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Abstract

With the proliferation of multi-site neuroimaging studies, there is a greater need for han-
dling non-biological variance introduced by differences in MRI scanners and acquisition proto-
cols. Such unwanted sources of variation, which we refer to as “scanner effects”, can hinder the
detection of imaging features associated with clinical covariates of interest and cause spurious
findings. In this paper, we investigate scanner effects in two large multi-site studies on cortical
thickness measurements, across a total of 11 scanners. We propose a set of general tools for
visualizing and identifying scanner effects that are generalizable to other modalities. We then
propose to use ComBat, a technique adopted from the genomics literature and recently applied
to diffusion tensor imaging data, to combine and harmonize cortical thickness values across scan-
ners. We show that ComBat removes unwanted sources of scan variability while simultaneously
increasing the power and reproducibility of subsequent statistical analyses. We also show that
ComBat is useful for combining imaging data with the goal of studying life-span trajectories in
the brain.
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1 Introduction

Large-scale efforts aimed at collecting diverse neuroimaging datasets for dissemination and sharing
are rapidly growing in number and scale [Di Martino et al., 2014, Keator et al., 2013, Mennes et al.,
2013]. Having multiple scan sites is necessary in large-scale studies due to logistical issues and
geographic variability in subject populations [Van Horn and Toga, 2009]. However, a major draw-
back of combining neuroimaging studies across sites is the introduction of non-biological sources of
variability to the data, typically related to the image acquisition protocol and hardware.

Properties of MRI scanners such as field strength, manufacturer, gradient nonlinearity, subject
positioning, and longitudinal drift have been long understood to increase bias and variance in
the measurement of brain volume changes [Takao et al., 2011], regional cortical thickness [Han
et al., 2006], voxel-based morphometry [Takao et al., 2014], and structural, functional, and diffu-
sion images in general [Jovicich et al., 2006, Takao et al., 2011]. Such unwanted sources of bias
and variability are typically included as confound variables in the analysis of neuroimaging data.
Recent work has suggested that standard methods for including confound variables for the predic-
tion of an outcome using neuroimaging data perform no better than baseline models which ignore
confounding [Rao et al., 2017]. Furthermore, non-biological confounders typically have a priori un-
predictable effects, thus compromising consistency and reproducibility of the downstream analyses
across studies. This suggests that non-biological sources of variability should be handled differently.
Similar to batch effects in genomics (see Leek et al. [2010] for a review of batch effects), we use the
term scanner effects in neuroimaging to refer to unwanted variation that is (1) non-biological in
nature and (2) associated with differential scanning equipment or parameter configurations. Be-
cause different imaging sites use different physical scanners, site effects are one example of scanner
effects.

Recently, ComBat [Johnson et al., 2007], a batch-effect correction tool commonly used in genomics,
has been adapted for the modeling and removal of site effects in multi-site DTT studies [Fortin et al.,
2017]. ComBat was found to be an effective harmonization technique that both removes unwanted
variation associated with site and preserves biological associations in the data.

In this paper, we propose to use ComBat for harmonizing cortical thickness measurements obtained
from multiple sites. We investigate this in region-level cortical thickness measurements in two large
multi-site datasets: the Establishing Moderators and Biosignatures of Antidepressant Response in
Clinical care study (EMBARC) [Trivedi et al., 2016], a multi-center study with 4 sites, and the
Vascular Depression: Longitudinal Changes (VDLC) study, which was conducted at Washington
University in St-Louis and Duke University, and used a total of 7 scanners. We first propose a set
of general tools for the visualization and identification of site effects that are generalizable to other
modalities. We then harmonize the data using ComBat, and compare to two other harmonization
methods: residuals and phenotype-adjusted residuals. We show that Combat is successful at re-
moving scanner and site effects, while preserving the variability associated with biology. We also
show that ComBat can be used to combine datasets across multiple sites for the study of life-span
trajectories.
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EMBARC ‘ Vascular

N sites/scanners 4 7

N subjects 187 236
N females (%) 116 (62) | 139 (59)
Age range [18,65] | [58,95]

Table 1. Description of the EMBARC and Vascular study samples

2 Methods

2.1 Data and Preprocessing
EMBARC dataset

The EMBARC study aims to identify moderators and mediators of antidepressant response in
adult patients with Major Depressive Disorder [Trivedi et al., 2016, Webb et al., 2016]. The
dataset includes structural images, demographic variables and clinical variables. Participants were
200 unmedicated depressed individuals with Major depressive disorder and 40 healthy individuals
recruited for EMBARC. Subjects were 18-65 years old, had to report age of depression onset
before age 30 and had to be fluent in English. Clinical variables included the Hamilton Depression
Rating Scale (HAMD) [Hamilton, 1960], the Mood and Anxiety Symptom Questionnaire (MASQ)
[Watson and Clark, 1991], the Snaith-Hamilton Pleasure Scale [Snaith et al., 1995], the Spielberger
State-Trait Anxiety Inventory (STAI) [Spielberger, 1983] and the Quick Inventory for Depression
Symptomatology (QIDS) depression score [Rush et al., 2003].

The scans were acquired at four different imaging sites, with acquisition protocols described in
Greenberg et al. [2015]. The four sites were Columbia University (CU), University of Texas South-
western (TX), Massachusetts General Hospital (MG) and the University of Michigan (UM). All of
the sites used 3T scanners, however the manufacturer differed from site to site: UM used a Philips
Ingenia 3T scanner, TX used a Philips Achieva 3T scanner, MG used a Siemens TIM Trio 3T
scanner and CU used a GE SIGNA HDx 3T scanner. Imaging parameters for each scanner are
described in Greenberg et al. [2015]. After quality control, the final baseline dataset consisted of
187 subjects.

Vascular dataset

The Vascular Depression: Longitudinal Changes (VDLC) study aims to study the longitudinal
effect of vascular disease in the pathogenesis of late-life depression (LLD). Participants were 117
individuals affected by LLD and 59 healthy controls, for a total of 236 participants. Participants
were 58-95 years old. For the purpose of investigating site effects, we only considered one time point
for each participant; we retained the scan from the last visit. Scans were acquired at two sites:
Duke University and Washington University in St-Louis, across 7 different scanners, described in
Table 2.
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Location Manufacturer Platform Field (T) n Label
EMBARC study
Site 1 CuU GE SIGNA HDx 3 46 CuU
Site 2 MG Siemens TIM Trio 3 26 MG
Site 3 X Philips Achieva 3 72 TX
Site 4 UM Philips Ingenia 3 43 UM
Vascular study
Scanner 1 WashU Siemens Sonata 1.5 23 W _Sonata_A
Scanner 2 WashU Siemens Sonata 1.5 78 W _Sonata_B
Scanner 3 WashU Siemens TIM Trio 3 16 W_TIMTrio_ A
Scanner 4 WashU Siemens TIM Trio 3 40 W_TIMTrio_B
Scanner 5 Duke Siemens TIM Trio 3 24  D_TIMTrio A
Scanner 6 Duke Siemens TIM Trio 3 38 D_TIMTrio_B
Scanner 7 Duke GE SIGNA Excite 1.5 17 D_SIGNA

Table 2. Description of the scanners CU: Columbia University; MG: Massachusetts General
Hospital; TX: University of Texas Southwestern; UM: University of Michigan; Duke: Duke
University; WashU: Washington University in St-Louis.

2.2 Extraction of cortical thickness measurements

For the extraction of the cortical thickness measurements, we ran the ANTs cortical thickness
pipeline, which has been shown to provide accurate and robust cortical thickness measurements
[Tustison et al., 2014]. We used an average labeled template previously constructed from a subset of
participants of the Open Access Series of Imaging Studies (OASIS) [Marcus et al., 2007] to identify
the cortical regions for each subject of the EMBARC study.

2.3 Harmonization procedures

For the removal of site effects, we compare three different harmonization procedures: (1) Removal of
site effects using linear regression without adjusting for biological covariates. We refer to the method
as Residuals (2) Removal of site effects using linear regression, adjusting for known covariates. We
refer to the method as Adjusted Residuals. (3) Removal of site effects using ComBat [Johnson
et al., 2007]. We also compare the three methods to the absence of harmonization, that we refer to
as Raw. We describe below the different harmonization techniques.

For the different methods, we use the following notation. Let y;;, be the n x 1 vector of cortical
thickness measurement for imaging site 4, for participant j and feature v, for a total of (k + 1)
sites, n participants and V features. Depending on the cortical thickness modality, the features can
either be ROIs, vertices or voxels. Furthermore, let X be the p X n matrix of biological covariates
of interests, and let Z be the k x n matrix of site indicators (deviations from a baseline site).
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2.3.1 Residuals harmonization

The residuals harmonization method adjusts the images for site effects using linear regression. It
does not take into account the potential confounding between the site variables and the biological
covariates of interest in the study. The regression model can be written as

Yijo = Oy + sz;ev + €ijv (1)

where «, is the average cortical thickness for the reference site for feature v and where 6, is the
k x 1 vector of the coefficients associated with Z for feature v. We assume that the residual terms
€;j» have mean 0. For each feature separately, we obtain an estimate év of the parameter vector 6,
using regular ordinary least squares (OLS). The removal of site effects is done by subtracting the
estimated site effects, that is we set the residuals-harmonized cortical thickness values to be

yszis = Yijv — ZiTj'%
2.3.2 Adjusted residuals harmonization

The adjusted residuals harmonization method supervises the removal of site effects by adjusting
for biological covariates, using the following linear regression model:

Yijo = o + X8y + L0, + €50 (2)
where «, is the average cortical thickness for the reference site for feature v, where 6, is the
k x 1 vector of the coefficients associated with Z for feature v and where S, is the p x 1 vector
of coefficients associated with X for feature v. We assume that the residual terms ¢;;, have mean
0. For each feature separately, we obtain estimates 0, and (B, using regular ordinary least squares
(OLS) on the full model described in Equation 2. The removal of site effects is done by subtracting
the estimated site effects only, that is we set the adjusted-residuals-harmonized cortical thickness
values to be

Adj T
yijy = VYijo — Zijev

2.3.3 ComBat harmonization

The Combat harmonization model [Johnson et al., 2007] extends the adjusted residuals harmoniza-
tion model presented in Equation 2 in two ways: (1) it models site-specific scaling factors and (2)
it uses empirical Bayes to improve the estimation of the site parameters for small sample sizes.
It posits a unique linear model of location and scale at each feature, making the assumption that
scanners (or sites) have both an additive and multiplicative effects on the data. The model assumes
that the expected values of the imaging feature measurements can be modeled as a linear combi-
nation of the biological variables and the site effects, whose error term is modulated by additional
site-specific scaling factors. The algorithm uses empirical Bayes to improve the estimation of the
model parameters in small sample size studies. The ComBat model, originally developed for gene
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expression microarray data, was reformulated in Fortin et al. [2017] for the harmonization of DTI
data scalar maps. Using the previous notation, the model can be written as

Yijo = Oy + X‘Z;ﬁ'u + Zg;ev + 5iv€ijv7 (3)

where «,, is the average cortical thickness for the reference site for feature v, where 6, is the k£ x 1
vector of the coefficients associated with the site indicators Z for feature v and where (3, is the
p X 1 vector of coefficients associated with X for feature v. We assume that the residual terms €;j,
have mean 0. The parameters §;, descrive the multiplicative site effect of the j-th site on voxel v.
Consistent with the ComBat model notation used in Fortin et al. [2017], we rewrite ZiTjOW as Yiy:

Yijo = aw + X3;8, + Yiv + Siveiju, (4)

The procedure for the estimation of the site parameters ~;, and §;, uses Empirical Bayes, and is
described in Johnson et al. [2007] and Fortin et al. [2017]. The final ComBat-harmonized cortical
thickness measusrements are defined as

A X3 A
ComBat __ Yijv Qy XUIBU Yiv

3%

+dy + X8,

2.4 Methods evaluation framework

To investigate and correct site effects using ComBat, we performed a set of analysis tasks of
increasing complexity on the cortical thickness data. We first performed an exploratory analysis
to confirm the existence of site effects in the data. Next, we performed various univariate tests of
significance to understand the relationships between individual features in the data and individual
target variables. Finally, we applied various multivariate predictive models to understand how
cortical thickness relates to target variables. Our analyses were aimed at both identifying and
correcting site effects at multiple levels of complexity, along with understanding the specific effects
of ComBat on downstream analysis.

3 Results

We first present visualization tools for investigating scanner effects in a multi-site study, and present
several metrics to quantify such scanner effects. We use the cortical thickness measurements from
the EMBARC study to illustrate the different methodologies. We next evaluate different harmo-
nization procedures in the EMBARC study for the correction of site effects. We then show that the
results are generalizable to other studies, using the VDLC dataset as an external validation. Fi-
nally, we combine and harmonize the EMBARC and VDLC studies, which have different age range,
and show that it is possible to improve multi-site cross-sectional analyses of life-span trajectories
by using ComBat harmonization.
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3.1 Visualization of site effects

With high-dimensional data, routinely using fast and efficient visualization tools helps identifying
biases and technical artifacts that affect the data globally. In this section, we present several visual
tools, commonly used in genomics and other fields, for the identification and diagnostic of site
effects in imaging data. We use the EMBARC dataset as an example dataset. We present the
different diagnostic plots in Figure 1. First, for each subject, we summarize the cortical thickness
measurements into a boxplot, and present the boxplots in Figure la in which the colors represent
the four different imaging sites. We observe a global downwards shift in the cortical thickness
measurements from the MG site, as well as increased variability in the measurements from the TX
and UM sites relative to the two other sites. The four boxplots presented in Figure 1b summarize
the distribution of the median cortical thicknesses at each site. This facilitates the visualization of
the site-specific additive and scaling effects.

In Figure 1c, the boxplots from Figure 1a were sorted by age. Consistent with the literature, we
observe a global decrease of the cortical thickness measurements with age, and note that combining
measurements from multiple sites adds variability to the trend (blue boxplots are shifted down-
wards). We also observe that the imaging sites are not distributed equally across the age span,
with more younger subjects from the MG and CU sites (more blue and grey boxplots to the left)
and older subjects coming from the TX site (more light red boxplots to the right). This indicates
some counfouding level between imaging site and age. In Figure 1d, we present the median cortical
thickness measurements as a function of age to visually inspect the global image-age relationship.

In Figure le, we present bivariate scatter plots of the first 3 principal components (PCs) from a
principal component analysis (PCA) performed on the cortical thickness values. We note that the
second PC is highly associated with site, confirming that a large proportion of the variation in the
data is explained by site.

Finally, we present in Figure 2 the distribution of age, gender, HAMD score and QIDS score across
imaging sites. This allows a visual inspection of potential confounding level between the different
covariates and imaging site. The width of the boxplots represents the sample size at each site. We
note that age is highly unbalanced across sites, with older subjects for the TX site, while the gender
ratio seems to be equally distributed across sites. The QIDS score appears to be also unbalanced
with respect to imaging site, and anti-correlated with age.

We also produced a similar visualization for the VDLC dataset in Figure A.1. We note that there
is a clear positive shift in the cortical thickness measurements for images acquired on 3T scanners
in comparison to images acquired on 1.5T scanners.

3.2 Quantification of site effects in the EMBARC study

We first evaluated the presence of global site effects in the cortical thickness measurements. For
each subject, we summarized the measurements across regions by taking the median as a global
measure. We present in Figure 1b the distribution of the median cortical thickness stratified by
site. Using ANOVA, the median cortical thickness was significantly different across the four sites
(p = 1.1 x 1071%). More specifically, the median cortical thickness for the MG site was significantly
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Figure 1. Visualization of sites effects in the EMBARC study. Plots are colored by
imaging site: Columbia University (CU), University of Texas Southwestern (TX), Massachusetts
General Hospital (MG) and University of Michigan (UM). (a) Boxplots of the cortical thickness
sorted by site. Each boxplot represents the distribution of the 102 cortical regions for one subject.
(b) Boxplots of the median cortical thickness, grouped by site. The MG site has lower median
cortical thickness on average, while the TX and UM sites have higher variability. (c) Same as (a),
but sorted by age. (d) Relationship between median cortical thickness and age, colored by site.
(e) Plots of the first 3 principal components (PCs) from principal component analysis (PCA),
colored by site. The second PC is highly associated with site.
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Figure 2. Covariates distribution in the EMBARC study. Distributions of age, gender,
HAMD score and QIDS scores across sites for the EMBARC study. The width of the boxplots is
proportional to the number of subjects scanned at each site. The full and shaded bars in the
gender barplots represent males and females respectively. HAMD: Hamilton Depression Rating
Scale; QIDS: Quick Inventory for Depression Symptomatology.

different from those of the three remaining sites, adjusting for multiple comparisons using Tukey’s
method [Tukey, 1949].

Because the scale of the measurements can also be affected by scanner, we also compared the
variances of the median cortical thickness measurement across sites. To do so, we performed
the Bartlett’s sphericity test [Bartlett, 1937], which assesses whether or not the variances are
homogeneous across sites. To avoid confounding of site with age and gender, we first regressed out
the variation explained by age and gender; the test was significant (p = 1.8x10~7). We subsequently
compared the pairwise site variances using the usual F-tests for variances ratio, and four of the
pairs were significant after adjusting for multiple comparisons using Bonferroni correction: TX vs.
CU, TX vs. MG, UM vs. CU, and UM vs. MG. The results are consistent with the spread of the
boxplots presented in Figure 1b.

We then tested each ROI individually for site effects by calculating an ANOVA F-test. We obtained
53 ROIs significantly associated with site, using Bonferroni correction to adjust for multiple com-
parisons (adjusted p < 0.05). Because Bonferroni correction is a conservative approach to control
for the family-wise error rate (FWER), we alternatively corrected for multiple comparisons using
the permutation-based one-step maxT procedure [Westfall and Young, 1993, Dudoit et al., 2003],
and obtained 60 ROIs significantly associated with site (adjusted p < 0.05, B = 10,000 permu-
tations). We present in Figure B.la the observed R? from ANOVA and the distribution of the
maximum R? obtained from each permutation. To test for scanner-specific scaling effects, we also
tested each feature individually for homogeneity of variances across sites using Bartlett’s test. We
obtained 41 ROIs with variances significantly associated with site (adjusted p < 0.05, B = 10,000
permutations).

Quantification of the site effects for the VDLC study are provided in the Appendix A.1.
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Figure 3. Prior distributions of the site effect parameters estimated by ComBat in
the EMBARC study. Location and scale site-specific parameters estimated by ComBat, for
the EMBARC study. (a) The ComBat-estimated prior distributions for the site-specific location
parameters 7y are shown in solid lines, and the empirical distributions of the site-specific location
parameters are shown in dashed lines. (b) The ComBat-estimated prior distributions for the
site-specific scale parameters d are shown in solid lines, and the empirical distributions of the
site-specific scale parameters are shown in dashed lines. The prior distributions fit well the
empirical distributions for both the location and scale parameters.
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3.3 Removal of site effects with harmonization

To remove site effects in the EMBARC dataset, we applied three different harmonization techniques:
(1) Residuals: removal of site effects estimated from linear regression; (2) Adjusted Residuals:
removal of site effects estimated from linear regression, adjusting for biological covariates and (3)
ComBat. In Figure 3, we show the empirical distributions of the site effects for both the location
and scale parameters (dotted lines), together with the prior distributions estimated by ComBat
(solid lines). We remind the reader that both the location and scale site effects are deviations
from the grand mean. Consistent with the description of the site effects in the previous section,
we note that the additive site effects (v) are greater in magnitude for the MG site (Figure 3a,
and the multiplicative site effects (0) are greater than 1 on average for the TX and UM sites, and
lower than 1 for the two remaining sites (Figure 3b). We note that the prior distributions fit the
empirical distributions well for both the location and scale parameters; the ComBat procedure
therefore appears appropriate for capturing these effects.

To visualize whether or not most of the variation in the data was still associated with imaging site
after harmonization, we first performed an unsupervised dimension reduction of the harmonized
cortical thickness measurement using PCA. The data projected into the first two PCs are presented
in the first column of Figure 4. We note that for all three harmonization methods, the data points
appear to be distributed equally across sites. We also performed a linear discriminant analysis
(LDA), a popular supervised dimension reduction that maximizes the projection coordinates to
predict the data classes. Here, we use the imaging sites as the data classes to be predicted. We
present the projected data in the second column of Figure 4. One can see that for the raw data,
the data points cluster almost perfectly by imaging site. This is not surprising; all features are
highly associated with site effects when not harmonized. After harmonization, site clusters are
substantially attenuated.

To formally test whether or not site effects remain after harmonization, we again used the different
tests described in Section 3.2. Using ANOVA F-tests, all methods corrected for mean site differences
in the median cortical thickness: p = 0.997 for Residuals, p = 0.0498 for Adjusted Residuals and
p = 0.0473 for ComBat. We also tested for site-specific scaling effect in the measurements using
Bartlett’s sphericity test. We found that only ComBat was able to remove the scaling effects
associated with site (p = 0.42). The site-specific variances remained largely uncorrected for both
the Residuals (p = 2.53 x 1078) and Adjusted Residuals (p = 3.08 x 10~®) methods. This is not
surprising; only the ComBat harmonization method is able to model scaling factors associated
with site. We also tested each ROI individually for remaining site effects. For all harmonization
methods, none of the ROIs was significantly associated with site, using either the Bonferroni or the
maxT adjustment.

Finally, to further investigate if site effects were entirely removed for each of the harmonization
method, we attempted to predict imaging site from the harmonized cortical thickness features.
More specifically, we used the support vector machine (SVM) [Cortes and Vapnik, 1995] classifi-
cation algorithm, with radial basis kernel, to predict site from the imaging features. The SVM is
largely used in the imaging community in the context of multivariate pattern analysis (MPVA) for
understanding and discovering patterns associated with a disease outcome, for instance. A har-
monization method that is successful in removing site effects will result in a lower SVM accuracy
when attempting to predict site. Using B = 10,000 repetitions of a 10-fold cross-validation, we
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Figure 4. Supervised and unsupervised dimension reductions before and after
harmonization for the EMBARC dataset. For each harmonization method, we first used
principal component analysis (PCA) to reduce the dimension of the cortical thickness
measurements in an unsupervised manner (agnostic of imaging sites). We present in the first
column the projection of the data into the first two principal components (PCs) that explain most
of the variation in the data. We also performed a supervised dimension reduction technique using
linear discriminant analysis (LDA) using imaging site as a target variable. We present in the
second column the projection of the data into the first two LDA coordinates. In both PCA and
LCA, the first two coordinates are highly associated with site, while all harmonization methods
removed most variation associated with site.
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estimated an average accuracy for each method. For the raw values, the SVM prediction achieved
an average of 76.6% classification accuracy. For the residuals and adjusted residuals methods, the
average accuracies were 40.5% and 38.7% respectively. The ComBat method resulted in the lower
average accuracy (36.3%). Using a permutation-based approach to generate a null distribution
(B =10,000), a SVM classification by chance attained on average 36.9% accuracy. This indicates
the Adjusted Residuals and ComBat were best for the removal of site effects in the cortical thick-
ness measurements. In comparison to the adjusted residuals, we note that the ComBat method
additionally removes site-specific scaling effects. This could explain the better performance in the
SVM, in which the covariance structure is implicitly used for predicting the class labels.

3.4 Associations with age

While it is important to show that a harmonization method successfully removes site effects, it
is equally important to show that the method preserves the biological variability in the data; a
method that removes both site effects and biological effects has no scientific use. To investigate
whether or not the different harmonizations presented in this paper perform well at preserving
biological variability, we use age as a variable of interest. Again, we use the EMBARC dataset to
demonstrate the main results.

We first assessed the proportion of variation explained by age before and after harmonization.
Without harmonization, the percentage of variation in the average cortical thickness explained by
age was 23%. This was calculated using the usual coefficient of variation R? from linear regression
with median cortical thickness as the outcome. For the unadjusted Residuals method, this per-
centage was increased to 26%, and for both the Adjusted Residuals and ComBat, the percentage
was increased to 33%. The fact that the Unadjusted Residuals did not substantially increase the
association with age is not surprising; we observed that age was confounded with imaging site, and
therefore removing site effects without adjusting for age will also remove variation in the imag-
ing features associated with age. On the other hand, both the Adjusted Residuals and ComBat
strengthened the expected inverse relationship between age and cortical thickness by removing site
effects, but also by preserving biological variability in the data.

We also evaluated the effects of harmonization on the prediction of age using the harmonized cortical
thickness measurements. For prediction, we used two different algorithms: linear regression, and the
popular support vector regression (SVR) algorithm, also commonly called e-SVM regression, using
a radial kernel. The e-SVM regression paradigm is similar to the regular SVM, but for a continuous
outcome. For each algorithm, we used the harmonized cortical thickness measurements as imaging
features inputs X to predict age. For each harmonization method, we randomly partitioned the
subjects into k folds, and trained the prediction algorithm on k£ — 1 folds. We then predicted the
age of the remaining subjects (testing dataset) and calculated the root-mean-square error (RMSE).
We repeated the random sampling B = 1000 times, for k € {3,5,10}, to obtain a distribution of
the RMSE for each method at each k.

In Figure 5, we present the results from linear regression. For the three values of k, we observe that
the data harmonized with the unadjusted Residuals do not perform well, while both the Adjusted
Residuals and ComBat improve the prediction of age upon the raw data. In Figure 6, we present the
results from e-SVM regression. For the three values of k, we observe that the data harmonized with
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Figure 5. Root-mean-square error (RMSE) for age prediction using linear regression
Using k-fold validation for k € {3,5,10} for B = 1000 random samplings, we calculated the
RMSE on a testing dataset for the predicted age using linear regression. For the different
harmonization methods, we used the harmonized cortical thickness measurements as input image
features to train the algorithm.

the unadjusted Residuals do not perform well, while the Adjusted Residuals and ComBat perform
very similarly to the raw data. Interestingly, we note that while the Adjusted Residuals and
ComBat methods improve the prediction in the case of linear regression, very little improvement
was obtained in e-SVM regression. One explanation could be that the different harmonization
methods presented in this paper are linear models, and therefore are optimal for prediction using
linear prediction, but not necessarily for the e-SVM regression.

3.5 Life-span study by harmonizing the EMBARC and VDLC datasets

While the two studies present in this paper have a different age range ([18,65] y.o. for the EMBARC
study; [58,95] y.o. for the Vascular study), there is some overlap between the two age ranges (see
Figure 7, first panel). For the study of life-span trajectories, it is sometimes necessary to combine
data from multiple studies, with each individual study often targeting participants from a specific
age range. We show here that even though different scanners were used across the studies, it is
possible to combine and harmonize the data, to remove the scanner effects, and thereby improve
the correlation between the imaging outcome and biological factors of interest, namely age.

We present the relationship between median cortical thickness and age, before and after harmo-
nization in Figure 7 with data points colored by study (red for EMBARC and green for Vascular).
One can observe an overlap in the age span between the two studies, and that inter-subject varia-
tion seems to be higher in the EMBARC subjects in the raw data. This can be explained by the
large variation between the four scanners in the EMBARC, as discussed previously in the Results
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Figure 6. Root-mean-square error (RMSE) for age prediction using e-SVM. Using
k-fold validation for k € {3,5,10} for B = 1000 random samplings, we calculated the RMSE on a
testing dataset for the predicted age using e-SVM. For the different harmonization methods, we
used the harmonized cortical thickness measurements as input image features to train the
algorithm.

section. For each method, we calculated the correlation between the median cortical thickness and
age. For the unharmonized data, we obtained a correlation of —0.70. For the unadjusted Residuals,
we obtained a correlation of —0.26. Such a weaker correlation is not surprising; both studies have
a vastly different age range, and therefore blindly harmonizing the data for site without adjusting
by age will diminish the age effect across the life span. For the Adjusted Residuals, we obtained a
correlation of —0.77, and we obtained a correlation of —0.79 for ComBat. Both adjusted residual-
ization and ComBat were effective at decreasing the inter-subject variability by removing scanner
effects, while preserving the trend associated with age across the life-span.

4 Discussion

With the increasing complexity of study design in multi-site neuroimaging studies, the neuroscience
community needs robust, validated, and computationally feasible methods for addressing the critical
impact of non-biological sources of data variation. We use the term “harmonization” to refer to
the process of combining data from multiple sites and removing the unwanted variability associated
with scanner.

In this paper, we proposed to use the ComBat algorithm, previously developed to deal with batch
effects in the study of gene expression data, as a reliable harmonization method for combining
cortical thickness measurements across sites. This was motivated by its previously documented
excellent performance for harmonizing voxel-wise fractional anisotropy (FA) and mean diffusivity
(MD) measurements [Fortin et al., 2017], two common DTT scalar maps. Using two large multi-site
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studies, EMBARC and VDLC, we presented a general approach for identifying unwanted sources
of variance in neuroimaging data using exploratory, univariate, and multivariate tests for scanner
effects. We then showed that ComBat is effective at removing nuisance variability associated with
scanners, while preserving the age effects in the cortical thickness across participants. We also
showed that ComBat can be used to combine those two large studies, with a vastly different age
range, to study cortical thickness across the life span.

We compared the ComBat harmonization algorithm to two commonly used scanner effect correction
methods: residualization and adjusted residualization. The latter method adjusts for covariates of
interest (for instance age) in the removal of site effects. ComBat is similar to the adjusted method,
except that it additionally models scanner-specific scaling effects. ComBat also uses a Bayesian
framework to improve the stability of the estimated parameters in small sample sizes. ComBat is
easy to apply and has minimal computational overhead. Equally importantly, we have developed
open-source, easy-to-use code for applying this algorithm in R, Matlab, and Python. This ensures
that the ComBat algorithm can be seamlessly integrated into any existing processing pipelines.

We note that several other harmonization techniques have been previously proposed in the con-
text of other imaging modalities. For conventional MRI studies, intensity normalization techniques
have been developed to make the image intensities comparable across studies, including histogram
matching [Nyl et al., 2000], WhiteStripe [Shinohara et al., 2014] and RAVEL [Fortin et al., 2016].
Another method, called source-based morphometry, uses independent component analysis (ICA)
to remove variability associated with certain scanner parameters in structural MRI [Chen et al.,
2014]. For diffusion tensor imaging (DTI) studies, it has been proposed to use spherical harmon-
ics to harmonize data across studies, using a reference site to create pairwise site transformations
[Mirzaalian et al., 2016]. It has also been proposed to use functional normalization, originally de-
veloped in [Fortin et al., 2014}, for harmonizing DTI scalar maps. We note that the aforementioned
harmonization techniques could not be readily applied to cortical thickness.

In the future, we plan to develop a time-dependent ComBat algorithm for understanding scenarios
where subjects were scanned over multiple time points, and for which scans were acquired on
different scanners, or on the same scanners but with different scanning parameters. We are also
planning on improving the performance of ComBat in the presence of confounding by implementing
an inverse probability weighting (IPW) scheme into the algorithm. IPW has been shown to improve
prediction when the outcome of interest is confounded with another covariate [Linn et al., 2016].
This has the potential to improve the performance of ComBat for age prediction using the SVM
regression framework, as well as for other prediction methods.

5 Software

All postprocessing analysis was performed in the R statistical software (version 3.2.0). For ComBat,
the reference implementations from the sva package was used. All figures were generated in R with
customized and reproducible scripts. We have adapted and implemented the ComBat methodology
to imaging data, and the software is available in R and Matlab (https://github.com/Jfortinl/
ComBatHarmonization) and in Python (https://github.com/ncullen93/neuroCombat).
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Appendix A

A.1 Quantification of site effects in the VDLC study

We present in Figure A.1b the distribution of the median cortical thickness stratified by scanner.
Using ANOVA, the median cortical thickness was significantly different across the seven scanners (p
= 2.2 x 10716). Not surprisingly, the median cortical thicknesses from each of the 3T scanners were
significantly different from those of each of the 1.5T scanner, adjusting for multiple comparisons
using Tukey’s method.

We also compared the variances of the median cortical thickness measurement across scanners. To
do so, we performed the Bartlett’s sphericity test, which estimates whether or not the variances
are homogeneous across scanners. To avoid confounding of scanner with age and gender, we first
regressed out the variation explained by age and gender; the test was significant (p = 0.0013).

We then tested each ROI individually for site effects by calculating an ANOVA F-test. We obtained
86 ROIs significantly associated with site, using Bonferroni correction to adjust for multiple com-
parisons (adjusted p < 0.05), and 87 ROIs using the permutation-based one step maxT procedure
(adjusted p < 0.05, B = 10,000 permutations). We present in Figure B.1b the observed R? from
ANOVA and the distribution of the maximum R? obtained from each permutation. To test for
scanner-specific scaling effects, we also tested each feature individually for homogeneity of variances
across sites using Bartlett’s test. We obtained 4 ROIs with variances significantly associated with
site (adjusted p < 0.05, B = 10,000 permutations).

A.2 Removal of scanner effects in the VDLC study with harmonization

In Figure A.2, we show the empirical distributions of the site effects for both the location and scale
parameters (dotted lines), together with the prior distributions estimated by ComBat (solid lines).
We remind the reader that both the location and scale scanner effects are deviations from the
grand mean. Consistent with the description of the site effects in the previous section, we note that
the additive scanner effects () are greater in magnitude for the 3T scanners. The multiplicative
scanner effects (0) are shown in Figure A.2b. We note that the prior distributions fit the empirical
distributions well for both the location and scale parameters; the ComBat procedure therefore
appears appropriate for capturing these effects.

To visualize whether or not most of the variation in the data was still associated with scanner after
harmonization, we first performed an unsupervised dimension reduction of the harmonized cortical
thickness measurement using PCA. The data projected into the first two PCs are presented in the
first column of Figure A.3. We note that for all three harmonization methods, the data points
appear to be distributed equally across scanners. We also performed LDA using scanners as the
data classes. We present the projected data in the second column of Figure A.3. One can see that
for the raw data, there is a clear separation between the different types of scanners. Interestingly,
the data from the D SIGNA scanner appear to cluster separately; We note that this is the only GE
scanner in the VDLC study. After harmonization, clusters associated with scanner are substantially
attenuated.
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Figure A.1. Visualization of sites effects in the Vascular study. Plots are colored by
scanner. The green shades represent the 1.5T scanners, while the brown shades represent the 3T
scanners. (a) Boxplots of the cortical thickness sorted by site. Each boxplot represents the
distribution of the 98 cortical regions for one subject. (b) Boxplots of the median cortical
thickness, grouped by scanner. The measurements derived from 1.5T scanners are substantially
lower than measurements from 3T scanners. (c) Same as (a), but sorted by age. (d) Relationship
between median cortical thickness and age, colored by scanner. (e) Plots of the first 3 principal
components (PCs) from principal component analysis (PCA), colored by scanner. The second PC
is highly associated with scanner.
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Figure A.2. Prior distributions of the site effect parameters estimated by ComBat in
the Vascular study. Location and scale site-specific parameters estimated by ComBat, for the
EMBARC study. (a) The ComBat-estimated prior distributions for the site-specific location
parameters v are shown in solid lines, and the empirical distributions of the site-specific location
parameters are shown in dashed lines. (b) The ComBat-estimated prior distributions for the
site-specific scale parameters d are shown in solid lines, and the empirical distributions of the
site-specific scale parameters are shown in dashed lines. The prior distributions fit well the
empirical distributions for both the location and scale parameters.
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Figure A.3. Supervised and unsupervised dimension reductions before and after
harmonization for the Vascular dataset. For each harmonization method, we first used
principal component analysis (PCA) to reduce the dimension of the cortical thickness
measurements in an unsupervised manner (agnostic of imaging sites). We present in the first
column the projection of the data into the first two principal components (PCs) that explain most
of the variation in the data. We also performed a supervised dimension reduction technique using
linear discriminant analysis (LDA) using imaging site as a target variable. We present in the
second column the projection of the data into the first two LDA coordinates. In both PCA and
LCA, the first two coordinates are highly associated with site, while all harmonization methods
removed most variation associated with site.
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Using ANOVA F-tests, all methods corrected for mean scanner differences in the median cortical
thickness: p = 0.99 for Residuals, p = 0.94 for Adjusted Residuals and p = 0.94 for ComBat.
We also tested for scanner-specific scaling effects in the measurements using Bartlett’s sphericity
test. We found that only ComBat was able to remove the scaling effects associated with scanner
(p = 0.46). Scanner-specific variances remained present in both the Residuals (p = 0.03) and
Adjusted Residuals (p = 0.01) methods. Finally, we tested each ROI individually for remaining
scanner effects. For all harmonization methods, none of the ROIs was significantly associated with
scanner, using either the Bonferroni or the maxT adjustment.

As for the EMBARC study, we used the SVM with radial basis kernel, to assess prediction of scanner
from the imaging features. Again, a harmonization method that is successful in removing scanner
effects will result in a lower SVM accuracy when attempting to predict scanner. Using B = 10, 000
repetitions of a 10-fold cross-validation, we estimated an average accuracy for each method. For
the raw values, the SVM prediction achieved an average of 67.7% classification accuracy. For the
residuals and adjusted residuals methods, the average accuracies were 43.4% and 44.4% respectively.
The ComBat method resulted in the lower average accuracy (41.0%).
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Figure B.1. Variance explained by imaging site (R?). For each feature, we calculated the
coefficient of determination R? between cortical thickness and imaging site. We present the
densities of R? (red lines) for the (a) EMBARC study and the (b) Vascular study. To obtain a
measure of significance and to correct for multiple comparisons, we performed a one-step max R?
procedure. Briefly, we permuted the site labels B = 10,000 times, recalculated the R? values and
retained the maximum R? value at each permeation. The grey densities represent the distribution
of the maximum R?’s. The vertical dashed line indicates the 95% quantile of the maximum R?
distribution. The features above that threshold are significant at the v = 0.05 level (shaded red
area). Most features remained significant after adjustment.
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