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ABSTRACT

Genetic variation modulating risk of sporadic Parkinson’s disease (PD) has been primarily
explored through genome wide association studies (GWAS). However, like many other common
genetic diseases, the impacted genes remain largely unknown. Here, we used single-cell RNA-
seq to characterize dopaminergic (DA) neuron populations in the mouse brain at embryonic and
early postnatal timepoints. These data facilitated unbiased identification of DA neuron
subpopulations through their unique transcriptional profiles, including a novel postnatal
neuroblast population and substantia nigra (SN) DA neurons. We use these population-specific
data to develop a scoring system to prioritize candidate genes in all 49 GWAS intervals
implicated in PD risk, including known PD genes and many with extensive supporting literature.
As proof of principle, we confirm that the nigrostriatal pathway is compromised in Cplx/ null
mice. Ultimately, this systematic approach establishes biologically pertinent candidates and

testable hypotheses for sporadic PD, informing a new era of PD genetic research.
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The most commonly used genetic tool today for studying complex disease is the genome wide
association study (GWAS). As a strategy, GWAS was initially hailed for the insight it might
provide into the genetic architecture of common human disease risk. Indeed, the collective data
from GWAS since 2005 has revealed a trove of variants and genomic intervals associated with
an array of phenotypes'. The majority of variants identified in GWAS are located in non-coding
DNA? and are enriched for characteristics denoting regulatory DNA*?. This regulatory variation

is expected to impact expression of a nearby gene, leading to disease susceptibility.

Traditionally, the gene closest to the lead SNP has been prioritized as the affected gene.
However, recent studies show that disease-associated variants can act on more distally located
genes, invalidating genes that were previously extensively studied*”. The inability to
systematically connect common variation with the genes impacted limits our capacity to

elucidate potential therapeutic targets and can waste valuable research efforts.

Although GWAS is inherently agnostic to the context in which disease-risk variation acts, the
biological impact of common functional variation has been shown to be cell context
dependent™®. Extending these observations, Pritchard and colleagues recently demonstrated that
although genes need only to be expressed in disease-relevant cell types to contribute to risk,
those expressed preferentially or exclusively therein contribute more per SNP’. Thus, accounting
for the cellular and gene regulatory network (GRN) contexts within which variation act may
better inform the identification of impacted genes. These principles have not yet been applied

systematically to many of the traits for which GWAS data exists. We have chosen Parkinson’s
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disease (PD) as a model complex disorder for which a significant body of GWAS data remains to

be explored biologically in a context dependent manner.

PD is the most common progressive neurodegenerative movement disorder. Incidence of PD

increases with age, affecting an estimated 1% worldwide beyond 70 years of age® '

. The genetic
underpinnings of non-familial or sporadic PD have been studied through the use of GWAS with
recent meta-analyses highlighting 49 loci associated with sporadic PD susceptibility'""'>. While a
small fraction of PD GWAS loci contain genes known to be mutated in familial PD (SNCA and
LRRK2)"*" most indicted intervals do not contain a known causal gene or genes. Although PD
ultimately affects multiple neuronal centers, preferential degeneration of DA neurons in the SN
leads to functional collapse of the nigrostriatal pathway and loss of fine motor control. The
preferential degeneration of SN DA neurons in relation to other mesencephalic DA neurons has
driven research interest in the genetic basis of selective SN vulnerability in PD. Consequently,

one can reasonably assert that a significant fraction of PD-associated variation likely mediates its

influence specifically within the SN.

In an effort to illuminate a biological context in which PD GWAS results could be better
interpreted, we undertook single-cell RNA-seq (scRNA-seq) analyses of multiple DA neuronal
populations in the brain, including ventral midbrain DA neurons. This analysis defined the
heterogeneity of DA populations over developmental time in the brain, revealing gene
expression profiles specific to discrete DA neuron subtypes. These data further facilitated the

definition of GRNs active in DA neuron populations including the SN. With these data, we
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establish a framework to systematically prioritize candidate genes in all 49 PD GWAS loci and

begin exploring their pathological significance.

RESULTS

ScRNA-seq characterization defines DA neuronal subpopulation heterogeneity

In order to characterize DA neuron molecular phenotypes, we undertook scRNA-seq on cells
isolated from distinct anatomical locations of the mouse brain over developmental time. We used
fluorescence activated cell sorting (FACS) to retrieve single DA neurons from the Tg(Th-
EGFP)DJ76Gsat BAC transgenic mouse line, which expresses eGFP under the control of the
tyrosine hydroxylase (7%) locus'’. We microdissected both MB and FB from E15.5 mice,
extending our analyses to MB, FB, and OB in P7 mice (Figure 1a). E15.5 and P7 time points
were chosen based on their representation of stable MB DA populations, either after neuron birth

(E15.5) or between periods of programmed cell death (P7) (Figure 1a)'®.

Quality control and outlier analysis identify 396 high quality cell transcriptomes to be used in
our analyses. We initially sequenced RNA from 473 single cells to an average depth of ~8 x 10°
50 bp paired-end fragments per cell. Using Monocle 2, we converted normalized expression
estimates into estimates of RNA copies per cell'’. Cells were filtered based on the distributions
of total mass, total number of mRNAs, and total number of expressed genes per cell (Figure 1 -
figure supplement la-1c; detailed in Methods). After QC, 410 out of 473 cells were retained.
Using principal component analysis (PCA) as part of the iterative analysis described below, we

identified and removed 14 outliers determined to be astrocytes, microglia, or oligodendrocytes
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(Figure 1 - figure supplement le; Supplementary File 1), leaving 396 cells (~79 cells/timepoint-

region; Figure 1 - figure supplement 1d).

To confirm that our methods can discriminate between different populations of neurons, we first
explored differences between timepoints. Following a workflow similar to the recently described
“dpFeature” procedure'®, we identified genes with highly variable transcriptional profiles and
performed PCA. As anticipated, we observed that the greatest source of variation was between
developmental ages (Figure 1b). Genes associated with negative PC1 loadings (E15.5 cells) were
enriched for gene sets consistent with mitotically active neuronal, undifferentiated precursors
(Figure 1c). In contrast, genes associated with positive PC1 loadings (P7 cells) were enriched for
ontology terms associated with mature, post-mitotic neurons (Figure 1¢). This initial analysis
establishes our capacity to discriminate among biological classes present in our data using PCA

as a foundation.

Further, we attempted to identify clusters of single cells between and within timepoints and
anatomical regions. In order to do this, we selected the PCs that described the most variance in
the data and used t-Stochastic Neighbor Embedding (t-SNE)" to further cluster cells in an
unsupervised manner (see Methods). Analysis of all cells revealed that the E15.5 cells from both
MB and FB cluster together (Figure 1d), supporting the notion that they are less differentiated.
By contrast, cells isolated at P7 mostly cluster by anatomical region, suggesting progressive
functional divergence with time (Figure 1d). We next applied this same scRNA-seq analysis
workflow (See Methods) in a recursive manner individually in all regions at both timepoints to

further explore heterogeneity. This revealed a total of 13 clusters (E15.5 FB.1-2, MB.1-2; P7
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120  OB.1-3, FB.1-2, MB.1-4; Figure le), demonstrating the diversity of DA neuron subtypes and

121  providing a framework upon which to evaluate the biological context of genetic association

122 signals across closely-related cell types. Using known markers, we confirmed that all clusters

123 expressed high levels of pan-neuronal markers (Snap25, Eno2, and SytI) (Figure 1 - figure

124 supplement 2a). In contrast, we observed scant evidence of astrocyte (A/dhlll, Slcla3, Agp4, and
125  Gfap; Figure 1 - figure supplement 2a) or oligodendrocyte markers (Mag, Mog, and Mbp; Figure
126 1 - figure supplement 2a), thus confirming we successfully isolated our intended substrate, 7/+
127  neurons.

128

129  scRNA-seq revealed biologically and temporally discriminating transcriptional signatures

130  With subpopulations of DA neurons defined in our data, we set out to assign a biological identity
131  to each cluster. Among the four clusters identified at E15.5, two were represented in t-SNE space
132 as a single large group that included cells from both MB and FB (E15.MB.1, E15.FB.1), leaving
133 two smaller clusters that were comprised solely of MB or FB cells (Figure 2 - figure supplement
134 1a). The latter MB cluster (E15.MB.2; Figure 2 - figure supplement la-1c) specifically expressed
135 Foxal, Lmxla, Pitx3, and Nr4a2 and thus likely represents a post-mitotic DA neuron

136 population® (Supplementary File 2; Supplementary File 3). Similarly, the discrete E15.FB.2

137  cluster expressed markers of post-mitotic FB/hypothalamic neurons (Figure 2 - figure

138  supplement la-1b), including Six3, Six3os!, Sst, and Npy (Supplementary File 2; Supplementary
139  File 3). These embryonic data did not discriminate between cells populating known domains of
140 DA neurons, such as the SN.

141
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By contrast, P7 cells mostly cluster by anatomical region and each region has defined subsets
(Figure 1d, le, 2a). Analysis of P7 FB revealed two distinct cell clusters (Figure 2b). Expression
of the neuropeptides Gal and Ghrh and the Gsx! transcription factor place P7.FB.1 cells in the
arcuate nucleus (Supplementary File 2; Supplementary File 3)*'**. The identity of P7.FB.2,
however, was less clear, although subsets of cells therein did express other arcuate nucleus
markers for Th'/Ghrh” neuronal populations e.g. Onecut2, Arx, Prir, Slc6a3, and Sst (Figure 2 -
figure supplement 1d; Supplementary File 3)**. All three identified OB clusters (Figure 2c)
express marker genes of OB DA neuronal development or survival (Supplementary File 2,
Supplementary File 3; Figure 2 - figure supplement 1e)®. It has previously been reported that
Dex expression diminishes with neuronal maturation®® and Snap25 marks mature neurons®’. We
observe that these OB clusters seem to reflect this continuum of maturation wherein expression
of Dcx diminishes and Snap?25 increases with progression from P7.0B1 to OB3 (Figure 2 -
figure supplement 1e). This pattern is mirrored by a concomitant increase in OB DA neuron fate
specification genes (Figure 2 - figure supplement 1¢)*>**. In addition, we identified four P7 MB
DA subset clusters (Figure 2d). Marker gene analysis confirmed that three of the clusters
correspond to DA neurons from the VTA (O#x2 and Neurod6; P7.MB.1)**°, the PAG (Vip and
Pnoc; P7‘MB.3)31’32, and the SN (Sox6, Aldhla7, Ndnf, Serpine2, Rbp4, and Fgf20;,
P7.MB.4)**7* (Supplementary File 2; Supplementary File 3). These data are consistent with
recent scRNA-seq studies of similar populations®**°. Through this marker gene analysis, we

successfully assigned a biological identity to 12/13 clusters.

The only cluster without a readily assigned identity was P7.MB.2. This population of P7 MB DA

neurons, P7.MB.2 (Figure 2d), is likely a progenitor-like population. Like the overlapping
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E15.MB.1 and E15.FB.1 clusters (Figure 2 - figure supplement 1a), this cluster preferentially
expresses markers of neuronal precursors/differentiation/maturation (Supplementary File 2,
Supplementary File 3). In addition to sharing markers with the progenitor-like E15.MB.1 cluster,
P7.MB.2 exhibits gene expression consistent with embryonic mouse neuroblast populations™*,

e 37-41
cell division, and neuron development®’

(Supplementary File 2, Supplementary File 3).
Consistent with the hypothesis, this population displayed lower levels of both 7/ and Sic6a3,

markers of mature DA neurons, than the terminally differentiated and phenotypically discrete P7

MB DA neuron populations of the VTA, SN and PAG (Figure 2e).

With this hypothesis in mind, we sought to ascertain the spatial distribution of P7.MB.2 DA
neurons through multiplex, single molecule fluorescence in situ hybridization (smFISH) for 7/
(pan-P7 MB DA neurons), Slc6a3 (P7.MB.1, P7.MB.3, P7.MB.4), and one of the neuroblast
marker genes identified through our analysis, either LAhx9 or Ldb2 (P7.MB.2) (Figure 2e). In each
experiment, we scanned the ventral midbrain for cells that were Th+/Slc6a3- and positive for the
third gene. Th+/Slc6a3-/Lhx9+ cells were found scattered in the dorsal SN pars compacta
(SNpc) along with cells expressing LAx9 alone (Figure 2f, 2h). Expression of Ldb2 was found to
have a similar pattern to Lhx9, with Th+/Slc6a3-/Ldb2+ cells found in the dorsal SNpc (Figure
2f, 2h). Expression of Lhx9 and Ldb2 was low or non-existent in Th+/Slc6a3+ cells in the SNpc
(Figure 2e, 2f). Importantly, cells expressing these markers express 74 at lower levels than
Th+/Slc6a3+ neurons (Figure 2f, 2g), consistent with our scRNA-seq data (Figure 2e). Thus,
with the resolution of the spatial distribution of this novel neuroblast-like P7 MB DA population,

we assign biological identity to each defined brain DA subpopulation.
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Novel SN-specific transcriptional profiles and GRNs highlight its association with PD

Overall our analyses above allowed us to successfully separate and identify 13 brain DA
neuronal populations present at E15.5 and P7, including SN DA neurons. Motivated by the
clinical relevance of SN DA neurons to PD, we set out to understand what makes them

transcriptionally distinct from the other MB DA neuron populations.

In order to look broadly at neuronal subtypes, we evaluated expression of canonical markers of
other neuronal subtypes in our 74+ neuron subpopulations. Interestingly, we observed
inconsistent detection of 7/ and eGFP in some E15.5 clusters (Figure 3 - figure supplement 1a).
This likely reflects lower Th transcript abundance at this developmental state, but sufficient
expression of the eGFP reporter to permit FACS collection (Figure 3 - figure supplement 1b).
The expression of other DA markers, Ddc and Slc18a2, mirror Th expression, while Slc6a3
expression is more spatially and temporally restricted (Figure 3 - figure supplement 1a). The SN
cluster displays robust expression of all canonical DA markers (Figure 3 - figure supplement 1a).
Multiple studies have demonstrated that 74+ neurons may also express markers characteristic of

#7% We found that only the SN and PAG showed no expression

other major neuronal subtypes
of either GABAergic (Gadl/Gad2/Slc32al) or glutamatergic (Slcl7a6) markers (Figure 3 -

figure supplement 1a). This neurotransmitter specificity is a potential avenue for exploring the

preferential vulnerability of the SN in PD.

Next, we postulated that genes whose expression defined the P7 SN DA neuron cluster might

illuminate their preferential vulnerability in PD. We identified 110 SN-specific genes, by first

finding all differentially expressed genes between P7 subset clusters and then using the Jensen-

10
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Shannon distance to identify cluster specific genes (See Methods). Prior reports confirm the
expression of 49 of the 110 SN-specific genes (~45%) in postnatal SN (Supplementary File 4).
We then sought evidence to confirm or exclude SN expression for the remaining, novel 61 genes
(55%). Of these, 25/61 (~41%) were detected in adult SN neurons by in situ hybridization (ISH)
of coronal sections in adult (P56) mice (Allen Brain Atlas, ABA; http://developingmouse.brain-
map.org), including Col25al, Faml84a, Ankrd34b, Nwd2, and Cadps2 (Figure 3a,
Supplementary File 5). Only 4/61 genes, for which ISH data existed in the ABA, lacked clear
evidence of expression in the adult SN (Supplementary File 5). The ABA lacked coronal ISH
data on 32/61 genes, thus we were unable to confirm their presence in the SN. Collectively, we
identify 110 postnatal SN DA marker genes and confirm the expression of those genes in the
adult mouse SN for 74 (67%) of them, including 25 novel markers of this clinically relevant cell

population that we confirmed using the ABA image catalog.

We next asked whether we could identify significant relationships between cells defined as being
P7 SN DA neurons and distinctive transcriptional signatures in our data. We identify 16 co-
expressed gene modules by performing weighted gene co-expression network analysis
(WGCNA)*™* on all expressed genes of the P7 subset (Figure 3 - figure supplement 2;
Supplementary File 6). By calculating pairwise correlations between modules and P7 subset
clusters, we reveal that 7/16 modules are significantly and positively correlated (Bonferroni
corrected p < 3.5e-04) with at least one subset cluster (Figure 3c). We graphically represent the
eigenvalues for each module in each cell in P7 t-SNE space, confirming that a majority of these

significant modules (6/7) displayed robust spatial, isotype enrichment (Figure 3d).

11
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In order identify the biological relevance of these modules, each module was tested for
enrichment for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, Gene Ontology
(GO) gene sets, and Reactome gene sets. Two modules, the “brown” and “green” modules, were
significantly associated with the Parkinson’s Disease KEGG pathway gene set (Figure 3c;
Supplementary File 7). Interestingly, the “brown” module was also significantly correlated with
the P7 VTA population (P7.MB.1) and enriched for addiction gene sets (Supplementary File 7)
highlighting the link between VTA DA neurons and addiction*’. Strikingly, only the P7 SN
cluster was significantly correlated with both PD-enriched modules (Figure 3c). This specific
correlation suggests these gene modules may play a role in the preferential susceptibility of the

SN in PD.

Integrating SN DA neuron specific data enables prioritization of genes within PD-associated

intervals

With these context-specific data in hand, we posited that SN DA neuron-specific genes and the
broader gene co-expression networks that correlate with SN DA neurons might be used to
prioritize genes within loci identified in PD GWAS. Such a strategy would be agnostic to prior
biological evidence and independent of genic position relative to the lead SNP, the traditional

method used to prioritize causative genes.

To investigate pertinent genes within PD GWAS loci, we identified all human genes within
topologically associated domains (TADs) and a two megabase interval encompassing each PD-
associated lead SNP. TADs were chosen because regulatory DNA impacted by GWAS variation

is more likely to act on genes within their own TAD*. While topological data does not exist for

12
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257 SN DA neurons, we use TAD boundaries from hESCs as a proxy, as TADs are generally

258  conserved across cell types™ . To improve our analyses, we also selected +/- 1 megabase interval
259  around each lead SNP thus including the upper bounds of reported enhancer-promoter

260 interactions™™'. All PD GWAS SNPs interrogated were identified by the most recent meta-

261  analyses (49 SNPs in total)' "2, implicating a total of 1751 unique genes. We then identified
262  corresponding one-to-one mouse to human homologs (1009/1751; ~58%), primarily through the
263  Mouse Genome Informatics (MGI) homology database.

264

265  To prioritize these genes in GWAS loci, we developed a gene-centric score that integrates our
266  data as well as data in the public domain. We began by intersecting the PD loci genes with our
267  scRNA-seq data as well as previously published SN DA expression data®, identifying 430 genes
268  (430/1009; ~43%) with direct evidence of expression in SN DA neurons in at least one dataset.
269  Each PD-associated interval contained >1 SN-expressed gene (Supplementary File 8).

270  Emphasizing the need for a novel, systematic strategy, in 19/49 GWA intervals (~39%), the most
271  proximal gene to the lead SNP was not detectably expressed in mouse SN DA neuron

272  populations (Supplementary File 8; Supplementary File 9). Surprisingly, three loci contained
273  only one SN DA-expressed gene: Mmp16 (MMP16 locus, Figure 4a), Tsnax (SIPA1L2 locus),
274  and Satbl (rs4073221 locus). The relevance of these candidate genes to neuronal

275  function/dysfunction is well supported®*>°. This establishes gene expression in a relevant tissue
276  as apowerful tool in the identification of causal genes.

277

278  In order to prioritize likely diseases-associated genes in the remaining 46 loci, we scored genes

279  on three criteria: whether genes were identified as specific markers for the P7.MB.4 (SN) cluster

13
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280  (Supplementary File 2), whether the genes were differentially expressed between all P7 DA

281  neuron populations, and whether the genes were included in PD gene set enriched and SN

282  correlated gene modules uncovered in WGCNA (Supplementary File 6). This strategy facilitated
283  further prioritization of a single gene in 22 additional loci including SNCA, LRRK?2, and GCH1
284  loci (Figure 4a; Table 1; Supplementary File 9). Importantly, using this approach we indict the
285  familial PD gene encoding alpha-synuclein (SNCA), as responsible for the observed PD

286  association with rs356182 (Figure 4a, Table 1, Supplementary File 9). Thus, by using context-
287  specific data alone, we were able to prioritize a single candidate gene in roughly half (~49%) of
288  PD-GWAS associated loci.

289

290  Furthermore, at loci in which a single gene did not emerge, we identified dosage sensitive genes
291 by considering the probability of being loss-of-function (LoF) intolerant (pLI) metric from the
292 ExAC database’®. Since most GWAS variation is predicted to impact regulatory DNA and in
293  turn impact gene expression, it follows that genes in GWAS loci that are more sensitive to

294  dosage levels may be more likely to be candidate genes. With that in mind, the pLI for each gene
295  was used to further “rank” the genes within loci where a single gene was not prioritized. For

296 those loci, including MAPT and DDRGK loci (Figure 4a), we report a group of top scoring

297  candidate genes (Table 1, Supplementary File 9). Expression of prioritized genes in the adult SN
298  adds to the validity of the genes identified as possible candidates (Figure 4b).

299

300  Two interesting examples that emerge from this scoring are found at the MAPT and TMEM175-
301  GAK-DGKQ loci. Although MAPT has previously been implicated in multiple neurodegenerative

302  phenotypes, including PD (OMIM: 168600), we instead prioritize two genes before it (CRHR ]
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and NSF; Table 1). We detect Mapt and Nsf expression consistently across all assayed DA
neurons (Figure 4c). By contrast, expression of Crhrl, encoding the corticotropin releasing
hormone receptor 1, is restricted to P7 DA neurons in the SN and the more mature OB neuronal
populations (Figure 4c¢). Similarly, at the TMEM175-GAK-DGKQ locus, our data shows that
although all three proximal genes are expressed in the SN, the adjacent CPLXI was one of the

prioritized genes (Table 1, Supplementary File 9).

There are multiple lines of evidence that strengthen CPLXI as a candidate gene. Expression of
CPLX1 is elevated both in the brains of PD patients and the brains of mice overexpressing the
SNCA A53T PD mutation™ . Additionally, mice deficient in CPLXI display an early-onset,

cerebellar ataxia along with prolonged motor and behavioral phenotypes®"®*

. However, the
impact of Cplx/ deficiency on the integrity of the nigrostriatal pathway, to date, has not been
explored. In order to confirm CPLX] as a candidate gene, we performed immunohistochemistry
(IHC) for Th in the CplxI knockout mouse model (Supplementary File 10, Supplementary File
11)°""°. We measured the density of Th+ innervation in the striatum of Cplx/ -/- mice and
controls (Figure 4d, Supplementary File 11) and found that Cplx/ -/- mice had significantly
lower Th+ staining in the striatum (p-value = 3.385¢e-08; Figure 4e). This indicates that Cp/x/

KO mice have less Th+ fiber innervation and a compromised nigrostriatal pathway, supporting

its biological significance in MB DA populations and to PD.

The systematic identification of causal genes underlying GWAS signals is essential in order for

the scientific and medical communities to take full advantage of all the GWAS data published

over the last decade. Taken collectively, we demonstrate how scRNA-seq data from disease-
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relevant populations can be leveraged to illuminate GWAS results, facilitate systematic
prioritization of GWAS loci implicated in PD, and can leads to the functional characterization of

previously underexplored candidate genes.

DISCUSSION

Midbrain DA neurons in the SN have been the subject of intense research since being
definitively linked to PD nearly 100 years ago®. While degeneration of SN DA neurons in PD is
well established, they represent only a subset of brain DA populations. It remains unknown why
nigral DA neurons are particularly vulnerable. We set out to explore this question using sScCRNA-
seq. Recently, others have used scRNA-seq to characterize the mouse MB, including DA
neurons>*. Here, we extend these data significantly, extensively characterizing the transcriptomes
of multiple brain DA populations longitudinally and discovering GRNs associated with specific

populations.

Most importantly, our data facilitate the iterative and biologically informed prioritization of gene
candidates for all PD-associated genomic intervals. In practice, the gene closest to the lead SNP
identified within a GWAS locus is frequently treated as the prime candidate gene, often without
considering tissue-dependent context. Our study overcomes this by integrating genomic data
derived from specific cell contexts with analyses that are agnostic to one another. We posit that
genes pertinent to PD are likely expressed within SN DA neurons. This hypothesis is consistent
with the recent description of the “omnigenic” nature of common disease, wherein variation

impacting genes expressed in a disease tissue explain the vast majority of risk’.
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349  First, we identify intervals that reveal one primary candidate, i.e. those that harbor only one SN-
350  expressed gene. Next, we examine those intervals with many candidates, and prioritize based on
351  acumulative body of biological evidence. In total, we prioritize 5 or fewer candidates in 47/49 (
352 ~96%) PD GWAS loci studied, identifying a single gene in twenty-four loci (24/49; ~49%) and
353  three or fewer genes in ~84% of loci (41/49). Ultimately this prioritization reduces the candidate
354  gene list for PD GWAS loci dramatically from 1751 genes to 111 genes.

355

356  The top genes we identify in three PD loci (SNCA, FGF20, GCHI) have been directly associated
357  with PD, MB DA development, and MB DA function® (OMIM: 163890, 128230). Furthermore,
358  our prioritization of CPLX1 over other candidates in the TMEM175-GAK-DGKQ locus is

359  supported by multiple lines of evidence. Additionally, we demonstrate that the integrity of the
360 nigrostriatal pathway is disrupted in Cplx/ knockout mice. Dysregulation of CPLX] RNA is also
361  abiomarker in individuals with pre-PD prodromal phenotypes harboring the PARK4 mutation
362  (SNCA gene duplication)®. These results validate our approach and strengthen the argument for
363  the use of context specific data in pinpointing candidate genes in GWAS loci.

364

365  Many of the genes prioritized (Table 1) have been shown to have various mitochondrial

366  functions®® "

. The identification of genes associated with mitochondrial functions is especially
367  interesting in light of the “omnigenic” hypothesis of complex traits’. Since mitochondrial

368  dysfunction has been extensively implicated in PD"?, the prioritized genes may represent “core”
369  genes that in turn can affect the larger mitochondrial-associated regulatory networks active in the

370  disease relevant cell-type (SN DA neurons). It is notable that one of these genes is the presenilin

371  associated rhomboid like gene or PARL. PARL cleaves PINKI, a gene extensively implicated in

17
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372  PD pathology and recently a variant in PARL has been associated with early-onset PD (OMIM:
373 607858)"*7°,

374

375  While our method successfully prioritized one familial PD gene (SNCA), we do not prioritize
376  LRRK2, another familial PD gene harbored within a PD GWAS locus. Lrrk2 is not prioritized
377  simply because it is not detectably expressed in our SN DA neuronal population. This is

378  expected as numerous studies have reported little to no Lrrk2 expression in Th+ MB DA neurons

379  both in mice and humans’"’®

. Instead, our method prioritizes PDZRN4. This result does not

380 necessarily argue against the potential relevance of LRRK? but instead provides an additional
381  candidate that may contribute to PD susceptibility. The same logic should be noted for two other
382  PD-associated loci, wherein our scoring prioritizes different genes (KCNN3 and CRHR1/NSF,
383  respectively) than one previously implicated in PD (GBA4 and MAPT) (OMIM: 168600). Notably,
384  KCNN3, CRHRI, and NSF, all have previous biological evidence making them plausible

385  candidates” ™.

386

387  Studying disease-relevant tissue has proven to be essential for elucidating the genetic

388 architecture underlying GWA signals®; our scoring method relies upon data from the most

389  relevant cell-type to PD, SN DA neurons. While this study was under consideration for

390  publication, Chang and colleagues'> endeavored to prioritize PD GWAS loci using publically
391 available data. Although their pipeline strives to be “neuro-centric,” it is not predicated on the

392  biological relevance of candidates to SN DA neurons.

393
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394  Through comparison of the two scoring paradigms, the methods agree on at least one gene in
395  17/44 (~39%) jointly scored loci, including SNCA (Supplementary File 12), bolstering the

396  evidence for those candidate genes. However, we see ~44% (31/71) of the genes prioritized by
397  Chang, et al, are not expressed in either of the SN DA expression data sets used in our scoring
398  scheme (Supplementary File 12), including LRRK?2 (addressed above). One prime example of
399  this discrepancy is the MCCCI locus. Chang, et al, identify the MCCCI gene to be the prime
400 candidate gene in the locus. However, we find that MCCC1 is not expressed in SN DA neurons
401  (Supplementary File 8). Instead, we prioritize PARL, a gene with an established role in PD

402  pathogenesis’* '°.

403

404  Our focus on disease relevant cell-type data also leads us to identify genes previously implicated
405  in neurodegeneration, which make obvious candidates. For example, in the TMEM175-GAK-
406  DGKQ locus, we identify CPLXI and functionally confirm its relevance. We also identify ATRN
407  (attractin) as one of the candidate genes in the DDRGK locus. Loss of Atrn has been shown to

5283 making it an ideal candidate

408  cause age-related neurodegeneration of SN DA neurons in rats
409  in the DDRGKI locus. Neither gene is identified using other metrics'* (Supplementary File 12).
410

411  Despite this success, we acknowledge several notable caveats. First, not all genes in PD-

412  associated human loci have identified mouse homologs. Thus, it remains possible that we may
413  have overlooked the contribution of some genes whose biology is not comprehensively queried
414 in this study. Secondly, we assume that identified genetic variation acts in a manner that is at

415  least preferential, if not exclusive, to SN DA neurons. Lastly, by prioritizing SN-expressed

416  genes, we assume that PD variation affects genes whose expression in the SN does not require
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417  insult/stress. These caveats notwithstanding, our strategy sets the stage for a new generation of

418  independent and combinatorial functional evaluation of gene candidates for PD-associated

419  genomic intervals.
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MATERIALS AND METHODS

Data availability
Raw data will be made available on Sequence Read Archive (SRA) and Gene Expression
Omnibus (GEO) prior to publication. Summary data is available where code is available below

(https://github.com/pwh124/DA_scRNA-seq).

Code Availability
Code for analysis, for the production of figures, and summary data is deposited at

https://github.com/pwh124/DA_scRNA-seq

Animals.
The Th:EGFP BAC transgenic mice (Tg(Th-EGFP)DJ76Gsat/Mmnc) used in this study were
generated by the GENSAT Project and were purchased through the Mutant Mouse Resource &

Research Centers (MMRRC) Repository (https:// www.mmrrc.org/). Mice were maintained on a

Swiss Webster (SW) background with female SW mice obtained from Charles River

Laboratories (http://www.criver.com/). The Tg(Th-EGFP)DJ76Gsat/Mmnc line was primarily

maintained through matings between Th:EGFP positive, hemizygous male mice and wild-type
SW females (dams). Timed matings for cell isolation were similarly established between
hemizygous male mice and wild-type SW females. The observation of a vaginal plug was
defined as embryonic day 0.5 (E0.5). All work involving mice (husbandry, colony maintenance

and euthanasia) were reviewed and pre-approved by the institutional care and use committee.
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Cplx1 knockout mice and wild type littermates used for immunocytochemistry were taken from a
colony established in Cambridge using founder mice that were a kind gift of Drs K. Reim and N.
Brose (Gottingen, Germany). Cplx/ mice in this colony have been backcrossed onto a C57/Bl6J
inbred background for at least 10 generations. All experimental procedures were licensed and
undertaken in accordance with the regulations of the UK Animals (Scientific Procedures) Act
1986. Housing, rearing and genotyping of mice has been described in detail previously®"®.
Mice were housed in hard-bottomed polypropylene experimental cages in groups of 5-10 mice in
a housing facility was maintained at 21 — 23°C with relative humidity of 55 &+ 10%. Mice had ad
libitum access to water and standard dry chow. Because homozygous knockout Cp/x/ mice have
ataxia, they have difficulty in reaching the hard pellets in the food hopper and drinking from the
water bottles. Lowered waterspouts were provided and access to normal laboratory chow was
improved by providing mash (made by soaking 100 g of chow pellets in 230 ml water for 60 min
until the pellets were soft and fully expanded) on the floor of the cage twice daily. Cplx1

genotyping to identify mice with a homozygous or heterozygous deletion of the Cp/x/ gene was

conducted as previously described®', using DNA prepared from tail biopsies.

Dissection of E15.5 brains.

At 15.5 days after the timed mating, pregnant dams were euthanized and the entire litter of
embryonic day 15.5 (E15.5) embryos were dissected out of the mother and immediately placed
in chilled Eagle’s Minimum Essential Media (EMEM). Individual embryos were then
decapitated and heads were placed in fresh EMEM on ice. Embryonic brains were then removed
and placed in Hank’s Balanced Salt Solution (HBSS) without Mg®" and Ca®" and manipulated
while on ice. The brains were immediately observed under a fluorescent stereomicroscope and

EGFP" brains were selected. EGFP" regions of interest in the forebrain (hypothalamus) and the
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midbrain were then dissected and placed in HBSS on ice. This process was repeated for each
EGFP" brain. Four EGFP" brain regions for each region studied were pooled together for

dissociation.

Dissection of P7 brains.

After matings, pregnant females were sorted into their own cages and checked daily for newly
born pups. The morning the pups were born was considered day PO. Once the mice were aged to
P7, all the mice from the litter were euthanized and the brains were then quickly dissected out of
the mice and placed in HBSS without Mg®" and Ca®" on ice. As before, the brains were then
observed under a fluorescent microscope, EGFP" status for P7 mice was determined, and EGFP"
brains were retained. For each EGFP" brain, the entire olfactory bulb was first resected and
placed in HBSS on ice. Immediately thereafter, the EGFP" forebrain and midbrain regions for
each brain were resected and also placed in distinct containers of HBSS on ice. Five EGFP"

brain regions for each region were pooled together for dissociation.

Generation of single cell suspensions from brain tissue.

Resected brain tissues were dissociated using papain (Papain Dissociation System, Worthington
Biochemical Corporation; Cat#: LK003150) following the trehalose-enhanced protocol reported
by Saxena, et. al, 2012** with the following modifications: The dissociation was carried out at
37°C in a sterile tissue culture cabinet. During dissociation, all tissues at all time points were
triturated every 10 minutes using a sterile Pasteur pipette. For E15.5 tissues, this was continued
for no more than 40 minutes. For P7, this was continued for up to 1.5 hours or until the tissue

appeared to be completely dissociated.
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Additionally, for P7 tissues, after dissociation but before cell sorting, the cell pellets were passed
through a discontinuous density gradient in order to remove cell debris that could impede cell
sorting. This gradient was adapted from the Worthington Papain Dissociation System Kkit.
Briefly, after completion of dissociation according to the Saxena protocol®, the final cell pellet
was resuspended in DNase dilute albumin-inhibitor solution, layered on top of 5 mL of albumin-

inhibitor solution, and centrifuged at 70g for 6 minutes. The supernatant was then removed.

FACS and single-cell collection.

For each timepoint-region condition, pellets were resuspended in 200 pL of media without serum
comprised of DMEM/F12 without phenol red, 5% trehalose (w/v), 25 uM AP-V, 100 uM
kynurenic acid, and 10 pL of 40 U/ul RNase inhibitor (RNasin® Plus RNase Inhibitor, Promega)
at room temperature. The resuspended cells were then passed through a 40 uM filter and
introduced into a Fluorescence Assisted Cell Sorting (FACS) machine (Beckman Coulter MoFlo
Cell Sorter or Becton Dickinson FACSJazz). Viable cells were identified via propidium iodide
staining, and individual neurons were sorted based on their fluorescence (EGFP+ intensity, See
Figure 2 - supplement 2c¢) directly into lysis buffer in individual wells of 96-well plates for
single-cell sequencing (2 uL. Smart-Seq?2 lysis buffer + RNAase inhibitor, 1 pL oligo-dT primer,
and 1 pL dNTPs according to Picelli et al., 2014%. Blank wells were used as negative controls
for each plate collected. Upon completion of a sort, the plates were briefly spun in a tabletop
microcentrifuge and snap-frozen on dry ice. Single cell lysates were subsequently kept at -80°C

until cDNA conversion.
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Single-cell RT, library prep, and sequencing.

Library preparation and amplification of single-cell samples were performed using a modified
version of the Smart-Seq2 protocol®. Briefly, 96-well plates of single cell lysates were thawed to
4°C, heated to 72°C for 3 minutes, then immediately placed on ice. Template switching first-
strand cDNA synthesis was performed as described above using a 5’-biotinylated TSO oligo.
cDNAs were amplified using 20 cycles of KAPA HiFi PCR and 5’-biotinylated ISPCR primer.
Amplified cDNA was cleaned with a 1:1 ratio of Ampure XP beads and approximately 200 pg
was used for a one-quarter standard sized Nextera XT tagmentation reaction. Tagmented
fragments were amplified for 14 cycles and dual indexes were added to each well to uniquely
label each library. Concentrations were assessed with Quant-iT PicoGreen dsDNA Reagent
(Invitrogen) and samples were diluted to ~2 nM and pooled. Pooled libraries were sequenced on
the Illumina HiSeq 2500 platform to a target mean depth of ~8.0 x 10° 50bp paired-end

fragments per cell at the Hopkins Genetics Research Core Facility.

RNA sequencing and alignment.

For all libraries, paired-end reads were aligned to the mouse reference genome (mm10)
supplemented with the Th-EGFP" transgene contig, using HISAT2*® with default parameters
except: -p 8. Aligned reads from individual samples were quantified against a reference
transcriptome (GENCODE vM8)*” supplemented with the addition of the eGFP transcript.
Quantification was performed using cuffquant with default parameters and the following
additional arguments: --no-update-check —p 8. Normalized expression estimates across all

samples were obtained using cuffnorm®® with default parameters.
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Single-cell RNA data analysis.

Expression estimates.

Gene-level and isoform-level FPKM (Fragments Per Kilobase of transcript per Million) values
produced by cuffquant® and the normalized FPKM matrix from cuffnorm was used as input for
the Monocle 2 single cell RNA-seq framework™ in R/Bioconductor’. Genes were annotated
using the Gencode vMS8 release®’. A CellDataSet was then created using Monocle (v2.2.0)*
containing the gene FPKM table, gene annotations, and all available metadata for the sorted
cells. All cells labeled as negative controls and empty wells were removed from the data.
Relative FPKM values for each cell were converted to estimates of absolute mRNA counts per
cell (RPC) using the Monocle 2 Census algorithm'” using the Monocle function “relative2abs.”
After RPCs were inferred, a new cds was created using the estimated RNA copy numbers with

the expression Family set to “negbinomial.size()” and a lower detection limit of 0.1 RPC.

QC Filtering.
After expression estimates were inferred, the cds containing a total of 473 cells was run through
Monocle’s “detectGenes” function with the minimum expression level set at 0.1 transcripts. The

following filtering criteria were then imposed on the entire data set:

i. Number of expressed genes - The number of expressed genes detected in each cell in the
dataset was plotted and the high and low expressed gene thresholds were set based on
observations of each distribution. Only those cells that expressed between 2,000 and 10,000

genes were retained.
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558  1ii. Cell Mass - Cells were then filtered based on the total mass of RNA in the cells calculated by
559  Monocle. Again, the total mass of the cell was plotted and mass thresholds were set based on
560  observations from each distribution. Only those cells with a total cell mass between 100,000 and
561 1,300,000 fragments mapped were retained.

562

563  iii. Total RNA copies per cell - Cells were then filtered based on the total number of RNA

564  transcripts estimated for each cell. Again, the total RNA copies per cell was plotted and RNA
565  transcript thresholds were set based on observations from each distribution. Only those cells with
566  atotal mRNA count between 1,000 and 40,000 RPCs were retained.

567

568 A total of 410 individual cells passed these initial filters. Outliers found in subsequent, reiterative
569  analyses described below were analyzed and removed resulting a final cell number of 396. The
570  distributions for total mRNAs, total mass, and number of expressed, can be found in Figure 1 -
571  supplement la-1c.

572

573 Log distribution QC.

574  Analysis using Monocle relies on the assumption that the expression data being analyzed follows
575  alog-normal distribution. Comparison to this distribution was performed after initial filtering
576  prior to continuing with analysis and was observed to be well fit.

577

578  Reiterative single-cell RNA data analysis.
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After initial filtering described above, the entire cds as well as subsets of the cds based on “age”
and “region” of cells were created for recursive analysis. Regardless of how the data was

subdivided, all data followed a similar downstream analysis workflow.

Determining number of cells expressing each gene.

The genes to be analyzed for each iteration were filtered based on the number of cells that
expressed each gene. Genes were retained if they were expressed in > 5% of the cells in the
dataset being analyzed. These are termed “expressed genes.” For example, when analyzing all
cells collected together (n = 410), a gene had to be expressed in 20.5 cells (410 x 0.05 = 20.5) to
be included in the analysis. Whereas when analyzing P7 MB cells (n = 80), a gene had to be
expressed in just 4 cells (80 x 0.05 = 4). This was done to include genes that may define rare

populations of cells that could be present in any given population.

Monocle model preparation.

The data was prepared for Monocle analysis by retaining only the expressed genes that passed
the filtering described above. Size factors were estimated using Monocle’s
“estimateSizeFactors()” function. Dispersions were estimated using the “estimateDispersions()”

function.

High variance gene selection.
Genes that have a high biological coefficient of variation (BCV) were identified by first
calculating the BCV by dividing the standard deviation of expression for each expressed gene by

the mean expression of each expressed gene. A dispersion table was then extracted using the
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dispersionTable() function from Monocle. Genes with a mean expression > 0.5 transcripts and a
“dispersion_empirical” >= 1.5*dispersion_fit or 2.0*dispersion_fit were identified as “high

variance genes.”

Principal component analysis (PCA).

PCA was then run using the R “prcomp” function on the centered and scaled log2 expression
values of the “high variance genes.” PC1 and PC2 were then visualized to scan the data for
obvious outliers as well as bias in the PCs for age, region, or plates on which the cells were
sequenced. If any visual outliers in the data was observed, those cells were removed from the
original subsetted cds and all filtering steps above were repeated. Once there were no obvious
visual outliers in PC1 or PC2, a screeplot was used plot the PCA results in order to determine the
number of PCs that contributed most significantly to the variation in the data. This was manually
determined by inspecting the screeplot and including only those PCs that occur before the

leveling-off of the plot.

t-SNE and clustering.

Once the number of significant PCs was determined, t-Distributed Stochastic Neighbor
Embedding (t-SNE)" was used to embed the significant PC dimensions in a 2-D space for
visualization. This was done using the “tsne” package available through R with “whiten =
FALSE.” The parameters “perplexity” and “max_iter” were tested with various values and set

according what was deemed to give the cleanest clustering of the data.
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624  After dimensionality reduction via t-SNE, the number of clusters was determined in an unbiased
625  manner by fitting multiple Gaussian distributions over the 2D t-SNE projection coordinates using
626  the R package ADPclust’' and the t-SNE plots were visualized using a custom R script. The
627  number of genes expressed and the total mRNAs in each cluster were then compared.

628

629  Differential expression Analyses.

630  Since the greatest source of variation in the data was between ages (Figure 1), differential

631  expression analyses and downstream analyses were performed separately for each age.

632

633  In order to find differentially expressed genes between brain DA populations at each age, the
634  E15.5 and P7 datasets were annotated with regional cluster identity (“subset cluster”).

635  Differential expression analysis was performed using the “differentialGeneTest” function from
636  Monocle that uses a likelihood ratio test to compare a vector generalized additive model

637 (VGAM) using a negative binomial family function to a reduced model in which one parameter
638  of interest has been removed. In practice, the following models were fit:

639

640  “~subset.cluster” for E15.5 or P7 dataset

641

642  Genes were called as significantly differentially expressed if they had a g-value (Benjamini-
643  Hochberg corrected p-value) < 0.05.

644

645  Cluster specific marker genes.
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646  In order to identify differentially expressed genes that were “specifically” expressed in a

647  particular subset cluster, R code calculating the Jensen-Shannon based specificity score from the
648 R package cummeRbund’* was used similar to what was described in Burns et al”>.

649

650  Briefly, the mean RPC within each cluster for each expressed gene as well as the percentage of
651  cells within each cluster that express each gene at a level > 1 transcript were calculated. The

652  “.specificity” function from the cummRbund package was then used to calculate and identify the
653  cluster with maximum specificity of each gene’s expression. Details of this specificity metric can
654  be found in Molyneaux, ef al’”.

655

656  To identify subset cluster specific genes, the distribution of specificity scores for each subset
657  cluster was plotted and a specificity cutoff was chosen so that only the “long right tail” of each
658  distribution was included (i.e. genes with a specificity score above the cutoff chosen). For each
659 iterative analysis, the same cutoff was used for each cluster or region (specificity >0.4). Once the
660  specificity cutoff was chosen, genes were further filtered by only retaining genes that were

661  expressed in >= 40% of cells within the subset cluster that the gene was determined to be

662  specific for.

663

664  Gene Set Enrichment Analyses.

665  Gene set enrichment analyses were performed in two separate ways depending upon the

666  situation. A Gene Set Enrichment Analysis (GSEA) PreRanked analysis was performed when a
667  ranked list (e.g. genes ranked by PC1 loadings) using GSEA software available from the Broad

668 Institute (v2.2.4)>"°. Ranked gene lists were uploaded to the GSEA software and a
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“GSEAPreRanked” analysis was performed with the following settings: ‘Number of
Permutations’ = 1000, ‘Collapse dataset to gene symbols’ = true, ‘Chip platform(s)’ =
GENE_SYMBOL.chip, and ‘Enrichment statistic’ = weighted. Analysis was performed against
Gene Ontology (GO) collections from MSigDB, including c2.all.v5.2.symbols and
c5.all.v5.2.symbols. Top ten gene sets were reported for each analysis (Supplementary File 1).

Figures and tables displaying the results were produced using custom R scripts.

Unranked GSEA analyses for lists of genes was performed using hypergeometric tests from the
R package clusterProfiler implemented through the functions ‘enrichGO’, ‘enrichKEGG’, and
‘enrichPathway’ with ‘pvalueCutoff’ set at 0.01, 0.1, 0.1, respectively with default settings’”.
These functions were implemented through the ‘compareCluster’ function when analyzing

WGCNA data.

Weighted Gene Co-Expression Network Analysis (WGCNA).

WGCNA was performed in R using the WGCNA package (v1.51)** following established
pipelines laid out by the packages authors (see
https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/ for more
detail). Briefly, an expression matrix for all P7 neurons containing all genes expressed in >= 20
cells (n = 12628) was used with expression counts in log2(Transcripts + 1). The data were
initially clustered in order to identify and remove outliers (n = 1) to leave 223 total cells (Figure
3 - supplement 1a). The soft threshold (power) for WGCNA was then determined by calculating
the scale free topology model fit for a range of powers (1:10, 12, 14, 16, 18, 20) using the

WGCNA function “pickSoftThreshold()” setting the networkType = “signed”. A power of 10
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was then chosen based on the leveling-off of the resulting scale independence plot above 0.8
(Figure 3 - supplement 1b). Network adjacency was then calculated using the WGCNA function
“adjacency()” with the following settings: power = 10 and type = “signed.” Adjacency
calculations were used to then calculate topological overlap using the WGCNA function
“TOMsimilarity()” with the following settings: TOMtype = “signed.” Distance was then
calculated by subtracting the topological overlap from 1. Hierarchical clustering was then
performed on the distance matrix and modules were identified using the “cuttreeDynamic”
function from the dynamicTreeCut package’ with the following settings: deepSplit = T;
pamRespectsDendro = FALSE, and minClusterSize = 20. This analysis initially identified 18
modules. Eigengenes for each module were then calculated using the “moduleEigengenes()”
function and each module was assigned a color. Two modules (“grey” and “turquoise”) were
removed at this point. Turquoise was removed because it contained 11567 genes or all the genes
that could not be grouped with another module. Grey was removed because it only contained 4
genes, falling below the minimum set module size of 20. The remaining 16 modules were
clustered (Figure 3 - supplement 1c) and the correlation between module eigengenes and subset
cluster identity was calculated using custom R scripts. Significance of correlation was
determined by calculated the Student asymptotic p-value for correlations by using the WGCNA
“corPvalueStudent()” function. Gene set enrichments for modules were determined by using the
clusterProfiler R package”. The correlation between the t-SNE position of a cell and the module

eigengenes was calculated using custom R scripts.

Prioritizing Genes in PD GWAS Loci.

Topologically Associated Domain (TAD) and Megabase Gene Data.
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715  The data for human TAD boundaries were obtained from human embryonic stem cell (hESC)
716  Hi-C data® and converted from human genome hg18 to hg38 using the liftOver tool from UCSC

717  Genome Browser (http://genome.ucsc.edu/). PD GWAS SNP locations in hg38 were intersected

718  with the TAD information to identify TADs containing a PD GWAS SNP. The data for +/- 1
719  megabase regions surrounding PD GWAS SNPs was obtained by taking PD GWAS SNP

720  locations in hg38 and adding or subtracting 1e+06 from each location. All hg38 Ensembl

721  (version 87) genes that fell within the TADs or megabase regions were then identified by using
722 the biomaRt R package”'*. All genes were then annotated with PD locus and SNP information.
723 Mouse homologs for all genes were identified using human to mouse homology data from

724 Mouse Genome Informatics (MGI)

725  (http://www.informatics.jax.org/downloads/reports/ HOM MouseHumanSequence.rpt; Date

726  accessed: 07/07/2017). Homologs of protein coding genes that did not have a mouse homolog in
727  the data above were manually curated by searching the human gene name in the MGI database

728  (http://www.informatics.jax.org/). Of the 742 genes with no mouse homologs, 92 (92/742,

729  ~12%) were annotated as protein coding genes (Figure 4 - supplement 1a). 24 loci include at

730  least one protein coding gene with no identified, one-to-one mouse homolog (Figure 4 -

731  supplement 1b). All 1009 genes with mouse homologs are annotated as “protein_coding.” Gene
732 homologs were manually annotated using the MGI database if a homolog was found to exist. The
733  TAD and megabase tables were then combined to create a final PD GWAS locus-gene table.

734

735  PD GWAS Loci Gene Scoring.

736 Genes within PD GWAS loci were initially scored using two gene lists: Genes with an average

737  expression >0.5 transcripts in the SN cluster in our data (points = 1) and genes with an average
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expression >0.5 transcripts in the SN population in La Manno, et al’* (points = 1). Further
prioritization was accomplished by using three gene lists: genes that were differentially
expressed between subset clusters (points = 1); Genes found to be “specifically” expressed in the
P7 MB SN cluster (points = 1); Genes found in the WGCNA modules that are enriched for PD
(points = 1). Expression in the SN cluster was considered the most important feature and was
weighted as such through the use of two complementary datasets with genes found to be
expressed in both receiving priority. Furthermore, a piece of external data, pLI scores for each
gene from the EXAC database™, was added to the scores in order to rank loci that were left with
>2 genes in the loci after the initial scoring. pLI scores

(fordist cleaned exac r03 marchl6 z pli rec null data.txt) were obtained from

http://exac.broadinstitute.org/ (Date dowloaded: March 30, 2017).

In situ hybridization.
In situ hybridization data was downloaded from publically available data from the Allen Institute

through the Allen Brain Atlas (http://www.brain-map.org/). The image used in Figure 3a was

obtained from the Reference Atlas at the Allen Brain Atlas (http://mouse.brain-

map.org/static/atlas). URLs for all Allen Brain Atlas in situ data analyzed and downloaded for

SN marker genes (Figure 3b) are available in Supplementary File 6. Data for SN expression in
situ data for PD GWAS genes (Figure 4b) were obtained from the following experiments: 1056
(Th), 79908848 (Snca), 297 (Crhrl), 74047915 (Atp6vid), 72129224 (Mmp16), and 414 (Cntnl).

Data accessed on 03/02/17.

Single molecule in situ hybridization (smFISH).
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761  For in situ hybridization experiments, untimed pregnant Swiss Webster mice were ordered from

762  Charles River Laboratories (Crl:CFW(SW); http://www.criver.com/). Mice were maintained as

763  previously described. Pups were considered PO on the day of birth. At P7, the pups were

764  decapitated, the brain was quickly removed, and the brain was then washed in 1x PBS. The intact
765  brain was then transferred to a vial containing freshly prepared 4% PFA in 1x PBS and incubated
766  at 4°C for 24 hours. After 24 hours, brains were removed from PFA and washed three times in 1x
767  PBS. The brains were then placed in a vial with 10% sucrose at 4°C until the brains sunk to the
768  bottom of the vial (usually ~1 hour). After sinking, brains were immediately placed in a vial

769  containing 30% sucrose at 4°C until once again sinking to the bottom of the vial (usually

770  overnight). After cryoprotection, the brains were quickly frozen in optimal cutting temperature
771 (O.C.T.) compound (Tissue-Tek) on dry ice and stored at -80°C until use. Brains were sectioned
772 at a thickness of 14 micrometers and mounted on Superfrost Plus microscope slides

773  (Fisherbrand, Cat. # 12-550-15) with two sections per slide. Sections were then dried at room
774  temperature for at least 30 minutes and then stored at -80°C until use.

775

776  RNAscope in situ hybridization (https://acdbio.com/) was used to detect single RNA transcripts.
777  RNAscope probes were used to detect 7/ (C1; Cat No. 317621, Lot: 17073A), Slc6a3 (C2; Cat
778  No. 315441-C2, Lot: 17044A), Lhx9 (C3; Cat No. 495431-C3, Lot: 17044A), and Ldb2 (C3; Cat
779  No. 466061-C3, Lot: 17044A). The RNAscope Fluorescent Multiplex Detection kit (Cat No.

780  320851) and the associated protocol provided by the manufacturer were used. Briefly, frozen

781  tissues were removed from -80°C and equilibrated at room temperature for 5 minutes. Slides

782  were then washed at room temperature in 1x PBS for 3 minutes with agitation. Slides were then

783  immediately washed in 100% ethanol by moving the slides up and down 5-10 times. The slides
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were then allowed to dry at room temperature and hydrophobic barriers were drawn using a
hydrophobic pen (ImmEdge Hydrophobic Barrier PAP Pen, Vector Laboratories, Cat. # H-4000)
around the tissue sections. The hydrophobic barrier was allowed to dry overnight. After drying,
the tissue sections were treated with RN Ascope Protease IV at room temperature for 30 minutes
and then slides were washed in 1x PBS. Approximately 100 uL of multiplex probe mixtures (C1
- Th, C2 - Slc6a3, and C3 - one of Lhx9 or Ldb2) containing either approximately 96 uL C1: 2 uL
C2: 2uL C3 (Th:Slc6a3:Lhx9) or 96 uL C1: 0.6 uL C2: 2 uL. C3 (Th:Slc6a3:Ldb2) were applied
to appropriate sections. Both mixtures provided adequate in situ signals. Sections were then
incubated at 40°C for 2 hours in the ACD HybEZ oven. Sections were then sequentially treated
with the RNAscope Multiplex Fluorescent Detection Reagents kit solutions AMP 1-FL, AMP 2-
FL, AMP 3-FL, and AMP 4 Alt B-FL, with washing in between each incubation, according to
manufacturer’s recommendations. Sections were then treated with DAPI provided with the
RNAscope Multiplex Fluorescent Detection Reagents kit. One drop of Prolong Gold Antifade
Mountant (Invitrogen, Cat # P36930) was then applied to each section and a coverslip was then
placed on the slide. The slides were then stored in the dark at 4°C overnight before imaging.
Slides were further stored at 4°C throughout imaging. Manufacturer provided positive and
negative controls were also performed alongside experimental probe mixtures according to
manufacturer’s protocols. Four sections that encompassed relevant populations in the P7 ventral
MB (SN, VTA, etc.) were chosen for each combination of RNAscope smFISH probes and

subsequent analyses.

smFISH Confocal Microscopy.
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RNAscope fluorescent in situ experiments were analyzed using the Nikon A1 confocal system
equipped with a Nikon Eclipse Ti inverted microscope running Nikon NIS-Elements AR 4.10.01
64-bit software. Images were captured using a Nikon Plan Apo A 60x/1.40 oil immersion lens
with a common pinhole size of 19.2 uM, a pixel dwell of 28.8 ps, and a pixel resolution of 1024
x 1024. DAPI, FITC, Cy3, and Cy5 channels were used to acquire RNAscope fluorescence.
Positive and negative control slides using probe sets provided by the manufacturer were used in
order to calibrate laser power, offset, and detector sensitivity, for all channels in all experiments

performed.

smFISH image analysis and processing.

Confocal images were saved as .nd2 files. Images were then processed in ImagelJ as follows.
First, the .nd2 files were imported into ImageJ and images were rotated in order to reflect a
ventral MB orientation with the ventral side of the tissue at the bottom edge. Next the LUT
ranges were adjusted for the FITC (range: 0-2500), Cy3 (range: 0-2500), and Cy5 (range: 0-
1500) channels. All analyzed images were set to the same LUT ranges. Next, the channels were
split and merged back together to produce a “composite” image seen in Figure 2. Scale bars were
then added. Cells of interest were then demarcated, duplicated, and the channels were split.

These cells of interest were then displayed as the insets seen in Figure 2.

Immunohistochemistry and quantification of 74 striatum staining in CpixI mice.

Mice (N=8 Cplx 17" ; N=3 WT littermates; ages between 4-7.5 weeks) were euthanized and their
brains fresh-frozen on powdered dry ice. Brains were sectioned at 35 mm and sections and

mounted onto Superfrost-plus glass slides (VWR International, Poole, UK). Sections were
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829  peroxidase inactivated, and one in every 10 sections was processed immunohistochemically for
830 tyrosine hydroxylase. Sections were incubated in primary anti-tyrosine hydroxylase antibody
831 (ABI152, Millipore) used at 1/2000 dilution in 1% normal goat serum in phosphate-buffered
832  saline and 0.2% Triton X-100 overnight at 4°C. Antigens were visualised using a horseradish
833  peroxidase-conjugated anti-rabbit second antibody (Vector, PI-1000, 1/2000 dilution) and

834  visualized using diaminobenzidine (DAB; Sigma). The slides were stored in the dark (in black

835  slide boxes) at room temperature (21 C).

836  Images of stained striatum were taken using a Nikon AZ100 microscope equipped with a 2x lens
837  (Nikon AZ Plan Fluor, NA 0.2, WD45), a Nikon DS-Fi2 camera, and NIS-Elements AR 4.5

838  software. Appropriate zoom and light exposure were determined before imaging and kept

839  constant for all slides and sections. Density of Th+ DAB staining was measured using ImagelJ
840  software. Briefly, images were imported into ImagelJ and the background was subtracted (default
841 50 pixels with “light background” selected). Next, images were converted to 8-bit and the image
842  was inverted. Five measurements of density were taken for each side of a striatum in a section
843  along with a density measurement from adjacent, unstained cortex. Striosomes were avoided
844  during measuring when possible. Striatal measurements had background (defined as staining in
845  the adjacent cortex in a section) subtracted. The mean section measurements (intensity/pixels
846  squared) for each brain were calculated and represented independent measurements of the same
847  brain. Variances were compared between the WT and KO populations. A two sample t-test was
848  then used to compare WT vs. CplxI -/- section densities with the following parameters in R

849  using the “t.test” function: alternative = “two-sided”, var.equal = “T"".
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1091 FIGURES
1092  Figure 1. scRNA-seq analysis of isolated cells allows their separation by developmental time.
a MB DA Neuron
Production MB DA Neuron
Programmed
Cell Death
P30
Time ° H
E10 . .
o ./ Modified template-
Harvest E15.5 Harvest P7 s / switching cDNA synthesis
o — e /-\ .
e O ek
/ 77 ¢ _
/ @ _® o
® S R \ -
o ~ 2o _
Nextera XT library prep
FACS Th* o~
single cells
b c ‘GO_CHROMATIN
GO_CYTOSKELETON_ORGANIZATION
"'_-‘ 10 10 GO_CHROMOSOME
'>° GO_RNA_PROCESSING
kel GO_NEGATIVE_REGULATION_OF_NITROGEN_COMPOUND_METABOLIC_PROCESS
qE) ‘GO_NUCLEOPLASM_PART
[} GO_CELL CYCLE
:-:- N N ‘GO_NEGATIVE_REGULATION OF GENE_EXPRESSION
o ‘GO_NEGATIVE_REGULATION_OF CELL CYCLE
°\° ‘GO_TRANSCRIPTION_FACTOR_ACTIVITY_PROTEIN_BINDING
o. ‘GO_POSITIVE_REGULATION_OF ION_TRANSPORT
9 -10 -10 GO_CELL_CELL_SIGNALING
8 ‘GO_ION_TRANSPORT
o GO_TERMINAL_BOUTON
‘GO_SECRETORY_VESICLE
-2 -20 GO_SYNAPSE_PART
-10 0 10 ‘GO_PRESYNAPSE
PC1 (8.3% explained var.) PC1 (8.3% explained var.) ‘Z‘:) 'Li‘ﬁg:‘::z::z;z:i’;’;::z
Age @ E155 @ P7 Region @FB @ MB @ OB
d r'y e o
” 55, | i
(‘o wtPe %00 ca*s,
A% °se 9 AL 34
oy X% R vy f*" e,
o ®® ‘f % t P .
~ ¢ \3&" »
A ° ° }
o Aan .o. ‘5. o ° 1
o Y ) o AMSE 0 o
§ | e I S ‘o
2 AMA ° = 4
f. . L]
N i
A A
. 5’? .
A A
%‘: i
& ®E15.5 AP7 A ®E155 AP7
-40 20 0 20 -40 -20 0 20
tSNE 1 tSNE 1
Region @FB @ MB @ OB S E15.FB.1 E15.MB.2 @ P7.MB.1 ( P7Z.MB4 @ P7.0B.3
C:’ub:tg: @Ei5FB2 ) P7.FB1 @ P7.MB.2 @ P7.0B.1
@ E15.MB 1 P7FB2 @ P7.MB.3 @ P7.0B2
1093
1094

50


https://doi.org/10.1101/148049
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/148049; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1095  Figure 1 - supplement 1. Quality control used for filtering single-cell RNA-seq data
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1098  Figure 1 - supplement 2. Expression of broad marker genes confirms successful isolation of neurons
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Figure 2. Subclusters of P7 Th+ neurons are identified based on marker gene analyses.
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1103 Figure 2 - supplement 1. Clusters of Th+ neurons are discovered through iterative, marker gene
1104  analysis.
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1107  Figure 3. Novel markers and gene modules reveal context specific SN DA biology.
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1111  Figure 3 - supplement 1. Exploration of neuronal subtype markers in isolated DA neuron

1112 populations.
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1115  Figure 3 - supplement 2. WGCNA analysis reveals 16 modules in P7 scRNA-seq data
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1117  Figure 4. Context specific SN DA data allows for the prioritization of genes in PD GWAS loci.
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1119  Figure 4 - supplement 1. The distribution of gene biotypes assigned to genes extracted from PD
1120 GWAS loci.
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1122 TABLES
1123 Table 1. Summary of the systematic scoring of genes in 49 GWAS loci associated with PD
Lead SNP Top Candidate Genes Prioritized by
rs6430538 | UBXN4,CCNT2;R3HDM1;RAB3GAP SN expression; pLI
1
rs14235 MAPK3;VKORCI; BOLA2B SN expression; Differential expression; pLI
rs11724635 CPEB?2 SN expression; pLI
rs11060180 ARLG6IP4 SN expression; Differential expression
rs8118008 ATRN; NOP56; MRPS26; SN expression; Differential expression; pLI
C200rf27;,IDH3B
rs3793947 DLG2;CCDC90B SN expression; Differential expression; pLI
rs6812193 G3BP2;CCNI;CDKL?2 SN expression; Differential expression; pLI
rs591323 FGF20;, ZDHHC2; TUSC3; MICU3; SN expression; Differential expression; SN
MTMR7 specific; pLI
rs35749011 KCNN3 SN expression; Differential expression; SN
specific; WGCNA module
rs11158026 GCHI SN expression; Differential expression; SN
specific; WGCNA module
rs199347 RAPGEFS5 SN expression; Differential expression
rs9275326 ATP6VIG2 SN expression; Differential expression;
WGCNA module
rs11789673 PRDX3;NANOSI;INPP5F;SFXN4 SN expression; Differential expression; pLI
5
rs7077361 FAMI171A41 SN expression; Differential expression
rs11518563 CHMP2B SN expression; Differential expression
5
rs76904798 PDZRN4 SN expression; Differential expression;
WGCNA module
rs17649553 CRHRI; NSF; MAPT SN expression; Differential expression; pLI
rs12637471 DCUNIDI; ABCCS5; PARL SN expression; Differential expression; pLI
rs329648 OPCML SN expression; Differential expression
rs60298754 MMPI6 SN expression
rs34016896 B3GALNTI SN expression; Differential expression
rs823118 LRRN2; KLHDCS8A; SRGAP2 SN expression; Differential expression; pLI
rs12456492 RIT2;SYT4 SN expression; Differential expression; pLI
rs10797576 TSNAX SN expression
rs356182 SNCA SN expression; Differential expression;
WGCNA module
rs62120679 UQCRI1 SN expression; Differential expression;
WGCNA module
rs11868035 COPS3; NT5M SN expression; Differential expression; pLI
rs1474055 STK39;B3GALTI SN expression; Differential expression; pLI
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rs34311866 | MAEA; CPLXI1; ATP5I; TMEM175 SN expression; Differential expression;
WGCNA module; pLI
rs1555399 VTIIB; ATP6VID SN expression; Differential expression; pLI
rs2823357 HSPAI3 SN expression
rs2414739 TLN2; RORA SN expression; pLI
rs14391845 NISCH; PCBP4,; SPCS1; SMIM4 SN expression; Differential expression; pLI
2

rs78738012 ANK2; CAMK2D SN expression; Differential expression; pLI

rs601999 DNAJC7; ATP6V0OAL; ACLY; SN expression; Differential expression; pLI

PSME3; CNP; RPL27; VATI; COA3;
HAPI
rs11343 SYT17 SN expression; Differential expression;
WGCNA module
rs2740594 FAMI1674 SN expression; Differential expression; SN
specific; WGCNA module
rs2694528 NDUFAF2 SN expression
rs10906923 FAMI171A41 SN expression; Differential expression
rs8005172 ZC3HI14 SN expression
rs34043159 RPL31; CREG2 SN expression; Differential expression; pLI
rs4653767 SRPY9; PSEN2; PARPI SN expression; pLI
rs12497850 SMARCCI1; PRKAR2A; RHOA; SN expression; Differential expression; pLI
NICNI; UQCRCI; APEH; TCTA;
TMA7; GPX1; IMPDH2; QARS;
SHISAS5; WDR6

rs4073221 SATBI SN expression

rs353116 SCN3A; CSRNP3 SN expression; Differential expression; pLI
rs13294100 BNC2 SN expression; Differential expression; SN

specific; WGCNA module

rs2280104 CHMP7; DMTN SN expression; Differential expression; pLI
rs4784227 TOX3; AKTIP SN expression; Differential expression; pLI
rs9468199 ZSCAN26 SN expression
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Figure and Table Titles and Legends

Figure 1. scRNA-seq analysis of isolated cells allows their separation by developmental time.

Figure 1. scRNA-seq analysis of isolated cells allows their separation by developmental time. a) Diagram
of scRNA-seq experimental procedures for isolating and sequencing EGFP+ cells. Timeline adapted from
Barallobre, et al., 2014a. b) Principal component analysis (PCA) on all cells collected using genes with
highly variant transcriptional profiles. The greatest source of variation (PC1) is explained by the time
point at which the cells were collected, not the region from which the cells were collected. c) The top ten
Gene Ontology (GO) gene sets enriched in genes with positive (red) and negative (green) PC1 loadings.
Genes with negative PC1 loadings and negative normalized enrichment scores (NES) were enriched for
terms indicative of mitotically active cells. Genes with positive PC1 loadings and NES scores were
enriched for terms expected of more mature neurons. d) A t-distributed Stochastic Neighbor Embedding
(t-SNE) plot of all collected cells colored by regional identity. E15.5 cells cluster together while P7 cells
cluster primarily by regional identity. e) A t-SNE plot of all collected cells colored by subset cluster
identity. Through iterative analysis, timepoint-regions collected can be separated into multiple
subpopulations (13 in total). Midbrain, Mb; Forebrain, FB; Olfactory bulb; OB; Fluorescence activated

cell sorting; FACS.

Figure 1 - supplement 1. Quality control used for filtering single-cell RNA-seq data

Figure 1 - supplement 1. Quality control used for filtering single-cell RNA-seq data. a) Histogram
showing the final distribution of the number of genes expressed per cell (n cells = 396). b) Histogram
showing the final distribution of the total mRNA per cell (n cells = 396). c¢) Histogram showing the final
distribution of the total mass (fragments mapped to the transcriptome) per cell (n cells = 396). d) Barplot
showing the number of cells in each timepoint-region. There were a mean of 79 cells/timepoint region. )

Principal component analysis (PCA) plots from the iterative analyses performed on P7 FB, P7 OB, and
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1150 P7 MB cell populations. Initial analyses in these timepoint-regions revealed outliers that were
1151  subsequently removed.

1152

1153  Figure 1 - supplement 2. Expression of broad marker genes confirms successful isolation of neurons
1154  Figure 1 - supplement 2. Expression of broad marker genes confirms successful isolation of neurons. a)
1155  Boxplots showing the expression of pan-neuronal, pan-astrocyte, and pan-oligodendrocyte marker in all
1156 13 subpopulations. All subpopulations show robust expression of pan-neuronal markers. +/- 1.5x

1157  interquartile range is represented by the whiskers on the boxplots. Data points beyond 1.5x interquartile
1158  range are considered as outliers and plotted as black points.

1159

1160  Figure 2. Subclusters of P7 Th+ neurons are identified based on marker gene analyses.

1161  Figure 2. Subclusters of P7 Th+ neurons are identified based on marker gene analyses. a) A t-SNE plot of
1162  all P7 neurons collected using colored by subset cluster identity. The neurons mostly cluster by regional
1163  identity. b) t-SNE plot of P7 FB neurons. P7 FB neurons cluster into two distinct populations. ¢) t-SNE
1164  plot of P7 OB neurons. P7 OB neurons cluster into three populations. These populations represent a

1165 trajectory of Th+ OB maturation (Table S3) as indicated by the red arrow. d) A t-SNE plot of P7 MB
1166  neurons. P7 MB neurons cluster into four clusters: the substantia nigra (SN), the ventral tegmental area
1167  (VTA), the periaqueductal grey area (PAG), and a novel progenitor-like population. €) Boxplots

1168  displaying the expression of four genes (Th, Slc6a3, Lhx9, and Ldb?2) across all subclusters identified. The
1169  novel P7 MB progenitor-like cluster (P7.MB.2) has a similar expression profile to E15.5 MB neuroblast
1170  population (E15.MB.1) (Table S2). +/- 1.5x interquartile range is represented by the whiskers on the

1171  boxplots. Data points beyond 1.5x interquartile range are considered as outliers and plotted as black

1172 points. f) Representative image of multiplex single molecule fluorescent in situ hybridization (smFISH)
1173 for Th, Slc6a3, and Lhx9, in the mouse ventral midbrain. Zoomed-in panels represent cell populations
1174  observed. Scale bar, 50 uM. g) Representative image of multiplex smFISH for Th, Sic6a3, and Ldb2, in

1175  the mouse ventral midbrain. Zoomed-in panels represent cell populations observed. h) Diagram of ventral
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midbrain summarizing the results of smFISH. Th+/Slc6a3-/Lhx9+ and Th+/Slc6a3-/Ldb2+ cells are both
found in the dorsal SN. Scale bar, 50 uM. NB, neuroblast; SN, substantia nigra; VTA, ventral tegmental

area; IPN, interpeduncular nucleus.

Figure 2 - supplement 1. Clusters of Th+ neurons are discovered through iterative, marker gene
analysis.

Figure 2 - supplement 2. Clusters of Th+ neurons are discovered through iterative, marker gene analysis.
a) t-SNE plots of all E15.5 cells colored by regional identity and subset cluster assignment. b) t-SNE plot
of FB E15.5 cells colored by subset cluster assignment. E15.5 FB cells cluster in two distinct populations.
c) t-SNE plot of MB E15.5 cells colored by subset cluster assignment. E15.5 MB cells cluster in two
distinct populations. d) Boxplots showing the expression of markers used to identify the P7.FB.2 cluster
(Table S3). +/- 1.5x interquartile range is represented by the whiskers on the boxplots. Data points beyond
1.5x interquartile range are considered as outliers and plotted as black points. €) Boxplots showing the
expression of markers used to identify P7 olfactory bulb clusters (Table S3). +/- 1.5x interquartile range is
represented by the whiskers on the boxplots. Data points beyond 1.5x interquartile range are considered

as outliers and plotted as black points.

Figure 3. Novel markers and gene modules reveal context specific SN DA biology.

Figure 3. Novel markers and gene modules reveal context specific SN DA biology. a) Reference atlas
diagram from the Allen Brain Atlas (ABA; http://www.brain-map.org/) of the P56 mouse ventral
midbrain. b) Confirmation of novel SN DA neuron marker genes through the use of ABA in

situ hybridization data (http://www.brain-map.org/). Coronal, P56 mouse in situ data was explored in
order to confirm the expression of 25 novel SN markers. T/ expression in P56 mice was used as an
anatomical reference during analysis. ¢) Correlation heatmap of the Pearson correlation between module
eigengenes and P7 Th+ subset cluster identity. Modules are represented by their assigned colors at the

bottom of the matrix. Modules that had a positive correlation with a subset cluster and had a correlation
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1202 P-value less than the Bonferroni corrected significance level (P-value < 3.5e-04) contain an asterisk. SN
1203 cluster (P7.MB.4) identity is denoted by a black rectangle. Modules (“green” and “brown”) that were
1204  enriched for the “Parkinson’s Disease” KEGG gene set are labeled with "PD." d) The eigengene value for
1205  each P7 neuron in the seven WGCNA modules shown to be significantly positively associated with a
1206  subset cluster overlaid on the t-SNE plot of all P7 neurons (Figure 2a). Plotting of eigengenes confirms
1207  strict spatial restriction of module association. Only the “lightcyan” module does not seem to show robust
1208  spatial restriction.

1209

1210  Figure 3 - supplement 1. Exploration of neuronal subtype markers in isolated DA neuron

1211  populations.

1212 Figure 3 - supplement 1. Exploration of neuronal subtype markers in isolated DA neuron populations. a)
1213 Boxplots showing the expression of markers for dopaminergic (DA), GABAergic, or glutamatergic

1214 neurons. +/- 1.5x interquartile range is represented by the whiskers on the boxplots. Data points beyond
1215 1.5x interquartile range are considered as outliers and plotted as black points. b) Example of a

1216  fluorescence activated cell sorting (FACS) plot used to isolate EGFP+ cells. EGFP fluorescence levels are
1217  represented on the x-axis and RFP fluorescence levels are represented on the y-axis. Cells were collected
1218  that fell within the area outlined in green.

1219

1220  Figure 3 - supplement 2. WGCNA analysis reveals 16 modules in P7 scRNA-seq data

1221  Figure 3 - supplement 2. WGCNA analysis reveals 16 modules in P7 scRNA-seq data. a) A dendrogram
1222 of showing the relationship of P7 cells based on expressed genes. The cells are annotated by regional
1223 identity. b) Scale independence plot showing the scale free topology model fit for different levels of soft
1224 threshold power. This plot was used to determine the soft threshold that would be used for the rest of the
1225 analysis (soft threshold = 10). c¢) Hierarchical clustering shows the relationship between identified
1226 WGCNA modules.

1227
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1228  Figure 4. Context specific SN DA data allows for the prioritization of genes in PD GWAS loci.

1229  Figure 4. Context specific SN DA data allows for the prioritization of genes in PD GWAS loci. a) A
1230 locus plot displaying four megabase regions in the human genome (hg38) centered on PD GWAS SNPs
1231  in six loci. Genes are displayed as boxes on their appropriate strand. Genes are shaded by their
1232 prioritization score and gene names are displayed for genes with a score of 3 or higher in each locus. b) /n

1233 situ hybridization from the ABA (http://www.brain-map.org/) of five prioritized genes along with Th for

1234 an anatomical reference. Coronal, P56 mouse in situ data was used. ¢) Boxplots displaying expression of
1235  prioritized genes from the MAPT locus (Figure 4a; Table 1). +/- 1.5x interquartile range is represented by
1236  the whiskers on the boxplots. Data points beyond 1.5x interquartile range are considered as outliers and
1237  plotted as black points. d) Representative light microscopy images of Th+ innervation density in the
1238 striatum of WT and CpixI knockout (KO) mice. Scale bar, | mm. ¢) Boxplots comparing the level of
1239 Th+ striatum innervation between WT and Cplx/ KO mice. DAB staining density was measured in 35
1240 uM, horizontal sections in WT mice (mice = 3, sections = 16) and Cplx! KO mice (mice = 8, sections =
1241  40). Each point in the boxplot represents a stained, 35 uM section. Statistical analyses were performed
1242 between conditions with section averages in order to preserve observed variability (WT n = 16, Cplx1 KO
1243 n = 40). A two sample t-test revealed that Th+ innervation density was significantly lower in CpixI KO
1244 mice (t = 6.4395, df = 54, p = 3.386¢-08). Data points outside of 1.5x interquartile range, represented by
1245  the whiskers on the boxplots, are considered as outliers and plotted as black points.

1246

1247  Figure 4 - supplement 1. The distribution of gene biotypes assigned to genes extracted from PD
1248  GWAS loci.

1249  Figure 4 - supplement 1. The distribution of gene biotypes assigned to genes extracted from PD GWAS
1250  loci. a) Barplot displaying the frequency of gene biotypes in the 742 genes without mouse homologs
1251 identified in PD GWAS loci. Only 92/742 of those genes are annotated as protein coding. b) Barplot
1252 displaying the frequency of protein coding genes without mouse homologs in each PD GWAS locus

1253 studied. 24 loci include at least one protein coding gene without a mouse homolog.
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Table 1. Summary of the systematic scoring of genes in 49 GWAS loci associated with PD

Scoring was carried out at described in the Results and Methods. Candidate genes are presented for each
of 49 PD GWAS loci analyzed. Information for each PD GWAS locus is presented including the lead
SNP for each locus, the prioritized genes in each locus, and which data prioritized the top genes. Detailed

scoring for each gene can be found in Supplementary File 9.

Supplemental File Descriptions

Supplementary File 1. A table with gene set enrichment analysis (GSEA) results for outliers removed
during iterative analyses.

Supplementary File 2. A table with marker genes found for all 13 identified DA neuron populations.

Supplementary File 3. A table summarizing marker genes and observations that led to the biological
classification of all 13 DA neuron populations

Supplementary File 4. A table showing marker genes of SN DA neurons with previous literature evidence
of marking the SN.

Supplementary File 5. A table showing novel marker genes of SN DA neurons with summary of SN
expression for each from Allen Brain Atlas (ABA) in situ data.

Supplementary File 6. A table showing all genes that comprise each identified WGCNA module.

Supplementary File 7. A table with Gene Ontology, Reactome, and KEGG enrichment results for all
WGCNA modules.

Supplementary File 8. A table with meta-data for each locus in Table 1. This includes the “Lead SNP”
associated with each locus, the “Closest Genes™ to the lead SNP, and whether or not the closest genes are
expressed (“Closest Gene Expressed”). This also has meta-data for genes in each locus including: the
number of human genes (“num_genes”), the number of genes expressed in either of the SN DA scRNA-
seq datasets used in scoring (“num_expressed_either”), the number of genes expressed in both SN DA
scRNA-seq datasets using in scoring (“num_expressed both”), the number of genes that had a one-to-one
mouse homolog (“num_homolog”), and the number of genes that did not have a one-to-one mouse
homolog (“num_no homolog”).

Supplementary File 9. A table with detailed prioritization scoring for all genes within PD GWAS loci.
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Supplementary File 10. A table summarizing information about Cp/x/ and WT mice used in this study
including mouse name, age, genotype, the number of striatal sections measured, and the date
immunohistochemistry was performed.

Supplementary File 11. A table showing all measurements taken for Cplx/ and WT mice.

Supplementary File 12. A table summarizing the comparison of PD GWAS gene prioritization metrics
found in this paper and in Chang, et al (2017).
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