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Abstract

Motivation: The haploid mammalian Y chromosome is usually under-represented in genome assemblies due to
high repeat content and low depth due to its haploid nature. One strategy to ameliorate the low coverage of Y
sequences is to experimentally enrich Y-specific material before assembly. Since the enrichment process is
imperfect, algorithms are needed to identify putative Y -specific reads prior to downstream assembly. A strategy
that uses k-mer abundances to identify such reads was used to assemble the gorilla Y (Tomaszkiewicz et al
2016). However, the strategy required the manual setting of key parameters, a time-consuming process leading
to sub-optimal assemblies.

Results:

We develop a method, RecoverY, that selects Y-specific reads by automatically choosing the abundance level
at which a k-mer is deemed to originate from the Y. This algorithm uses prior knowledge about the Y
chromosome of a related species or known Y transcript sequences. We evaluate RecoverY on both simulated
and real data, for human and gorilla, and investigate its robustness to important parameters. We show that
RecoverY leads to a vastly superior assembly compared to alternate strategies of filtering the reads or contigs.
Compared to the preliminary strategy used in Tomaszkiewicz et al (2016), we achieve a 33% improvement in
assembly size and a 20% improvement in the NG50, demonstrating the power of automatic parameter selection.

Availability: Our tool RecoverY is freely available at https://github.com/makovalab-psu/RecoverY
Contact: kmakova@bx.psu.edu, pashadag@cse.psu.edu
Supplementary information: Attached as an additional file.

technique which was used to generate assemblies of the human
(Skaletsky et al 2003), chimpanzee (Hughes et al 2010), rhesus macaque
(Hughes et al 2012), and mouse Y chromosomes (Soh et al 2014). While
SHIMS remains a highly accurate technique, it is cost- and time-
prohibitive for most projects. Alternatively, deep NGS sequencing of a

1 Introduction

The haploid mammalian Y chromosome reference sequence is often not
properly assembled as part of large next generation sequencing (NGS)
projects, for several reasons. The Y is absent from the female and only
present in one copy in the male. Therefore, to obtain the desired
sequencing depth, twice as much sequencing needs to be performed.
Further, the presence of repeat families shared with the autosomes and
the presence of regions with high homology to the X chromosome
complicate the identification and assembly of the non-unique regions of
the Y (reviewed in Tomaszkiewicz et al 2017).

There are several targeted approaches for assembling the Y. Single-
haplotype iterative mapping and sequencing (SHIMS) is a BAC-based

male can produce an assembly that includes Y chromosome sequence.
The challenge in this case is to identify which of the contigs originate
from the Y. Contigs that do not align to the female assembly of the same
species (if available) can be flagged as coming from the Y. Alternatively,
the reads can be filtered using such alignments prior to assembly.
However, such approaches are deficient at identifying Y sequence that
has homology to the X, such as the pseudo-autosomal regions, or to the
autosomes, such as the DAZ gene region (Saxena et al 2000).

Because of the different copy count in males (XY) vs females (XX),
male-specific sequences can also be identified based on the number of
reads aligning to them (i.e. their sequencing depth). Sequencing both a
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male and female of a species and comparing the read depth along the
male assembly can help identify Y contigs. Methods based on this
approach include the Y chromosome genome scan (Carvalho and Clark
2013) and the chromosome quotient method (Hall et al 2013). Such
approaches still require sequencing the male at high-depth and additional
sequencing of the female. Moreover, they may still mis-classify high-
copy transposable elements and other high-copy number regions shared
with the X or autosomes.

In order to decrease the cost of sequencing, experimental techniques
have been developed to increase the amount of Y chromosome material
present in the sample. This process of chromosome-specific enrichment
can be achieved by the experimental techniques of flow sorting (Dolezel
et al 2012) or microdissection (Zhou and Hu, 2007). In particular, flow
sorting is a separation process by which a chromosome of interest can be
separated using its size and AT/GC ratio (Dolezel et al 2012). Flow
sorting has been applied prior to sequencing and assembly of the Gorilla
Y (Tomaszkiewicz et al 2016) and the pig sex chromosomes (Skinner et
al 2016).

Although flow sorting increases the amount of Y chromosome data,
there still remains a significant amount of non-Y sequence in the sample.
This may originate from debris from large chromosomes, or from
chromosomes that have similar size and GC content to the Y (e.g.
chromosomes 21 and 22 in the human and great apes). Consequently, the
read data will consist of genome-wide reads with an enrichment for Y
reads at a level dictated by the efficiency of flow sorting. This non-
specificity must then be removed from the data, either before or after
assembly. This can be accomplished by aligning the reads or the contigs
against a known female assembly, as described above for deep NGS
male sequencing. However, as already mentioned, such strategies require
a female reference and are inefficient in retaining regions with high
homology to the X chromosome and autosomes.

An alternative strategy of isolating Y-specific reads was originally
proposed by our group in Tomaszkiewicz et al. (2016). This is an
alignment-free strategy that uses k-mer (substring of length k) coverage
as a discriminator to identify reads originating from the Y. The
underlying principle is that, in the case of an enriched data set, k-mers
originating from the Y chromosome occur at a higher abundance than
non-repetitive k-mers from elsewhere in the genome. K-mers that have
an abundance above a user-selected threshold are selected as Y-mers (Y-
specific k-mers). Subsequently, reads that contain a number of Y-mers
above a user-defined threshold (i.e. the Y-mer match threshold) are
identified as originating from the Y and used to perform an assembly.
This strategy was used to assemble the gorilla'Y chromosome from flow-
sorted data, however, it required manually finding both the abundance
and Y-mer match thresholds using time-consuming and potentially
biased guess-and-check approaches.

In this paper, we present an improved and automated tool to isolate Y
chromosome specific reads (RecoverY). Its main improvement over the
original strategy proposed in Tomaszkiewicz et al. (2016) is an algorithm
to automate the choice of the abundance threshold and an automated
calculation of the Y-mer match threshold. These are executed prior to the
filtering step of RecoverY. We evaluate the accuracy of these thresholds
and the effect of the choice of k using simulated data from the human Y.
Finally, we run RecoverY on the simulated data and on the real flow-
sorted Gorilla Y data. We demonstrate that the resulting assemblies are
superior to the ones obtained with the alternate approaches of using
alignment to the female to either pre-filter the reads or post-filter the
contigs. These improvements also lead to a longer and more contiguous
assembly of the gorilla Y than using the parameters proposed in
Tomaszkiewicz et al (2016). RecoverY is open-source and freely
available on https://github.com/makovalab-psu/RecoverY.
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Fig. 1. Workflow for sequencing and assembly of the Y chromosome with
RecoverY. Y-enrichment increases the proportion of chromosome Y (in green) as
compared to autosomes (in red) or chromosome X (in blue). Subsequent sequencing
results in an increased coverage of Y. Four reads are shown here for illustrative purposes,
along with their constituent k-mers. Grey cross marks within reads indicate sequencing
errors, which affect (grey) k-mers overlapping the erroneous base. These error k-mers,
along with non-Y k-mers, fall mostly to the left of the abundance threshold selected by
RecoverY, shown by the vertical black dotted line in the histogram. Finally, RecoverY
identifies as originating from the Y only those reads which have a high number of
constituent k-mers with an abundance above the threshold. These reads are then used for
downstream assembly.

2 Methods

Figure 1 shows the workflow for sequencing and assembling the Y
chromosome using RecoverY. First, the DNA is enriched for the Y
chromosome by flow-sorting. Then, it is sequenced using Illumina
technology, generating what we call fsY reads. Then, RecoverY is run to
identify Y -specific reads. Finally, these reads are passed downstream to
the assembler. In the following, we describe the RecoverY method.

To minimize time and memory requirements when running on large
paired-end data sets, by default each step during the RecoverY process is
run only on the forward (i.e. left or R1) reads in the data set. Once all the
Y-specific forward reads are selected by the RecoverY procedure, the
corresponding reverse (right or R2) reads for these pairs are included in
the output data set.

The first step of RecoverY is to count the occurrences of different k-mers
in the fsY reads. This can be performed using any k-mer counting
software (e.g., BFcounter (Melsted and Pritchard, 2011), Jellyfish
(Marcais and Kingsford, 2011), KMC3 (Kokot et al 2017), and khmer
(Crusoe et al 2015)). RecoverY uses DSK v2.0.2 (Rizk et al 2013). As
most of the very low abundance k-mers are erroneous, we use the
minimum threshold recommended by DSK (-abundance-min 3) to
immediately discard these k-mers. This significantly reduced the
computational resources used by downstream steps.

Next, the user must provide a set of sequences which are expected to
occur in single copy on the Y chromosome. The k-mers from these
sequences are called ‘trusted k-mers.” The counts of trusted k-mers in
fsY data can act as a proxy for expected counts of Y-chromosome k-
mers, thus aiding in determining the optimal abundance threshold.
Trusted k-mers can be obtained from the sequence of single-copy Y
chromosome genes (e.g. X-degenerate genes) from the same species --
often, these are known in advance using targeted approaches (Goto et. al.
2009). Another source of trusted k-mers is from single-copy sequences
from a well-assembled Y chromosome of a closely related species.

More specifically, RecoverY first loads the result of k-mer counting into
a dictionary called AllKmerCounts. Next, it creates a TrustedKmer list,
by extracting all k-mers from the set of provided single-copy Y
sequences. Subsequently, RecoverY looks up every k-mer from the
TrustedKmer list in the AllKmerCounts dictionary, and assigns the
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corresponding abundance from the dictionary to this k-mer. The results
are stored in a list and the 5th percentile of the abundances in this list are
calculated. This abundance value is chosen as the abundance threshold.

RecoverY then generates the Y-mer table, which is a dictionary that
contains all the k-mers in AllKmerCounts whose abundance is above the
abundance threshold. The idea is that this table contains at least 95% of
all the sequenced k-mers that originated from the Y. The Y-mer table
allows an efficient check of whether a given k-mer is abundant. Next, for
every input read in our data set, we consider its constituent k-mers. If a
sufficient number of these constituent k-mers are present in the Y-mer
table, we classify this read asa Y-read.

The minimum number of constituent k-mers, which we will refer to as
the Y-mer match threshold (Y+), depends on read length and error rate.
RecoverY chooses the Y-mer match threshold automatically using the
formula Yr=04(l—-k+1 —% . The formula is derived using the
following logic. A read contains [ — k + 1 k-mers. A single error affects
up to k k-mers -- that is, these k-mers are no longer in the Y-mer table.
We aim to recover reads that have at most two errors per 100 bp
window. We choose this threshold because reads with multiple errors
will produce k-mers that, even if an error-correction algorithm is later
used, are unlikely to be very informative for the construction of de
Bruijn graphs in the downstream assembly process. We also tolerate that
up to 60% of those k-mers may not be in the Y-mer table, due to
undersampling. This number was chosen based on our simulation results.

3 Results

3.1 Data sets

We used both simulated and real data to evaluate RecoverY (Table 1).
Two simulated data sets were generated to test different levels of
enrichment. We simulated reads from the human reference genome
(hg38) using the wgsim simulator v0.3.1 from the Samtools package (Li
et al 2009), with default parameters for autosome sampling -- mutation
rate 0.1, base error rate 0.02, fraction of indels 0.15 -- and the following
parameters for X- and Y-sampling: mutation rate 0.0, base error rate
0.02, fraction of indels 0.0. The settings for mutation rate and fraction of
indels reflect that the X and Y chromosomes are haploid in a male. For
the first simulated data set, reads were sampled at 150x, 3x, and 6x
sequencing depth from the Y, the X, and the autosomes, respectively.
For the second simulated data set, reads were sampled at 300x, 3x, and
6Xx, respectively. These two cases simulate a male genome data set where
the Y isenriched by 40.57% and 68.06%, respectively (Sup. Note 2). We
refer to these data sets as human 6A_150Y and human 6A_300Y,
respectively. In addition, we used a real data set of flow-sorted gorilla Y
data stored under SRA accession number SRX1160374 (Tomaszkiewicz
et al 2016).

Table 1. Simulated and real data sets used to test RecoverY

Data set Type Read length Total # reads
Human (6A_150Y)  Simulated 150 bp 143,272,798
Human (6A_300Y)  Simulated 150 bp 170,831,998
Gorilla fsY Real 150 bp 279,209,084

3.2 K-mer abundance threshold estimation

We first applied RecoverY to select the abundance threshold for the
simulated and real data sets, using a value of k = 25. We experimented
with two lists of trusted k-mers. The first, called trusted-gene-kmers, was
generated from the set of single-copy Y chromosome X-degenerate gene
sequences of human, retrieved from Ensembl (Table S1). The second,
called trusted-singleton-kmers, was based on the set of k-mers present in
single copy in the human reference Y chromosome (hg38). To obtain the
trusted-singleton-kmers set, these single copy k-mers were further

filtered by removing k-mers that mapped to the autosomes or the X
chromosome of the hg38 reference, using the BWA aligner (Li & Durbin
2009). Such k-mers are removed because they are too similar to non-Y k-
mers and may negatively affect the choice of abundance threshold.

Figure 2 presents the abundance histograms generated by RecoverY,
which the corresponding distributions shown in Sup. Figure 2. Note that
the shape of the fsY curve closely follows that of the two trusted k-mer
distributions except for the low-abundance k-mers, which is consistent
with the expected effect of sequencing errors. This is the case even for
the gorilla, despite the trusted k-mers being generated from human
sequence. For the gorilla data set, RecoverY recommended a threshold of
71x when using the trusted-gene-kmers set and 111x using the trusted-
singleton-kmers set. When the trusted-gene-kmers and trusted-singleton-
kmers thresholds differ, we recommend choosing the lower of the two
thresholds to achieve higher sensitivity. For the human, applying
RecoverY resulted in a threshold of 31x for the 6A_150Y data set and
66x for the 6A_300Y data set. These thresholds were the same regardless
of whether trusted-gene-kmers or trusted-singleton-kmers were used as
the trusted k-mer set. We note that for the human dataset, using trusted-
singleton-kmers is not a realistic experiment, since the whole human
assembly was used to construct trusted-singleton-kmers. We include the
result here only for completeness.

Next, we determined the accuracy of the Y-mer table in identifying Y
chromosome k-mers, in the two simulated data sets (Table 2). We tested
the membership of all k-mers in the Y-mer table and in the human Y
chromosome reference. Table 2 shows that RecoverY correctly identifies
about 95% of all k-mers on the human Y chromosome reference. Of the
k-mers from non-Y chromosomes, >99% are classified as such by
RecoverY. We observe that additional coverage gives the algorithm the
power to reduce false positives, without a significant effect on the false
negatives.

Table 2. Accuracy of the Y-mer table in correctly identifying k-mers
fromthe Y chromosome.

Data set Specificity Sensitivity
Human( 6A_150Y) 99.38 % 95.32 %
Human (6A_300Y) 99.79 % 94.94%

3.3 Accuracy of RecoverY in identifying Y-reads

Next, we measured the accuracy of RecoverY at classifying reads' origin.
Figure 3 shows that for every read, the number of its constituent k-mers
that appear in the Y-mer table can be used to separate Y-origin reads
(reads simulated from a Y location) from non-Y reads. However, there is
some overlap of the two histograms, which naturally leads to
classification errors. We measured the sensitivity as the percentage of Y-
origin reads that satisfy the Y-mer match threshold. The specificity is the
percentage of non-Y reads that do not satisfy the Y-mer match threshold.
Figure 4 shows the tradeoff in accuracy when varying Y-mer match
thresholds are used. Using a cutoff of 20, as suggested by our Y-mer
match threshold formula, RecoverY achieves a sensitivity of 0.98 and a
specificity of 0.83 for the 6A_300Y data set and a sensitivity of 0.98 and
a specificity of 0.81 for the 6A_150Y data set. Notice that for high
sensitivity values, higher coverage leads to a better specificity for the
same sensitivity.

We also investigated the source of false negative reads. A manual
inspection (Sup. Note 1, Sup. Figure 1) suggests that the major source
are reads with multiple sequencing errors. Among the constituent k-mers
of such reads, there is a large number of very low-abundance error k-
mers. These error k-mers are not in the Y-mer table, and such reads will
be mistakenly classified as non-Y.
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Fig. 2. K-mer abundances in the gorilla flow-sorted Y real data (panel A), human
male simulated data at 150x sequencing depth of the Y (6A_150Y) (panel B), and
human male simulated data at 300x sequencing depth of the Y (6A_300Y) (panel C).
The blue k-mers show the abundance histogram of k-mers from all the reads. We used a
random subsample of 10% of the k-mers, effectively lowering the height of the blue curve
ten-fold and making its shape visually comparable to the other curves. The green
(respectively, red) curve shows the abundance histogram of k-mers in the dataset based on
unique regions (respectively, single-copy genes). The threshold found by RecoverY using
trusted-gene-kmers is shown as a dotted black vertical line. The threshold found when
using trusted-singleton-kmers is the same in the case of the simulated data, but is shown
as a dotted grey vertical line for the gorilla. The same data plotted as a distribution,
instead of a heuristic, is shown in Sup. Figure 2.
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Fig. 3. Ability of RecoverY to identify read origin.

A histogram showing the numbers of reads according to their number of constituent k-
mers in the Y-table. Panel A shows the 6A 300Y data set and panel B shows the
6A_150Y data set. The dotted black vertical line indicates the Y-mer match threshold
chosen by RecoverY's formula (20). Note that the first bar at x = 0 has been vertically cut
off in the plot but has the number of reads as 49,040 for 6A_300Y and 56,935 for
6A_150Y. The spikes at x=51, 76, 101 and 126 represent reads with 3, 2, 1 and 0 single
base pair errors, respectively. Each plot is generated for a random subsample of 100,000
forward reads.
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Fig. 4. Receiver operating characteristic (ROC) plot with varying Y-mer match
threshold (Y+). For the same subsample of reads as used for Figure 3B, we show
sensitivity and specificity for correctly identifying reads from the Y, across different Yt
values (intervals of 10).
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3.4 Effect of varying k-mer size on classification of Y-reads

In bioinformatics applications, the k-mer size is often a parameter that
has to be estimated by trial and error. Choosing a large k ensures a higher
proportion of unique k-mers in the data set at the cost of a higher
probability of a k-mer containing an error. Conversely, choosing a too
short k results in many repeated k-mers in the data set. We tested
different k-mer lengths and constructed ROC curves for the human
6A_150Y data set (Figure 5). For each value of k, the abundance
threshold was chosen by RecoverY and Y-mer match threshold was
varied from 10 to 120 in increments of 10. The plot shows that with
higher values of k, a better specificity can be achieved for a fixed
sensitivity. However, higher values of k (k > 31) make it impossible to
achieve high sensitivity values even at very low Y-mer match thresholds
(Y1 = 10). Based on these results, the optimal choice of k for applying
RecoverY on mammalian Y chromosomes, with similar levels of
coverage and enrichment, is between 21 and 31.
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Fig. 5. ROC plot with varying k-mer size. For the same subsample of 6A_150Y reads
as used for Figure 3, the k-mer size was varied from k = 21 (red) to k = 101 (violet). The
abundance thresholds as generated by RecoverY were 35 (k=21), 31 (k=25), 25 (k=31), 18
(k=41), 9 (k=61), 4 (k=81) and 4 (k=101). Within each colored line, solid point markers
represent increasing Y-mer match thresholds from 10 (top right) up to a maximum
threshold of 120 (bottom left), in stepwise increments of 10.

3.5 Effect of RecoverY on assembly

We compare the effect of RecoverY on downstream assembly quality
against two alternate approaches. The first assembly, called
PreFiltReads, is generated by assembling only those reads which remain
unmapped to a repeat-masked female reference genome (hg38 minus the
Y chromosome). RepeatMasker version open-4-0-3 was used with -s
sensitive setting. BWA-MEM v0.7.5a (Li H. 2013) was used for read
mapping, with default parameters (seed length 19, mismatch penalty 4,
and gap open penalty of 6). The second assembly, PostFiltCtgs, is
generated by assembling all reads but retaining only those contigs which
remain unmapped to a repeat-masked hg38 female genome. For
alignment of contigs, BLASR (Chaisson and Tesler 2012) was used with
default parameters (min. seed length 12, mismatch penalty 6), and the -
unaligned option to collect unaligned contigs. Among the various short
read assemblers, we chose the SPAdes assembler for its ability to deal
with uneven coverage profiles (Bankevich et al. 2012). We use SPAdes
version 3.6.1 with the following parameters: --only-assembler and -k 21,
33, 55. Note that the k-mer size used in RecoverY is an independent
parameter to the k-mer sizes used for assembly and both values might
differ widely, depending on the data set. We also used Discovar
assembler version r52488 (Weisenfeld et al. 2014) to replicate our
conclusions on real data. Because it did not perform as well as SPAdes,
we only used SPAdes for the simulated data. Soapdenovo2 (Luo et al
2012) or Minia (Chikhi et al 2013) or other assemblers could also be
tried, though we did not test them on our datasets.

To evaluate the assemblies, we use the standard QUAST tool v3.1
(Gurevich et al 2013), which reports contiguity and quality metrics. It
defines the NG50 (respectively, N50) as the length at which contigs of
size longer or equal to that length sum to up at least half of the reference
(respectively, assembly) length. It defines a misassembly as a position in
a contig where flanking sequences do not align concordantly to the
reference (in this case, the hg38 human Y chromosome). The number of
mismatches per 100 kb is defined as the number of single-nucleotide
mismatches between contigs and the reference, including SNPs and
sequencing errors. Because SPAdes produces a very large number of
small contigs, we filter out all contigs shorter than 1000 bp using the
QUAST parameter: --min-contig 1000.

Table 3. Comparison of different assembly strategies on simulated
human reads (6A _150Y).

Methods PreFiltReads  PostFiltCtgs RecoverY
Num. read pairs used 2,092,460 71,636,399 19,549,390
Assembly length 5.3 Mb 0.51 Mb 21.85 Mb
Contig N50 2.77 kb 35.60 kb 12.41 kb
Num. contigs 2191 39 4282
Num. misassemblies 189 1 9
#Mismatches per 100 kbp 686 31 56
Assembly time 3hr14 min 243 hr32 min 64 hr 07 min
Maximum memory used 71G 568 G 153G

Table 3 compares the PreFiltReads and PostFiltCtgs assemblies against
the one produced by assembling the RecoverY filtered reads, on the
6A_150Y dataset. Pre-filtering of reads significantly reduces the size of
the data set input to the assembler, thus improving run time and memory
usage. However, the assembly is much smaller than expected (~25 Mb,
according to the known euchromatic length of the reference hg38 human
Y assembly) (Skaletsky et al 2003). Additionally, it exhibits low N50,
along with significant number of misassemblies and mismatches. Post-
filtering of contigs produces an assembly that is only a tiny fraction (2%)
of the expected size. Compared to these strategies, RecoverY works best.
It achieves the largest assembly by far, with relatively few misassemblies
and mismatches. Its N50 is five times higher than the N50 with the pre-
filtering strategy, though at the expense of memory usage and speed.

Table 4: SPAdes gorilla Y assembly using the preliminary RecoverY
strategy from Tomaszkiewicz et al. (2016) vs. the one proposed in this

paper.

Methods Tomaszkiewicz et al. This Paper
Number of Y-read pairs 122,850,054 125,485,506
Assembly length 18.68 Mb 24.86 Mb
Contig NG50 (G=23Mb) 9.40 Kb 11.26 Kb

Num. of contigs 3319 6685
Assembly time 127 hr 46 min 124 hr 07 min
Maximum memory used 152 Gb 131 Gb

Table 5. Discovar gorilla Y assembly using the preliminary RecoverY
strategy from Tomaszkiewicz et al. (2016) vs. the one proposed in this
paper.

Methods Tomaszkiewicz et al. This Paper
Number of Y-read pairs 122,850,054 125,485,506
Assembly length 5.57 Mb 8.34 Mb
Contig NG50 (G=8.34M) 1489 bp 2124 bp

Num. of contigs 2655 3917
Assembly time 3 hr 25 min 3 hr 45 min
Maximum memory used 278.33 Gb 281.51 Gb

We also evaluated the improvement in assembly due to the new version
of RecoverY as compared to the preliminary strategy used while
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assembling the draft gorilla Y chromosome (Tomaszkiewicz et al. 2016).
Both versions of RecoverY were run on the gorilla fsY data set (Table
1), followed by SPAdes. For the preliminary RecoverY version, we used
the parameters described in Tomaszkiewicz et al. (2016): Y-mer match
threshold of 50 and abundance threshold of 100. For the new version,
RecoverY selected an abundance threshold of 71 (Figure 2A) and a Y-
mer match threshold of 20.

Table 4 shows that the improvements resulted in a 33% improvement in
assembly size and a 20% improvement in the NG50. To evaluate the
reproducibility of our findings, we repeated the experiment using the
Discovar assembler version r52488 (Weisenfeld et al. 2014) in place of
SPAdes (Table 5). While the absolute quality of the assembly was lower
for Discovar, the relative performance of the new RecoverY to its
preliminary version remained the same.

We also compare the performance of RecoverY against a non-
enrichment based approach which simply sequences a male genome,
assembles it, and then flags contigs that do not align to the female as
being putatively from the Y (Sup. Note 3). The cumulative length of
these Y-contigs is 1.51 MB with an N50 of 1895 bp (Sup. Note 3), which
is an order of magnitude lower than the results from the RecoverY
enrichment approach. Further, because this method relies on sequence
matching and not on k-mer counts, it might fail to retrieve regions that
show homology to the female autosomes or the X chromosome (e.g.
pseudo-autosomal region and X-transposed regions).

3.6 Speed and memory performance

We measured the runtime and memory usage of DSK k-mer counting,
RecoverY after DSK, and the downstream assembly, in all of our
datasets (Table 6). We ran our experiments on a x86_64 system with up
to 64 available AMD Opteron 6276 processors and 512 GB available
memory. Using 8 processors, the run time of DSK and RecoverY is
approximately 4 hours for each of the data sets. This is only about 3-5%
of the cumulative times that include assembly. RecoverY’s memory
usage, as well, is less than half of what the SPAdes assembler uses.

A major component in the performance improvement provided by
RecoverY in comparison to male whole-genome assembly based
approaches is due to reduction in k-mer search space. For example, the
raw reads that are k-merized in the full gorilla fsY data set result in a k-
mer table of approximately 15 GB of space. However, after the
abundance threshold is selected and the "contaminant" k-mers are
discarded, the new Y-mer table contains only ~500 MB of k-mers. This
represents a reduction in the k-mer search space by about 97%.

Table 6. Runtime and memory usage of the different stages of
RecoverY (with 8 processors). RecoverY total times are separated into
DSK k-mer counting and post counting.

Stage 6A 150Y 6A 300Y Gorilla FsY

Time Mem. Time Mem. Time Mem.
(GB) (GB) (GB)

DSK O0h 37m 4.5 1h 18m 5.1 Oh 40m 6.9

processing

RecoverY 2h36m 59.1 3h05m 633 2h58m  29.2

(post DSK)

SPAdes 64h07m 153 83h29m 208 124h07m 131

assembly

Cumulative 67h20m  N/A 87h52m N/A 127h45m N/A

4 Discussion

In this paper, we present a method for the identification of Y-specific
reads from chromosome flow-sorted data. It builds on the previous
strategy of Tomaszkiewicz (2016) by automatically selecting the
abundance level at which a k-mer is deemed to originate from the Y. The
major benefit of RecoverY is that it removes non-Y reads which
otherwise would confound a genome assembler. Additionally, it reduces

the size of the data set provided to the assembler, thus speeding up the
assembly process and reducing memory requirements. Our tests indicate
that RecoverY is a drastic improvement over two other alternate filtering
strategies, as well as over the preliminary version in Tomaszkiewicz
(2016).

The main methodological novelty of RecoverY is the method of using
trusted k-mers to automate the selection of the abundance threshold. To
the best of our knowledge, this is the first application of trusted k-mers
to parameter selection for de novo assembly projects. In many other
tools, parameter selection is often an afterthought, resulting in low-
quality results. We demonstrated the power of using trusted k-mers to
choose the threshold by showing that the resulting assembly is 33%
larger and has 20% higher NG50 than the one generated without the use
of trusted k-mers. The notion of trusted k-mers has the potential to affect
bioinformatics tools more broadly, e.g. trusted k-mers could potentially
be used in de novo assembly, read error correction, metagenomic
analysis, or index creation for sequencing databases. They can also
potentially be used to find contaminants in an enriched dataset.

RecoverY is designed to sacrifice specificity to achieve high sensitivity,
in terms of classifying read origin. The downstream cost of mistakenly
classifying a non-Y read as coming from the Y is not high -- these reads
tend to be scattered across the genome and contribute to very short
contigs during assembly. Such short contigs are usually anyway removed
at later stages. On the other hand, mistakenly classifying a Y-origin read
as non-Y may have the effect of breaking an otherwise long contig
during assembly. Our choice of Y-mer match threshold is therefore
designed with this in mind, as illustrated by Figures 3 and 4. In situations
where specificity is nevertheless preferred over sensitivity, the user may
adapt the thresholds to better suit their needs.

An extension of RecoverY can be applied as a binary classifier on any
data set to isolate an enriched chromosome of interest. Further
improvements in the future include improving the specificity of the
method by probabilistic weighting of k-mers while comparing to the Y-
mer table. An extension of RecoverY to PacBio data is also a direction of
future work. Further improvements to the run time of RecoverY are
likely possible by re-implementing the codebase in a lower-level
language such as C/C++.

RecoverY requires some known Y single-copy sequences to choose the
abundance threshold. This information might be available prior to de
novo assembly, but sequence-composition agnostic approaches are also
possible. For instance, the abundance threshold could be selected by
fitting a statistical model to the histogram, similar to the approach used
by KmerGenie (Chikhi and Medvedev 2014). A threshold can also be
chosen using a formula based on the enrichment levels and expected
error rates. We leave these approaches to future work.

Acknowledgements

We thank Kristoffer Sahlin for useful discussions for the optimization of the
algorithm. HiSeq sequencing was performed at Pennsylvania State Genomics Core
Facility, University Park, Pennsylvania.

Funding

This work was supported by National Science Foundation (NSF) awards DBI-ABI
0965596 (to K.D.M.), DBI-1356529, [1S-1453527, 11S-1421908, and CCF-
1439057 (to P.M.). Additionally, this study was supported by the funds made
available through the Eberly College of Sciences at Penn State, the Penn State
Clinical and Translational Sciences Institute, and through the Pennsylvania
Department of Health (Tobacco Settlement Funds). The Department specifically
disclaims responsibility for any analysis, interpretations or conclusions. M.C. was
supported by the National Institutes of Health (NIH)-PSU funded Computation,
Bioinformatics and  Statistics (CBIOS) Predoctoral Training Program
(1T32GM102057-0A1).

Conflict of Interest: none declared.

References

Bankevich A, Nurk S, Antipov D, et al. 2012. SPAdes: a new genome assembly
Z%orlthm and its appflcatlons to single-cell sequencing. J Comput Biol 19: 455-

Carvalho AB, Clark AG. 2013. Efficient identification of Y chromosome sequences
in the human and Drosophila genomes. Genome Res 23: 1894-1907.


https://doi.org/10.1101/148114
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/148114; this version posted November 27, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

RecoverY

Chaisson MJ, Tesler G. 2012. Mapping single molecule sequencing reads using
basic local alignment with successive refinement (BLASR): application and theory.
BMC Bioinformatics 13: 238.

Chikhi R, & Medvedeyv P. 2014 Informed and automated k-mer size selection for
genome assembly. Bioinformatics 30 (1): 31-37

Chikhi R, Rizk G. Space-efficient and exact de Bruijn graph representation based
on %ZBIoom filter. Algorithms for Molecular Biology, BioMed Central, 2013, 8 (1),
pp.22.

Crusoe MR, Alameldin HF, Awad S et al. The khmer software package: enablin
efficient nucleotide sequence anaI%SISF!versmn 1; referees: 2 approved, 1 approvec
wit reservatlong]. F1000Research 2015, 4:900 (doi:
10.12688/f1000research.6924.1)

Dolezel, J., Vrana, J., Safaf, J., Bartos, J., Kubalakova, M., & Simkova, H. (2012).
Chromosomes in the flow to simplify genome analysis. Functional & Integrative
Genomics, 12(3), 397-416.

Glaser B, Gritzner F, Willmann U, Stangpn_R, Amold N, Taylor K, Rietschel W,
Zeitler S, Toder R, Schemé)g W. 1998. Simian Y Chromosomes: species-specific
rearrangements of DAZ M, and TSPY versus contiguity of PAR and SRY.
Mamm Genome 9: 226-231.

Goto, H., Peng, L. & Makova, K. D. Evolution of X-degenerate Y chromosome
genes in greater apes: conservation of gene content in human and gorilla, but not
chimpanzee. J Mol Evol. 68, 134-144 (2009)

Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. gUAST: quality assessment
tool for genome assemblies, Bioinformatics 29 (8): 1072-1075

Hall, A.B. et al. (2013).Six novel Y chromosome genes in Anok)/lheles mosquitoes
c21|75?<):0vered by independently sequencing males and females. BMC Genomics 14,
Hughes, J.F. et al. (2010). Chimpanzee and human Y chromosomes are remarkably
divergent in structure and gene content. Nature 463, 536-539

Hu%hes, J.F. et al. (2012).Strict evolutionary conservation followed rapid gene loss
on human and rhesus Y chromosomes. Nattire 483, 82-86

Kokot M, Dtugosz M, Deorowicz S. KMC 3: counting and manipulating k-mer
statistics. Bioinformatics 2017 33(17) 2759-2761,

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM. 2013. arXiv:1303.3997.

Li H, & Durbin R. Fast and accurate short read alignment with Burrows—Wheeler
transform. Bioinformatics. 2009 Jul 15; 25(14): 1754-1760.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis
G, Durbin R, 1000 Genome Project Data Processing Sub roug: The sequence
alignment/map format and SAMtools. Bioinformatics. 2009, 25 (16): 2078-2079.

Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, et al. 2011.
Comgaratlve and demographic analysis ©of orangutan genomes. Nature
469(7331):529-33

Luo R, Liu B, Xie Y, et al. SOAPdenovo2: an em) iricalli/ improved memor¥—
gflf%l(eritlsgort—read de novo assembler. GigaScience. 2012;1:18. doi:10.1186/2047-

Marcais G. and Kingsford C. A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics 2011 27(6): 764-770
doi:10.1093/bioinformatics/btr011.

Melsted P. and Pritchard JK. Efficient counting of k -mers in DNA sequences using
a bloom filter. BMC Bioinformatics 2011, 12:333 do0i:10.1186/1471-2105-12-333.

Rizk G, Lavenier D, Chikhi R. 2013. DSK: k-mer counting with very low memory
usage. Bioinformatics 29: 652-653.

Saxena, R. et al. (2000) Four DAZ Genes in Two Clusters Found in the AZFc
Region of the Human Y Chromosome. Genomics 67, 256267

Skaletsky, H. et al. (2003) The male-specific region of the human Y chromosome is
a mosaic of discrete sequence classes. Nature 423, 825-837

Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, et al. 2003.
The male-specific region of the human Y chromosome is a mosaic of discrete
sequence classes. Nature 423:825-37

Skinner, B.M. et al. (2016) The gleg X and Y Chromosomes: structure, sequence,
and evolution. Genome Research , 130-139

Soh, Y.Q.S. et al. (2014) Sequencing the Mouse Y Chromosome Reveals
i_t’)é\vg(r)%e%tlgene Acquisition and Amplification on Both Sex Chromosomes. Cell

Tomaszkiewicz, M., Medvedev, P., Makova, K. D. (2017) Y and W chromosome
%ssemblles: approaches and discoveries. Trends Genet. pii: S0168-9525(17)30019-

Tomaszkiewicz M, Rangavittal S, Cechova M, et al. 2016. A time- and cost-
effective strategy to sequence mammalian Y Chromosomes: an application to the
de novo assembly of gorilla Y. Genome Res. 26:530-540.

Weisenfeld NI et. al. (2014) Comprehensive variation discovery in single human
genomes. Nat Genetics.;46:1350-5

Zhou, R.-N., & Hu, Z.-M. (2007). The Development of Chromosome
Microdissection and Microcloning Technique and its Applications in Genomic
Research. Current Genomics, 8(1), 67-72.


https://doi.org/10.1101/148114
http://creativecommons.org/licenses/by-nc-nd/4.0/

	1 Introduction
	2 Methods
	3 Results
	3.1 Data sets
	3.2 K-mer abundance threshold estimation
	3.3 Accuracy of RecoverY in identifying Y-reads
	3.4 Effect of varying k-mer size on classification of Y-reads
	3.5 Effect of RecoverY on assembly
	Table 4: SPAdes gorilla Y assembly using the preliminary RecoverY strategy from Tomaszkiewicz et al. (2016) vs. the one proposed in this paper.
	3.6 Speed and memory performance

	4 Discussion

