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Abstract 
Motivation: The haploid mammalian Y chromosome is usually under-represented in genome assemblies due to 
high repeat content and low depth due to its haploid nature. One strategy to ameliorate the low coverage of Y 
sequences is to experimentally enrich Y-specific material before assembly. Since the enrichment process is 
imperfect, algorithms are needed to identify putative Y-specific reads prior to downstream assembly. A strategy 
that uses k-mer abundances to identify such reads was used to assemble the gorilla Y (Tomaszkiewicz et al 
2016). However, the strategy required the manual setting of key parameters, a time-consuming process leading 
to sub-optimal assemblies. 
Results:  
We develop a method, RecoverY, that selects Y-specific reads by automatically choosing the abundance level 
at which a k-mer is deemed to originate from the Y. This algorithm uses prior knowledge about the Y 
chromosome of a related species or known Y transcript sequences. We evaluate RecoverY on both simulated 
and real data, for human and gorilla, and investigate its robustness to important parameters. We show that 
RecoverY leads to a vastly superior assembly compared to alternate strategies of filtering the reads or contigs. 
Compared to the preliminary strategy used in Tomaszkiewicz et al (2016), we achieve a 33% improvement in 
assembly size and a 20% improvement in the NG50, demonstrating the power of automatic parameter selection. 
 

Availability: Our tool RecoverY is freely available at  https://github.com/makovalab-psu/RecoverY 
Contact: kmakova@bx.psu.edu, pashadag@cse.psu.edu 
Supplementary information: Attached as an additional file. 

1 Introduction  

 
The haploid mammalian Y chromosome reference sequence is often not 
properly assembled as part of large next generation sequencing (NGS) 
projects, for several reasons. The Y is absent from the female and only 
present in one copy in the male. Therefore, to obtain the desired 
sequencing depth, twice as much sequencing needs to be performed. 
Further, the presence of repeat families shared with the autosomes and 
the presence of regions with high homology to the X chromosome 
complicate the identification and assembly of the non-unique regions of 
the Y (reviewed in Tomaszkiewicz et al 2017). 
 
There are several targeted approaches for assembling the Y. Single-
haplotype iterative mapping and sequencing (SHIMS) is a BAC-based 

technique which was used to generate assemblies of the human 
(Skaletsky et al 2003), chimpanzee (Hughes et al 2010), rhesus macaque 
(Hughes et al 2012), and mouse Y chromosomes (Soh et al 2014). While 
SHIMS remains a highly accurate technique, it is cost- and time-
prohibitive for most projects. Alternatively, deep NGS sequencing of a 
male can produce an assembly that includes Y chromosome sequence. 
The challenge in this case is to identify which of the contigs originate 
from the Y. Contigs that do not align to the female assembly of the same 
species (if available) can be flagged as coming from the Y. Alternatively, 
the reads can be filtered using such alignments prior to assembly. 
However, such approaches are deficient at identifying Y sequence that 
has homology to the X, such as the pseudo-autosomal regions, or to the 
autosomes, such as the DAZ gene region (Saxena et al 2000). 
 
Because of the different copy count in males (XY) vs females (XX), 
male-specific sequences can also be identified based on the number of 
reads aligning to them (i.e. their sequencing depth). Sequencing both a 
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male and female of a species and comparing the read depth along the 
male assembly can help identify Y contigs. Methods based on this 
approach include the Y chromosome genome scan (Carvalho and Clark 
2013) and the chromosome quotient method (Hall et al 2013). Such 
approaches still require sequencing the male at high-depth and additional 
sequencing of the female. Moreover, they may still mis-classify high-
copy transposable elements and other high-copy number regions shared 
with the X or autosomes. 

 
In order to decrease the cost of sequencing, experimental techniques 
have been developed to increase the amount of Y chromosome material 
present in the sample. This process of chromosome-specific enrichment 
can be achieved by the experimental techniques of flow sorting (Dolezel 
et al 2012) or microdissection (Zhou and Hu, 2007). In particular, flow 
sorting is a separation process by which a chromosome of interest can be 
separated using its size and AT/GC ratio (Dolezel et al 2012). Flow 
sorting has been applied prior to sequencing and assembly of the Gorilla 
Y (Tomaszkiewicz et al 2016) and the pig sex chromosomes (Skinner et 
al 2016).  
 
Although flow sorting increases the amount of Y chromosome data, 
there still remains a significant amount of non-Y sequence in the sample. 
This may originate from debris from large chromosomes, or from 
chromosomes that have similar size and GC content to the Y (e.g. 
chromosomes 21 and 22 in the human and great apes). Consequently, the 
read data will consist of genome-wide reads with an enrichment for Y 
reads at a level dictated by the efficiency of flow sorting. This non-
specificity must then be removed from the data, either before or after 
assembly. This can be accomplished by aligning the reads or the contigs 
against a known female assembly, as described above for deep NGS 
male sequencing. However, as already mentioned, such strategies require 
a female reference and are inefficient in retaining regions with high 
homology to the X chromosome and autosomes.  
 
An alternative strategy of isolating Y-specific reads was originally 
proposed by our group in Tomaszkiewicz et al. (2016). This is an 
alignment-free strategy that uses k-mer (substring of length k) coverage 
as a discriminator to identify reads originating from the Y. The 
underlying principle is that, in the case of an enriched data set, k-mers 
originating from the Y chromosome occur at a higher abundance than 
non-repetitive k-mers from elsewhere in the genome. K-mers that have 
an abundance above a user-selected threshold are selected as Y-mers (Y-
specific k-mers). Subsequently, reads that contain a number of Y-mers 
above a user-defined threshold (i.e. the Y-mer match threshold) are 
identified as originating from the Y and used to perform an assembly. 
This strategy was used to assemble the gorilla Y chromosome from flow-
sorted data, however, it required manually finding both the abundance 
and Y-mer match thresholds using time-consuming and potentially 
biased guess-and-check approaches.  
 
In this paper, we present an improved and automated tool to isolate Y 
chromosome specific reads (RecoverY). Its main improvement over the 
original strategy proposed in Tomaszkiewicz et al. (2016) is an algorithm 
to automate the choice of the abundance threshold and an automated 
calculation of the Y-mer match threshold. These are executed prior to the 
filtering step of RecoverY. We evaluate the accuracy of these thresholds 
and the effect of the choice of k using simulated data from the human Y. 
Finally, we run RecoverY on the simulated data and on the real flow-
sorted Gorilla Y data. We demonstrate that the resulting assemblies are 
superior to the ones obtained with the alternate approaches of using 
alignment to the female to either pre-filter the reads or post-filter the 
contigs. These improvements also lead to a longer and more contiguous 
assembly of the gorilla Y than using the parameters proposed in 
Tomaszkiewicz et al (2016). RecoverY is open-source and freely 
available on https://github.com/makovalab-psu/RecoverY. 
 
 

 

Fig. 1. Workflow for sequencing and assembly of the Y chromosome with 

RecoverY. Y-enrichment increases the proportion of chromosome Y (in green) as 

compared to autosomes (in red) or chromosome X (in blue). Subsequent sequencing 

results in an increased coverage of Y. Four reads are shown here for illustrative purposes, 

along with their constituent k-mers. Grey cross marks within reads indicate sequencing 

errors, which affect (grey) k-mers overlapping the erroneous base. These error k-mers, 

along with non-Y k-mers, fall mostly to the left of the abundance threshold selected by 
RecoverY, shown by the vertical black dotted line in the histogram. Finally, RecoverY 

identifies as originating from the Y only those reads which have a high number of 

constituent k-mers with an abundance above the threshold. These reads are then used for 

downstream assembly.  

2 Methods 
 
Figure 1 shows the workflow for sequencing and assembling the Y 
chromosome using RecoverY. First, the DNA is enriched for the Y 
chromosome by flow-sorting. Then, it is sequenced using Illumina 
technology, generating what we call fsY reads. Then, RecoverY is run to 
identify Y-specific reads. Finally, these reads are passed downstream to 
the assembler. In the following, we describe the RecoverY method.  
 
To minimize time and memory requirements when running on large 
paired-end data sets, by default each step during the RecoverY process is 
run only on the forward (i.e. left or R1) reads in the data set. Once all the 
Y-specific forward reads are selected by the RecoverY procedure, the 
corresponding reverse (right or R2) reads for these pairs are included in 
the output data set. 
 
The first step of RecoverY is to count the occurrences of different k-mers 
in the fsY reads. This can be performed using any k-mer counting 
software (e.g., BFcounter (Melsted and Pritchard, 2011), Jellyfish 
(Marcais and Kingsford, 2011), KMC3 (Kokot et al 2017), and khmer 
(Crusoe et al 2015)). RecoverY uses DSK v2.0.2 (Rizk et al 2013). As 
most of the very low abundance k-mers are erroneous, we use the 
minimum threshold recommended by DSK (-abundance-min 3) to 
immediately discard these k-mers. This significantly reduced the 
computational resources used by downstream steps.   
 
Next, the user must provide a set of sequences which are expected to 
occur in single copy on the Y chromosome. The k-mers from these 
sequences are called ‘trusted k-mers.’ The counts of trusted k-mers in 
fsY data can act as a proxy for expected counts of Y-chromosome k-
mers, thus aiding in determining the optimal abundance threshold. 
Trusted k-mers can be obtained from the sequence of single-copy Y 
chromosome genes (e.g. X-degenerate genes) from the same species -- 
often, these are known in advance using targeted approaches (Goto et. al. 
2009). Another source of trusted k-mers is from single-copy sequences 
from a well-assembled Y chromosome of a closely related species.  
 
More specifically, RecoverY first loads the result of k-mer counting into 
a dictionary called AllKmerCounts. Next, it creates a TrustedKmer list, 
by extracting all k-mers from the set of provided single-copy Y 
sequences. Subsequently, RecoverY looks up every k-mer from the 
TrustedKmer list in the AllKmerCounts dictionary, and assigns the 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2017. ; https://doi.org/10.1101/148114doi: bioRxiv preprint 

https://doi.org/10.1101/148114
http://creativecommons.org/licenses/by-nc-nd/4.0/


RecoverY 

corresponding abundance from the dictionary to this k-mer. The results 
are stored in a list and the 5th percentile of the abundances in this list are 
calculated. This abundance value is chosen as the abundance threshold.  
 
RecoverY then generates the Y-mer table, which is a dictionary that 
contains all the k-mers in AllKmerCounts whose abundance is above the 
abundance threshold. The idea is that this table contains at least 95% of 
all the sequenced k-mers that originated from the Y. The Y-mer table 
allows an efficient check of whether a given k-mer is abundant. Next, for 
every input read in our data set, we consider its constituent k-mers. If a 
sufficient number of these constituent k-mers are present in the Y-mer 
table, we classify this read as a Y-read.  
 
The minimum number of constituent k-mers, which we will refer to as 
the Y-mer match threshold (YT), depends on read length and error rate. 
RecoverY chooses the Y-mer match threshold automatically using the 

formula YT = 0.4 (𝑙 − 𝑘 + 1 −
2𝑘𝑙

100
). The formula is derived using the 

following logic. A read contains 𝑙 − 𝑘 + 1 k-mers. A single error affects 
up to k k-mers -- that is, these k-mers are no longer in the Y-mer table. 
We aim to recover reads that have at most two errors per 100 bp 
window. We choose this threshold because reads with multiple errors 
will produce k-mers that, even if an error-correction algorithm is later 
used, are unlikely to be very informative for the construction of de 
Bruijn graphs in the downstream assembly process. We also tolerate that 
up to 60% of those k-mers may not be in the Y-mer table, due to 
undersampling. This number was chosen based on our simulation results.   

3 Results 

3.1 Data sets 

We used both simulated and real data to evaluate RecoverY (Table 1). 
Two simulated data sets were generated to test different levels of 
enrichment. We simulated reads from the human reference genome 
(hg38) using the wgsim simulator v0.3.1 from the Samtools package (Li 
et al 2009), with default parameters for autosome sampling -- mutation 
rate 0.1, base error rate 0.02, fraction of indels 0.15 -- and the following 
parameters for X- and Y-sampling: mutation rate 0.0, base error rate 
0.02, fraction of indels 0.0. The settings for mutation rate and fraction of 
indels reflect that the X and Y chromosomes are haploid in a male. For 
the first simulated data set, reads were sampled at 150x, 3x, and 6x 
sequencing depth from the Y, the X, and the autosomes, respectively. 
For the second simulated data set, reads were sampled at 300x, 3x, and 
6x, respectively. These two cases simulate a male genome data set where 
the Y is enriched by 40.57% and 68.06%, respectively (Sup. Note 2). We 
refer to these data sets as human 6A_150Y and human 6A_300Y, 
respectively. In addition, we used a real data set of flow-sorted gorilla Y 
data stored under SRA accession number SRX1160374 (Tomaszkiewicz 
et al 2016).   

Table 1. Simulated and real data sets used to test RecoverY 

Data set Type Read length Total # reads 

Human (6A_150Y)  Simulated 150 bp 143,272,798 

Human (6A_300Y) Simulated 150 bp 170,831,998 

Gorilla fsY Real 150 bp 279,209,084 

    
 

3.2 K-mer abundance threshold estimation  

We first applied RecoverY to select the abundance threshold for the 
simulated and real data sets, using a value of k = 25. We experimented 
with two lists of trusted k-mers. The first, called trusted-gene-kmers, was 
generated from the set of single-copy Y chromosome X-degenerate gene 
sequences of human, retrieved from Ensembl (Table S1). The second, 
called trusted-singleton-kmers, was based on the set of k-mers present in 
single copy in the human reference Y chromosome (hg38). To obtain the 
trusted-singleton-kmers set, these single copy k-mers were further 

filtered by removing k-mers that mapped to the autosomes or the X 
chromosome of the hg38 reference, using the BWA aligner (Li & Durbin 
2009). Such k-mers are removed because they are too similar to non-Y k-
mers and may negatively affect the choice of abundance threshold. 
 
Figure 2 presents the abundance histograms generated by RecoverY, 
which the corresponding distributions shown in Sup. Figure 2. Note that 
the shape of the fsY curve closely follows that of the two trusted k-mer 
distributions except for the low-abundance k-mers, which is consistent 
with the expected effect of sequencing errors. This is the case even for 
the gorilla, despite the trusted k-mers being generated from human 
sequence. For the gorilla data set, RecoverY recommended a threshold of 
71x when using the trusted-gene-kmers set and 111x using the trusted-
singleton-kmers set. When the trusted-gene-kmers and trusted-singleton-
kmers thresholds differ, we recommend choosing the lower of the two 
thresholds to achieve higher sensitivity.  For the human, applying 
RecoverY resulted in a threshold of 31x for the 6A_150Y data set and 
66x for the 6A_300Y data set. These thresholds were the same regardless 
of whether trusted-gene-kmers or trusted-singleton-kmers were used as 
the trusted k-mer set. We note that for the human dataset, using trusted-
singleton-kmers is not a realistic experiment, since the whole human 
assembly was used to construct trusted-singleton-kmers. We include the 
result here only for completeness. 
 
Next, we determined the accuracy of the Y-mer table in identifying Y 
chromosome k-mers, in the two simulated data sets (Table 2). We tested 
the membership of all k-mers in the Y-mer table and in the human Y 
chromosome reference. Table 2 shows that RecoverY correctly identifies 
about 95% of all k-mers on the human Y chromosome reference. Of the 
k-mers from non-Y chromosomes, >99% are classified as such by 
RecoverY. We observe that additional coverage gives the algorithm the 
power to reduce false positives, without a significant effect on the false 
negatives.   
 

Table 2. Accuracy of the Y-mer table in correctly identifying k-mers 
from the Y chromosome.  

Data set Specificity Sensitivity 

Human( 6A_150Y)  99.38 %      95.32 % 

Human (6A_300Y) 99.79 % 94.94% 

   
 
 

3.3 Accuracy of RecoverY in identifying Y-reads  

 
Next, we measured the accuracy of RecoverY at classifying reads' origin. 
Figure 3 shows that for every read, the number of its constituent k-mers 
that appear in the Y-mer table can be used to separate Y-origin reads 
(reads simulated from a Y location) from non-Y reads. However, there is 
some overlap of the two histograms, which naturally leads to 
classification errors. We measured the sensitivity as the percentage of Y-
origin reads that satisfy the Y-mer match threshold. The specificity is the 
percentage of non-Y reads that do not satisfy the Y-mer match threshold. 
Figure 4 shows the tradeoff in accuracy when varying Y-mer match 
thresholds are used. Using a cutoff of 20, as suggested by our Y-mer 
match threshold formula, RecoverY achieves a sensitivity of 0.98 and a 
specificity of 0.83 for the 6A_300Y data set and a sensitivity of 0.98 and 
a specificity of 0.81 for the 6A_150Y data set. Notice that for high 
sensitivity values, higher coverage leads to a better specificity for the 
same sensitivity.  
 
We also investigated the source of false negative reads. A manual 
inspection (Sup. Note 1, Sup. Figure 1) suggests that the major source 
are reads with multiple sequencing errors. Among the constituent k-mers 
of such reads, there is a large number of very low-abundance error k-
mers. These error k-mers are not in the Y-mer table, and such reads will 
be mistakenly classified as non-Y.  
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Fig. 2. K-mer abundances in the gorilla flow-sorted Y real data (panel A), human 

male simulated data at 150x sequencing depth of the Y (6A_150Y) (panel B), and 

human male simulated data at 300x sequencing depth of the Y (6A_300Y) (panel C). 

The blue k-mers show the abundance histogram of k-mers from all the reads. We used a 

random subsample of 10% of the k-mers, effectively lowering the height of the blue curve 

ten-fold and making its shape visually comparable to the other curves. The green 

(respectively, red) curve shows the abundance histogram of k-mers in the dataset based on 

unique regions (respectively, single-copy genes). The threshold found by RecoverY using 

trusted-gene-kmers is shown as a dotted black vertical line. The threshold found when 
using trusted-singleton-kmers is the same in the case of the simulated data, but is shown 

as a dotted grey vertical line for the gorilla. The same data plotted as a distribution, 

instead of a heuristic, is shown in Sup. Figure 2. 

 

 
 
 

 
 

 
 
 

Fig. 3. Ability of RecoverY to identify read origin.  

A histogram showing the numbers of reads according to their number of constituent k-
mers in the Y-table. Panel A shows the 6A_300Y data set and panel B shows the 

6A_150Y data set. The dotted black vertical line indicates the Y-mer match threshold 

chosen by RecoverY's formula (20). Note that the first bar at x = 0 has been vertically cut 

off in the plot but has the number of reads as 49,040 for 6A_300Y and 56,935 for 

6A_150Y. The spikes at x=51, 76, 101 and 126 represent reads with 3, 2, 1 and 0 single 

base pair errors, respectively. Each plot is generated for a random subsample of 100,000 

forward reads. 

 

 

 

Fig. 4. Receiver operating characteristic (ROC) plot with varying Y-mer match 

threshold (YT). For the same subsample of reads as used for Figure 3B, we show 

sensitivity and specificity for correctly identifying reads from the Y, across different YT 

values (intervals of 10).  
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3.4 Effect of varying k-mer size on classification of Y-reads  

In bioinformatics applications, the k-mer size is often a parameter that 
has to be estimated by trial and error. Choosing a large k ensures a higher 
proportion of unique k-mers in the data set at the cost of a higher 
probability of a k-mer containing an error. Conversely, choosing a too 
short k results in many repeated k-mers in the data set. We tested 
different k-mer lengths and constructed ROC curves for the human 
6A_150Y data set (Figure 5). For each value of k, the abundance 
threshold was chosen by RecoverY and Y-mer match threshold was 
varied from 10 to 120 in increments of 10.  The plot shows that with 
higher values of k, a better specificity can be achieved for a fixed 
sensitivity. However, higher values of k (k > 31) make it impossible to 
achieve high sensitivity values even at very low Y-mer match thresholds 
(YT = 10). Based on these results, the optimal choice of k for applying 
RecoverY on mammalian Y chromosomes, with similar levels of 
coverage and enrichment, is between 21 and 31. 
 
 
 
 

 

Fig. 5. ROC plot with varying k-mer size. For the same subsample of 6A_150Y reads 

as used for Figure 3, the k-mer size was varied from k = 21 (red) to k = 101 (violet). The 

abundance thresholds as generated by RecoverY were 35 (k=21), 31 (k=25), 25 (k=31), 18 
(k=41), 9 (k=61), 4 (k=81) and 4 (k=101). Within each colored line, solid point markers 

represent increasing Y-mer match thresholds from 10 (top right) up to a maximum 

threshold of 120 (bottom left), in stepwise increments of 10.  

3.5 Effect of RecoverY on assembly 

We compare the effect of RecoverY on downstream assembly quality 
against two alternate approaches. The first assembly, called 
PreFiltReads, is generated by assembling only those reads which remain 
unmapped to a repeat-masked female reference genome (hg38 minus the 
Y chromosome). RepeatMasker version open-4-0-3 was used with -s 
sensitive setting. BWA-MEM v0.7.5a (Li H. 2013) was used for read 
mapping, with default parameters (seed length 19, mismatch penalty 4, 
and gap open penalty of 6). The second assembly, PostFiltCtgs, is 
generated by assembling all reads but retaining only those contigs which 
remain unmapped to a repeat-masked hg38 female genome. For 
alignment of contigs, BLASR (Chaisson and Tesler 2012) was used with 
default parameters (min. seed length 12, mismatch penalty 6), and the -
unaligned option to collect unaligned contigs. Among the various short 
read assemblers, we chose the SPAdes assembler for its ability to deal 
with uneven coverage profiles (Bankevich et al. 2012). We use SPAdes 
version 3.6.1 with the following parameters: --only-assembler and -k 21, 
33, 55. Note that the k-mer size used in RecoverY is an independent 
parameter to the k-mer sizes used for assembly and both values might 
differ widely, depending on the data set. We also used Discovar 
assembler version r52488 (Weisenfeld et al. 2014) to replicate our 
conclusions on real data. Because it did not perform as well as SPAdes, 
we only used SPAdes for the simulated data. Soapdenovo2 (Luo et al 
2012) or Minia (Chikhi et al 2013) or other assemblers could also be 
tried, though we did not test them on our datasets. 

 
To evaluate the assemblies, we use the standard QUAST tool v3.1 
(Gurevich et al 2013), which reports contiguity and quality metrics. It 
defines the NG50 (respectively, N50) as the length at which contigs of 
size longer or equal to that length sum to up at least half of the reference 
(respectively, assembly) length. It defines a misassembly as a position in 
a contig where flanking sequences do not align concordantly to the 
reference (in this case, the hg38 human Y chromosome). The number of 
mismatches per 100 kb is defined as the number of single-nucleotide 
mismatches between contigs and the reference, including SNPs and 
sequencing errors. Because SPAdes produces a very large number of 
small contigs, we filter out all contigs shorter than 1000 bp using the 
QUAST parameter: --min-contig 1000.  
 
Table 3. Comparison of different assembly strategies on simulated 
human reads (6A_150Y). 

Methods PreFiltReads PostFiltCtgs RecoverY 

Num. read pairs used 2,092,460 71,636,399 19,549,390  
Assembly length 5.3 Mb 0.51 Mb 21.85 Mb 
Contig N50 2.77 kb 35.60 kb 12.41 kb 
Num. contigs 2191 39  4282 
Num. misassemblies 189 1  9 
#Mismatches per 100 kbp 686 31  56 
Assembly time 3 hr 14 min 243 hr 32 min 64 hr 07 min 
Maximum memory used 71 G 568 G 153 G 

 
Table 3 compares the PreFiltReads and PostFiltCtgs assemblies against 
the one produced by assembling the RecoverY filtered reads, on the 
6A_150Y dataset. Pre-filtering of reads significantly reduces the size of 
the data set input to the assembler, thus improving run time and memory 
usage. However, the assembly is much smaller than expected (~25 Mb, 
according to the known euchromatic length of the reference hg38 human 
Y assembly) (Skaletsky et al 2003). Additionally, it exhibits low N50, 
along with significant number of misassemblies and mismatches. Post-
filtering of contigs produces an assembly that is only a tiny fraction (2%) 
of the expected size. Compared to these strategies, RecoverY works best. 
It achieves the largest assembly by far, with relatively few misassemblies 
and mismatches. Its N50 is five times higher than the N50 with the pre-
filtering strategy, though at the expense of memory usage and speed. 
 

     

Table 4: SPAdes gorilla Y assembly using the preliminary RecoverY 

strategy from Tomaszkiewicz et al. (2016) vs. the one proposed in this 

paper. 
 

Methods Tomaszkiewicz et al. This Paper 

Number of Y-read pairs 122,850,054 125,485,506 
Assembly length 18.68 Mb 24.86 Mb 
Contig NG50 (G=23Mb) 9.40 Kb 11.26 Kb 
Num. of contigs 3319 6685 
Assembly time 127 hr 46 min 124 hr 07 min 
Maximum memory used 152 Gb 131 Gb 

 
  
Table 5. Discovar gorilla Y assembly using the preliminary RecoverY 
strategy from Tomaszkiewicz et al.  (2016) vs. the one proposed in this 
paper. 

Methods Tomaszkiewicz et al. This Paper 

Number of Y-read pairs 122,850,054 125,485,506 
Assembly length 5.57 Mb 8.34 Mb 
Contig NG50 (G=8.34M) 1489 bp 2124 bp 
Num. of contigs 2655 3917 
Assembly time 3 hr 25 min 3 hr 45 min 
Maximum memory used 278.33 Gb 281.51 Gb 

 
We also evaluated the improvement in assembly due to the new version 
of RecoverY as compared to the preliminary strategy used while 
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assembling the draft gorilla Y chromosome (Tomaszkiewicz et al. 2016). 
Both versions of RecoverY were run on the gorilla fsY data set (Table 
1), followed by SPAdes. For the preliminary RecoverY version, we used 
the parameters described in Tomaszkiewicz et al. (2016): Y-mer match 
threshold of 50 and abundance threshold of 100. For the new version, 
RecoverY selected an abundance threshold of 71 (Figure 2A) and a Y-
mer match threshold of 20.  
 
Table 4 shows that the improvements resulted in a 33% improvement in 
assembly size and a 20% improvement in the NG50. To evaluate the 
reproducibility of our findings, we repeated the experiment using the 
Discovar assembler version r52488 (Weisenfeld et al. 2014) in place of 
SPAdes (Table 5). While the absolute quality of the assembly was lower 
for Discovar, the relative performance of the new RecoverY to its 
preliminary version remained the same. 
 
We also compare the performance of RecoverY against a non-
enrichment based approach which simply sequences a male genome, 
assembles it, and then flags contigs that do not align to the female as 
being putatively from the Y (Sup. Note 3). The cumulative length of 
these Y-contigs is 1.51 MB with an N50 of 1895 bp (Sup. Note 3), which 
is an order of magnitude lower than the results from the RecoverY 
enrichment approach. Further, because this method relies on sequence 
matching and not on k-mer counts, it might fail to retrieve regions that 
show homology to the female autosomes or the X chromosome (e.g. 
pseudo-autosomal region and X-transposed regions). 

3.6 Speed and memory performance 

We measured the runtime and memory usage of DSK k-mer counting, 
RecoverY after DSK, and the downstream assembly, in all of our 
datasets (Table 6). We ran our experiments on a x86_64 system with up 
to 64 available AMD Opteron 6276 processors and 512 GB available 
memory. Using 8 processors, the run time of DSK and RecoverY is 
approximately 4 hours for each of the data sets. This is only about 3-5% 
of the cumulative times that include assembly. RecoverY’s memory 
usage, as well, is less than half of what the SPAdes assembler uses. 
 
A major component in the performance improvement provided by 
RecoverY in comparison to male whole-genome assembly based 
approaches is due to reduction in k-mer search space. For example, the 
raw reads that are k-merized in the full gorilla fsY data set result in a k-
mer table of approximately 15 GB of space. However, after the 
abundance threshold is selected and the "contaminant" k-mers are 
discarded, the new Y-mer table contains only ~500 MB of k-mers. This 
represents a reduction in the k-mer search space by about 97%.  
 
 
Table 6. Runtime and memory usage of the different stages of 
RecoverY (with 8 processors). RecoverY total times are separated into 
DSK k-mer counting and post counting.  

Stage 6A_150Y 6A_300Y Gorilla FsY 

 Time Mem. 
(GB) 

Time Mem. 
(GB) 

Time Mem. 
(GB) 

DSK 
processing 

0h 37m 4.5 1h 18m 5.1 0h 40m 6.9  

RecoverY 
(post DSK) 

2 h 36 m 59.1 3h 05m 63.3 2h 58m 29.2 

SPAdes 
assembly 

64h 07m 153 83h 29m 208 124h 07m 131 

Cumulative 67h 20m N/A  87h 52m N/A 127h 45m N/A 

4 Discussion  
In this paper, we present a method for the identification of Y-specific 
reads from chromosome flow-sorted data. It builds on the previous 
strategy of Tomaszkiewicz (2016) by automatically selecting the 
abundance level at which a k-mer is deemed to originate from the Y. The 
major benefit of RecoverY is that it removes non-Y reads which 
otherwise would confound a genome assembler. Additionally, it reduces 

the size of the data set provided to the assembler, thus speeding up the 
assembly process and reducing memory requirements. Our tests indicate 
that RecoverY is a drastic improvement over two other alternate filtering 
strategies, as well as over the preliminary version in Tomaszkiewicz 
(2016). 
 
The main methodological novelty of RecoverY is the method of using 
trusted k-mers to automate the selection of the abundance threshold. To 
the best of our knowledge, this is the first application of trusted k-mers 
to parameter selection for de novo assembly projects. In many other 
tools, parameter selection is often an afterthought, resulting in low-
quality results. We demonstrated the power of using trusted k-mers to 
choose the threshold by showing that the resulting assembly is 33% 
larger and has 20% higher NG50 than the one generated without the use 
of trusted k-mers. The notion of trusted k-mers has the potential to affect 
bioinformatics tools more broadly, e.g. trusted k-mers could potentially 
be used in de novo assembly, read error correction, metagenomic 
analysis, or index creation for sequencing databases. They can also 
potentially be used to find contaminants in an enriched dataset. 
 
RecoverY is designed to sacrifice specificity to achieve high sensitivity, 
in terms of classifying read origin. The downstream cost of mistakenly 
classifying a non-Y read as coming from the Y is not high -- these reads 
tend to be scattered across the genome and contribute to very short 
contigs during assembly. Such short contigs are usually anyway removed 
at later stages. On the other hand, mistakenly classifying a Y-origin read 
as non-Y may have the effect of breaking an otherwise long contig 
during assembly. Our choice of Y-mer match threshold is therefore 
designed with this in mind, as illustrated by Figures 3 and 4. In situations 
where specificity is nevertheless preferred over sensitivity, the user may 
adapt the thresholds to better suit their needs. 
 
An extension of RecoverY can be applied as a binary classifier on any 
data set to isolate an enriched chromosome of interest. Further 
improvements in the future include improving the specificity of the 
method by probabilistic weighting of k-mers while comparing to the Y-
mer table. An extension of RecoverY to PacBio data is also a direction of 
future work. Further improvements to the run time of RecoverY are 
likely possible by re-implementing the codebase in a lower-level 
language such as C/C++. 
 
RecoverY requires some known Y single-copy sequences to choose the 
abundance threshold. This information might be available prior to de 
novo assembly, but sequence-composition agnostic approaches are also 
possible. For instance, the abundance threshold could be selected by 
fitting a statistical model to the histogram, similar to the approach used 
by KmerGenie (Chikhi and Medvedev 2014). A threshold can also be 
chosen using a formula based on the enrichment levels and expected 
error rates. We leave these approaches to future work. 
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