain data from each of the four subsets of taxa; Fig. 1A). Therefore, no
271 phylogenetic information exists to inform the branch (i.e., they are not “decisive” *sensu* Steel and
272 Sanderson, 2010). The QS procedure identifies these branches, rather than discarding them or
273 ambiguously labeling them as having “low support.”

274 ***Guidelines for interpretation of QS support values***— An important consideration with any
275 measure used to ascertain confidence is precise interpretation. We provide a concise visual
276 description of the tests (Fig. 1) and a table describing example scores and their interpretations
277 (Table 1). Particularly notable is that the QS method not only can “support” or “fail to support” a
278 given branch hypothesis, but also can offer “counter-support” for an alternative branch (as in the
279 IC/ICA scores; Salichos et al., 2014; Kobert et al., 2016; Zhou et al., 2017). Therefore, even
280 “inaccurate” branch hypotheses can offer information as “counter-support” for an alternative

281 quartet topology (i.e., the degree of negativity of the QC score; for examples see Fig. 6).

282 The QS scores we have described calculate the sensitivity of the resolution of a particular
283 branch to different combinations of taxa sampled around that branch. Each QS replicate calculates
284 whether the four sampled taxa support the resolution of the branch found in the tree over the
285 alternative resolutions. This framework is similar to the interpretation made by those using taxon
286 jackknife analyses for outgroup sensitivity (e.g., Edwards et al., 2005) and the IC score when used
287 with incomplete trees (Kobert et al., 2016; Zhou et al., 2017). We argue that this interpretation is
288 richer in information than the NBS, and, in simulations, the QC score also appears to more
289 conservatively and accurately assign high support values to branches that are present in the true
290 tree (i.e., relatively low false positive rates, at least when the likelihood threshold is small, i.e., in
291 the range of ~ 2 used here; Appendix S2). QC scores are particularly helpful for clarifying
292 strength of support for branches with concordant tree frequencies not close to 1 (Appendix S3).

293 ***Generation and evaluation of simulated phylogenies***— We first tested the method by
294 generating simulated phylogenies under the pure birth (birth = 1) model of evolution with 50,
295 100, and 500 tips using `pxbdsim` from the `phyx` toolkit (Brown et al., 2017). Using these trees,
296 we generated 1000 bp alignments (no indels) under the Jukes-Cantor model with INDELible v.
297 1.03 (Fletcher and Yang, 2009). Trees were scaled so that the average branch lengths were about
298 0.2, based on the observation that this generated reasonable trees with most branches recovered
299 correctly from ML analyses. Using the same procedure, we also simulated trees with 500 tips and
300 associated alignments with ten nucleotide partitions, each with 500 sites under the Jukes-Cantor
301 model. We simulated both the full alignment with partitions and a modified randomly resampled
302 sparse alignment to examine the behavior of QS in the presence of missing data (see Appendix S1

303 for details). These partitioned and sparse alignments had the same qualitative features as the full
304 alignment.

305 Unlike the NBS method, which generates a set of trees from which branch support is
306 estimated, the QS method requires only a single input topology for which branch support will be
307 measured. We calculated QC, QD, QI, and QF scores for the true underlying tree as well as the
308 ML tree generated by RAxML, but we focus on results for the ML tree. To examine how the
309 number of replicates impacts the QS precision, we conducted simulations varying the number of
310 replicates for randomly drawn branches in the simulated trees (Fig. 2A; Appendix S4). Based on
311 these simulations, we elected to use 200 replicates per branch, since the variance in the QC score
312 was generally low across all tree sizes when this many replicates were performed. We used
313 RAxML and PAUP* to estimate the ML for the three alternative topologies for each QS replicate
314 (using the `-f N` option and the GTRGAMMA model in RAxML). We also calculated
315 branch-specific QC/QD/QI and taxon-specific QF scores using likelihood differential cutoffs of
316 $\Delta L = 0$ (no filtering) and $\Delta L = 2.0$, which requires stronger conflicting signal to interpret
317 branches in the input tree as unsupported.

318 Additionally, we generated a simulated 20-taxon tree using `pxbdsim` from `phyx` (Brown
319 et al., 2017) with variable branch lengths (Appendix S5). For 100 replicates, we generated twenty
320 5 kb nucleotide sequences over this tree using `ms` (Hudson, 2002), inferred a concatenated tree
321 using RAxML (Stamatakis, 2014), and used this inferred tree and simulated alignment as the
322 inputs for QS. Population parameters were set at $\mu = 1 \times 10^{-8}$ and $N_e = 10^5$. To simulate
323 increasing amounts of ILS, we shortened the times between speciation events by scaling all
324 branch lengths by factors ranging from 0.5 to 10 and repeated these simulations (Fig. 2C).
325 Additionally, using the original tree scaled by a factor of 2, we added introgression of varying

326 intensity between “taxon_6” and “taxon_7” (using the migration parameter in ms from 0 to
327 $1.4/4N_e$ migrants per generation). Additional details can be found in Appendix S1.

328 **Testing of Empirical Datasets**— We evaluated five recent large-scale phylogenies, including
329 (1) a 103-transcriptome dataset spanning Viridiplantae from Wickett et al. (2014, abbreviated
330 hereafter as “WI2014”), (2) two large-sparse phylogenies spanning land plants from Hinchliff and
331 Smith (2014b, “HS2014”) and Zanne et al. (2014b, “ZN2014”), and (3) phylogenies spanning
332 Magnoliophyta (angiosperms) with hundreds of genes from Xi et al. (2014a, “XI2014”) and
333 Cannon et al. (2015b, “CN2015”). Additionally, to demonstrate the utility of this method at
334 medium and short time scales, we evaluated two whole transcriptome datasets from the wild
335 tomato clade *Solanum* sect. *Lycopersicon* from Pease et al. (2016b, “PE2016”) and carnivorous
336 plants from the order Caryophyllales from Walker et al. (2017c, “WA2017”). Finally, we tested
337 this method on a more typical medium-sized multi-locus dataset from Polypodopsida (ferns) from
338 Pryer et al. (2016b, “PR2016”), such as might appear in many phylogenetic studies of large
339 subgroups. Data for these studies were obtained from datadryad.org and iplant.org (Hinchliff and
340 Smith, 2014a; Matasci et al., 2014; Xi et al., 2014b; Zanne et al., 2014a; Cannon et al., 2015a;
341 Pease et al., 2016a; Pryer et al., 2016a; Walker et al., 2017b) (additional details and results in
342 Appendix S1).

343 In addition, we analyzed the datasets using 200 individual gene trees for XI2014 and
344 WA2017, and 1000 gene trees for PE2016 and WI2014. For these datasets, quartets are sampled
345 as usual, but only the individual gene sequence alignments are assessed. These phylogenies were
346 all evaluated using a minimum alignment overlap per quartet of 100 bp and a minimum likelihood
347 differential of 2 (i.e., the optimal tree’s log-likelihood must exceed the second-most likely tree by

348 a value of at least 2). We also calculated the phylogenies with and without partitioning in
349 RAxML, but in all cases the partitioned datasets did not qualitatively differ from the results of the
350 unpartitioned datasets. These data are provided as supplementary data, but are not shown here.

351 We also either re-calculated other measures of branch support or used values from the
352 published studies for comparison to the QS method for each phylogeny, except HS2014 and
353 ZN2014 where the size and sparseness of the datasets prohibited the calculation of other measures
354 of support. For the datasets from CN2015, PR2016, WA2017, and XI2014 100 replicates each of
355 RAxML NBS and SH-test were performed. Additionally, PP scores for PR2016 were calculated
356 using MrBayes (Ronquist et al., 2012), and IC scores for calculated for Walker et al. (2017c). For
357 PE2016 and WI2014, RAxML NBS, MP-EST, or IC scores were taken from published values.
358 Finally, we also calculated QF scores and rogue taxon scores using RogueNaRok (Aberer et al.,
359 2012) to compare these two measures, particular for the large-sparse ZN2014 dataset (for details
360 and results, see Appendix S1). Data and results from the simulations and empirical studies are
361 available at Dryad (<http://dx.doi.org/10.5061/dryad.6m20j>).

362 RESULTS AND DISCUSSION

363 ***Simulation analyses***— We tested the consistency and reliability of QS on a set of simulated
364 phylogenies. The QC scores converge (with decreasing variance as expected) on a consistent
365 mean value for each branch as the number of replicates increased (Fig. 2A). Sampling 200
366 quartets per branch reduced the variance to less than 0.003 in all cases, and can be seen as a
367 generally a reasonable number of replicates. As these are branch-specific tests, branches of
368 interest can be tested individually at much higher numbers of replicates without the need to re-test

369 the entire tree. Additionally, we simulated sequences over a standard phylogeny (Appendix S5),
370 then simulated increasing ILS by shortening branch lengths and introgression via migration. As
371 expected, QC scores that measured concordance decreased in both cases due to the increased
372 presence of discordant sites and QD scores that measure skew in discordance decreased
373 dramatically with increasing directional introgression (Fig. 2B). We also found that while QC and
374 QD both measure discordance levels, they are not strictly correlated measures. As QC goes to the
375 limits of its range $[-1,1]$, QD values tend to have more extreme values that were due to a lack of
376 discordant trees (QC near 1) or high frequency of one discordant tree (QC near -1). Applying a
377 minimum log-likelihood differential threshold to small trees tended to push scores toward
378 extremes, resulting in more 0s and 1s (Appendix S2). Finally, we found that those datasets with
379 lower QF score generally identified more rogue taxa than inferred by RogueNaRok, despite the
380 different data inputs and analysis frameworks (Appendix S1).

381 ***QS analyses of major land plant lineages***— The primary goal of this study was to use QS to
382 reanalyze and compare several recent speciose and phylogenomic datasets to address ongoing
383 debates of phylogenetic relationships in the plant tree of life. We used QS methods to evaluate
384 two of the most speciose phylogenies of land plants currently available from Hinchliff and Smith
385 (2014b, Fig. 3) and Zanne et al. (2014b, Fig. 4), and one of the most comprehensive phylogenies
386 of Viridiplantae from Wickett et al. (2014, Fig. 5). QS analyses were able to provide a broad scale
387 summary of the stability of the datasets.

388 As expected, given the sparsity of the matrices for HS2014 and ZN2014 (96% and 82%
389 missing characters, respectively), the proportion of informative quartets was low in both cases
390 (mean QI of 0.15 and 0.35, respectively). Overall, the mean QC for the HS2014 (0.15;

391 interquartile range (IQR) = [-0.13, 0.46]) and ZN2014 (0.17; IQR = [-0.10, 0.63]) were low
392 compared to the less speciose phylogenies (Fig. 2C; Appendix S6). Notably, we found 33.4% and
393 29.8% of branches in HS2014 and ZN2014, respectively, had QC values less than -0.05 meaning
394 that about a third of the branches in these consensus phylogenies reported not just “low support”
395 for the given branch, but went further to report “counter-support” (i.e., a negative QC score) for
396 one of the two alternative topological arrangements at that branch. Most major plant groups
397 showed strong support in HS2014 and ZN2014 and all major groups showed strong support in
398 WI2014 (Table 2). In contrast to strong support for major groups themselves, we found low
399 support along the “backbone” relating these groups, in a manner consistent with most previous
400 phylogenies of land plants.

401 The relationships among Marchantiophyta, Bryophyta (mosses), Anthocerotophyta,
402 lycophytes, and “euphyllophytes” (i.e., ferns and seed-bearing plants) has been a matter of
403 ongoing debate (Shaw et al., 2011). HS2014 places mosses as sister to the remaining land plants,
404 but indicated counter-support (negative QC=-0.04) for a branch defining a common ancestor of
405 liverworts with all other land plants to the exclusion of mosses (Figs. 3B). This suggested that the
406 most common quartet branch among the replicates was not the branch displayed in the published
407 tree. By contrast WI2014 shows strong support (with a high QC=0.67) for a common ancestor of
408 mosses and liverworts (Fig. 5). ZN2014 shows weak support (low positive QC=0.15) for the
409 branch separating mosses and liverworts from the rest of land plants. Therefore, while the
410 topology of HS2014 was consistent with the order of many previous phylogenies (Nickrent et al.,
411 2000; Qiu et al., 2006; Chang and Graham, 2011), the QS results collectively supported the
412 alternative configuration of mosses and liverworts as sister groups (Fig 6A; see also Renzaglia
413 et al., 2000; Zhong et al., 2013a).

414 In all three datasets, the monophyly of vascular plants was strongly maintained, even with the
415 inclusion of *Selaginella* with its unusual GC content (Banks et al., 2011). The branch leading to
416 *Selaginella* often had a lower QD value, possibly because of this biased composition, but a higher
417 QF value, suggesting that it was not a misplaced (“rogue”) taxon. We also observed substantial
418 discordance and counter-support for relationships tested among various bryophyte groups and key
419 taxa in HS2014, possibly indicative of substantially under-appreciated hybridization among
420 mosses (Nylander et al., 2004).

421 ***QS analyses of ferns***— The branch establishing a “euphyllophyte” common ancestor of ferns
422 and seed-bearing plants showed low QC scores and high QD scores in both HS2014 and ZN2014,
423 indicating only a weak consensus but little indication of an alternative history (Table 2). Within
424 ferns the arrangement of major clades in ZN2014 (Fig. 4E) was mostly consistent with the
425 recently published phylogeny by The Pteridophyte Phylogeny Group (PPG I, 2016). Those clades
426 whose relationships were counter-supported (Marratiales, Salviniales, Hymenophyllales) were
427 discordant with the PPG-I consensus and other recent phylogenies (Pryer et al., 2004; Testo and
428 Sundue, 2016) demonstrating the diagnostic utility of QS in highlighting suspect relationships.

429 Some key areas of known high uncertainty (e.g., *Saccoloma*, *Lindsaea*, and *Equisetum*) were also
430 highlighted with low or negative QC scores.

431 While QS was designed for large datasets, we also found that QS can perform well on smaller
432 multi-gene datasets conventionally used for systematics studies. The QS scores for PR2016, with
433 a 5778 bp alignment, were more conservative, but confirmed the conclusions of Pryer et al.
434 (2016b) regarding the monophyly of maidenhair ferns (*Adiantum*) and its placement in a clade
435 with the vittarioids. This analysis also revealed some counter-supported nodes (negative QC

436 values) within the genus *Adiantum*.

437 **QS analyses of gymnosperms**— Another question that has attracted substantial historical
438 debate is the relationships among the major gymnosperm lineages and angiosperms. Under QS
439 evaluation, all four testable datasets indicated strong support for monophyly of gymnosperms
440 (Table 2). However, the relationships among cone-bearing lineages differed among these four
441 phylogenies. ZN2014 and WI2014 inferred a common ancestor of *Ginkgo* and cycads (consistent
442 with Qiu et al., 2006; Bowe et al., 2000; Lee et al., 2011; Xi et al., 2013). While the HS2014
443 topology places cycads as sister to the remaining gymnosperms (i.e., not monophyletic with
444 *Ginkgo*), the QS evaluation counter-supports this relationship. Therefore, even though HS2014
445 and WI2014 differed from ZN2014 in the topological relationship of these taxa, the QS analyses
446 of these datasets indicated a consistent message of a *Ginkgo* and cycads common ancestor
447 separate from the rest of gymnosperms (Fig. 6B).

448 This pattern of disagreeing topologies but consistent QS interpretation was observed again in
449 the placement of Gnetales relative to the conifer lineages (Fig. 6C). ZN2014 showed a common
450 ancestor of Gnetales and Pinales (consistent with Lee et al. 2011). While a conflicting Gnetales
451 and Pinaceae ancestor (distinct from other conifers) appeared in both HS2014 and WI2014 (i.e.,
452 the “Gnepine” hypothesis; Bowe et al., 2000; Xi et al., 2013), the negative-QC/low-QD scores in
453 both cases (QC/QD=−0.19/0.56 and −0.67/0.0, respectively) indicate counter-support for a
454 “Gnepine” ancestor and a strongly support alternative history. Collectively, these results suggests
455 the monophyly of Pinales, but also offer some (albeit weak) evidence that warrants further
456 examination of possible gene flow between Gnetales and Pinales.

457 **QS analyses of ANA grade angiosperms**— Few issues in angiosperm evolution have garnered
458 more recent debate than the relationship among the so-called “ANA grade” angiosperms (Qiu
459 et al., 1999), which include *Amborella*, Nymphaeales, and Austrobaileyales. Two questions
460 surround the evolutionary history of the ANA grade angiosperms. First, what are the relationships
461 among these lineages? Second, are the longstanding disagreements in inference of these
462 relationships the result of genuine biological conflict (i.e., introgression, horizontal transfer, etc.),
463 limitations in the data, or a methodological artifact (i.e., due to the depth of this branch, the
464 monotypic status of *Amborella*, and/or the rapidity of the angiosperm radiation)?

465 On the first question, QS analyses of the datasets here lack support for “Nymphaeales-first”
466 but finds support for both *Amborella*+Nymphaeales and “*Amborella*-first” (as found also by The
467 Amborella Genome Project, 2013). While the resolutions of consensus phylogenies differ
468 between the four testable datasets (WI2014 with “*Amborella*-first” hypothesis, ZN2014 with
469 “Nymphaeales-first”, and HS2014 and XI2014 with *Amborella*+Nymphaeales), the branches
470 surrounding the ANA-grade were all counter-supported ($QC < 0$) and biased in their discordance
471 ($QD < 0.2$; Fig. 6D). ZN2014 offers weak support for *Amborella*+Nymphaeales, while XI2014
472 counter-supports this relationship. If this question is to be resolved, our results indicate additional
473 datasets and analyses will be required.

474 On the second question, our analyses show low QD values that suggest a conflicting
475 phylogenetic history may be present. Other studies have found bryophyte mitochondrial
476 sequences present in *Amborella* (Rice et al., 2013; Taylor et al., 2015), which establishes the
477 potential for introgression in these lineages. Overall, (1) the intense efforts to address these
478 relationships without a resulting broad community consensus, (2) evidence of long-range
479 introgression, and (3) the QS results shown here together suggest that a greater understanding of

480 ANA-grade evolution likely lies in an examination of complex evolutionary histories rather than
481 in a continuation of the debate over appropriate sampling or models (see also discussion in Shen
482 et al., 2017).

483 ***QS analyses of “core angiosperms”***— The three “core angiosperm” lineages (eudicots,
484 monocots, and magnoliids) have transformed the biosphere, and thus a better understanding of the
485 timing and order of their origins is of key concern. Consensus topologies disagree between
486 ZN2014, WI2014, and XI2014 (with magnoliid+eudicot clade Figs. 4B, 5, 6E, Appendix S7) and
487 HS2014 (with eudicot+monocots Fig. 3B). However, the QS analyses of HS2014 showed
488 counter-support of an exclusive common ancestor of eudicots and monocots, suggesting that,
489 despite disagreement among topologies, QS scores support a common ancestor for magnoliids
490 and eudicots to the exclusion of monocots. Additionally, the placement of Chloranthaceae seems
491 inextricably linked with the relationships of the three core angiosperm groups (see discussion in
492 Eklund et al., 2004). However, the placement of this family remains unresolved by QS, since all
493 tested configurations showed negative QC-value counter-support (Table 2).

494 ***QS analyses of monocots***— In general, the arrangement of monocot orders in both HS2014
495 (Fig. 3C) and ZN2014 (Fig. 4C) agreed with recent consensus phylogenies (Givnish et al., 2010;
496 Barrett et al., 2015; Givnish et al., 2016; McKain et al., 2016). Two exceptions are the placement
497 of Liliales (Table 2), and general inconsistency of commelinid orders. From the QS results, we
498 would cautiously infer that (1) the relationships among the commelinids are still unknown, (2)
499 there may be uncharacterized secondary evolutionary history distorting the phylogenetic
500 placement of these groups, and (3) likely the variable data from both Liliales and Arecales

501 together have a joint effect that is causing inconsistency in the phylogenetic inference.
502 In Poaceae, QS analyses highlight the well-characterized discordance and complex
503 relationships (e.g., Washburn et al., 2015; McKain et al., 2016). Even if someone were
504 completely unfamiliar with the known controversies in monocots, QS scores would make
505 abundantly clear this area of the phylogeny had highly conflicted data. The “BOP” clade itself
506 and many clades within the “PACMAD” clade were counter-supported by negative QC values in
507 HS2014 and ZN2014. However, low QI values were observed in both HS2014 and ZN2014 for
508 this clade, indicating that both datasets contain poor information. Therefore, QS serves as an
509 effective diagnostic tool for identifying conflicted portions of larger phylogenies.

510 ***QS analyses of non-rosid/asterid eudicots***— QS analyses are capable of identifying conflict
511 and discordance due to rapid radiations. This is demonstrated well for the relationships among the
512 superasterid groups (Caryophyllales, Berberidopsidales, Santalales, and asterids). A common
513 pattern was found in HS2014, WI2014, XI2014, and ZN2014 of near-zero QC values (−0.03 to
514 0.08) that indicate weak consensus for the given relationships, strong QD values (0.97–1) that
515 indicate no strongly competing alternative history, and low QI values (0.14–0.51) that indicate
516 low information for branches. This led to a consensus QS interpretation of simple poor
517 phylogenetic information, likely as a result of the rapid radiation of these lineages. Generally,
518 these phylogenies tended to support weakly the controversial placement of Caryophyllales as
519 most closely related to the eudicot ancestor.

520 ***QS analyses of rosids and asterids***— Analysis of the rosids confirms that the QS method is
521 capable of identifying rogue taxa. The QS scores identified a poorly supported relationship in

522 HS2014 between *Cynomorium* and Cucurbitales (QC=−0.31). *Cynomorium*, a non-photosynthetic
523 parasitic plant with unusual morphology, has been placed tenuously and variably in groups as
524 diverse as Rosales (Zhang et al., 2009) and Saxifragales (Nickrent et al., 2005), so its poor score
525 here was expected. This “rogue” status was corroborated by a below-average QF score of
526 QF=0.18 (mean 0.21 for HS2014). This means that for quartets that include *Cynomorium* as a
527 randomly sampled taxon, only 18% produced a quartet topology concordant with the HS2014
528 tree.

529 Published phylogenies of asterids indicate disagreement and substantial discordance (Soltis
530 et al., 2011; Beaulieu et al., 2013; Refulio-Rodriguez and Olmstead, 2014). QS scores from
531 ZN2014 supported the unusual hypothesis of a common Ericales+Cornales ancestor, weakly
532 support the campanulid clade, and counter-support a common lamiid ancestor. The arrangement
533 of families within Asterales either roughly conforms to Soltis et al. (2011) and Beaulieu et al.
534 (2013), or counter-supports branches (QC<0) that do not agree with these consensus phylogenies.
535 However, most of the branches that define the relationships among asterid orders in ZN2014 were
536 counter-supported by the data, though most have QC and QD values close to zero. This indicates
537 a scenario of a rapid radiation rather than hybridization (though these are not mutually exclusive).

538 **QS of shallow-timescale phylogenomic datasets—** So far, we have demonstrated the
539 utility of quartet sampling on large, sparse, and conventional multi-gene alignments, which are
540 often computationally intractable with other support measures. We have also shown for WI2014
541 that a relatively large and full occupied matrix from deep-timescale transcriptomic data can also
542 be evaluated by QS. However, the QS method also can be used to rapidly evaluate phylogenetic
543 support on genome-wide datasets with little missing data for shorter evolutionary timescales. We

544 tested the QS method on two phylotranscriptomic datasets for the wild and domesticated tomato
545 clade *Solanum* sect. *Lycopersicon* (Fig. 8A; Pease et al., 2016b) and carnivorous plants spanning
546 the Caryophyllales (Fig. 8B; Walker et al., 2017c).

547 The *Solanum* phylogeny from Pease et al. (2016b) was inferred from the alignment of
548 33,105,168 nucleotide sites for 30 populations spanning all 13 wild and domesticated tomato
549 species, and two outgroup species. As described in Pease et al. 2016b, this dataset contains a high
550 level of phylogenetic discordance, but had a consensus phylogeny with 100% NBS support at all
551 but two branches. However, gene tree analysis of this group showed evidence of massive
552 phylogenetic discordance. When we applied QS to this phylogeny using the entire alignment,
553 scores for many branches were also perfect (i.e., 1/-1; Table 1). However, several of the other
554 branches in the “Peruvianum group” species complex had lower QS scores in the full alignment
555 (Fig. 8A). When gene trees were used (a random gene and quartet of taxa were chosen for 1000
556 QS replicates), all branches had QC<1 in a manner consistent with the gene tree discordance
557 found previously in this clade. We also observed the presence of low QD values within the major
558 subgroups reported for this clade, indicating the presence of introgressive gene flow. In contrast,
559 nodes defining the major subgroups showed high QC and QD values, indicate strong monophyly.
560 This accurately captures the low discordance between groups versus high discordance within the
561 major groups found by Pease et al. (2016b).

562 Most notably, the tree shown in Fig. 8A includes *S. huaylasense* accession LA1360. This
563 accession has been known (both from Pease et al. (2016b) and other datasets) to mostly likely be
564 a hybrid between populations from the green-fruited and red-fruited lineages (essentially those
565 accessions above and below LA1360, respectively, in Fig. 8A). Thus, the inclusion of this
566 putative hybrid lineage distorted the phylogeny as tree inference methods tried to cope with

567 inherited and introgressed alleles from two separate groups to place this accession in a consensus
568 location on the tree. While NBS scores were high for the branches surrounding the placement of
569 LA1360, QS showed negative QC scores and low QD scores (QD=0 for full alignment). The low
570 QD supports the presence of the alternative phylogenetic history that has been previously
571 corroborated by other studies and the negative QC indicates counter support for the placement of
572 this accession (see additional discussion in the Supplementary Results of Pease et al. 2016b).
573 These data show that QS was able to distinguish between consistently supported relationships and
574 branches known to have conflict due to introgression (whereas NBS does not).

575 An analysis of transcriptomes of carnivorous plants from Caryophyllales (Fig. 8B; Walker
576 et al. 2017c) also highlighted the ability to dissect the dataset more effectively. The near-zero QC
577 scores and low QD (0.32) scores for the ancestor of a clade containing *Plumbago* and *Nepenthes*
578 for gene trees supported the hypothesis of Walker et al. (2017c) that introgressive gene flow may
579 have occurred among these lineages. Evidence for placing *Drosophyllum* among the carnivorous
580 Caryophyllales has been previously tenuous, and the QS analysis showed not only a low QF value
581 of 0.76 (compared to the WA2017 mean QF of 0.89) for this taxon, but also low-QC/low-QD
582 values for the two branches that form the clade with *Ancistrocladus* and *Nepenthes*. As with the
583 tomato example above, this example demonstrates how QS scores can highlight an entire region
584 that may be distorted by the inclusion of a taxon with a strong potential for a secondary
585 evolutionary history (i.e., possible introgression).

586 **Limitations and directions forward—** Quartet Sampling is designed to efficiently evaluate
587 phylogenetic information and to highlight conflict for one or more branches in a phylogeny. In the
588 presentation here, QS is used to evaluate a single topology, and not for comparing alternatives

589 topologies or performing any optimizations that might maximize QS scores. Therefore, QS does
590 not suggest topological rearrangements and is purely evaluative. These and other directions
591 should be explored in future studies as researchers develop more ways to examine uncertainty in
592 large datasets.

593 Concurrently with our study, Zhou et al. (2017) have proposed the Q-IC method, a similar
594 approach to QS. Both approaches use quartets to evaluate a focal tree. Both approaches can be
595 used in a single-matrix or multi-gene tree framework, implemented in Q-IC by sampling from
596 either a single tree distribution or from a gene tree set, and implemented in QS by analyzing either
597 the whole alignment or by also randomly sampling individual gene-quartet combinations (as
598 shown in Fig. 8). One key difference is that QS evaluates the relative likelihood of all three
599 possible quartet configurations for each branch based on the alignment dataset, while Q-IC
600 evaluates only the quartet topologies sampled from a dataset of topologies from “evaluation trees”
601 (i.e., individual gene trees or a bootstrap/posterior distribution). These differences in data
602 evaluation might make these approaches sensitive to different error types (e.g., gene tree
603 topological estimation error versus likelihood estimation errors). Overall, we find these
604 approaches complementary and their appropriateness dependent upon the data available and types
605 question being asked.

606 CONCLUSION

607 We reanalyzed several long-contested, key conflicts in the plant tree of life and describe a
608 framework for distinguishing several causes of low phylogenetic branch support. For large
609 datasets, traditional measures such as the bootstrap or posterior probabilities can be

610 computationally intractable, may exhibit irregular behavior, or report high confidence despite
611 substantial conflict. The QS framework provides a tractable means to analyze sparse datasets with
612 tens of thousands of taxa but poor sequence overlap. QS provides a key function that has been
613 missing from other support measures, namely the ability to distinguish among difference causes
614 of low support that commonly occur in modern molecular phylogenies. We demonstrate this by
615 reporting the existence of multiple conflicting but supported evolutionary histories at several key
616 points in the plant tree of life (e.g., the placement of *Amborella*, possible widespread gene flow in
617 the monocots, and notoriously difficult-to-place groups like *Cynomorium*). We hope that our
618 discussions here will also lead to the development of other means for parsing the information
619 contained within exponentially expanding molecular datasets. The artist Man Ray once remarked
620 that “We have never attained the infinite variety and contradictions that exist in nature.” Overall,
621 the picture painted by QS is one of substantial contradiction, but this conflict can be a richly
622 informative (not just confounding) illustration of the interwoven evolutionary histories contained
623 within the plant tree of life.

624 **ACKNOWLEDGEMENTS**

625 The authors thank Ya Yang, Caroline Parins-Fukuchi, and Kathy Kron for helpful discussions,
626 and Luke Harmon, Eric Roalson, Matt Pennell, Alexis Stamatakis, and an anonymous reviewer
627 for valuable feedback on drafts. Computations were performed on the Wake Forest University
628 DEAC Cluster, a centrally managed resource with support provided in part by the University.

629 FUNDING

630 SAS and JWB were supported by National Science Foundation Assembling, Visualizing, and
631 Analyzing the Tree of Life Grant 1208809.

632 LITERATURE CITED

633 Aberer, A. J., K. Kober, and A. Stamatakis. 2014. ExaBayes: massively parallel Bayesian tree
634 inference for the whole-genome era. *Molecular Biology and Evolution* 31: 2553–2556.

635 Aberer, A. J., D. Krompass, and A. Stamatakis. 2012. Pruning rogue taxa improves phylogenetic
636 accuracy: an efficient algorithm and webservice. *Systematic Biology* 62: 162–166.

637 Alfaro, M. E., S. Zoller, and F. Lutzoni. 2003. Bayes or bootstrap? A simulation study comparing
638 the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in
639 assessing phylogenetic confidence. *Molecular Biology and Evolution* 20: 255–266.

640 Allman, E. S., L. S. Kubatko, and J. A. Rhodes. 2017. Split scores: a tool to quantify
641 phylogenetic signal in genome-scale data. *Systematic Biology* 66: 620–636.

642 Allman, E. S. and J. A. Rhodes. 2004. Quartets and parameter recovery for the general Markov
643 model of sequence mutation. *Applied Mathematics Research Express* 2004: 107–131.

644 Anderson, C. N. K., L. Liu, D. Pearl, and S. V. Edwards. 2012. Tangled trees: the challenge of
645 inferring species trees from coalescent and noncoalescent genes. *In Methods in Molecular
646 Biology*. Springer Science Business Media, 3–28.

647 Andrews, D. W. K. 2000. Inconsistency of the bootstrap when a parameter is on the boundary of
648 the parameter space. *Econometrica* 68: 399–405.

649 Ané, C., B. Larget, D. A. Baum, S. D. Smith, and A. Rokas. 2006. Bayesian estimation of
650 concordance among gene trees. *Molecular Biology and Evolution* 24: 412–426.

651 Banks, J. A., T. Nishiyama, M. Hasebe, J. L. Bowman, M. Gribkov, C. dePamphilis, V. A.
652 Albert, et al. 2011. The *Selaginella* genome identifies genetic changes associated with the
653 evolution of vascular plants. *Science* 332: 960–963.

654 Barrett, C. F., W. J. Baker, J. R. Comer, J. G. Conran, S. C. Lahmeyer, J. H. Leebens-Mack, J. Li,
655 et al. 2015. Plastid genomes reveal support for deep phylogenetic relationships and extensive
656 rate variation among palms and other commelinid monocots. *New Phytologist* 209: 855–870.

657 Beaulieu, J. M., D. C. Tank, and M. J. Donoghue. 2013. A Southern Hemisphere origin for
658 campanulid angiosperms, with traces of the break-up of Gondwana. *BMC Evolutionary
659 Biology* 13: 80.

660 Bowe, L. M., G. Coat, and C. W. dePamphilis. 2000. Phylogeny of seed plants based on all three
661 genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives
662 are conifers. *Proceedings of the National Academy of Sciences of the United States of America*
663 97: 4092–4097.

664 Brown, J. M. and A. R. Lemmon. 2007. The importance of data partitioning and the utility of
665 Bayes factors in Bayesian phylogenetics. *Systematic Biology* 56: 643–655.

666 Brown, J. M. and R. C. Thomson. 2017. Bayes factors unmask highly variable information

667 content, bias, and extreme influence in phylogenomic analyses. *Systematic Biology* 66:
668 517–530.

669 Brown, J. W., J. F. Walker, and S. A. Smith. 2017. Phyx: phylogenetic tools for unix.
670 *Bioinformatics* 33: 1886–1888.

671 Cannon, S. B., M. R. McKain, A. Harkess, M. N. Nelson, S. Dash, M. K. Deyholos, Y. Peng,
672 et al. 2015a. Data from: Multiple polyploidy events in the early radiation of nodulating and
673 non-nodulating legumes. Dryad Digital Repository. <http://dx.doi.org/10.5061/dryad.ff1tq>.

674 Cannon, S. B., M. R. McKain, A. Harkess, M. N. Nelson, S. Dash, M. K. Deyholos, Y. Peng,
675 et al. 2015b. Multiple polyploidy events in the early radiation of nodulating and nonnodulating
676 legumes. *Molecular Biology and Evolution* 32: 193–210.

677 Chang, Y. and S. W. Graham. 2011. Inferring the higher-order phylogeny of mosses (Bryophyta)
678 and relatives using a large, multigene plastid data set. *American Journal of Botany* 98:
679 839–849.

680 Chase, M. W., D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. R. Duvall,
681 et al. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid
682 gene *rbcL*. *Annals of the Missouri Botanical Garden* 80: 528.

683 Chaw, S. M., A. Zharkikh, H. M. Sung, T. C. Lau, and W. H. Li. 1997. Molecular phylogeny of
684 extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences.
685 *Molecular Biology and Evolution* 14: 56–68.

686 Chifman, J. and L. Kubatko. 2014. Quartet inference from SNP data under the coalescent model.
687 *Bioinformatics* 30: 3317–3324.

688 Crane, P. R. 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. *Annals of*
689 *the Missouri Botanical Garden* : 716–793.

690 Cummings, M. P., S. A. Handley, D. S. Myers, D. L. Reed, A. Rokas, and K. Winka. 2003.
691 comparing bootstrap and posterior probability values in the four-taxon case. *Systematic*
692 *Biology* 52: 477–487.

693 Degnan, J. H. and L. A. Salter. 2005. Gene tree distributions under the coalescent process.
694 *Evolution* 59: 24–37.

695 Douady, C. J., F. Delsuc, Y. Boucher, W. F. Doolittle, and E. J. P. Douzery. 2003. Comparison of
696 Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. *Molecular*
697 *Biology and Evolution* 20: 248–254.

698 Driskell, A. C., C. Ané, J. G. Burleigh, M. M. McMahon, B. C. O'meara, and M. J. Sanderson.
699 2004. Prospects for building the tree of life from large sequence databases. *Science* 306:
700 1172–1174.

701 Drummond, A. J. and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling
702 trees. *BMC Evolutionary Biology* 7: 214.

703 Durand, E. Y., N. Patterson, D. Reich, and M. Slatkin. 2011. Testing for ancient admixture
704 between closely related populations. *Molecular Biology and Evolution* 28: 2239–2252.

705 Eaton, D. A. R., E. L. Spriggs, B. Park, and M. J. Donoghue. 2017. Misconceptions on missing
706 data in RAD-seq phylogenetics with a deep-scale example from flowering plants. *Systematic*
707 *Biology* 66: 399–412.

708 Edwards, E. J., R. Nyffeler, and M. J. Donoghue. 2005. Basal cactus phylogeny: implications of
709 *Pereskia* (Cactaceae) paraphyly for the transition to the cactus life form. *American Journal of*
710 *Botany* 92: 1177–1188.

711 Edwards, S. V., Z. Xi, A. Janke, B. C. Faircloth, J. E. McCormack, T. C. Glenn, B. Zhong, et al.
712 2016. Implementing and testing the multispecies coalescent model: a valuable paradigm for
713 phylogenomics. *Molecular Phylogenetics and Evolution* 94: 447–462.

714 Efron, B. 1992. Bootstrap methods: another look at the jackknife. In Springer Series in Statistics.
715 Springer Science Business Media, 569–593.

716 Eklund, H., J. A. Doyle, and P. S. Herendeen. 2004. Morphological phylogenetic analysis of
717 living and fossil Chloranthaceae. *International Journal of Plant Sciences* 165: 107–151.

718 Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap.
719 *Evolution* 39: 783–791.

720 Felsenstein, J. and H. Kishino. 1993. Is there something wrong with the bootstrap on
721 phylogenies? a reply to Hillis and Bull. *Systematic Biology* 42: 193–200.

722 Fletcher, W. and Z. Yang. 2009. INDELible: a flexible simulator of biological sequence
723 evolution. *Molecular Biology and Evolution* 26: 1879–1888.

724 Gaither, J. and L. Kubatko. 2016. Hypothesis tests for phylogenetic quartets, with applications to
725 coalescent-based species tree inference. *Journal of Theoretical Biology* 408: 179–186.

726 Givnish, T. J., M. Ames, J. R. McNeal, M. R. McKain, P. R. Steele, C. W. dePamphilis, S. W.

727 Graham, et al. 2010. Assembling the tree of the monocotyledons: plastome sequence
728 phylogeny and evolution of Poales. *Annals of the Missouri Botanical Garden* 97: 584–616.

729 Givnish, T. J., A. Zuluaga, I. Marques, V. K. Y. Lam, M. S. Gomez, W. J. D. Iles, M. Ames, et al.
730 2016. Phylogenomics and historical biogeography of the monocot order Liliales: out of
731 Australia and through Antarctica. *Cladistics* 32: 581–605.

732 Goremykin, V. V., S. V. Nikiforova, D. Cavalieri, M. Pindo, and P. Lockhart. 2015. The root of
733 flowering plants and total evidence. *Systematic Biology* 64: 879–891.

734 Goulet, B. E., F. Roda, and R. Hopkins. 2017. Hybridization in plants: old ideas, new techniques.
735 *Plant Physiology* 173: 65–78.

736 Green, R. E., J. Krause, A. W. Briggs, T. Maricic, U. Stenzel, M. Kircher, N. Patterson, et al.
737 2010. A draft sequence of the neandertal genome. *Science* 328: 710–722.

738 Guindon, S., J.-F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and O. Gascuel. 2010. New
739 algorithms and methods to estimate maximum-likelihood phylogenies: assessing the
740 performance of PhyML 3.0. *Systematic Biology* 59: 307–321.

741 Hahn, M. W. and L. Nakhleh. 2015. Irrational exuberance for resolved species trees. *Evolution*
742 70: 7–17.

743 Hillis, D. M. and J. J. Bull. 1993. An empirical test of bootstrapping as a method for assessing
744 confidence in phylogenetic analysis. *Systematic Biology* 42: 182–192.

745 Hinchliff, C. E. and E. H. Roalson. 2013. Using supermatrices for phylogenetic inquiry: an
746 example using the sedges. *Systematic Biology* 62: 205–219.

747 Hinchliff, C. E. and S. A. Smith. 2014a. Data from: Some limitations of public sequence data for
748 phylogenetic inference (in plants). Dryad Digital Repository.
749 <http://dx.doi.org/10.5061/dryad.450qq>.

750 Hinchliff, C. E. and S. A. Smith. 2014b. Some limitations of public sequence data for
751 phylogenetic inference (in plants). *PLoS ONE* 9: e98986.

752 Holder, M. T., J. Sukumaran, and P. O. Lewis. 2008. A justification for reporting the majority-rule
753 consensus tree in Bayesian phylogenetics. *Systematic Biology* 57: 814–821.

754 Hudson, R. R. 2002. Generating samples under a Wright-Fisher neutral model of genetic
755 variation. *Bioinformatics* 18: 337–338.

756 Huelsenbeck, J. and B. Rannala. 2004. Frequentist properties of Bayesian posterior probabilities
757 of phylogenetic trees under simple and complex substitution models. *Systematic Biology* 53:
758 904–913.

759 Jiao, Y., N. J. Wickett, S. Ayyampalayam, A. S. Chanderbali, L. Landherr, P. E. Ralph, L. P.
760 Tomsho, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. *Nature* 473:
761 97–100.

762 Kober, K., L. Salichos, A. Rokas, and A. Stamatakis. 2016. Computing the internode certainty
763 and related measures from partial gene trees. *Molecular Biology and Evolution* 33: 1606–1617.

764 Larget, B. 2013. The estimation of tree posterior probabilities using conditional clade probability
765 distributions. *Systematic Biology* 62: 501–511.

766 Larget, B. and D. L. Simon. 1999. Markov chain Monte Carlo algorithms for the Bayesian
767 analysis of phylogenetic trees. *Molecular Biology and Evolution* 16: 750–759.

768 Lee, E. K., A. Cibrian-Jaramillo, S.-O. Kolokotronis, M. S. Katari, A. Stamatakis, M. Ott, J. C.
769 Chiu, et al. 2011. A functional phylogenomic view of the seed plants. *PLoS Genetics* 7:
770 e1002411.

771 Matasci, N., L.-H. Hung, Z. Yan, E. J. Carpenter, N. J. Wickett, S. Mirarab, N. Nguyen, et al.
772 2014. Data access for the 1,000 Plants (1KP) project. *GigaScience* 3: 17.

773 McKain, M. R., H. Tang, J. R. McNeal, S. Ayyampalayam, J. I. Davis, C. W. dePamphilis, T. J.
774 Givnish, et al. 2016. A phylogenomic assessment of ancient polyploidy and genome evolution
775 across the Poales. *Genome Biology and Evolution* 8: 1150–1164.

776 Minh, B. Q., M. A. T. Nguyen, and A. von Haeseler. 2013. Ultrafast approximation for
777 phylogenetic bootstrap. *Molecular Biology and Evolution* 30: 1188–1195.

778 Mirarab, S., R. Reaz, M. S. Bayzid, T. Zimmermann, M. S. Swenson, and T. Warnow. 2014.
779 ASTRAL: genome-scale coalescent-based species tree estimation. *Bioinformatics* 30:
780 i541–i548.

781 Misof, B., B. Meyer, B. von Reumont, P. Kück, K. Misof, and K. Meusemann. 2013. Selecting
782 informative subsets of sparse supermatrices increases the chance to find correct trees. *BMC
783 Bioinformatics* 14: 348.

784 Nickrent, D. L., J. P. Der, and F. E. Anderson. 2005. Discovery of the photosynthetic relatives of
785 the “Maltese mushroom” *Cynomorium*. *BMC Evolutionary Biology* 5: 38.

786 Nickrent, D. L., C. L. Parkinson, J. D. Palmer, and R. J. Duff. 2000. Multigene phylogeny of land
787 plants with special reference to bryophytes and the earliest land plants. *Molecular Biology and*
788 *Evolution* 17: 1885–1895.

789 Nylander, J., F. Ronquist, J. Huelsenbeck, and J. Nieves-aldrey. 2004. Bayesian phylogenetic
790 analysis of combined data. *Systematic Biology* 53: 47–67.

791 Ogden, T. H. and M. S. Rosenberg. 2006. Multiple sequence alignment accuracy and
792 phylogenetic inference. *Systematic Biology* 55: 314–328.

793 Palmer, J. D., D. E. Soltis, and M. W. Chase. 2004. The plant tree of life: an overview and some
794 points of view. *American Journal of Botany* 91: 1437–1445.

795 Pease, J. B., D. C. Haak, M. W. Hahn, and L. C. Moyle. 2016a. Data from: Phylogenomics
796 reveals three sources of adaptive variation during a rapid radiation. Dryad Digital Repository.
797 <http://dx.doi.org/10.5061/dryad.182dv>.

798 Pease, J. B., D. C. Haak, M. W. Hahn, and L. C. Moyle. 2016b. Phylogenomics reveals three
799 sources of adaptive variation during a rapid radiation. *PLoS Biology* 14: e1002379.

800 Pease, J. B. and M. W. Hahn. 2015. Detection and polarization of introgression in a five-taxon
801 phylogeny. *Systematic Biology* 64: 651–662.

802 PPG I. 2016. A community-derived classification for extant lycophytes and ferns. *Journal of*
803 *Systematics and Evolution* 54: 563–603.

804 Pryer, K. M., L. Huiet, F.-W. Li, C. J. Rothfels, and E. Schuettpelz. 2016a. Data from:

805 Maidenhair ferns, *Adiantum*, are indeed monophyletic and sister to shoestring ferns, vittarioids
806 (Pteridaceae). Dryad Digital Repository. <http://dx.doi.org/10.5061/dryad.4m6s6>.

807 Pryer, K. M., L. Huiet, F.-W. Li, C. J. Rothfels, and E. Schuettpelz. 2016b. Maidenhair ferns
808 (*Adiantum*) are indeed monophyletic and sister to shoestring ferns, vittarioids (Pteridaceae).

809 *Systematic Botany* 41: 17–23.

810 Pryer, K. M., H. Schneider, A. R. Smith, R. Cranfill, P. G. Wolf, J. S. Hunt, and S. D. Sipes. 2001.
811 Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants.
812 *Nature* 409: 618–622.

813 Pryer, K. M., E. Schuettpelz, P. G. Wolf, H. Schneider, A. R. Smith, and R. Cranfill. 2004.
814 Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate
815 divergences. *American Journal of Botany* 91: 1582–1598.

816 Qiu, Y.-L., J. Lee, F. Bernasconi-Quadroni, D. E. Soltis, P. S. Soltis, M. Zanis, E. A. Zimmer,
817 et al. 1999. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear
818 genomes. *Nature* 402: 404–407.

819 Qiu, Y.-L., L. Li, B. Wang, Z. Chen, V. Knoop, M. Groth-Malonek, O. Dombrovska, et al. 2006.
820 The deepest divergences in land plants inferred from phylogenomic evidence. *Proceedings of
821 the National Academy of Sciences of the United States of America* 103: 15511–15516.

822 Ranwez, V. and O. Gascuel. 2001. Quartet-based phylogenetic inference: improvements and
823 limits. *Molecular Biology and Evolution* 18: 1103–1116.

824 Refulio-Rodriguez, N. F. and R. G. Olmstead. 2014. Phylogeny of Lamiidae. *American Journal
825 of Botany* 101: 287–299.

826 Reich, D., K. Thangaraj, N. Patterson, A. L. Price, and L. Singh. 2009. Reconstructing Indian
827 population history. *Nature* 461: 489–494.

828 Reid, N. M., S. M. Hird, J. M. Brown, T. A. Pelletier, J. D. McVay, J. D. Satler, and B. C.
829 Carstens. 2013. Poor fit to the multispecies coalescent is widely detectable in empirical data.
830 *Systematic Biology* 63: 322–333.

831 Renzaglia, K. S., R. J. Duff, D. L. Nickrent, and D. J. Garbary. 2000. Vegetative and reproductive
832 innovations of early land plants: implications for a unified phylogeny. *Philosophical
833 Transactions of the Royal Society B: Biological Sciences* 355: 769–793.

834 Rice, D. W., A. J. Alverson, A. O. Richardson, G. J. Young, M. V. Sanchez-Puerta, J. Munzinger,
835 K. Barry, et al. 2013. Horizontal transfer of entire genomes via mitochondrial fusion in the
836 angiosperm *Amborella*. *Science* 342: 1468–1473.

837 Rokas, A., B. L. Williams, N. King, and S. B. Carroll. 2003. Genome-scale approaches to
838 resolving incongruence in molecular phylogenies. *Nature* 425: 798–804.

839 Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Hohna, B. Larget, et al.
840 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large
841 model space. *Systematic Biology* 61: 539–542.

842 Rosenberg, N. A. 2002. The probability of topological concordance of gene trees and species
843 trees. *Theoretical Population Biology* 61: 225–247.

844 Roure, B., D. Baurain, and H. Philippe. 2012. Impact of missing data on phylogenies inferred
845 from empirical phylogenomic data sets. *Molecular Biology and Evolution* 30: 197–214.

846 Salichos, L., A. Stamatakis, and A. Rokas. 2014. Novel information theory-based measures for
847 quantifying incongruence among phylogenetic trees. *Molecular Biology and Evolution* 31:
848 1261–1271.

849 Sanderson, M. J. 1995. Objections to bootstrapping phylogenies: a critique. *Systematic Biology*
850 44: 299–320.

851 Sayyari, E. and S. Mirarab. 2016. Fast coalescent-based computation of local branch support
852 from quartet frequencies. *Molecular Biology and Evolution* 33: 1654–1668.

853 Shavit Grievink, L., D. Penny, M. D. Hendy, and B. R. Holland. 2010. Phylogenetic tree
854 reconstruction accuracy and model fit when proportions of variable sites change across the tree.
855 *Systematic Biology* 59: 288–297.

856 Shaw, A. J., P. Szövényi, and B. Shaw. 2011. Bryophyte diversity and evolution: windows into
857 the early evolution of land plants. *American Journal of Botany* 98: 352–369.

858 Shen, X.-X., C. T. Hittinger, and A. Rokas. 2017. Contentious relationships in phylogenomic
859 studies can be driven by a handful of genes. *Nature Ecology & Evolution* 1: 0126.

860 Simmons, M. P. 2016. Mutually exclusive phylogenomic inferences at the root of the
861 angiosperms: *Amborella* is supported as sister and Observed Variability is biased. *Cladistics*
862 10.1111/cla.12177.

863 Simmons, M. P. and A. P. Norton. 2014. Divergent maximum-likelihood-branch-support values
864 for polytomies. *Molecular Phylogenetics and Evolution* 73: 87–96.

865 Smith, S. A., J. M. Beaulieu, and M. J. Donoghue. 2009. Mega-phylogeny approach for

866 comparative biology: an alternative to supertree and supermatrix approaches. *BMC*
867 *Evolutionary Biology* 9: 37.

868 Smith, S. A., J. M. Beaulieu, A. Stamatakis, and M. J. Donoghue. 2011. Understanding
869 angiosperm diversification using small and large phylogenetic trees. *American Journal of*
870 *Botany* 98: 404–414.

871 Smith, S. A., M. J. Moore, J. W. Brown, and Y. Yang. 2015. Analysis of phylogenomic datasets
872 reveals conflict, concordance, and gene duplications with examples from animals and plants.
873 *BMC Evolutionary Biology* 15: 150.

874 Soltis, D. E., S. A. Smith, N. Cellinese, K. J. Wurdack, D. C. Tank, S. F. Brockington, N. F.
875 Refulio-Rodriguez, et al. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. *American Journal*
876 *of Botany* 98: 704–730.

877 Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
878 large phylogenies. *Bioinformatics* 30: 1312–1313.

879 Stamatakis, A., P. Hoover, and J. Rougemont. 2008. A rapid bootstrap algorithm for the RAxML
880 Web servers. *Systematic Biology* 57: 758–771.

881 Steel, M. and M. J. Sanderson. 2010. Characterizing phylogenetically decisive taxon coverage.
882 *Applied Mathematics Letters* 23: 82–86.

883 Steemans, P., A. L. Herisse, J. Melvin, M. A. Miller, F. Paris, J. Verniers, and C. H. Wellman.
884 2009. Origin and radiation of the earliest vascular land plants. *Science* 324: 353–353.

885 Stenz, N. W., B. Larget, D. A. Baum, and C. Ané. 2015. Exploring tree-like and non-tree-like

886 patterns using genome sequences: an example using the inbreeding plant species *Arabidopsis*
887 *thaliana*(L.) Heynh. *Systematic biology* 64: 809–823.

888 Strimmer, K., N. Goldman, and A. von Haeseler. 1997. Bayesian probabilities and quartet
889 puzzling. *Molecular Biology and Evolution* 14: 210–211.

890 Strimmer, K. and A. von Haeseler. 1997. Likelihood-mapping: a simple method to visualize
891 phylogenetic content of a sequence alignment. *Proceedings of the National Academy of
892 Sciences of the United States of America* 94: 6815–6819.

893 Suzuki, Y., G. V. Glazko, and M. Nei. 2002. Overcredibility of molecular phylogenies obtained
894 by Bayesian phylogenetics. *Proceedings of the National Academy of Sciences of the United
895 States of America* 99: 16138–16143.

896 Swofford, D. L. and J. Sullivan. 2003. Phylogeny inference based on parsimony and other
897 methods using PAUP*. In *The Phylogenetic Handbook: a Practical Approach to Phylogenetic
898 Analysis and Hypothesis Testing*, volume 7. Cambridge University Press. ISBN 0521730716,
899 160–206.

900 Taylor, Z. N., D. W. Rice, and J. D. Palmer. 2015. The complete moss mitochondrial genome in
901 the angiosperm *Amborella* is a chimera derived from two moss whole-genome transfers. *PLoS
902 ONE* 10: e0137532.

903 Testo, W. and M. Sundue. 2016. A 4000-species dataset provides new insight into the evolution of
904 ferns. *Molecular Phylogenetics and Evolution* 105: 200–211.

905 The Amborella Genome Project. 2013. The *Amborella* genome and the evolution of flowering
906 plants. *Science* 342: 1241089–1241089.

907 Walker, J. F., J. W. Brown, and S. A. Smith. 2017a. Site and gene-wise likelihoods unmask
908 influential outliers in phylogenomic analyses. *bioRxiv* : 115774.

909 Walker, J. F., Y. Yang, M. J. Moore, J. Mikenas, A. Timoneda, S. F. Brockington, and S. A. Smith.
910 2017b. Data from: Widespread paleopolyploidy, gene tree conflict, and recalcitrant
911 relationships among the carnivorous Caryophyllales. Dryad Digital Repository.
912 <http://dx.doi.org/10.5061/dryad.vn730>.

913 Walker, J. F., Y. Yang, M. J. Moore, J. Mikenas, A. Timoneda, S. F. Brockington, and S. A. Smith.
914 2017c. Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among
915 the carnivorous Caryophyllales. *American Journal of Botany* 104: 858–867.

916 Washburn, J. D., J. C. Schnable, G. Davidse, and J. C. Pires. 2015. Phylogeny and photosynthesis
917 of the grass tribe Paniceae. *American Journal of Botany* 102: 1493–1505.

918 Wickett, N. J., S. Mirarab, N. Nguyen, T. Warnow, E. Carpenter, N. Matasci, S. Ayyampalayam,
919 et al. 2014. Phylogenomic analysis of the origin and early diversification of land plants.
920 *Proceedings of the National Academy of Sciences of the United States of America* 111:
921 E4859–E4868.

922 Wiens, J. J. and M. C. Morrill. 2011. Missing data in phylogenetic analysis: reconciling results
923 from simulations and empirical data. *Systematic Biology* 60: 719–731.

924 Wilcox, T. P., D. J. Zwickl, T. A. Heath, and D. M. Hillis. 2002. Phylogenetic relationships of the
925 dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support.
926 *Molecular Phylogenetics and Evolution* 25: 361–371.

927 Wilkinson, M. 1996. Majority-rule reduced consensus trees and their use in bootstrapping.

928 *Molecular Biology and Evolution* 13: 437–444.

929 Xi, Z., L. Liu, J. S. Rest, and C. C. Davis. 2014a. Coalescent versus concatenation methods and

930 the placement of *Amborella* as sister to water lilies. *Systematic Biology* 63: 919–932.

931 Xi, Z., L. Liu, J. S. Rest, and C. C. Davis. 2014b. Data from: Coalescent versus concatenation

932 methods and the placement of *Amborella* as sister to water lilies. Dryad Digital Repository.

933 <http://dx.doi.org/10.5061/dryad.qb251>.

934 Xi, Z., J. S. Rest, and C. C. Davis. 2013. Phylogenomics and coalescent analyses resolve extant

935 seed plant relationships. *PLoS ONE* 8: e80870.

936 Yang, Y., M. J. Moore, S. F. Brockington, D. E. Soltis, G. K.-S. Wong, E. J. Carpenter, Y. Zhang,

937 et al. 2015. Dissecting molecular evolution in the highly diverse plant clade Caryophyllales

938 using transcriptome sequencing. *Molecular Biology and Evolution* 32: 2001–2014.

939 Zanne, A. E., D. C. Tank, W. K. Cornwell, J. M. Eastman, S. A. Smith, R. G. FitzJohn, D. J.

940 McGlinn, et al. 2014a. Data from: Three keys to the radiation of angiosperms into freezing

941 environments. Dryad Digital Repository. <http://dx.doi.org/10.5061/dryad.63q27.2>.

942 Zanne, A. E., D. C. Tank, W. K. Cornwell, J. M. Eastman, S. A. Smith, R. G. FitzJohn, D. J.

943 McGlinn, et al. 2014b. Three keys to the radiation of angiosperms into freezing environments.

944 *Nature* 506: 89–92.

945 Zhang, Z.-H., L. I. Chun-Qi, and L. I. Jianhua. 2009. Phylogenetic placement *Cynomorium* in

946 Rosales inferred from sequences of the inverted repeat region of the chloroplast genome.

947 *Journal of Systematics and Evolution* 47: 297–304.

948 Zhong, B., L. Liu, Z. Yan, and D. Penny. 2013a. Origin of land plants using the multispecies
949 coalescent model. *Trends in Plant Science* 18: 492–495.

950 Zhong, B., Z. Xi, V. V. Goremykin, R. Fong, P. A. Mclenachan, P. M. Novis, C. C. Davis, et al.
951 2013b. Streptophyte algae and the origin of land plants revisited using heterogeneous models
952 with three new algal chloroplast genomes. *Molecular Biology and Evolution* 31: 177–183.

953 Zhou, X., S. Lutteropp, L. Czech, A. Stamatakis, M. von Looz, and A. Rokas. 2017.
954 Quartet-based computations of internode certainty provide accurate and robust measures of
955 phylogenetic incongruence. *bioRxiv* .

956 Zwickl, D. J. and D. M. Hillis. 2002. Increased taxon sampling greatly reduces phylogenetic
957 error. *Systematic Biology* 51: 588–598.

958 Zwickl, D. J., J. C. Stein, R. A. Wing, D. Ware, and M. J. Sanderson. 2014. Disentangling
959 methodological and biological sources of gene tree discordance on *Oryza* (Poaceae)
960 chromosome 3. *Systematic Biology* 63: 645–659.

Table 1: Quartet Sampling (QS) score interpretation. See text for details.

Example QS Score (QC/QD/QI)*	Interpretation
1.0/-1.0	Full support: All sampled quartet replicates support the focal branch (QC=1) with all trees informative when likelihood cutoffs are used (QI=1).
0.5/0.98/0.97	Strong support: A strong majority of quartets support the focal branch (QC=0.5) and the low skew in discordant frequencies (QD≈1) indicate no alternative history is favored.
0.7/0.1/0.97	Strong support with discordant skew: A strong majority of quartets support the focal branch (QC=0.7), but the skew in discordance (QD=0.1) indicates the possible presence of a supported secondary evolutionary history.
0.05/0.96/0.97	Weak support: Only a weak majority of quartets support the focal branch (QC=0.05), and the frequency of all three possible topologies are similar (QD≈1).
0.1/0.1/0.97	Weak support with discordant skew: Only a weak majority of quartets support the focal branch (QC=0.1), and the skew in discordance (QD=0.1) indicates the possible presence of a supported secondary evolutionary history.
-0.5/0.1/0.93	Counter-support: A strong majority of quartets support one of the alternative discordant quartet arrangements history (QC<0; QD expected to be low).
1/0.97/0.05	Poorly informed: Despite supportive QC/QD values, only 5% of quartets passed the likelihood cutoff (QI=0.05), likely indicating few informative sites.
0.0/0.0/1.0	Perfectly conflicted: The (unlikely) case where the frequency of all three possible trees was equal with all trees informative, indicating a rapid radiation or highly complex conflict.

961

Notes: * QC = Quartet Concordance; QD = Quartet Differential; QI = Quartet Informativeness.

Table 2: Quartet Sampling scores for key branches in the plant tree of life

Branch	QC				Consensus Interpretation
	HS2014	ZN2014	WI2014	XI2014	
embryophytes (land plants)	0.35	n.t.	1.0	n.t.	strong support
tracheophytes (vascular plants)	0.14	0.31	0.29	n.t.	moderate-strong support
euphyllophytes (ferns + seed plants)	0.02	-0.06	0.44	n.t.	low/variable support
spermatophytes (seed plants)	0.23	0.36	0.95	n.t.	strong support
Acrogymnospermae (gymnosperms)	0.37	0.32	0.92	1.0	strong support
Anthocerophyta (hornworts)	0.54	0.94	1.0	n.t.	strong support
Bryophyta (mosses)	0.41	0.15	1.0	n.t.	moderate-strong support
Lycopodiophyta	0.38	0.32	0.89	n.t.	strong support
Magnoliophyta (angiosperms)	0.68	0.75	0.92	0.95	strong support
Marchantiophyta (liverworts)	0.15	0.8	1.0	n.t.	moderate-strong support
Polypodopsida (ferns)	0.23	0.46	1.0	n.t.	moderate support
Chloranthaceae + core angiosperms	-0.26	-0.04	n.m.	n.t.	counter-supported
Chloranthaceae + eudicots	n.m.	n.m.	-0.47	n.t.	counter-supported
magnoliids	0.20	0.31	0.53	0.54	strong support
eudicots	0.16	0.43	0.32	0.71	moderate-strong support
asterids	-0.01	0.32	0.63	0.0	low/variable support
rosids	0.05	n.m.	1.0	0.25	low/variable support
monocots (including <i>Acorus</i>)	0.04	0.06	0.38	n.t.	low/variable support
monocots (excluding <i>Acorus</i>)	0.01	-0.05	0.39	0.76	low/variable support
Liliales + commelinids	0.03	n.m.	n.t.	n.t.	low support
Liliales + Asparagales	n.m.	0.03	n.t.	n.t.	low support

963 FIGURE LEGENDS

964 **Fig. 1.** Description of the Quartet Sampling method. (A) The focal branch “*b*” divides the
965 phylogeny into four subclades $\{S_1, S_2, S_3, S_4\}$ from which tips (A–J) are sampled. Two replicates
966 with different sampled tips for the given branch are shown with the three possible unrooted
967 topologies (one concordant and two discordant). (B) Each internal branch is labeled with a set of
968 three scores (QC/QD/QI), which offer different, but complementary, information. Terminal
969 branches are evaluated by the QF score, which reports the frequency of a taxon generating
970 concordant topologies. (See Materials and Methods for full details and Supplementary Methods
971 for a technical description.)

972

973 **Fig. 2.** Results of Simulation Testing of the Quartet Sampling Method. (A) QC values converge
974 on a central value with increasing numbers of replicates from randomly selected branches from
975 simulated trees with 50, 100, and 500 taxa. (B) Mean QC (solid diamond) and QD (open circle)
976 values with 5%ile to 95%ile (whiskers) across 100 replicates for branches QS16 (left) and QS12
977 (middle) for a simulated tree (Appendix S5) where the tree branch lengths were scaled by the
978 factors on the *x*-axis (i.e., 1 is the original tree). As expected, shorter branch lengths will increase
979 the level of incomplete lineage sorting (ILS) and thus lower the QC scores. The right panel shows
980 branch QS11 from the simulated tree with increasing levels of introgression introduced by
981 simulation. As expected, QC and QD values decrease with increasing introgression. (C)
982 Distributions of QC, QI, and QF values for HS2014 (black), ZN2014 (dotted black), and
983 XI2014/CN2015/PR2016/WA2017 (similar distributions; gray solid). (D) Mean QC values
984 (diamond) with 5%ile to 95%ile (whiskers) for branches in HS2015 binned by the number of

985 subtending taxa (i.e., moving root-ward in the tree left-to-right). Overall mean is shown with
986 horizontal dotted line.

987

988 **Fig. 3.** Phylogeny from Hinchliff and Smith (2014b). (A) Full phylogeny with heat map
989 coloration of branches by QC scores for internal branches: dark green ($QC > 0.2$), light green
990 ($0.2 \leq QC < 0$), light orange ($0 \leq QC \leq -0.05$, or dark orange ($QC < -0.05$). (B) QC/QD/QI scores
991 (200 replicates of full alignment) for major plant groups and key orders within angiosperms.
992 QC/QD/QI scores after group names are for the ancestral branch (i.e., the “stem” branch), and a
993 single QF score is shown for monotypic tips. Major subgroups groups are highlighted with
994 vertical labels. (C) QS scores for monocots (excluding *Acorus*). (D,E,F) QS scores for rosids,
995 Bryophyta, and gymnosperms. Abbreviations: Acro, Acrogymnospermae; ANA, ANA grade;
996 Aru, Arundinoideae; Bry, Bryophyta, Chl, Chloridoideae; Dan, Danthonioideae; Mar,
997 Marchantiophyta; Poly, Polypodopsida.

998

999 **Fig. 4.** Phylogeny from Zanne et al. (2014b). (A) Full phylogeny with heat map coloration of
1000 branches by QC scores for internal branches using same color scheme as (Fig. 3). (B) QC/QD/QI
1001 scores (200 replicates of full alignment) for major plant groups and key orders within
1002 angiosperms, using same color scheme as (Fig. 3). (C) QS scores shown for monocots (except
1003 *Acorus*). (D) QS scores for asterids. (E) QS scores for fern lineages and (F) QS scores for
1004 gymnosperm lineages respectively. Abbreviations: Alseu, Alseuosmiaceae; ANA, ANA grade
1005 angiosperms; Argo, Argophyllaceae; Aster, Asteraceae; Bory, Boryaceae; Caly, Calycanthaceae;
1006 Eriach, Eriachneae; Good, Goodeniaceae; gym, gymnosperms; Hypox, Hypoxidaceae; Isach,
1007 Isachneae; Phell, Phellinaceae; Poly, Polypodopsida.

1008

1009 **Fig. 5.** Maximum likelihood phylogeny spanning Viridiplantae from Fig. 2 in Wickett et al.
1010 (2014) with QC/QD/QI scores for 200 replicates of the full alignment. Nodes are colored
1011 according to QC score using same color scheme as (Fig. 3). Bootstrap values (italicized in square
1012 brackets) from Wickett et al. (2014) are shown for comparison. Missing QS or bootstrap values
1013 indicate a perfect score. The three taxa with the lowest QF values are highlighted. Species names
1014 have been excluded or abbreviated in the case where two congeners are included.

1015

1016 **Fig. 6.** Key phylogenetic disagreements with QC scores using compared across various datasets.
1017 Branches for HS2014 and ZN2014 were resampled with 10000 replicates. Branches for WI2014
1018 and XI2014 were exhaustively sampled (>1000 replicates). Highlighting on QC values follows
1019 the same colors as Fig. 3. “Conifers-II” refers to a hypothesized clade comprising the non-Pinales
1020 orders in Pinidae. Abbreviations: Gnet, Gnetidae; Pin, Pinidae.

1021

1022 **Fig. 7.** Phylogeny of Pteridaceae ferns from Pryer et al. (2016b) with QC/QD/QI scores for 200
1023 replicates of the full alignment. Nodes are colored according to QC score using same color
1024 scheme as (Fig. 3). Bootstrap/SIH-test/posterior probability values (italicized in square brackets)
1025 are shown for comparison. Omitted values indicate a perfect score. The three taxa with the lowest
1026 QF values are highlighted. Abbreviations: *Pityro*, *Pityrogramma*.

1027

1028 **Fig. 8.** QS scores for phylogenies from whole-transcriptome data. Omitted values indicate a
1029 perfect score. Nodes are colored according to QC score using same color scheme as (Fig. 3). (A)
1030 Phylogeny of *Solanum* sect. *Lycopersicon* from Pease et al. (2016b) Bootstrap values (italicized

1031 in square brackets) are shown for comparison. (B) Phylogeny of Caryophyllales from Walker
1032 et al. (2017c) IC scores (light grey) are shown for comparison (all bootstrap and SH-test scores
1033 were 100). The three taxa with the lowest QF values are highlighted.

1034 APPENDICES

1035 **Appendix S1.** Supplementary Methods providing a technical description of the QS method

1036

1037 **Appendix S2.** Comparison of QC and bootstrap ICA (information criterion-all; Salichos, et al.

1038 2014) scores on trees reconstructed from 100 simulated datasets with 50 taxa with 1,000 base

1039 pairs under a Jukes-Cantor model of evolution. Blue circles represent branches in the true tree,

1040 with the size of the circle proportional to the log of the number of substitutions. Red triangles

1041 represent branches not in the true tree.

1042

1043 **Appendix S3.** Comparison of the rapid bootstrap and quartet sampling on the ML/PP consensus

1044 tree. For each branch, the RBS, QS (raw concordant frequency (Freq1), QC score), SH, and PP

1045 scores are presented (clockwise from top left in each legend). Black dots identify clades that are

1046 not in the true tree.

1047

1048 **Appendix S4.** Shows the consistency of the frequency of concordant quartets (f_1), QC, and QD

1049 toward a central value with increasing number of per-branch replicates for a randomly selected

1050 branch. Trees with 50 taxa (left), 100 taxa (center), and 500 taxa (right) are shown. Boxes show

1051 median \pm IQR. Whiskers show 5th–95th percentile, with values outside this range shown as circle

1052 points.

1053

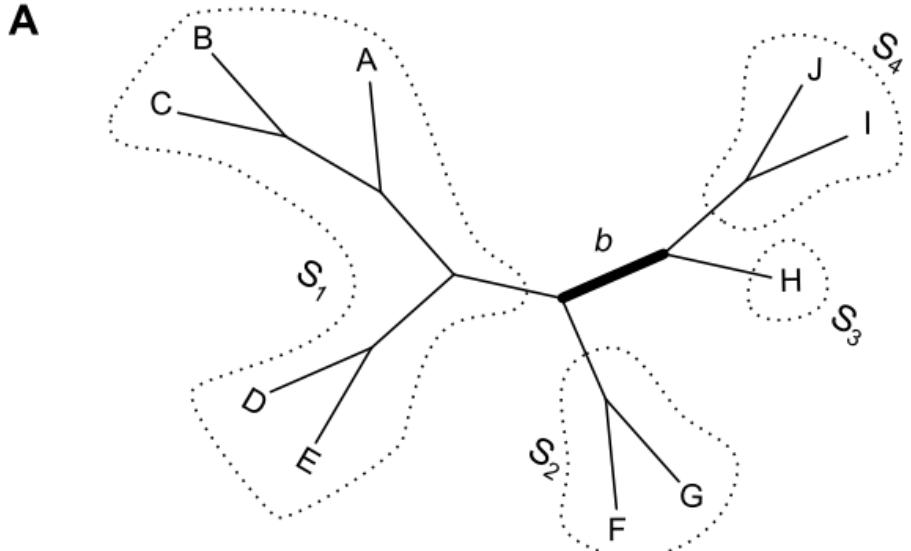
1054 **Appendix S5.** Simulated starting phylogeny used for the variation of simulated ILS and

1055 introgression levels shown in Fig. 2B.

1056

1057 **Appendix S6.** Histograms (top row) showing the distributions of QC (left), QI (middle), and QF
1058 (right) values for the HS2014 dataset (green), ZN2014 (black), and smaller dataset (XI2014,
1059 CN2015, PR2016, WA2017) with similar distributions (orange). Scatter plots (bottom row)
1060 showing the close (but non-linear) relationship between QC and raw concordant quartet frequency
1061 (f_1 ; left), bounded but otherwise uncorrelated relationships between QC and QD (middle), and
1062 QC and QI (right). See main text for dataset abbreviations.

1063


1064 **Appendix S7.** Phylogeny of angiosperms from Xi et al. (2014a) with QC/QD/QI scores for 200
1065 replicates of the full alignment and for 200 replicates from individual gene trees (in parentheses).
1066 Nodes are colored according to QC score using same color scheme as (Fig. 3). MrBayes
1067 PP/RAxML NBS values (italicized in square brackets) from Xi et al. (2013). are shown for
1068 comparison. Perfect scores for any given test are omitted or shown as '*' indicates bootstrap of
1069 100, while '-' indicates a missing value. The three taxa with the lowest QF values are highlighted.
1070

1071 **Appendix S8.** Phylogeny from Cannon et al. (2015b) with QC/QD/QI scores for 200 replicates of
1072 the full alignment. Nodes are colored according to QC score using same color scheme as (Fig. 3).
1073 Bootstrap values (italicized in square brackets) are shown for comparison. Perfect scores for any
1074 given test are omitted or shown as '*' indicates bootstrap of 100, while “-” indicates a missing
1075 value. The three taxa with the lowest QF values are highlighted.

1076

1077 **Appendix S9.** Relationship between QC and frequencies of the three possible alternative quartet
1078 topologies from QS runs on simulated data. Points represent branches in the trees, with the “test

1079 “topology” axis identifying the frequency at which the topology consistent with the tree was
1080 recovered across all QS replicates for that branch, and the “alt n” axes identifying the frequencies
1081 of the two alternative (conflicting) topologies.

Replicate 1			
Replicate 2			
...	Concordant quartet topology	Discordant topology #1	Discordant topology #2

B Quartet Sampling Internal Node Scores = 0.52 / 0.91 / 0.95

Quartet Concordance (QC)

How often is the concordant quartet inferred over both discordant quartets?

QC=1 → all concordant
 QC=0 → equivocal conc./disc.
 QC<0 → discordant > conc.

Quartet Differential (QD)

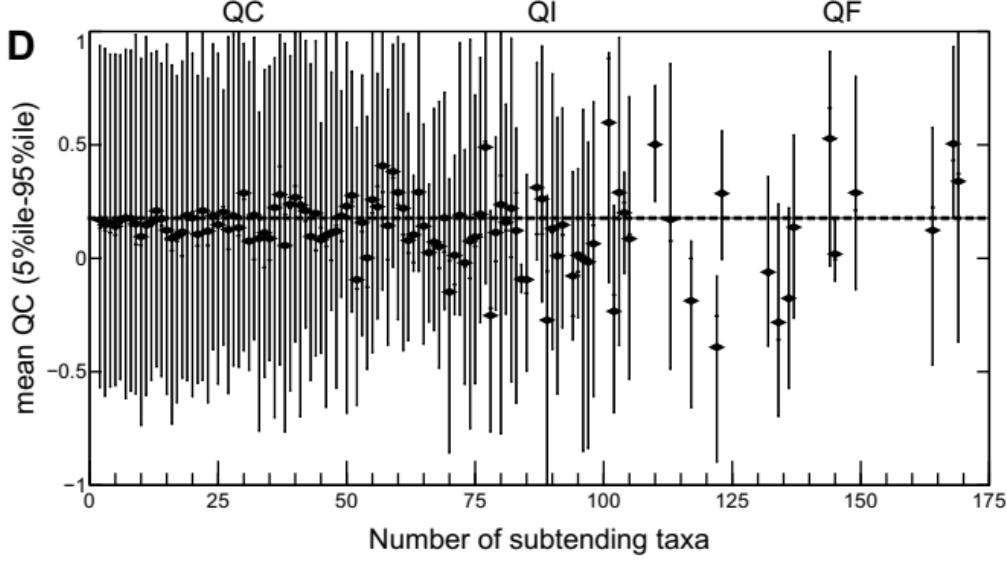
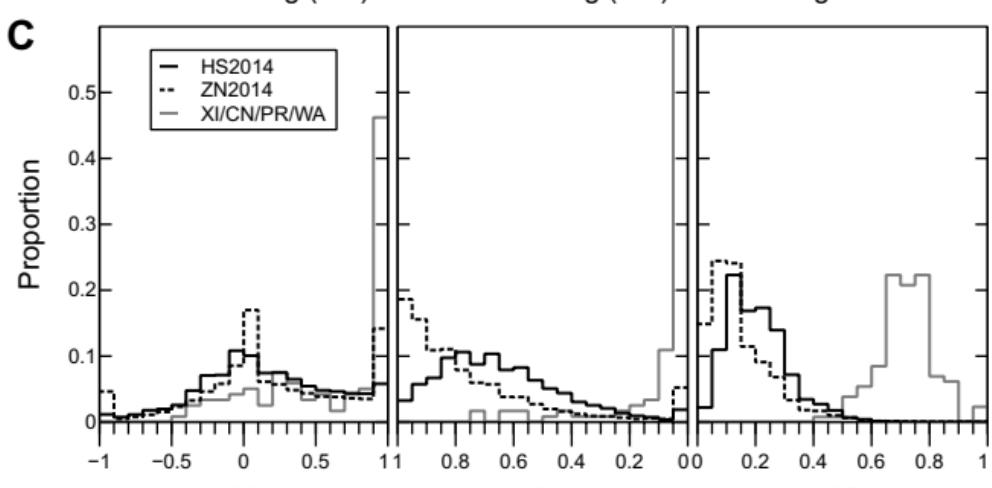
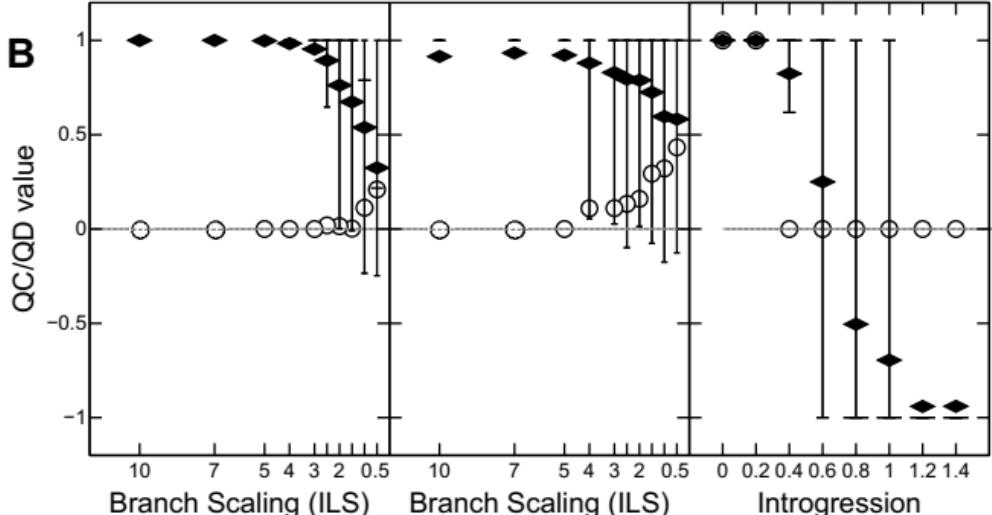
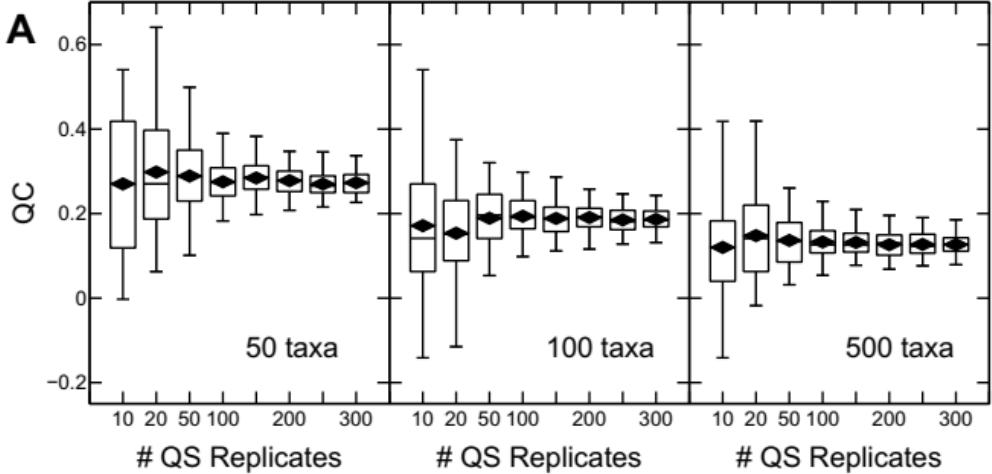
Are discordant #1 and #2 frequencies equal or skewed?

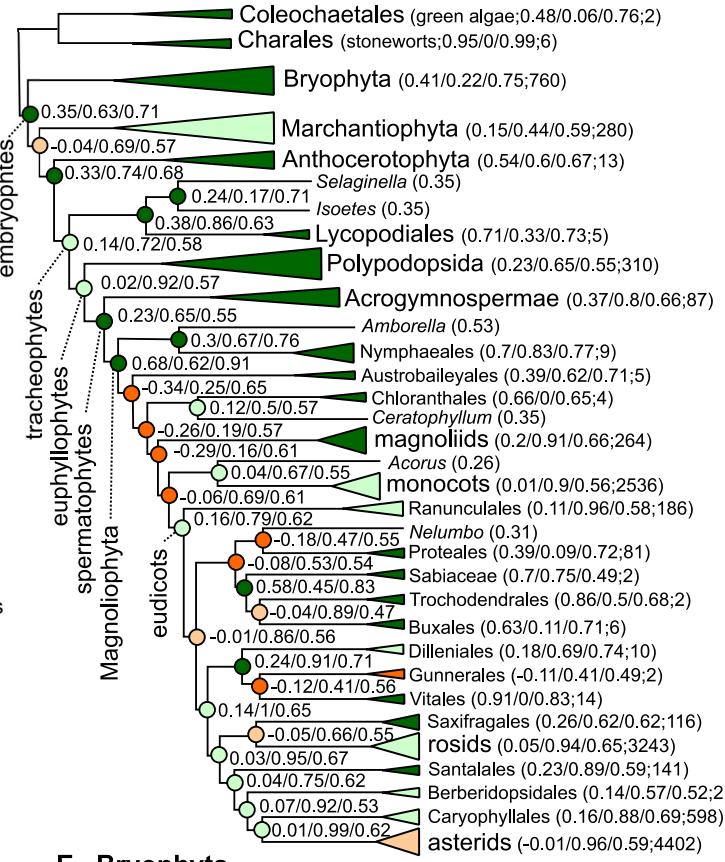
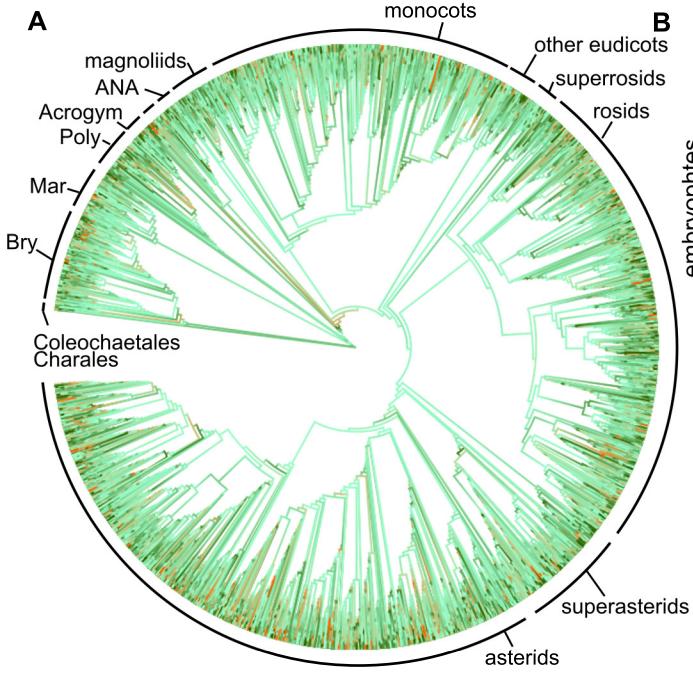
QD=1 → equal #1 and #2
 QD=0.3 → skewed
 QD=0 → all #1 or #2

Quartet Informativeness (QI)

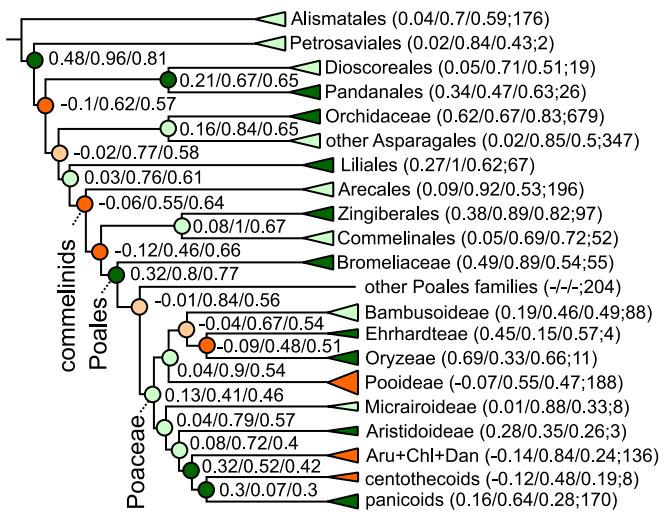
What proportion of replicates were informative?
 (exceeded likelihood differential)

QI=1 → all informative
 QI=0.3 → 30% informative
 QI=0 → none informative

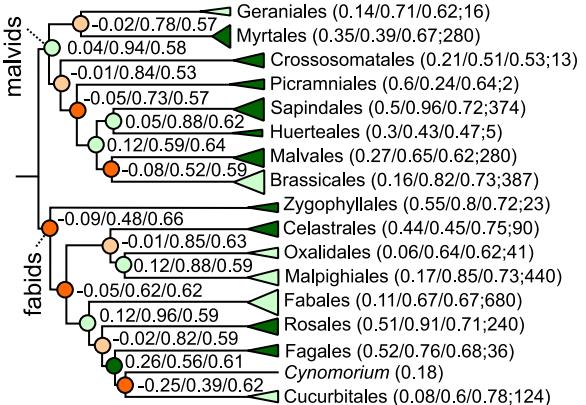




Quartet Sampling Terminal Node Scores = (0.52)

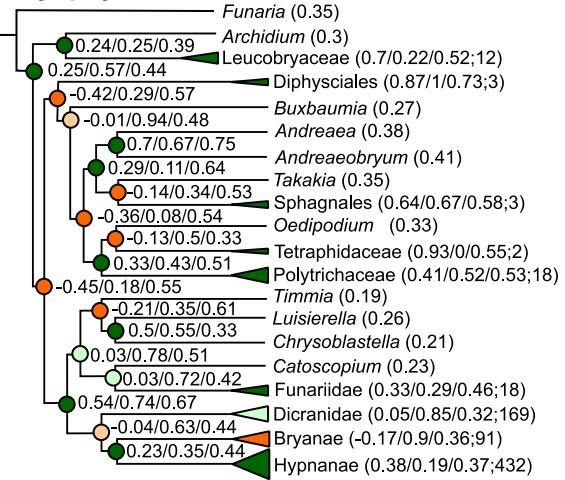


Quartet Fidelity (QF)

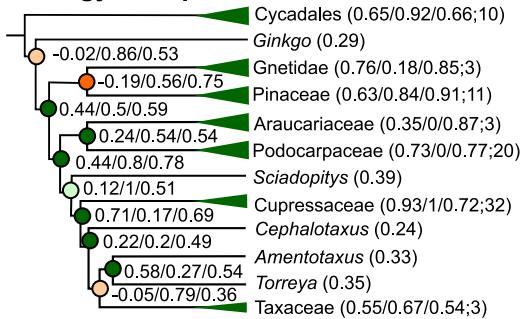
When this taxon is sampled, how often does it produce a concordant topology?

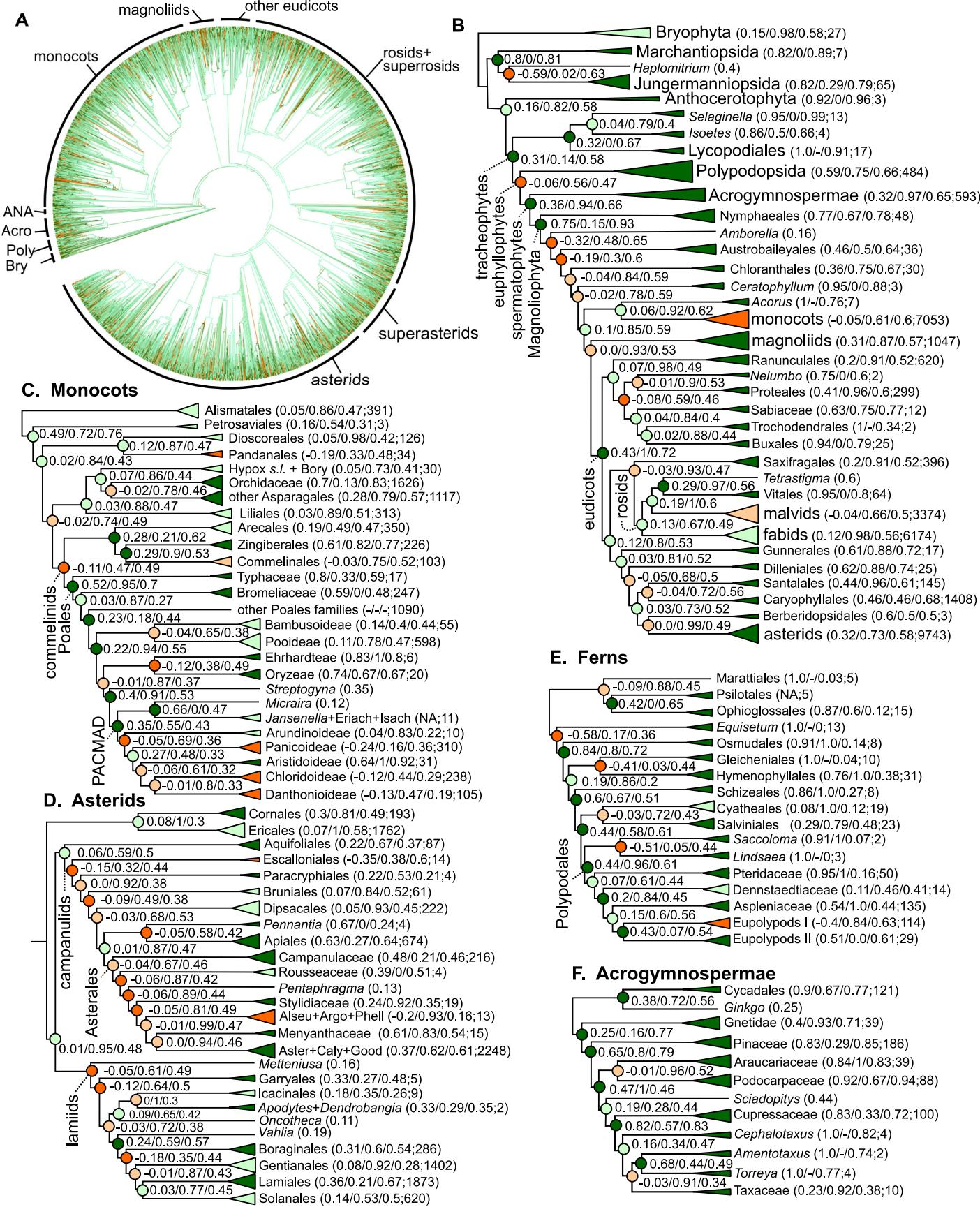

Examples:

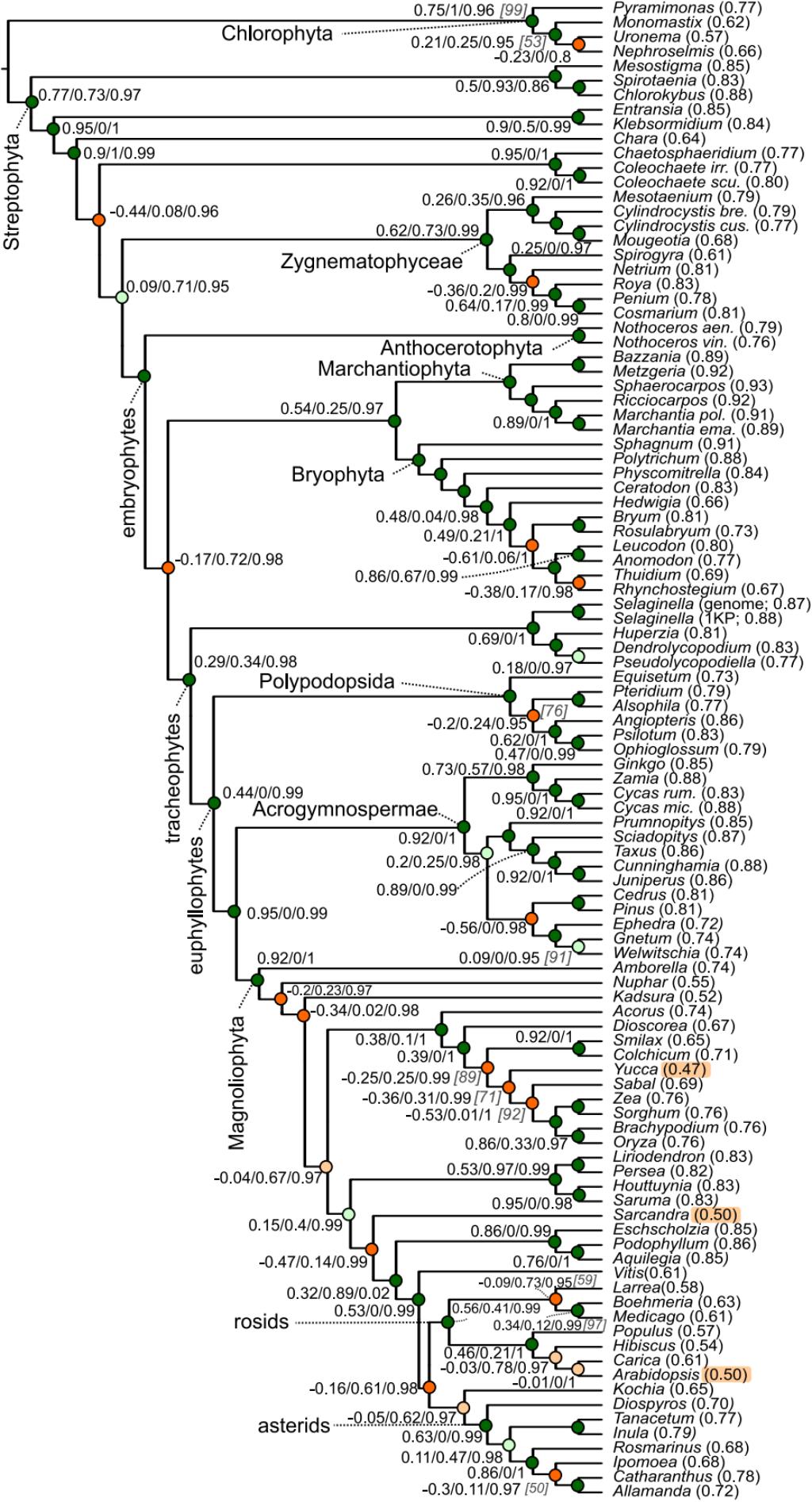
QF=1 → all concordant
 QF=0.1 → 10% concordant
 QF=0 → none concordant



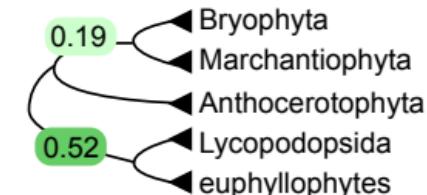
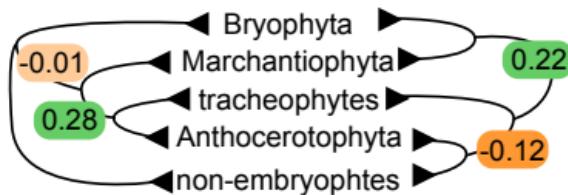

C. Monocots


D. Rosids




E. Bryophyta

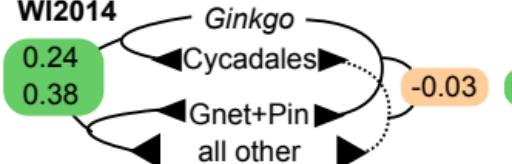
F. Acrogymnospermae

A. Non-vascular plants

HS2014

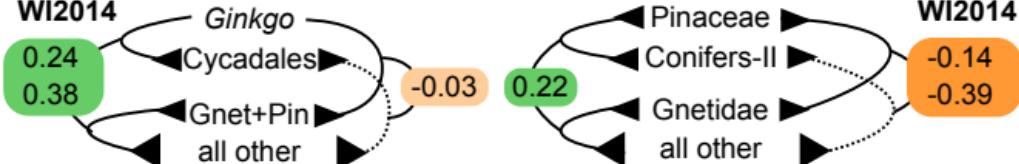
WI2014


ZN2014

B. Ginkgo + cycads

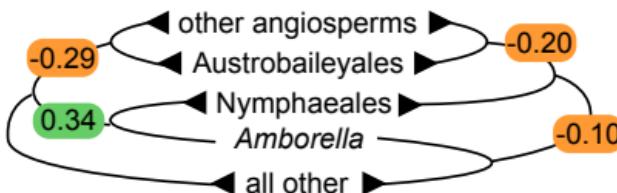
ZN2014

WI2014

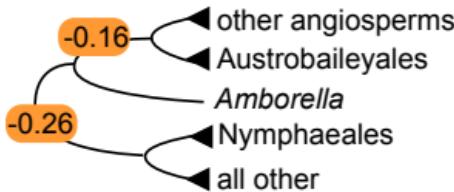

C. Gnetidae + conifers

HS2014

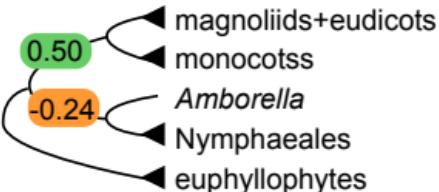
WI2014


HS2014

WI2014


D. "ANA grade" angiosperms

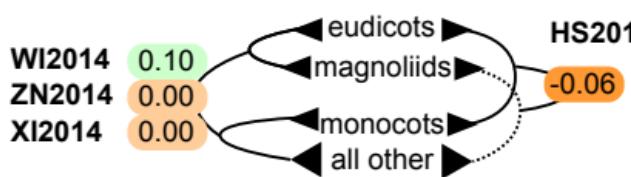
HS2014 ("Ambo+Nym-first")

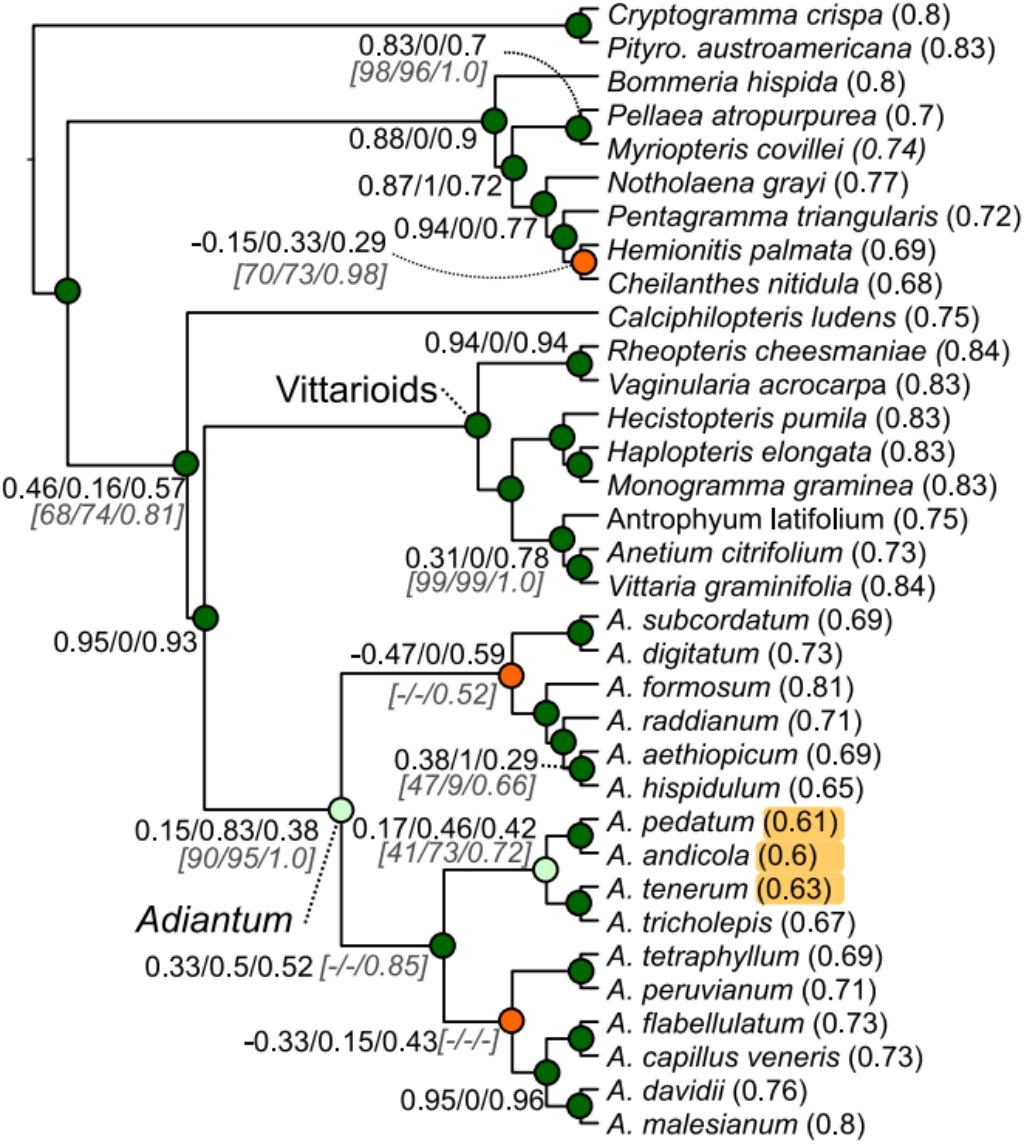


WI2014 ("Amborella-first")

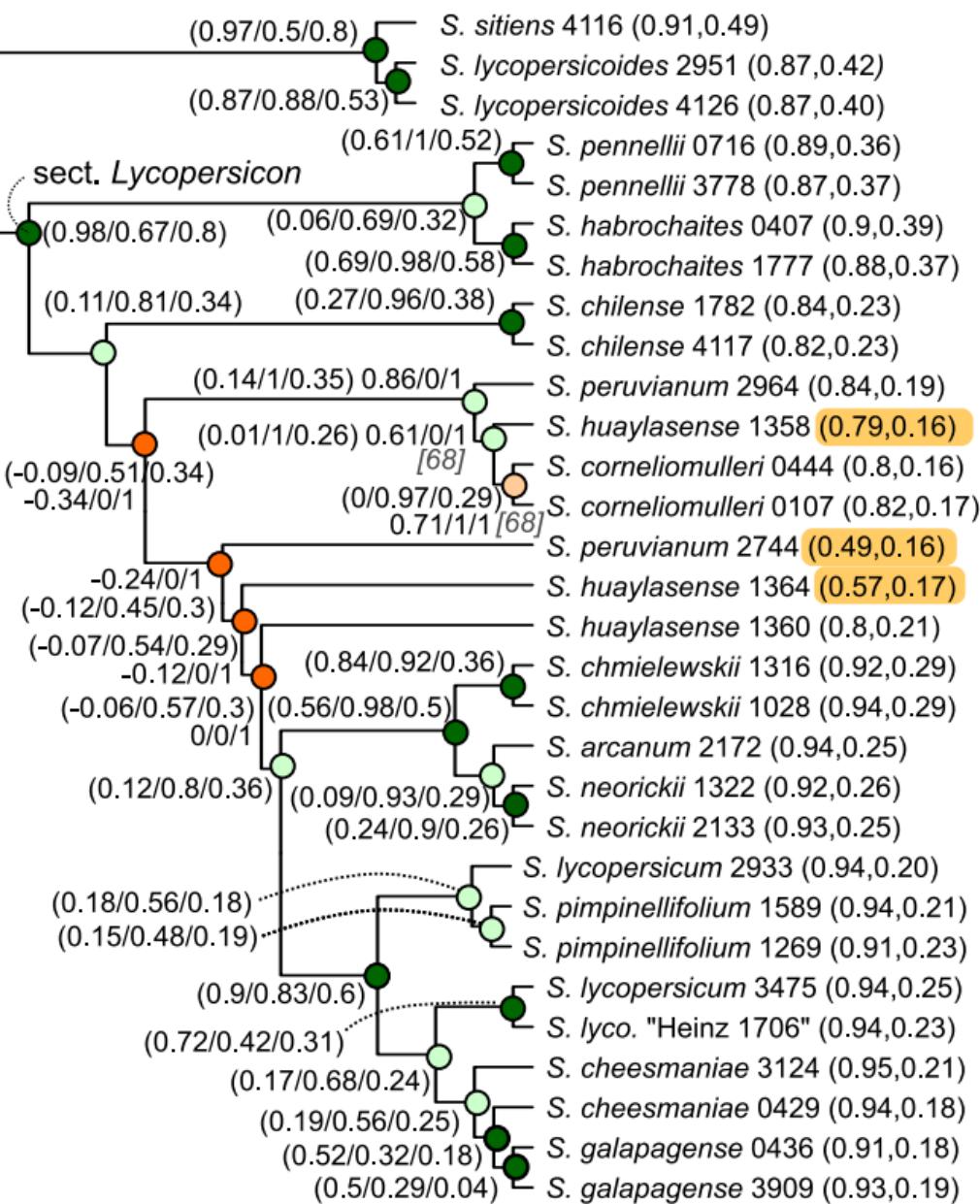
ZN2014 ("Nymphaeales first")

XI2014 ("Ambo+Nym-first")

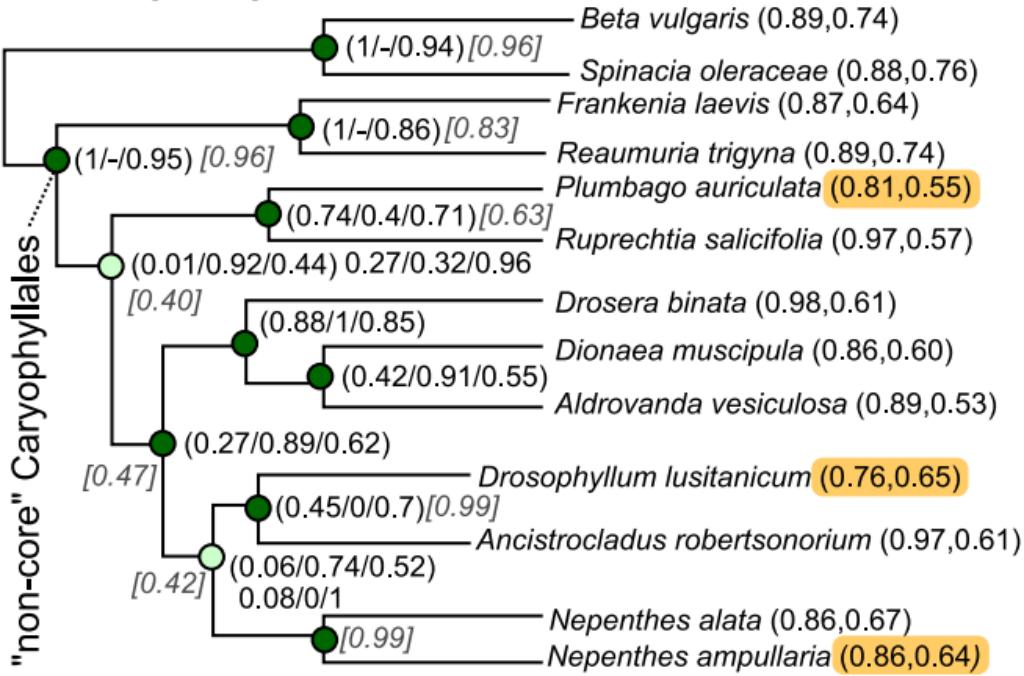

E. Magnoliids, monocots, and eudicots


WI2014

ZN2014


XI2014

HS2014



A. *Solanum* sect. *Lycopersicon*

B. Caryophyllales

