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Abstract

An open question in human evolution is the importance of polygenic adaptation:
adaptive changes in the mean of a multifactorial trait due to shifts in allele fre-
quencies across many loci. In recent years, several methods have been developed to
detect polygenic adaptation using loci identified in genome-wide association studies
(GWAS). Though powerful, these methods suffer from limited interpretability: they
can detect which sets of populations have evidence for polygenic adaptation, but
are unable to reveal where in the history of multiple populations these processes
occurred. To address this, we created a method to detect polygenic adaptation in
an admixture graph, which is a representation of the historical divergences and ad-
mixture events relating different populations through time. We developed a Markov
chain Monte Carlo (MCMC) algorithm to infer branch-specific parameters reflecting
the strength of selection in each branch of a graph. Additionally, we developed a set
of summary statistics that are fast to compute and can indicate which branches are
most likely to have experienced polygenic adaptation. We show via simulations that
this method - which we call PolyGraph - has good power to detect polygenic adap-
tation, and applied it to human population genomic data from around the world.
We also provide evidence that variants associated with several traits, including
height, educational attainment, and self-reported unibrow, have been influenced by

polygenic adaptation in different populations during human evolution.
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Introduction

There is much interest in identifying the individual genetic variants that have experi-
enced natural selection during recent human evolution. Many popular methods tackle
this problem by identifying alleles that have changed frequency faster than can be ex-
plained by genetic drift alone, and that can instead be explained by selective processes.
These methods exploit patterns like haplotype homozygosity [1, 2, 3] and extreme popu-
lation differentiation [4, 5, 6], and have yielded several important candidates for human
adaptation: for example, LCT [7], EDAR [2], EPASI [4] and the FADS region [8]. In
order for these signals to be detectable at the level of an individual locus, the historical
changes in allele frequency must have been large and rapid. Therefore, they can only be
produced by alleles that confer a strong selective advantage.

With the advent of large-scale GWAS for a variety of measurable traits, however, it
has now become possible to detect a more subtle mechanism of adaptation. If a trait is
polygenic, positive selection may instead occur by concerted shifts at many loci that all
contribute to the variation in a trait. Over short time scales, these shifts are expected
to be small (but see [9] for polygenic dynamics under longer time scales). They are also
expected to occur in consistent directions, such that alleles that increase the trait will
systematically rise in frequency (if selection favors the increase of the trait) or fall in
frequency (if selection operates in the opposite direction). None of the allele frequency
changes need to be large on their own for the phenotypic change to be large. This process
is called polygenic adaptation and may underlie major evolutionary processes in recent
human history [10, 11, 12, 13].

A number of methods have been developed to detect polygenic adaptation using loci
identified from GWAS. Turchin et al. [14] was the first such study. They developed a test
for polygenic adaptation between two populations, and showed that there were systematic
frequency differences at height-associated loci between northern and southern Europeans,
which could not be explained by genetic drift alone. Berg and Coop [15, 16] developed a
more general method to detect polygenic adaptation by testing for over-dispersion of mean
genetic values among several populations, using a genome-wide population covariance
matrix to predict how alleles should behave under neutrality. Robinson et al. [17] used
theory by Ovaskainen et al. [18] to develop a similar population differentiation method
to detect polygenic adaptation with GWAS. They also made use of the genome-wide
covariance matrix, but, in contrast to Berg et al., their method is implemented in a
Bayesian linear mixed model.

None of these methods require a detailed model of human history to detect polygenic
adaptation. Their use of the genome-wide covariance matrix allows them to capture
patterns of genetic drift among populations without having to infer their history. While

this makes them quite powerful, it also means that they are not very useful at determining
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where and when polygenic adaptation took place in the past.

Here, we develop a method to detect polygenic adaptation that uses a more parameter-
rich model of historical population structure: an admixture graph, which is a simplified
representation of the history of divergences and admixture events among populations [19,
20]. An explicit model allows us to infer where particular bouts of polygenic adaptation
took place in human history, so as to better understand how selection on trait-associated

variants has occurred over past generations.

Results

Model

Assume we have measured genotypes at a SNP that influences a trait in a set of M
populations. Let d,, be the count of the derived allele in population m and let d be the
vector across the M populations of each d,, observation. Let n,, be the total number
of chromosomes observed in population m (together 7). Assume we have an admixture
graph G relating these populations, and that this graph consists of an accurate topology,
as well as accurate branch lengths and admixture rates. Branch lengths are in units of
drift, which are approximately equal to t/2N,, where, for each branch, ¢ is the number of
generations and NV, is the effective population size, assuming t << N, [21]. In practice,
we can estimate such a graph from neutral genome-wide data, and we use the program
MizMapper [22] when applying our method to real data below.

We wish to model the changes in frequency of the trait-associated allele over the graph
G. At each node in the graph, we introduce a parameter that corresponds to the allele
frequency of the variant at that node. Let fr be the derived allele frequency at the root
of the graph, f; be the vector of allele frequencies at all the other internal nodes of the
graph, and f_lé“ be the vector of allele frequencies at the tips of the graph.

The probability of the parameter values and the data can then be decomposed as

follows:

We now take each of terms above in turn. First, the probability of the observed counts

is simply a product of binomial probabilities:

M
m=1
where f,, is the element of fr_p that corresponds to population m.

To get the probabilities of the changes in allele frequency across different nodes,
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consider a single branch of G. Assuming the branch is relatively short (such that the
allele does not approach fixation or extinction in this time period) and there is no natural
selection, we can use the Normal approximation to the Wright-Fisher diffusion [23, 24, 25|
to model the allele frequency at the descendant node of the branch (fp) as a function of

the allele frequency at the ancestral node (f4):

Iolfa,c~ N(fa, fa(1 = fa)c), (3)

where ¢ corresponds to the amount of drift that has occurred in the branch. In practice,
we use a truncated Normal distribution with point masses at 0 and 1, to account for the
possibility of fixation or extinction of the allele [26].

In our model there may have also been selection on the allele on the branch, such
that it was pushed to either higher or lower frequency because of its influence on a trait.
We can model the selected allele frequency by modifying the infinitesimal mean of the
Wright-Fisher diffusion and approximating the diffusion with a Normal distribution that

now includes some additional terms ([14, 26, 27], Bhérer et al. in prep.):

fD‘fA7Oé7B?C ~ N(fA +g(5)05fA(1 - fA)7fA(1 - fA>C)7 (4)

where B is the effect size estimate at that site (defined with respect to the derived allele),
g(B) is some function that relates the effect size estimate to the selective pressure and
is our positive selection parameter, which is approximately equal to the product of the
selection coefficient for the advantageous allele and the duration of the selective process
[14, 28]. In practice, we will set g(5) to be equal to the sign (+1 or —1) of § (Figure 2),
so as to avoid giving too much weight to variants of strong effect. We will model selection
only on SNPs that are associated with a trait in a particular GWAS.

We can calculate the probability of these parameters at a particular site as the prod-
uct of the Normal probability densities that correspond to the evolution of allele fre-
quencies down each branch times a binomial probability density to account for sampling
error. Let us denote the Normal density that corresponds to a particular branch A\ as
h( fg\); fﬁﬁ), M o)), where we suppress notation of B3 for clarity. Then, for example,
the probability of a given pattern of allele frequencies and sample counts over a rooted

3-leaf tree with 4 branches A, ¢, v, ¢ (Figure 1) can be computed as follows:

P(fi, Fr,dld, i, fr, G) = RSV £ 6™, (R 18, e a5 157, ¢, alt (1 137, ), o)) P(di i, fir)

(5)
when the a parameters and the allele frequency at the root of the tree (fr = fg) =
f/gw)) are known. Note that some of the symbols here correspond to the same allele
frequencies. For example, if the v branch is one of the immediate descendant branches

of the ¢« branch, then fg) = Elv). Assuming SNPs are unlinked, we can compute the
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probability of the allele frequency configurations at all N trait-associated SNPs as a
product over the probabilities at each of the SNPs:

N
Py=]]F (6)
=1

where P; is the probability of the parameters of interest at SNP ¢ under our tree model.

More generally, we can also compute the probability of our parameters in an admix-
ture graph, containing nodes with more than one parent. In that case, the probability
of an allele frequency of an admixed node is a weighted sum of the probability paths
corresponding to its two parents, where the weights are the admixture rates for each of
the two contributions.

In practice, for a given SNP, we know neither the allele frequencies at the inner nodes
(f7) nodes, at the tip nodes (fr) and at the root node (fz), nor the a parameters in
each branch (&). We want to obtain a posterior distribution of these parameters, given
the data and the known graph: P(f}, fr. fr, &]cf, i, 3,G). We aim to do this for all trait-
associated SNPs. We therefore developed an MCMC sampler to transition between the
states of these variables and estimate their posterior distribution (Figure 2).

We set the prior for the frequencies at the root fg to be a uniform distribution. For

a given SNP i,

fi.r ~ Unif|0, 1] (7)

As there are many combinations of o parameters that generate almost equivalent
likelihoods in a complex admixture graph (Figure S1), we use a “spike-and-slab” prior

for the o parameters, so as to promote sparsity. For a given branch j,

oyl ¢,k ~ EN(0,(7/€)*) + (1 — K)N(0,7%) (8)

This is a mixture of two Normal distributions centered at 0: one of the distributions
has a wide standard deviation (7), while the other has a much narrower standard devia-
tion, which is a fraction (1/¢) of 7, and approximates a point mass at 0 [29, 30]. Here,
k is the mixture probability of drawing from the narrower Normal distribution, and we
model it with a uniform hyperprior (see Materials and Methods). The idea behind this is
that our assumed prior belief is that only a few of the branches in the admixture graph
have experienced bouts of polygenic adaptation, so we reward « parameters that tend to
stay in the neighborhood of 0 during the MCMC run.
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A statistic for prioritizing branches

We observed via simulations that different combinations of a parameters can produce
very similar likelihood values. This causes the MCMC sampler to explore different com-
binations of « values in the same posterior run, when only one such combination is
actually correct (Figure S1). The aforementioned spike-and-slab prior serves to partially
ameliorate this problem, but we aimed to find a way to further encourage sparsity by
reducing the possible number of candidate branches that are explored in the MCMC.
We therefore devised a set of summary statistics that can be computed before starting
an MCMC run and are meant to detect branch-specific deviations from neutrality. Let
F be the empirical population covariance matrix, which - under ideal neutral conditions
- should be determined by the admixture graph connecting all the populations. Let Z be
the mean-centered vector of estimated mean genetic values for each of the M populations,
computed from the N SNPs that are known to be associated with a trait. For a specific

population m:

N A oA

Here, ﬁm is the sample frequency of SNP ¢ in a panel of population m, and BZ is its
effect size estimate. The vector 2’ therefore contains the z,, values for all M populations.

Furthermore, let us define the vector l;j for a particular branch j to be equal to the
contribution w of that branch to each of the leaves of the graph. For example, branch
v-q in Figure 2 is a full ancestral branch to leaf C, a partial ancestral branch to leaf B
(due to the admixture event), but not an ancestral branch to either A or D. Therefore,
the vector l;v_q is equal to (wa,wp,we, wp) = (0,1 —,1,0). By the same reasoning,
bo—y = (0,0,1,0) and by_, = (1,1,1,0).

Now, let:

(2" a;)*

)= —— 9 10
) = Gt (10)

where aj is a scaled version of b; so that is has unit length. The numerator of this
statistic is proportional to the squared covariance between the genetic values and the
vector representing the contribution of drift down branch j to the overall pattern of among
population divergence. The denominator gives the expectation of the numerator under
the neutral model. This statistic reflects how much of the deviations from neutrality
among the population mean genetic values for a trait is due to branch j. One can
show (see Materials and Methods) that Qp(j) has a x? distribution under a null model
of multivariate Normal drift, for any branch j, and excessively large values of Qp(j)

therefore represent evidence suggesting non-neutral evolution down branch j.
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We used this summary statistic (computed for each branch) to prioritize which branches
to explore in our MCMC. We applied a prior point mass of zero to all branches whose
corresponding () g statistic were smaller than a particular cutoff. The choice of cutoff was
based on simulations (see Materials and Methods). The MCMC only produces posterior
samples for branches that pass this cutoff and are therefore highly deviated from their
expectation under neutrality. We also update the o parameters of these latter branches
in our MCMC with a frequency proportional to their Q5 values, in a similar fashion to
[31].

Implementation

We implemented both the MCMC and the ()5 statistic computation in a program that we
call PolyGraph. We use the R packages admizturegraph [32] and igraph [33] to visualize
and manipulate various aspects of a graph. The R scripts to run PolyGraph can be
downloaded here: https://github.com/FerRacimo/PolyGraph

Simulations

To assess the performance of our method, we simulated different demographic scenarios,
under a Wright-Fisher binomial sampling model (see Materials and Methods). We first
simulated a simple three-leaf tree with four branches, in which the sampled panels in the
leaves were each composed of 100 diploid individuals (Figure 3.A). We tested scenarios of
different branch lengths: each of the branches was simulated to be either of length 0.02 or
of length 0.05. We also tested different types of branch under selection (either a terminal
branch or an internal branch). We additionally tested a four-leaf admixture graph with
one admixture event (Figure 3.C) in these same scenarios. For comparison, the amount
of genetic drift between Spanish and French human populations is 0.016 and the amount
of drift between French and Han Chinese human populations is 0.22 [34]. The latter is
approximately equal to the drift separating populations A and C in our 4-population
graph, when each branch has length equal to 0.05.

For all simulation scenarios, we tested five 400-SNPs replicates. We ran the MCMC
four times on each simulation to check that it was behaving consistently. We observed
that the runs for each simulation were very similar to each other, so we only show one
run for each simulation.

When the o parameter is large (a = 0.2), the MCMC performed very well (Figure 3).
For a tree (Figures S2 and S3) or a graph (Figures S4 and S5) with small branch lengths
(0.02), the branch simulated to be under selection was included as a potential candidate
branch in the MCMC in all simulations, indicating that the Q)p cutoff was not overly
stringent. PolyGraph then consistently converged on the appropriate joint distribution

of selection parameters. When the branches were simulated to be longer (0.05), the
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MCMC performed well, but, in a few simulations, it produced positive estimates for
« parameters in neutral branches or failed to find evidence for selection in any branch
(Figures S6 to S9). This occurred more often when the a parameter was simulated to
be smaller (« = 0.1), but again, this was less of a problem with short-branch graphs
(Figures S10 to S13) than with long-branch graphs (Figures S14 to S17). In general,
we conclude that the method performs best when selective pressures are strong and/or
exerted over long time periods (i.e. large ), and when drift parameters are small. We also
observe that using a non-sparse prior (i.e. setting x to 0) leads to strong mis-estimation
of parameters when selection is concentrated on a single branch (Figure S18).

We were concerned about false positive estimates of selection when the graph is mis-
specified. To assess this, we simulated a graph like the one shown in Figure 3.C but
with no selection. We first run PolyGraph while correctly specifying the topology and
the branch lengths (of length equal to 0.02) as input (Figure S19), and observed that
all posterior o estimates are tightly centered at 0, as expected. Then, we simulated a
graph with the same topology but with each branch having length equal to 0.03, while
incorrectly under-estimating the length of each branch to still be equal to 0.02 (Figure
S20). Finally, we simulated the same graph but with each branch having length equal to
0.04 while incorrectly under-estimating the branch lengths to all be equal to 0.02 (Figure
S21). With increasingly stronger misspecification of the branch lengths, we observe that
the behavior of some of the posterior estimates becomes more erratic. Visual inspec-
tion of the MCMC trace indicates that underestimation of the branch lengths makes the
chain to become more “sticky”, causing some parameters to get stuck at incorrect areas
of parameter space for long periods of time

We also simulated a neutral graph as in Figure 3.C but pretended that population
A had not been sampled, and that the graph was (incorrectly) estimated to be a 3-
population tree like the one in Figure 3.A. This topological misspecification slightly af-
fected the inference of neutrality in one of the five simulations (Figure S22), and we
do not discard the possibility of other incorrect types of topologies that could also gen-
erate wrong inferences. We therefore stress that the admixture graph - especially the
branch lengths - relating the populations under study should be correctly estimated be-
fore running PolyGraph. We also advise to run the MCMC only when there is significant
evidence for selection based on the @)y statistic [15], which does not need an admixture
graph as input, as it uses the full covariance matrix to model the expected amount of

drift separating each of the populations.

Application to 1000 Genomes data

We tested our method on sets of associated variants from 43 GWAS on 42 different
traits (Table S1; two of the GWAS are for age at menarche) that were previously as-
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sembled as part of a meta-analysis studying the genetic correlations between such traits
[35]. The meta-analysis split the genome into approximately independent linkage dis-
equilibrium blocks [36]. The blocks were computed using the European populations
in Phase 1 of the 1000 Genomes Project, but we observe virtually no differences in
genetic scores when using the East Asian blocks instead. For each block with a pos-
terior probability > 90% of containing an association (obtained from fgwas [37]), the
SNP with the maximum posterior probability of being the causative variant was ex-
tracted. These SNPs can be found on github (https://github.com/PickrelllLab/gwas-
pw-paper/tree/master/all_single), and we downloaded them to build our candidate
trait-associated SNPs. We used the VCF data from the 1000 Genomes Project [38] and
built admixture graphs using MizMapper [22]. We excluded SNPs for which the ancestral
allele in the 1000 Genomes data was unknown or unsure (lower case in VCF file). Because
MixMapper cannot distinguish between the two drift values corresponding to two admix-
ing branches with a common child node and the drift value specific to the immediate
descendant branch of the child node (Figure 2 in ref. [22]), we forced the drift in the two
admixing branches to be equal to 0.001 and assigned the drift estimated by MizMapper
to the branch immediately descending from the child node.

We started by fitting a 7-leaf tree without attempting to model any admixture events.
The tree included diverse populations sampled across the world (Figure S23.A): Nigerian
Esan (ESN), Sierra Leone Mende (MSL), Northern Europeans from Utah (CEU), South-
ern Europeans from Tuscany (TSI), Dai Chinese (CDX), Japanese (JPT) and Peruvians
(PEL). We took trait-associated variants to be under polygenic adaptation if the P-value
for the corresponding Qx [15] statistic (testing for overall selection among the popula-
tions) was < 0.05/n, where n is the number of assessed GWASs. Traits with associated
variants that passed this criterion are shown in Table 1. To account for possible artifacts
arising from the ascertainment scheme for each GWAS, we also generated 1,000 samples
in which we randomly switched the sign of the estimated effect size for all trait-associated
SNPs. This serves to preserve the genetic architecture of each trait, while removing the
effect of selection. We then computed a second P-value of the observed Qx (Prand) by
comparing it to these samples (Table 1).

We ran our MCMC on these trait-associated variants and obtained posterior distribu-
tions for the a parameters with the strongest evidence for selection, prioritizing branches
as explained above (Figure S24). The P-values of the Qg statistic (obtained from a
X3 distribution) for each branch are shown in Table S2. We find strong evidence for
selection on variants associated with height, educational attainment and self-reported
unibrow, but little or no evidence for variants associated with male-pattern baldness or
schizophrenia: even though these trait-associated variants are significant under the Q) x
and @)p frameworks, all their o parameters are approximately centered at 0. For height,

we observe both selection for variants increasing height in the ancestral European branch
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and for variants decreasing height in the ancestral East Asian / Native American branch.
However, this is only a consequence of the MCMC showing alternate strong support for
selection in either one or the other branch at different points in the run, but only weak
support for selection in both branches simultaneously (Figure S25), suggesting we are
unable to discern which among these is the correct configuration.

To facilitate the visualization of posterior distributions for o parameters, we devel-
oped a new way to plot polygenic adaptation in a graph: a “poly-graph” (see Materials
and Methods), which simultaneously depicts the structure of the studied graph and the
marginal posterior mean of each « parameter, in the form of different colorings for each
branch. We plotted poly-graphs for all traits that passed the significance criterion in the
7-leaf tree (Figure 4).

Given that PEL has European admixture, we also replaced PEL with an East Asian
population (CHB) to verify that selection signals observed in the Eurasian branches were
not dependent on poor modeling of PEL as a simple sister group to East Asians (Figure
S26). Additionally, we tested an alternative set of panels, in which we kept PEL in the
tree, but replaced the two European populations - CEU and TSI - by Finnish (FIN) and
Iberians (IBS), and the two East Asian populations - JPT and CDX - by Han Chinese
(CHB) and Southern Han (CHS) (Figure S27). The results from both alternative sets of
panels are very similar to our original tree. We also find very similar results when using
a Beta(2,2) prior for the root allele frequency in our MCMC (Figure S28), instead of the
default Uniform[0,1] prior.

We then proceeded to explore a graph with an admixture event (Figure S23.B). This
graph contained Yoruba (YRI), Colombians (CLM), CEU, CHB and PEL. We modeled
CLM as resulting from an admixture event between CEU (76.55%) and PEL (23.45%),
the latter of which is the panel with the highest amount of Native American ancestry
in the 1000 Genomes Project [38]. Here, we recapitulated many of our previous findings
from the 7-leaf tree (Table 1, Figure S29), like selection on variants associated with height
and educational attainment. We list the P-values of the ()5 statistic for each branch in
Table S3. Poly-graphs of the 5-leaf admixture graph are shown in Figure 5.

To make sure there were no artifacts due to GWAS ascertainment [15], we also gener-
ated an empirical null distribution produced using 1,000 samples, each containing SNPs
that were frequency-matched to the trait-associated SNPs, using their allele frequency in
CEU. We computed the (Qx statistic for each of these samples, to obtain an empirical
P-value (P.,,, in Table 1). We do not observe a value of () x as high as the one observed in
the real data, for either height, educational attainment or self-reported unibrow (Figure
6).

To test how robust our results were to our modeling assumptions, we also performed
a simpler two-tailed binomial sign test between every pair of 1000 Genomes panels. The

assumption here is that - for every panel X and Y - we should observe roughly equal
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number of trait-increasing alleles at higher frequency in X than in Y as trait-decreasing
alleles at higher frequency in X than in Y, under a model of neutrality with respect to the
effect size sign [39]. This test only uses information about the sign of the effect estimates
of each SNP, not their magnitudes, and does not use information about genome-wide
drift parameters between each population. Thus, it is bound to have less power than
the Qp, Q@x or MCMC tests. The P-values for these pairwise binomial tests are shown
in Tables S4 to S8 for all traits that were found to have significant evidence of selection
using the ()x statistic. The top 10 most significant pairwise comparisons are shown in
Tables S9 to S13. For ease of visualization, we also plotted, for each panel, the number of
pairwise tests involving that panel that resulted in a P-value < 0.05 (Figures S30 to S34).

We were interested in verifying how sensitive different proportions of missing data (i.e.
removal of SNPs) or erroneous effect size estimates would be to our three strongest signals
of polygenic adaptation, on variants associated with height, educational attainment and
unibrow. For this purpose, we focused on the comparison between CEU and CHB.
First, we simulated different proportions of missing trait-associated SNPs - ranging from
5% to 95%, with step sizes of 5%. For each of 10,000 simulations under each missing
data scenario, we assessed how often the polygenic score for unibrow and educational
attainment in CHB was higher than the polygenic score for CEU, like we observe in the
1000 Genomes data. Height follows the opposite pattern (with CEU having a higher
polygenic score than CHB), so in that case we assessed how often its polygenic score in
CEU was higher than in CHB, across the 10,000 simulations for each scenario. Note that
we built these scores using only the SNPs used in our selection tests. The results are
in Figure S35. For example, we see that - even with 20% missing data - the polygenic
scores for either of the 3 traits preserve the observed relationship of inequality between
CEU and CHB almost 100% of the time. Finally, we simulated a situation in which some
proportion of the signs of the effect size estimates were misassigned. We then assessed
how often we could replicate the signal we see between CEU and CHB, but this time
under different proportions of sign misassignment (Figure S36).

To understand how the signal of selection was distributed among our SNPs, we plotted
the absolute value of the effect sizes of trait-associated SNPs for height, educational
attainment and self-reported unibrow, as a function of the difference in frequency observed
between CHB and CEU, polarized with respect to the trait-increasing allele in each SNP
(Figure 7). We find that, in the case of self-reported unibrow, there are three variants
of large effect with large frequency differences contributing to a higher polygenic score
in CHB: 133827760, rs16891982 and rs12916300. These SNPs are located in the genes
EDAR, SLC45A2 and OCA2/HERC?2. These are genes involved in pigmentation and
skin development, and all three have documented signatures of selective sweeps causing
strong allele frequency differences between Europeans and East Asians [7, 3, 40, 2, 12].

After removing SNPs with large absolute effect size values (> 0.05), the P-value of the

11


https://doi.org/10.1101/146043
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/146043; this version posted January 6, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Qx statistic for these variants remains significant (P = 7.04%107°). When looking at the
other two sets (variants associated with height and educational attainment), the signal of
selection is more uniformly distributed among the SNPs, with no strong outliers of large

effect with large frequency differences (Figure 7).

Application to Lazaridis et al. (2014) data

We applied our method to a more broadly sampled SNP chip dataset containing present-
day humans from 203 populations genotyped with the Human Origins array [19, 41].
This dataset was imputed using SHAPEIT [42] on the Michigan Imputation Server [43]
with the 1000 Genomes Phase 3 data [38] as the reference panel (Bhérer et al. in prep.).
We tested for polygenic adaptation in a 7-leaf admixture graph. This graph contains
the panels Yoruba, Mandenka and Sardinian, along with the following 4 combinations of
panels, which we built so as to have a large number of individuals per panel. The panel
“Oceanian” contains the panels Papuan and Australian. The panel “EastAsian” con-
tains the panels Cambodian, Mongola, Xibo, Daur, Hezhen, Oroqen, Naxi, Yi, Japanese,
Han_NChina, Lahu, Miao, She, Han, Tujia and Dai. The panel “NativeAmerican” con-
tains the panels Maya, Pima, Surui, Karitiana and Colombian. Finally, we modeled
Europeans as a 2-way mixture of an ancestral component related to “NativeAmerican”
and another component that split basally from the Eurasian tree and is a sister to Sar-
dinians. This was the mixture fitted to Europeans by ref. [22], and provides a better fit
to the data than modeling Europeans merely as a sister group to East Asians and Native
Americans. Though we recognize that Europeans are better modeled as a 3- or 4-way
mixture of ancestral components [41, 34, 44], it is hard to produce such a mixture without
resorting to ancient DNA data (see Discussion). We tested 3 different versions of this
graph, each containing three different sets of European populations (Figure S23.C) distin-
guished by how much “early European farmer” (EEF) ancestry they had (based on Figure
4 of ref. [41]). “EuropeA” (low EEF) contains the following panels: Estonian, Lithua-
nian, Scottish, Icelandic, Norwegian, Orcadian, Czech, English. “EuropeB” (medium
EEF) contains Hungarian, Croatian, French, Basque, Spanish North and French_South.
Finally, “EuropeC” (high EEF) contains Bulgarian, Bergamo, Tuscan, Albanian, Greek
and Spanish.

Trait-associated variants with significant evidence for polygenic adaptation are listed
in Table 2 and the P-values of the ()5 statistic for each branch are shown in Tables S14
to S16. With these data, we are able to recapitulate the adaptive increase in height-
increasing variants in Europeans we had seen before, but only observe it in populations
with medium or low EEF ancestry (Figures 8 and S37 to S41). This pattern is consistent
with previous observations made using ancient DNA in Europeans [12]. We also recapit-

ulate selection patterns on variants associated with other traits, like unibrow, educational
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attainment and male-pattern baldness, and observe evidence for polygenic adaptation in
some additional trait-associated variants, like photic sneeze reflex (Table 2).

To check if there were systematic biases in ancestral/derived allele polarity relative
to the direction of the effect size, we performed a two-tailed binomial test on each trait
for which we found significant evidence of polygenic adaptation in the Lazaridis et al. or
the 1000 Genomes dataset (Table S17). We find that only schizophrenia has a significant
bias, showing an excess of derived alleles with negative effect sizes (P = 0.03511), though
this is not significant after Bonferroni correction. We therefore caution that the evolution
of these trait-associated variants may not be well-modeled by the multivariate Normal
assumptions that we make to calculate the ()p statistic or when running the MCMC.

As before, to check the robustness of our results to our modeling assumptions, we show
P-values for pairwise binomial sign tests involving each of the panels in the Lazaridis et
al. (2014) dataset in Tables S18 to S22. The top 10 most significant pairwise comparisons
are in Tables S23 to S26, with the exception of self-reported age at voice drop, in which
all comparisons had P-values > 0.25, due to the small number of associated SNPs. Fig-
ures S42 to S45 show, for each panel, the number of pairwise tests involving that panel
that resulted in a P-value < 0.05.

Replication using summary statistics from the UK Biobank

Given the potential contentiousness of our educational attainment signal, we aimed to
determine whether the same global patterns were observed using summary statistics from
a GWAS performed on an independent cohort. For this, we resorted to the GWAS set re-
leased by the Neale lab (http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-
thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank) and performed
on the UK Biobank cohort [45]. Though we could not find “number of years of education”
in the Neale lab GWAS, we found “college / university degree” and used this as a mea-
sure of educational attainment. We LD-partitioned the summary statistics in the same
way as before, and then selected the SNP with the lowest P-value from each block. At
P < 107, we obtain a similar number of SNPs (96) as we had for ref. [46] (86), and we
find a 94% correlation between the population genetic scores made using the data from
ref. [46] and the scores made using the UK Biobank (Figure S46), each standardized by
their respective between-population standard deviations. At P < 1078 and P < 1077,
the correlation is reduced to 56% and 86%, respectively. Using the 1072 cutoff, we find a
marginally significant overall Q) x statistic when looking at the 7 populations from Figure
4 (P =0.0398, Pgna = 0.098, P.,,,, = 0.076) and a significant ) 5 statistic in the ancestral
East Asian branch (P = 0.013) and the terminal JPT branch (P = 0.002), but not in
any of the other branches (P > 0.05). The o parameters of these two branches estimated
from the PolyGraph MCMC are also positive (Figure S47), though their magnitude is
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not as large as the ones obtained from the summary statistics of ref. [46].

Discussion

We have developed a method to infer polygenic adaptation on trait-associated variants
in an admixture graph, so as to be able to pinpoint where in the history of a set of
populations this type of selective processes took place. Our method requires GWAS data
for a particular trait, allele frequency data for a set of populations, and a precomputed
admixture graph that relates these populations with each other. Importantly, the method
relies on the admixture graph as an accurate description of the ancestral genome-wide
relationships among the populations under study. Potential users should be careful about
correctly estimating branch lengths and ghost populations which are not included in the
graph but may have substantial unaccounted ancestry contributions to the populations
that are included. We used MizMapper [22] to infer the graph topology and branch
lengths. Alternatively, one can also use other programs, like ¢gpGraph [19] or TreeMix
[20] to build graphs, though we caution that the estimated drift values of the branches
in the output of these programs are scaled (in different ways) by the heterozygosity of
ancestral nodes (see Supplementary Material of [22] for a way to properly obtain drift
values from differences in allele frequencies between populations).

Running PolyGraph involves a two-step process, each of which is complementary to
the other. The first step - the calculation of the (Jp statistic - is fast and provides a
preliminary way to assess which branch in a graph has significant evidence for polygenic
adaptation. However, this statistic does not model the ancestral allele frequencies at
each node of the graph. The second step - the MCMC - is slower, but provides posterior
distributions for selection parameters under a more parameter-rich model of population
history. In our pipeline, we use the first method as a filtering step, to avoid exploring
selection parameters in the MCMC for those branches that have little evidence for se-
lection, and encourage the MCMC to be sparse in its assignments of selection in the
graph. We illustrate this point in Figure S48, where we show a side-by-side comparison
of a poly-graph built using the posterior o estimates and a poly-graph built using ¢, - a
signed version of the @) p statistic (see Materials and Methods).

In application to human populations, we detected signals of polygenic adaptation on
sets of variants that have been identified to influence height, educational attainment,
and self-reported unibrow. Selection on variants associated with height in Europeans has
been previously reported elsewhere [15, 14, 17, 12| and our results are consistent with
previous findings showing that height-increasing variants are at significantly and system-
atically higher frequencies in northern than in southern European populations. The signal
for selection affecting variants associated with self-reported unibrow is also strong, but

partly driven by a few variants of large effect with large frequency differences between
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populations, which have documented evidence for selective sweeps in genes involved in
hair, skin and eye pigmentation, and skin development [3, 40, 7, 2, 12]. Additional trait-
associated variants had inconsistent evidence across datasets and graph frameworks (like
schizophrenia or male-pattern baldness) and/or are driven by differences in only a few
SNPs of small effect (like age at voice drop), and so we do not discuss them.

We find preliminary evidence for polygenic adaptation in East Asian populations at
variants that have been associated with educational attainment in European GWAS. This
result is robust to the choice of population allele frequency data we used (1000 Genomes
or Lazaridis et al. (2014) panels), to the choice of GWAS summary statistics (Figure
S46), to GWAS ascertainment (Figure 6), and to our modeling assumptions, as we found
a significant difference between East Asian and non-East-Asian populations even when
performing a simple binomial sign test (Tables S4, S9, S19 and S23). However, we caution
that this pends further verification via more GWAS on the same trait. Our modeling
framework suggests that, if selection truly operated on these variants, it must have done
so before or early in the process of divergence among East Asian populations - at least as
far back as 5 thousand years ago [47, 48, 49, 50] - because the signal is common to different
East Asian populations (Han Chinese, Dai Chinese, Japanese, Koreans, etc.). The signal
seems only very weakly present in some Siberian populations - like the Even and Nganasan
- and some Native American populations - like the Mixe and Pima, and not present at all
in other Native American populations - like the Surui, Quechua and Karitiana. This is
perhaps explained by the complex demographic make-up of Siberian and Native American
populations, and their divergent history from East Asians [51, 52, 53].

Interpreting the educational attainment signal and the other signals we found requires
awareness of a number of technical caveats, as well as several fundamental conceptual
difficulties with the study of polygenic adaptation, some of which may ultimately prove

intractable.

What is the signal of polygenic adaptation?

Before discussing these difficulties, it is worth articulating exactly what a signal of poly-
genic adaptation consists of. Taking the height example as a case in point, the signal
is that a set of genetic variants that have been identified as associated with increased
height in a European GWAS are (as a class) at higher frequency in northern Europeans
today than would be expected by genetic drift alone. Though this observation is consis-
tent with the hypothesis that natural selection has operated on these variants, it does
not necessarily imply that natural selection has operated directly on “height”, nor that
observed height differences between northern Europeans and other populations are nec-

essarily genetic and due to selection.
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Pleiotropy and phenotype definition

When looking at all our variant classes, we are necessarily limited by the traits that have
been defined and studied by others, as we have grouped variants together based on these
phenotypes. The use of previously established definitions makes it difficult to understand
exactly why these variants may have been under selection in the past. This is perhaps
best exemplified by the signal of polygenic adaptation for genetic variants associated with
educational attainment.

Standardized schooling - and consequently, the concept of “educational attainment”
- was only invented and implemented widely in the last few generations. It is obviously
nonsensical to discuss its evolution over the past tens of thousands of years. Instead, it
is likely that the set of variants for which we find evidence of selection was associated
with some (unknown) phenotype(s) in the past. However, given that selection on these
variants likely took place more than 5 thousand years ago, it may be difficult or impossible
to identify what these were. A similar problem arises when thinking about the signal of
polygenic adaptation on “unibrow”. This is a self-reported phenotype, and the genetic
variants that have been identified may simply be associated with pigmentation (assuming
people with certain hair and/or skin pigmentation phenotypes are more likely to notice
they have hair between their eyes), or alternatively with some other (unmeasured) hair-
related phenotype. It is also possible that direct sexual selection for absence or presence
of unibrow as an attractive facial feature in certain cultures [54] may be the cause of
this signal. Indeed, if a selective agent is cultural, but the culture has since changed, it
may be impossible to determine what actually occurred. All these variants are also likely
pleiotropic [55], which makes it even harder to determine which phenotypes were truly
targeted by selection.

Perhaps, one could try to find the phenotypic gradients along which selection most
likely operated [56] by modeling the evolution of trait-associated SNPs for multiple phe-
notypes together. However, it is also possible that genetic correlations among traits in

the present are not good proxies for genetic correlations in the past.

Relationship between polygenic scores and population mean

phenotypes

Another fundamental limitation in interpreting all studies of polygenic adaptation (in-
cluding this one) is that the connection between the distribution of allele frequencies
today and any historical or geographic trends in phenotypes remains questionable. In-
deed, though we have motivated this method as a way to identify adaptive shifts in the
mean of a polygenic trait, it is a simple fact that massive changes in the mean values of
many of the traits we consider have occurred by purely non-genetic environmental pro-

cesses. For example, the mean height of men in the Netherlands increased from around
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166 cm in the mid-1800s to currently over 180 cm [57], bringing the population from
around the middle of the pack among European countries to the tallest one in the world.
This likely occurred for environmental reasons, such as improvements in diet and health
care [58, 59]. Likewise, the average educational attainment in Iceland and North America
has increased dramatically over the past century, despite a slight estimated decrease in
the frequencies of genetic variants associated with an increased value of the phenotype
[60, 61, 62]. The somewhat paradoxical conclusion is that actual phenotypes can and do
change across populations in directions that are uncorrelated to natural selection (which
may in fact be a minor contributor to any such differences). It would be an understate-
ment to say this poses challenges for the interpretation of the current study and others
like it.

In fact, the trait-associated variants that we have used only explain a fraction of
the narrow-sense heritability of their respective traits, even in the populations in which
the association studies were performed. As we have only looked at variants that have
high probability of association with a trait, this fraction is small in most cases. For
example, the heritability for ’educational attainment’ is estimated to be around 40%,
and educational attainment itself is strongly determined by environmental factors [63].
The SNPs we used in this study (themselves a subset of all SNPs tested in the original
GWAS [46]) explain only 1.05% of the total variance for this particular trait. All of
the aforementioned traits are likely affected by a myriad of environmental and social
variables, which might contribute to determine their ultimate expression in each human

individual.

Additional caveats

Beyond the above conceptual difficulties, there are a number of additional caveats with
our approach to keep in mind. First, the effect sizes we have used derive from GWAS
performed primarily on individuals of European ancestry. Thus, our tests can only detect
if variants that have been found to be associated with a trait in European GWAS are
significantly higher or lower in a particular (European or non-European) population,
relative to what they should be under a pure drift model. This does not necessarily
imply that populations for which we find evidence for selection have higher or lower
average genetic values of such a trait than other populations. In fact, there is evidence to
suggest that loci ascertained in European GWAS do not serve to make good predictors for
traits in populations that are distantly related to Europeans [64]. One reason for this is
that many or all of the traits we are studying are likely to be influenced in non-European
populations by different variants from the ones that have been discovered in European
GWAS. SNPs that may be strongly associated with a trait in a particular non-European

population (like an African or East Asian panel) may have not reached genome-wide
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significance in a European GWAS, where those SNPs may not strongly affect the trait or
may be at low frequencies. It is thus possible that there are variants associated with traits
like educational attainment that occur at high frequencies in East Asians, but that are
missing from our analysis, or that the effect sizes in trait-associated SNPs are different
in non-European populations, in such a way that the average genetic values between
these populations and Europeans are not significantly different. We also do not model
dominance, epistasis or gene-by-environment interactions between our trait-associated
variants and the diverse environments that human populations occupy, and any of these
factors may further obscure the relationship between the patterns we observe and the
actual underlying genetic contribution to phenotypes in these populations.

Second, we have assumed that all of the GWAS that we have used have properly
accounted for population structure. If some of the trait-associated SNPs are in fact false
positives caused by uncorrected structure, this could generate a false signal of polygenic
adaptation. A future direction could be the incorporation of effect sizes that have been
corrected for ancestry or population stratification [17, 65] and also effect sizes from GWAS
performed on other populations [66, 67, 68], in order to assess the robustness of our
empirical results across variants discovered in studies involving participants of different
ancestries.

Third, we made the assumption that the admixture graph for the populations that
we use as input is correct. If there are additional unmodeled aspects of the history
of the populations, this could induce incorrect inference about the branch on which
natural selection has occurred. We also recommend that the individuals in the population
panels used as leaves in the graphs have roughly similar amounts of admixture. In other
words, the method works best when admixture in the population was ancient enough for
the admixed ancestry to have spread uniformly among members of the admixed panel.
Otherwise, an admixture graph may not be the most appropriate way to model their
evolution.

Finally, we have made an explicit assumption that our model should be sparse; i.e.
that polygenic adaptation is rare. If in reality adaptation is common, the PolyGraph

approach will necessarily only identify selection on a small number of branches.

Future directions

A natural extension to the analyses we performed here would be to look at admixture
graphs that include extinct populations or species, using ancient DNA [69]. For example,
present-day Europeans are known to have resulted from admixture processes involving
at least 4 ancestral populations [41, 44], and so modeling them as a sister group to East
Asians or as a 2-way mixture between a Native American-related component and a basal

Eurasian component may be overly simplistic. Incorporating ancient DNA would not
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require any additional theoretical work, as ancient populations can be naturally included
as leaves in an admixture graph [41, 12]. Care should be taken, however, in making sure
that the quality of the ancient DNA data at trait-associated SNPs is accounted for while
inferring the number of ancestral and derived alleles, and that there is a sufficient number
of ancient individuals per population to detect polygenic adaptation. One could envision
either performing pseudo-haploid sampling [19, 34, 12] or using allele frequency estimators
obtained from genotype likelihoods [70, 71], while accounting for errors characteristic of
ancient DNA [72, 73]. When working with SNP capture data [19, 34], it may be necessary
to perform imputation at the GWAS SNPs, if these were not originally covered in the
SNP capture array. We aim to tackle these issues in a future study.

One concern when analyzing admixture graphs is identifiability. As we mentioned
before, there are multiple configurations of the o parameters that may lead to almost
identical likelihoods. The use of the spike-and-slab prior and the () filtering step serve to
ameliorate this problem, assuming selection was sparse and only affected a few branches.
An avenue of research could involve testing other types of models or constraints that
may serve to better compare among different selection configurations, perhaps without
having to reduce the space of possible candidate branches a priori, for example using
reversible-jump MCMC for model selection [74].

In the future, it may be worth incorporating stabilizing selection into this method
[55], or exploring tests of polygenic adaptation in the context of other types of demo-
graphic frameworks, like isolation-by-distance [75] or population structure [76] models.
For example, one could envision settings in which trait-associated variants would be best
modeled as expanding or contracting over a geographically extended area over time, in a
way that is not explainable by genetic drift alone.

Lastly, we note that despite some clear methodological and conceptual differences, our
method bears a close relationship to a number of methods for inferring changes in the
rate of phenotypic evolution on species phylogenies over macroevolutionary timescales.
Our use of the Normal model of drift as an approximation to the Wright-Fisher diffusion
is closely analogous to the use of Brownian motion models in some phylogenetic methods
(77, 78, 79, 80, 81]. It may also be worth exploring the relationship between Ornstein-
Uhlenbeck models for phenotypic evolution on phylogenies [82, 83] and the aforementioned
hypothetical extension of our method to include stabilizing selection, as the two processes
are closely related [84, 55].
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Materials and Methods

MCMC implementation

For the MCMC transition probabilities of the o parameters, we use a Normal distribution
with constant variance. For the transition probabilities of the ancestral allele frequencies,
we use a truncated Normal distribution with point masses at 0 and 1, with variance equal
to a constant (input by the user) times fx(1 — fx) where fx is the frequency of an allele
in its current state. This allows for the proposed transitions to be larger for SNPs at
medium frequencies and smaller for SNPs at high or low frequencies. We apply a Hastings
correction in the acceptance ratio to account for this asymmetric proposal distribution.
For all applications above, we run our MCMC sampler for 1 million steps with a burn-
in period of 10,000, and obtain posterior samples every 1,000 steps. The variance of the
transition probabilities of the ancestral nodes and the a parameters were chosen so that
the acceptance rate was close to 23% for each set of parameters. For the spike-and-slab
prior, we set 7 to be equal to 0.1, and ¢ to be equal to 25. The lower and upper boundaries
of the uniform hyperprior for x were set to be 60% and 80%, respectively, unless otherwise
stated. We note that all of these parameters can be adjusted by the user as needed. To
verify that the MCMC chain was mixing well, we also built auto-correlation plots of the

alpha parameters (Figure S49 for the chain corresponding to simulation 1 of Figure S5).

Derivation of ()p statistic

Let Z be the mean-centered vector of genetic values, F be the among-population genetic
covariance matrix, and V4 be the additive genetic variance of the ancestral population
for a given character. We compute V4 by taking the ancestral frequency for each SNP ¢

to be the mean sample frequency over all populations ( fi,G):
N
Va=2> (1—fie)fiah (11)

where BZ is the effect size estimate for the trait at SNP i. Following ref. [85, 15], if we

are willing to assume that

Z~ MVN (6, QVAF> (12)
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then by the definition of the multivariate normal distribution, z7 b~ N (0,0?) for any

choice of b and

o® = 2V4b"Fb (13)
= QVAU. (14)

where we have set u = b'Fb for notational convenience. It follows that
Ay

= vV 2VAU

~ N(0,1), (15)

and this holds for all choices of b. T herefore, the square of ¢, has a x? distribution under
the null. Importantly, one is free to choose b such that it represents a branch (j) in an
admixture graph.

If j is a branch in an admixture graph, and we choose to scale gj such that it has unit

length:
j = —= (16)
16511
then
o® = 2V,d, Fa, (17)

has an interpretation as the amount of among population additive genetic variance which
we would expect to come about because of drift which occurs down branch j. In turn,
(z7d;)? is the actual amount of variance observed along the axis consistent with that
branch. The ratio of these two quantities is our statistic Qg(j) (with distribution x?)
and it is therefore the appropriate test statistic to ask whether there is evidence to reject
neutrality along a certain branch. Note that, by design, branches with the exact same

child nodes have equal ()p statistics, as do branches at the root of the graph.

Choosing a cutoff for Qp

We aimed to find a cutoff for )5 that would serve to minimize the number of candidate
branches to be explored in the MCMC while at the same time trying to ensure that
the true selected branches are included among these candidates. One choice would be
to select the cutoff of a x? distribution that would correspond to a P-value of 0.05/k,
where k is the number of branches tested. We find, however, that a constant value for
this cutoff is not the most desirable choice as a way to prioritize branches for exploring

the strength of selection in each of the branches in the MCMC, as graphs of different
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sizes (i.e. amounts of drift) result in quite different senstivity values, as well as number
of candidate branches included, when o = 0.1 (Panels B and C in Figures S50 and S51
for two cases where each branch has drift length = 0.02 and Figures S52 and S53 for
two cases where each branch has drift length = 0.05). We observe the same issues when
simulating under o = 0.2 (Figures S54 to S57).

A more stable strategy across graphs of different sizes that also works better at mini-
mizing the number of candidates is to choose the cutoff to be a fraction of the largest Qg
statistic among all branches in the graph (Panels D and E in Figures S50 to S53). For
all analyses below, we chose this to be 1/3 of the maximum @ p statistic. We note that
this is a less conservative strategy than the fixed x? cutoff. However, it is important to
remember that we do not aim to formally test for selection here, but merely obtain a set
of likely candidate branches for the MCMC to explore downstream, some of which may
end up producing a posterior mean estimate of « that is consistent with neutrality (i.e.
a=0).

Simulations

For each simulated SNP, we sampled the root allele frequency (fr) from a Beta(2,2)
distribution, to emulate the fact that, in the real data, variants in the leaf populations
tend to be further away from the boundaries of fixation and extinction than under a
uniform distribution. We evolved the SNPs throughout an admixture graph forwards in
time using Wright-Fisher binomial sampling, and used binomial distributions to sample
panel allele frequencies from the leaf populations. We set a constant effective population
size N, of 10,000 and adjusted the number of generations in each branch, depending on
how much drift we specified in each scenario. We used equation 2 from the Supplementary
Note of ref. [14] to simulate selection. We set a constant time during which selection
operates (Ts¢) to be equal to 100 generations, and adjusted the selection coefficient (s)
to obtain the selection parameter specified in each scenario (o = s * Ty). If a branch
had a larger number of generations than Ty, the selective phase was simulated to occur
during the ancestral-most generations, followed by a neutrality period until reaching the
end of the branch. The effect sizes of the SNPs were drawn from a Normal distribution
with mean 0 and we simulated polygenic adaptation in a particular branch using only
the sign of the effect size of each SNP. We also simulated an additional 10,000 SNPs that
evolved neutrally under the same demography, so as to estimate the neutral population

covariance matrix.

Building admixture graphs

We used MizMapper (v1.02) [22] to build best-fitting scaffold trees, and then place puta-

tively admixed populations as mixtures originating from different branches in these trees.
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We first pruned the 1000 Genomes data and the Human Origins imputed SNP data by
sampling 1 out of every 100 SNPs before feeding it as input into MizMapper. To account
for any residual linkage disequilibrium, we also performed 100 bootstrap replicates of the
computed statistics, computed over 500 blocks along the genome.

The 7-leaf tree obtained using the 1000 Genomes data was the most additive fitted
tree that contained ESN, MSL, CEU, TSI, CDX, JPT and PEL. To build the 5-leaf
graph, we first fit the most additive tree containing CEU, CHB, YRI and PEL, and then
attempted to fit CLM as a putative mixture of branches in the tree. The best-fitting
combination was a mixture of the terminal branch leading to PEL and the terminal
branch leading to CEU (residual norm = 1.91e-07). We also verified that the topologies
we found in MixMapper were the same topologies as the ones inferred by TreeMiz [20]
(Figure S58). We note that adding one migration event to the 7-leaf tree makes PEL an
admixed population, which is why we also verified our results were robust to replacing
PEL by an East Asian population in the tree.

For building the 7-leaf graph using the Human Origins data, we again used MizMapper
to fit the most additive tree, this time containing the following populations: Mandenka,
Yoruba, Oceanian, East Asian, Native American and Sardinian. Then, we attempted
to fit Europeans onto this tree as a putative mixture of branches in the tree, in an
analogous way in which European populations were fitted in ref. [22]. The best-fitting
combination was a mixture of the branch leading to Sardinians and the branch leading to
Native Americans (residual norm = 6.5e-07, 1.08e-06 and 1.97e-06, when fitting EuropeA,
EuropeB and EuropeC, respectively).

Visualizing poly-graphs

In a poly-graph, the vertical component of a non-admixing branch is proportional to the
amount of genetic drift that it experienced (calculated via MizMapper). The position
of admixed nodes is determined based on the drift value of one randomly chosen parent
branch. The colors indicate the marginal posterior mean estimate of the selection parame-
ter for variants associated with the corresponding trait (with red indicating an increase in
trait-increasing variant frequency, and blue indicating a decrease in trait-increasing vari-
ant frequency). We impose a minimum branch height (= 0.075) for clarity, as otherwise
the selection parameters of some branches with very short drift lengths are impossible to

visualize.

Acknowledgments

We thank Claude Bhérer, Guy Sella, Molly Przeworski, Graham Coop, Joshua Schraiber,

Simon Myers, Benjamin Peter and members of the Sella and Przeworski labs for helpful

23


https://doi.org/10.1101/146043
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/146043; this version posted January 6, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

advice and discussions. We also thank an anonymous reviewer for valuable feedback,
and Thomas Mailund for assistance with running the admizturegraph R package as well
as helpful comments on the manuscript. Finally, we thank Mark Lipson for help with

running MixMapper. This work was supported by NIGMS grant 1R0O1GM121372-01 to
JKP.

24


https://doi.org/10.1101/146043
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/146043; this version posted January 6, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figures

f(ﬂf’)A :f(l)A

wa f(v)D f( ‘P)D

Figure 1: Schematic of drift values (¢) and allele frequencies (f) for a 3-leaf population tree with no
admixture.
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Figure 2: Schematic of PolyGraph estimation procedure for a 4-population graph with one admixture
event. Panel A: The first step is the estimation of the admixture graph topology using neutral SNP
data, via an admixture-graph fitting program like MizMapper. Panel B: Then, we use the Q) g statistic to
determine which branches to explore in the MCMC. Selection parameters whose corresponding branches
have a Qp statistic that is smaller than a specific cutoff (red line) are set to a fixed value of 0 in the
MCMC. Panel C: Model for MCMC sampling. The SNP frequencies in the nodes of the graph are shown
in green, while the selection parameters for each candidate branch are shown in purple. For each SNP,
the likelihood of each branch of the graph is a Normal distribution. To model the sampling of derived
alleles in the leaves of the graph, we use a binomial distribution.
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Figure 3: We simulated 400 SNPs affecting a trait under polygenic adaptation, and then used our MCMC
to obtain posterior distributions of the oo parameters for each branch. The red arrows denote the selected
branch. The red line in the box-plots denotes the simulated value of « (in this case, 0.2). The lower,
middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper whisker
extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the inter-quartile
range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge. Data beyond
the whiskers are plotted as points. The numbers in each graph denote the drift lengths and admixture
proportions. A) Three-leaf tree with selection in a terminal branch (B-q). B) Three-leaf tree with
selection in an internal branch (q-r). C) Four-population admixture graph with selection in an internal
branch (v-q). D) Four-population admixture graph with selection in a terminal branch (C-v).
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Figure 4: Poly-graphs for trait-associated variants that show significant evidence for polygenic adaptation
in the 7-leaf tree built using 1000 Genomes allele frequency data. ESN = Nigerian Esan; MSL = Sierra
Leone Mende; CEU = Northern Europeans from Utah; TSI = Southern Europeans from Tuscany; CDX
= Dai Chinese; JPT = Japanese; PEL = Peruvians.
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Figure 5: Poly-graphs for trait-associated variants that show significant evidence for polygenic adapta-
tion in the 5-leaf admixture graph built using 1000 Genomes allele frequency data. CEU = Northern
Europeans from Utah; TSI = Southern Europeans from Tuscany; PEL = Peruvians; CLM = Colombians;
YRI = Yoruba; CHB = Han Chinese.
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Figure 6: We generated an empirical null distribution by sampling SNPs from the genome that matched
the CEU allele frequency of the SNPs associated with educational attainment, self-reported unibrow and
height. We generated 1,000 samples this way, and computed the @) x statistic for each sample, using the
population panels from Figure 4. The Qx value observed in the real data is depicted with a red line.
We also plot the density of the corresponding x? distribution (blue line) for comparison.
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Figure 7: We plotted the absolute value of the effect sizes of trait-associated SNPs for height, educational
attainment and self-reported unibrow, as a function of the difference in frequency observed between CHB
and CEU. The panel frequencies are polarized with respect to the trait-increasing allele. We then overlaid
a contour plot over each scatter-plot.
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Figure 8: Poly-graphs for trait-associated variants that show significant evidence for polygenic adaptation

in the 7-leaf admixture graph built using the Lazaridis et al. (2014) dataset and including the set of
European populations with low EEF ancestry (“EuropeA”).
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Tables

Graph Trait P Prona Pemp

7-leaf tree height** 3.516 x 10713 < 0.001 < 0.001
educational attainment**  3.404 x 1076 < 0.001 < 0.001
unibrow* 9.115% 10714 0.012 < 0.001
male-pattern baldness 0.000679 0.177 0.007

5-leaf graph  height** 2.355 % 10~ 11 < 0.001 < 0.001
educational attainment®*  1.379 % 10~ < 0.001 < 0.001
schizophrenia* 0.000608 0.01 0.007
unibrow 2.846 % 1011 0.056 < 0.001
male-pattern baldness 0.000562 0.213 0.003

Table 1: Trait-associated variants with Bonferroni-corrected significant evidence of being under polygenic
adaptation in the 1000 Genomes data, using the Qx statistic: P < 0.05/n where n is the number of
GWAS tested, assuming a x? distribution. We also computed P-values from 1,000 samples in which we
randomly switched the sign of effect size estimates, to simulate neutrality while preserving the genetic
architecture of the traits (P.qnq). Additionally, we computed P-values from an empirical null distribution
produced using 1,000 samples, each containing SNPs that were frequency-matched to the trait-associated
SNPs, using their allele frequency in CEU, to account for each GWAS’s ascertainment scheme (Pep,p).
Trait-associated variants for which P4 < 0.05/n are denoted with ** and trait-associated variants for
which Prgna < 0.05 are denoted with *.
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Graph Trait P Prond Pepnp
7-leaf graph (w/EuropeA) height** 1.506 * 108 < 0.001 < 0.001
photic sneeze reflex** 0.00087 < 0.001 0.006
educational attainment**  6.11 % 106 0.001 0.001
unibrow 4.763 x 1077 0.173 < 0.001
7-leaf graph (w/EuropeB) height** 2.448 % 10~8 < 0.001 < 0.001
educational attainment®**  6.838 x 10~6 < 0.001 0.001
age at voice drop** 0.000953 < 0.001 0.001
photic sneeze reflex** 0.00086 < 0.001 0.001
unibrow 2.784 % 10~ 0.166 < 0.001
7-leaf graph (w/EuropeC) educational attainment**  4.032 % 10=6 < 0.001 < 0.001
photic sneeze reflex 0.000653 0.004 0.004
unibrow 2.957 % 10~ 0.199 < 0.001

Table 2: Trait-associated variants with Bonferroni-corrected significant evidence of being under polygenic
adaptation in the Lazaridis et al. (2014) dataset, using the Qx statistic: P < 0.05/n where n is the
number of GWAS tested, assuming a x? distribution. We tested 3 different graphs with different sets of
European panels, containing either low (EuropeA), medium (EuropeB) or high (EuropeC) EEF ancestry.
We also computed P-values from 1,000 samples in which we randomly switched the sign of effect size
estimates, to simulate neutrality while preserving the genetic architecture of the traits (Prgnq). Addi-
tionally, we computed P-values from an empirical null distribution produced using 1,000 samples, each
containing SNPs that were frequency-matched to the trait-associated SNPs, using their allele frequency
in Europeans, to account for each GWAS’s ascertainment scheme (Pe,;,). Trait-associated variants for
which Prgng < 0.05/n are denoted with ** and trait-associated variants for which P.q,q < 0.05 are
denoted with *.
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Supplementary Tables

Trait Data source Abbreviation Number of loci Approx. no. of participants x 1K
Age at menarche 23andMe AAM_23 45 7
Age at menarche Perry et al. (2014) [86] AAM 69 133
Alzheimer’s disease Lambert et al. (2013) [87] AD 9 17/37
Any allergies 23andMe ALL_23 35 67/114
Asthma 23andMe ATH.23 29 28/129
Age at voice drop 23andMe AVD_23 4 56
Beighton hypermobility 23andMe BHM_23 15 64
Body mass index Locke et al. (2015) [88] BMI_2015 28 240
Coronary artery disease Schunkert et al. (2011) [89] CAD 10 22/65
Crohn’s disease Jostins et al. (2012) [90] CD 52 6/15
Childhood ear infections 23andMe CEI_23 10 47/75
Breast size 23andMe CUP_23 11 34
Chin dimples 23andMe DIMP_23 47 58/13
Educational attainment Okbay et al. (2016) [46] EDU 86 294
Fasting glucose Manning et al. (2012) [91] FG 15 58
Bone mineral density (femoral neck) Estrada et al. (2012) [92] FNBMD 19 33
Hemoglobin van der Harst et al. (2012) [93] HB 15 51
High-density lipoproteins Teslovich et al. (2010) [94] HDL 40 89
Height Wood et al. (2014) [95] HEIGHT 531 253
Hypothyroidism 23andMe HTHY_23 22 18/117
Low-density lipoproteins Teslovich et al. (2010) [94] LDL 37 85
Bone mineral density (lumbar spine) Estrada et al. (2012) [92] LSBMD 20 32
Mean cell hemoglobin concentration van der Harst et al. (2012) [93] MCHC 15 46
Mean red blood cell volume van der Harst et al. (2012) [93] MCV 36 48
Migraine 23andMe MIGR_-23 29 53/231
Male-pattern baldness 23andMe MPB_23 41 9/8
Mean platelet volume Gieger et al. (2011) [96] MPV 27 17
Nose size 23andMe NOSE_23 11 67
Nearsightedness 23andMe NST_23 151 106/86
Packed red blood cell volume van der Harst et al. (2012) [93] PCV 12 44
Parkinson’s disease 23andMe PD_23 37 10/325
Platelet count Gieger et al. (2011) [96] PLT 44 44
Photic sneeze reflex 23andMe PS_23 52 32/67
Rheumatoid arthritis Okada et al. (2014) [97] RA 65 14/44
Red blood cell count van der Harst et al. (2012) [93] RBC 24 45
Schizophrenia SWGPGC (2014) [98] SCZ 190 34/46
Type 2 diabetes Morris et al. (2012) [99] T2D 9 12/57
Total cholesterol Teslovich et al. (2010) [94] TC 48 89
Triglycerides Teslovich et al. (2010) [94] TG 26 86
Tonsillectomy 23andMe TS_23 37 60/113
Ulcerative collitis Jostins et al. (2012) [90] ucC 40 7/21
Unibrow 23andMe UB-23 45 69
Waist-hip ratio Shungin et al. (2015) [100] WHR 12 143

Table S1: List of GWAS assembled by [35] and used to test for polygenic adaptation in this study. Under
“Number of loci”, we list the number of autosomal SNPs that are significant for the trait in question, that
overlap with the 1000 Genomes dataset and that have a confidently determined ancestral allele. Under
“Approx. no. of participants x 1K”, we list two numbers corresponding to the approximate number
of cases and controls (in thousands), if available. Otherwise, we list the approximate total number of
participants, in thousands. SWGPGC = Schizophrenia Working Group of the Psychiatric Genomics

Consortium.
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Branch (child-parent) Educational attainment Height Male-pattern baldness Unibrow
q-r 0.245 0.819 0.0247 0.24

t-q 0.0129 0.000191  5.87e-5 0.001
u-t 7.63e-06 0.000304 0.000155 0.00698
ST 0.245 0.819 0.0247 0.24
v-q 0.147 5.14e-6 0.0777 6.08e-10
MSL-s 0.231 0.851 0.0216 0.301
ESN-s 0.292 0.799 0.0407 0.215
TSI-v 0.217 0.00284 0.217 7.51e-7
CEU-v 0.114 4.54e-9 0.0284 1.48e-12
CDX-u 0.000227 0.00105 0.000111 0.00177
JPT-u 1.59e-6 0.000362  0.000973 0.0482
PEL-t 0.0127 0.0632 0.0282 0.0118

Table S2: P-values from the QQp statistics of the 7-leaf population tree built using the 1000 Genomes
data, for trait-associated variants with significant overall evidence of selection (P-value of Qx < 0.05/no.
of GWAS tested).

Branch (child-parent) Educational attainment Height Male-pattern baldness Schizophrenia Unibrow
YRI-r 0.629 0.752 0.0554 0.0747 0.282

q-r 0.629 0.752 0.0554 0.0747 0.282

s-q 0.0611 0.000286  2.82e-5 0.912 0.000106
v-q 0.107 7.11e-7 0.0178 0.013 1.717e-10
CEU-v 0.146 5.62e-10  0.0099 0.00154 1.183e-12
CHB-s 2.87e-7 0.00142 0.000127 0.447 0.0027
t-s 0.00516 0.0369 0.0248 0.309 0.00722
u-t 0.128 0.33 0.197 0.717 0.00169
u-v 0.128 0.33 0.197 0.717 0.00169
PEL-t 0.00719 0.0216 0.0123 0.315 0.00129
CLM-u 0.128 0.33 0.197 0.717 0.00169

Table S3: P-values from the Qg statistics of the 5-leaf population graph built using the 1000 Genomes
data, for trait-associated variants with significant overall evidence of selection (P-value of Qx < 0.05/no.
of GWAS tested).

Table S4: Results from pairwise two-tailed binomial sign tests using the 1000 Genomes data, for variants
associated with educational attainment. Each cell contains the number of SNPs in which the two panels
have different frequencies, the number of SNPs in which the column panel has a higher frequency of the
trait-increasing allele than the row panel and the P-value from the binomial test.

Table S5: Results from pairwise two-tailed binomial sign tests using the 1000 Genomes data, for variants
associated with height. Each cell contains the number of SNPs in which the two panels have different
frequencies, the number of SNPs in which the column panel has a higher frequency of the trait-increasing
allele than the row panel and the P-value from the binomial test.

Table S6: Results from pairwise two-tailed binomial sign tests using the 1000 Genomes data, for variants
associated with self-reported male-pattern baldness. Each cell contains the number of SNPs in which
the two panels have different frequencies, the number of SNPs in which the column panel has a higher
frequency of the trait-increasing allele than the row panel and the P-value from the binomial test.
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Table S7: Results from pairwise two-tailed binomial sign tests using the 1000 Genomes data, for variants
associated with schizophrenia. FEach cell contains the number of SNPs in which the two panels have
different frequencies, the number of SNPs in which the column panel has a higher frequency of the
trait-increasing allele than the row panel and the P-value from the binomial test.

Table S8: Results from pairwise two-tailed binomial sign tests using the 1000 Genomes data, for variants
associated with self-reported unibrow. Each cell contains the number of SNPs in which the two panels
have different frequencies, the number of SNPs in which the column panel has a higher frequency of the
trait-increasing allele than the row panel and the P-value from the binomial test.

Popl Pop2 N P1>P2 Two-tailed Pval

JPT AMR 86 63 1.88E-05
CHB AMR 86 61 0.000130379
KHV  PEL 84 58 0.000627947
JPT GIH 86 59 0.00073171
JPT TSI 86 59 0.00073171
PUR CHB 86 27 0.00073171
PUR JPT 86 27 0.00073171
MXL CHB 85 27 0.001016221
MXL CHS 85 27 0.001016221
JPT MXL 85 58 0.001016221

Table S9: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
1000 Genomes data, for variants associated with educational attainment. N = number of SNPs in which
the two panels have different frequencies. P1 > P2 = number of SNPs in which Popl has a higher
frequency of the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial test.

Popl Pop2 N P1 > P2 Two-tailed Pval

CLM CEU 531 194 5.68E-10
AMR CEU 531 198 5.04E-09
EUR AMR 531 329 3.95E-08
CLM GBR 531 203 6.47E-08
CEU PEL 531 327 1.05E-07
AMR GBR 531 204 1.05E-07
PUR CEU 531 205 1.70E-07
EUR CLM 531 326 1.70E-07
CEU TSI 531 325 2.73E-07
CEU IBS 531 324 4.34E-07

Table S10: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
1000 Genomes data, for variants associated with height. N = number of SNPs in which the two panels
have different frequencies. P1 > P2 = number of SNPs in which Popl has a higher frequency of the
trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial test.
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Popl Pop2 N P1>P2 Two-tailed Pval

AFR KHV 40 29 0.006426576
CDX ITU 40 11 0.006426576
ESN KHV 38 27 0.013852965
PJL SAS 40 28 0.016589003
AFR CHS 40 28 0.016589003
KHV  ASW 39 12 0.023702702
CHS STU 39 12 0.023702702
CDX STU 39 12 0.023702702
CHS EAS 36 11 0.02881672

KHV LWK 38 12 0.03355244

Table S11: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
1000 Genomes data, for variants associated with self-reported male-pattern baldness. N = number of
SNPs in which the two panels have different frequencies. P1 > P2 = number of SNPs in which Popl has
a higher frequency of the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial
test.

Popl Pop2 N P1 > P2 Two-tailed Pval

PJL FIN 189 118 0.000775545
ITU GBR 189 116 0.002165972
YRI LWK 173 107 0.002262171
FIN MSL 190 74 0.002837056
ESN GBR 190 116 0.002837056
ASW GWD 185 72 0.003165809
FIN STU 189 74 0.00350814

ESN ASW 184 112 0.003917461
AFR GBR 190 115 0.004537135
AFR FIN 190 115 0.004537135

Table S12: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
1000 Genomes data, for variants associated with schizophrenia. N = number of SNPs in which the two
panels have different frequencies. P1 > P2 = number of SNPs in which Popl has a higher frequency of
the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial test.

Popl Pop2 N P1 > P2 Two-tailed Pval

ESN LWK 37 28 0.002563208
EUR ASW 45 13 0.006608823
CEU GIH 45 13 0.006608823
SAS CEU 45 32 0.006608823
CLM CEU 45 32 0.006608823
EUR CEU 45 32 0.006608823
CEU IBS 44 13 0.009559879
CEU BEB 45 14 0.01609436

FIN IBS 45 14 0.01609436

ESN GWD 37 26 0.020073852

Table S13: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
1000 Genomes data, for variants associated with self-reported unibrow. N = number of SNPs in which
the two panels have different frequencies. P1 > P2 = number of SNPs in which Popl has a higher
frequency of the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial test.
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Branch (child-parent) Educational attainment Height Photic sneeze reflex Unibrow
q-r 0.591 0.948 0.00478 0.453
t-r 0.591 0.948 0.00478 0.453
s-q 0.419 0.183 0.00812 0.377
V-8 0.0883 0.52 0.999 0.0619
X-V 0.169 0.544 0.722 0.829
Mandenka-t 0.588 0.975 0.0388 0.56
Yoruba-t 0.648 0.876 0.00136 0.414
Oceanian-s 0.322 0.192 1.509e-5 0.277
EastAsian-v 3.34e-7 0.041 0.629 0.00111
NativeAmerican-x 0.2 0.843 0.537 0.223
w-q 0.53 6.75e-5  0.218 1.299e-6
W-X 0.53 6.75e-5  0.218 1.299e-6
EuropeA-w 0.53 6.75e-5  0.218 1.299e-6

Table S14: P-values from the Qg statistics of the 7-leaf population graph built using the Lazaridis et al.
(2014) data, with the "EuropeA” panel, for traits with significant overall evidence of selection (P-value
of @x < 0.05/no. of GWAS tested).

Branch (child-parent) Age at voice drop Educational attainment Height Photic sneeze reflex Unibrow
q-r 0.935 0.648 0.965 0.00525 0.297
t-r 0.935 0.648 0.965 0.00525 0.297
s-q 0.562 0.385 0.123 0.0325 0.0682
V-8 0.114 0.0777 0.325 0.71 0.00514
X-V 0.0772 0.222 0.942 0.477 0.211
y-q 0.361 0.6321 0.0309 0.169 4.64e-5
Mandenka-t 0.938 0.641 0.965 0.0755 0.388
Yoruba-t 0.94 0.698 0.898 0.149 0.275
Oceanian-s 0.00221 0.362 0.217 5.72e-5 0.478
EastAsian-v 0.517 7.06e-7 0.0498 0.81 0.000278
NativeAmerican-x 0.0748 0.234 0.861 0.438 0.127
Sardinian-y 0.068 0.666 0.769 0.144 0.00134
w-y 0.757 0.631 2.75e-5 0.265 3.11e-6
W-X 0.757 0.631 2.75e-5 0.265 3.11e-6
EuropeB-w 0.757 0.631 2.75e-5 0.265 3.11e-6

Table S15: P-values from the Qg statistics of the 7-leaf population graph built using the Lazaridis et al.
(2014) data, with the "EuropeB” panel, for traits with significant overall evidence of selection (P-value
of @x < 0.05/no. of GWAS tested).

Branch (child-parent)

Educational attainment

Photic sneeze reflex

Unibrow

q-r
t-r

s-q

V-8

X-V

y-a

Mandenka-t
Yoruba-t
Oceanian-s
EastAsian-v
NativeAmerican-x
Sardinian-y

w-y

wW-X

EuropeB-w

0.648
0.648
0.385
0.0777
0.222
0.632
0.641
0.698
0.362
7.06e-7
0.234
0.666
0.631
0.631
0.631

0.00525
0.00525
0.0325
0.71
0.477
0.169
0.0367
0.00159
5.72e-5
0.81
0.438
0.144
0.265
0.265
0.265

0.297
0.297
0.0682
0.00514
0.211
4.64e-5
0.388
0.275
0.478
0.000278
0.127
0.00134
3.11e-6
3.11e-6
3.11e-6

Table S16: P-values from the Qg statistics of the 7-leaf population graph built using the Lazaridis et al.
(2014) data, with the "EuropeC” panel, for traits with significant overall evidence of selection (P-value
of @x < 0.05/no. of GWAS tested).
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Trait P-value
Age at voice drop 0.625
Educational attainment 0.7465
Height 0.3397
Male-pattern baldness  0.5327
Photic sneeze reflex 0.6778
Schizophrenia 0.03511
Unibrow 0.1352

Table S17: P-values from two-tailed binomial test performed to check if there were systematic biases
in ancestral/derived allele polarity relative to the direction of the effect size, for all traits for which we
found significant evidence of polygenic adaptation.

Table S18: Results from pairwise two-tailed binomial sign tests using the Lazaridis et al. (2014) data,
for variants associated with self-reported age at voice drop. Each cell contains the number of SNPs in
which the two panels have different frequencies, the number of SNPs in which the column panel has a
higher frequency of the trait-increasing allele than the row panel and the P-value from the binomial test.

Table S19: Results from pairwise two-tailed binomial sign tests using the Lazaridis et al. (2014) data,
for variants associated with educational attainment. Each cell contains the number of SNPs in which
the two panels have different frequencies, the number of SNPs in which the column panel has a higher
frequency of the trait-increasing allele than the row panel and the P-value from the binomial test.

Table S20: Results from pairwise two-tailed binomial sign tests using the Lazaridis et al. (2014) data,
for variants associated with height. Each cell contains the number of SNPs in which the two panels
have different frequencies, the number of SNPs in which the column panel has a higher frequency of the
trait-increasing allele than the row panel and the P-value from the binomial test.

Table S21: Results from pairwise two-tailed binomial sign tests using the Lazaridis et al. (2014) data,
for variants associated with self-reported photic sneeze reflex. Each cell contains the number of SNPs in
which the two panels have different frequencies, the number of SNPs in which the column panel has a
higher frequency of the trait-increasing allele than the row panel and the P-value from the binomial test.

Table S22: Results from pairwise two-tailed binomial sign tests using the Lazaridis et al. (2014) data, for
variants associated with self-reported unibrow. Each cell contains the number of SNPs in which the two
panels have different frequencies, the number of SNPs in which the column panel has a higher frequency
of the trait-increasing allele than the row panel and the P-value from the binomial test.
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Popl Pop2 N Pl >P2 Two-tailed Pval
Yakut Iranian_Jew 71 54 1.25E-05
Korean Finnish 70 53 1.92E-05
Yi Jordanian 70 53 1.92E-05
Jordanian  Han 71 18 3.88E-05
Mongola Finnish 71 53 3.88E-05
Korean Surui 59 45 6.53E-05
Yi Iranian 72 53 7.56E-05
Japanese Jordanian 72 53 7.56E-05
Tuscan Korean 72 19 7.56E-05
Japanese Kalash 72 53 7.56E-05

Table S23: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
Lazaridis et al. (2014) data, for variants associated with educational attainment. N = number of SNPs
in which the two panels have different frequencies. P1 > P2 = number of SNPs in which Popl has a
higher frequency of the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial

test.
Popl Pop2 N P1 > P2 Two-tailed Pval
French Turkish 453 283 1.23E-07
Icelandic Turkish 449 280 1.82E-07
BedouinA  French 424 159 2.98E-07
Icelandic Daur 443 275 4.20E-07
Japanese French 453 174 9.23E-07
Daur Bergamo 443 170 1.13E-06
Daur Spanish_North 432 166 1.72E-06
Icelandic BedouinA 450 276 1.75E-06
Druze French 453 177 3.80E-06
Icelandic Syrian 426 261 3.81E-06

Table S24: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
Lazaridis et al. (2014) data, for variants associated with height. N = number of SNPs in which the two
panels have different frequencies. P1 > P2 = number of SNPs in which Popl has a higher frequency of
the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial test.

Popl Pop2 N P1l>P2 Two-tailed Pval
Papuan  BantuSA 39 32 7.03E-05
Daur Yoruba 40 32 0.000182166
Papuan  Biaka 40 32 0.000182166
Mende She 39 8 0.000294077
Papuan BantuKenya 40 31 0.000679548
Mende Turkmen 40 9 0.000679548
Mende Uzbek 40 9 0.000679548
Esan Korean 40 9 0.000679548
Mende Datog 40 9 0.000679548
Brahui Turkish 42 10 0.000940674

Table S25: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
Lazaridis et al. (2014) data, for variants associated with self-reported photic sneeze reflex. N = number
of SNPs in which the two panels have different frequencies. P1 > P2 = number of SNPs in which Popl
has a higher frequency of the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the
binomial test.
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Popl Pop2 N Pl >P2 Two-tailed Pval
Finnish Kyrgyz 33 7 0.001318727
Bougainville  Finnish 33 26 0.001318727
Yemen Bulgarian 30 24 0.001430906
Kusunda Uzbek 30 24 0.001430906
Kusunda Mordovian 27 22 0.00151372
Basque Maltese 32 7 0.002102402
English Yemen 32 7 0.002102402
Czech Atayal 32 7 0.002102402
Yi Nogai 32 25 0.002102402
Bougainville  Russian 32 25 0.002102402

Table S26: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
Lazaridis et al. (2014) data, for variants associated with self-reported unibrow. N = number of SNPs in
which the two panels have different frequencies. P1 > P2 = number of SNPs in which Pop1 has a higher
frequency of the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial test.
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Supplementary Figures
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Figure S1: Four example scenarios in which different combinations of « parameters can produce very
similar likelihood values.
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Figure S2: Posterior distributions of a parameters for five 400-SNPs simulations of a 3-leaf tree with
small branch drift parameters (0.02) and o = 0.2 (red line) simulated in a terminal branch (B-q). The
lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper
whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the
inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge.
Data beyond the whiskers are plotted as points.
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Figure S3: Posterior distributions of a parameters for five 400-SNP simulations of a 3-leaf tree with small
branch drift parameters (0.02) and o = 0.2 (red line) simulated in an interior branch (g-r). The lower,
middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper whisker
extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the inter-quartile
range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge. Data beyond
the whiskers are plotted as points.
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Figure S4: Posterior distributions of o parameters for five 400-SNPs simulations of a 4-leaf admixture
graph with small branch drift parameters (0.02) and o = 0.2 (red line) simulated in a terminal branch
(C-v). The upper and lower hinges denote the 25th and 75th percentiles. The lower, middle and upper
hinges denote the 25th, 50th and 75th percentiles, respectively. The upper whisker extends to the
highest value that is within 1.5 * IQR of the upper hinge, where IQR is the inter-quartile range. The
lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge. Data beyond the whiskers
are plotted as points.
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Figure S5: Posterior distributions of o parameters for five 400-SNPs simulations of a 4-leaf admixture
graph with small branch drift parameters (0.02) and o = 0.2 (red line) simulated in an interior branch
(v-q). The lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The
upper whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is
the inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR. of the lower
hinge. Data beyond the whiskers are plotted as points.
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Figure S6: Posterior distributions of a parameters for five 400-SNPs simulations of a 3-leaf tree with
large branch drift parameters (0.05) and a = 0.2 (red line) simulated in a terminal branch (B-q). The
lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper
whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the
inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge.
Data beyond the whiskers are plotted as points.
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Figure S7: Posterior distributions of a parameters for five 400-SNPs simulations of a 3-leaf tree with
large branch drift parameters (0.05) and o = 0.2 (red line) simulated in an interior branch (q-r). The
lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper
whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the
inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge.
Data beyond the whiskers are plotted as points.
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Figure S8: Posterior distributions of o parameters for five 400-SNPs simulations of a 4-leaf admixture
graph with large branch drift parameters (0.05) and o = 0.2 (red line) simulated in a terminal branch
(C-v). The lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The
upper whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is
the inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR. of the lower
hinge. Data beyond the whiskers are plotted as points.
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Figure S9: Posterior distributions of o parameters for five 400-SNPs simulations of a 4-leaf admixture
graph with large branch drift parameters (0.05) and o = 0.2 (red line) simulated in an interior branch
(v-q). The lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The
upper whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is
the inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR. of the lower
hinge. Data beyond the whiskers are plotted as points.
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Figure S10: Posterior distributions of a parameters for five 400-SNPs simulations of a 3-leaf tree with
small branch drift parameters (0.02) and a = 0.1 (red line) simulated in a terminal branch (B-q). The
lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper
whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the
inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge.
Data beyond the whiskers are plotted as points.
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Figure S11: Posterior distributions of a parameters for five 400-SNPs simulations of a 3-leaf tree with
small branch drift parameters (0.02) and o = 0.1 (red line) simulated in an interior branch (q-r). The
lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper
whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the
inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge.
Data beyond the whiskers are plotted as points.
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Figure S12: Posterior distributions of a parameters for five 400-SNPs simulations of a 4-leaf admixture
graph with small branch drift parameters (0.02) and o = 0.1 (red line) simulated in a terminal branch
(C-v). The lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The
upper whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is
the inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR. of the lower
hinge. Data beyond the whiskers are plotted as points.
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Figure S13: Posterior distributions of a parameters for five 400-SNPs simulations of a 4-leaf admixture
graph with small branch drift parameters (0.02) and o = 0.1 (red line) simulated in an interior branch
(v-q). The lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The
upper whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is
the inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR. of the lower
hinge. Data beyond the whiskers are plotted as points.
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Figure S14: Posterior distributions of a parameters for five 400-SNPs simulations of a 3-leaf tree with
large branch drift parameters (0.05) and a = 0.1 (red line) simulated in a terminal branch (B-q). The
lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper
whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the
inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge.
Data beyond the whiskers are plotted as points.
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Figure S15: Posterior distributions of a parameters for five 400-SNPs simulations of a 3-leaf tree with
large branch drift parameters (0.05) and o = 0.1 (red line) simulated in an interior branch (q-r). The
lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper
whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the
inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge.
Data beyond the whiskers are plotted as points.
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Figure S16: Posterior distributions of a parameters for five 400-SNPs simulations of a 4-leaf admixture
graph with large branch drift parameters (0.05) and o = 0.1 (red line) simulated in a terminal branch
(C-v). The lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The
upper whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is
the inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR. of the lower
hinge. Data beyond the whiskers are plotted as points.
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Figure S17: Posterior distributions of a parameters for five 400-SNPs simulations of a 4-leaf admixture
graph with large branch drift parameters (0.05) and o = 0.1 (red line) simulated in an interior branch
(v-q). The lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The
upper whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is
the inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR. of the lower
hinge. Data beyond the whiskers are plotted as points.
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Figure S18: Posterior distributions of @ parameters for two 400-SNPs simulations of a 4-leaf admixture
graph with small branch drift parameters (0.02) and o« = 0.2 (red line) simulated in an interior branch (v-
q). The left panel shows a simulation whose parameters were estimated with a non-sparse prior (k = 0)
and the right panel shows a simulation whose parameters were estimated with a sparse prior, as defined

in the main text.
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Figure S19: Posterior distributions of o parameters for five 400-SNPs neutral simulations of a 4-leaf
admixture graph with drift parameters equal to 0.02 in each branch.
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Figure S20: Posterior distributions of o parameters for five 400-SNPs neutral simulations of a 4-leaf
admixture graph with drift parameters equal to 0.03 in each branch, but incorrectly specified to be equal
to 0.02.
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Figure S21: Posterior distributions of o parameters for five 400-SNPs neutral simulations of a 4-leaf
admixture graph with drift parameters equal to 0.04 in each branch, but incorrectly specified to be equal
to 0.02.
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Figure S22: Posterior distributions of o parameters for five 400-SNPs neutral simulations of a 4-leaf
admixture graph with drift parameters equal to 0.02 in each branch. We pretended one of the populations
(A) was not sampled, and specified the topology to be a 3-leaf tree with drift parameters equal to 0.02
in each branch. Populations B, C and D were relabeled to be A, B and C, respectively.
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Figure S23: A) A 7-leaf population tree containing the following population panels from the 1000
Genomes Project: Nigerian Esan (ESN), Sierra Leone Mende (MSL), Northern Europeans from Utah
(CEU), Southern Europeans from Tuscany (TSI), Dai Chinese (CDX), Japanese (JPT) and Peruvians
(PEL). B) A 5-leaf admixture graph containing the following panels from the 1000 Genomes project:
Yoruba (YRI), Colombians (CLM), CEU, CHB and PEL. C) A 7-leaf admixture graph containing panels

(and combinations of panels) from the imputed Lazaridis et al. (2014) dataset. EastAsian = [ Cam-
bodian, Mongola, Xibo, Daur, Hezhen, Orogen, Naxi, Yi, Japanese, Han_NChina, Lahu, Miao, She,
Han, Tujia, Dai |. NativeAmerican = [ Maya, Pima, Surui, Karitiana, Colombian ]. Oceanian = |

Papuan, Australian |. We tested three graphs with three different combinations of European popula-
tions, with different amounts of EEF ancestry: EuropeA (low EEF) = [ Estonian, Lithuanian, Scottish,
Icelandic, Norwegian, Orcadian, Czech, English |. EuropeB (medium EEF) = [ Hungarian, Croatian,
French, Basque, Spanish_North, French_South |. EuropeC (high EEF) = [ Bulgarian, Bergamo, Tuscan,
Albanian, Greek, Spanish |.
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Figure S24: Box plots of posterior distributions for a parameters, for trait-associated variants with
significant evidence for selection in a 7-leaf population tree using the 1000 Genomes data (Figure S23.A).
Parameters with flat distributions were discarded a priori using the @ g statistic. The lower, middle and
upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper whisker extends to the
highest value that is within 1.5 * IQR of the upper hinge, where IQR is the inter-quartile range. The
lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge. Data beyond the whiskers
are plotted as points. EDU = educational attainment. MPB_23 = self-reported male-pattern baldness
from 23andMe. UB_23 = self-reported unibrow from 23andMe.
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Figure S25: We plotted the a values of two branches for all posterior samples of the MCMC run for
variants associated with height in the 7-leaf population tree composed of 1000 Genomes panels. For each

MCMC sample, the x-axis corresponds to the o parameter in the ancestral European branch, while the
y-axis corresponds to the a parameter in the ancestral East Asian / Native American branch.
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Figure S26: Poly-graphs for trait-associated variants that show significant evidence for polygenic adap-
tation in a 7-leaf tree built using 1000 Genomes allele frequency data. ESN = Nigerian Esan; MSL =
Sierra Leone Mende; CEU = Northern Europeans from Utah; TSI = Southern Europeans from Tuscany;
CDX = Dai Chinese; JPT = Japanese; CHB = Han Chinese from Beijing.
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Figure S27: Poly-graphs for trait-associated variants that show significant evidence for polygenic adap-
tation in a 7-leaf tree built using 1000 Genomes allele frequency data. ESN = Nigerian Esan; MSL =
Sierra Leone Mende; ; CHB = Han Chinese from Beijing; CHS = Southern Han Chinese; FIN = Finnish;
IBS = Iberians from Spain; PEL = Peruvians from Lima.
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Figure S28: Poly-graphs for trait-associated variants that show significant evidence for polygenic adap-
tation in the 7-leaf tree built using 1000 Genomes allele frequency data, using a Beta(2,2) root allele
frequency prior in the MCMC. ESN = Nigerian Esan; MSL = Sierra Leone Mende; CEU = Northern
FEuropeans from Utah; TSI = Southern Europeans from Tuscany; CDX = Dai Chinese; JPT = Japanese;
PEL = Peruvians.
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Figure S29: Box plots of posterior distributions for a parameters, for trait-associated variants with
significant evidence for selection in a 5-leaf admixture graph using the 1000 Genomes data (Figure S23.B).
Parameters with flat distributions were discarded a priori using the () statistic. The lower, middle and
upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper whisker extends to the
highest value that is within 1.5 * IQR of the upper hinge, where IQR is the inter-quartile range. The
lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge. Data beyond the whiskers
are plotted as points. EDU = educational attainment. MPB_23 = self-reported male-pattern baldness
from 23andMe. UB_23 = self-reported unibrow from 23andMe. SCZ = schizophrenia.
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Figure S30: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with educational
attainment with P-values < 0.05, which involve that panel as a member of the pair. We tested all panels
and continental super-panels from the 1000 Genomes dataset.
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Figure S31: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with height with
P-values < 0.05, which involve that panel as a member of the pair. We tested all panels and continental
super-panels from the 1000 Genomes dataset.
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Figure S32: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with self-reported
male-pattern baldness with P-values < 0.05, which involve that panel as a member of the pair. We tested
all panels and continental super-panels from the 1000 Genomes dataset.

SCz

Number of tests with P < 0.05

° - D g DDmD S D@D@DQ

@ o o4 9 x o [} @ 0 0 x
¢ LT sz 8 3 2 23 £
< o = 2 o ou oz

KHV D

CEU l
FIN l

x
5 D
o o

GBR |
CHs ‘
EsN |
AFR

a 3 [

GWD

Figure S33: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with schizophrenia
with P-values < 0.05, which involve that panel as a member of the pair. We tested all panels and
continental super-panels from the 1000 Genomes dataset.
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Figure S34: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with self-reported
unibrow with P-values < 0.05, which involve that panel as a member of the pair. We tested all panels
and continental super-panels from the 1000 Genomes dataset.
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Figure S35: We simulated different proportions of missing trait-associated SNPs (x-axis). We then
assessed - for each proportion - how often we could recreate the inequality relationship observed between
the polygenic scores for CHB and CEU built using the trait-associated SNPs of the three traits with
strongest evidence for polygenic adaptation: height, educational attainment and self-reported unibrow.
The observed inequality relationship for educational attainment and unibrow is Polycyp > Polycgu,
where Polyx is the polygenic score for panel X. The observed inequality relationship for height is the
reverse: Polycpy > Polycgp. We used 10,000 simulations for each missing data scenario.
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Figure S36: We simulated different proportions of incorrectly assigned signs for the effect size estimates
of trait-associated SNPs. We then assessed - for each proportion - how often we could recreate the
inequality relationship observed between the polygenic scores for CHB and CEU built using the trait-
associated SNPs of the three traits with strongest evidence for polygenic adaptation: height, educational
attainment and self-reported unibrow. The observed inequality relationship for educational attainment
and unibrow is Polycyp > Polycgyu, where Polyx is the polygenic score for panel X. The observed
inequality relationship for height is the reverse: Polycpy > Polycyp. We used 10,000 simulations for
each sign misassignment scenario.
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Figure S37: Box plots of posterior distribution for a parameters, for trait-associated variants with
significant evidence for selection in a 7-leaf population graph, using the Lazaridis et al. (2014) dataset
and including the set of European populations with low EEF ancestry ("EuropeA”). Parameters with
flat distributions were discarded a priori using the @Qp statistic. The lower, middle and upper hinges
denote the 25th, 50th and 75th percentiles, respectively. The upper whisker extends to the highest value
that is within 1.5 * IQR of the upper hinge, where IQR is the inter-quartile range. The lower whisker
extends to the lowest value within 1.5 * IQR of the lower hinge. Data beyond the whiskers are plotted
as points. EDU = educational attainment. PS_23 = self-reported photic sneeze reflex from 23andMe.
UB_23 = self-reported unibrow from 23andMe.
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Figure S38: Box plots of posterior distribution for « parameters, for trait-associated variants with
significant evidence for selection in a 7-leaf population graph, using the Lazaridis et al. (2014) dataset
and including the set of European populations with medium EEF ancestry (“EuropeB”). Parameters
with flat distributions were discarded a priori using the Q)5 statistic. The lower, middle and upper hinges
denote the 25th, 50th and 75th percentiles, respectively. The upper whisker extends to the highest value
that is within 1.5 * IQR of the upper hinge, where IQR is the inter-quartile range. The lower whisker
extends to the lowest value within 1.5 * IQR of the lower hinge. Data beyond the whiskers are plotted as
points. AVD_23 = self-reported age at voice drop. EDU = educational attainment. PS_23 = self-reported
photic sneeze reflex from 23andMe. UB_23 = self-reported unibrow from 23andMe.
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Figure S39: Box plots of posterior distribution for a parameters, for trait-associated variants with
significant evidence for selection in a 7-leaf population graph, using the Lazaridis et al. (2014) dataset
and including the set of European populations with high EEF ancestry (“EuropeC”). Parameters with
flat distributions were discarded a priori using the Qg statistic. The lower, middle and upper hinges
denote the 25th, 50th and 75th percentiles, respectively. The upper whisker extends to the highest value
that is within 1.5 * IQR of the upper hinge, where IQR is the inter-quartile range. The lower whisker
extends to the lowest value within 1.5 * IQR of the lower hinge. Data beyond the whiskers are plotted
as points. EDU = educational attainment. PS_23 = self-reported photic sneeze reflex from 23andMe.
UB_23 = self-reported unibrow from 23andMe.
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Figure S40: Graphs for trait-associated variants that show significant evidence for polygenic adaptation
in the 7-leaf admixture graph built using the Lazaridis et al. (2014) dataset and including the set of
European populations with medium EEF ancestry (“EuropeB”).
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Figure S41: Graphs for trait-associated variants that show significant evidence for polygenic adaptation
in the 7-leaf admixture graph built using the Lazaridis et al. (2014) dataset and including the set of
European populations with high EEF ancestry (“EuropeC”).
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Figure S42: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with educational
attainment with P-values < 0.05, which involve that panel as a member of the pair. We tested all panels
from the Lazaridis et al. (2014) dataset.
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Figure S43: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with height with
P-values < 0.05, which involve that panel as a member of the pair. We tested all panels from the
Lazaridis et al. (2014) dataset.
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Figure S44: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with self-reported
photic sneeze reflex with P-values < 0.05, which involve that panel as a member of the pair. We tested
all panels from the Lazaridis et al. (2014) dataset.

UB_23

15 20 25
|

Number of tests with P < 0.05
10
I

EHHH Hm M NHHL%H mﬂj il HHHM HHHHH I HH il HHH HN AL H HHH s mmﬂﬂﬂu I HHH

Figure S45: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with self-reported
unibrow with P-values < 0.05, which involve that panel as a member of the pair. We tested all panels
from the Lazaridis et al. (2014) dataset.
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Standardized genetic scores for number of years of education (Okbay et al. 2016, PPA > 90%)
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Figure S46: We compared the standardized population genetic scores using the ref. [46] GWAS data for
number of years of education - looking at LD blocks with a posterior probability of association (PPA)
> 90% (top panel), with the standardized population genetic scores using the Neale lab GWAS summary
statistics obtained from the UK Biobank data, for completion of college / university degree (lower panels).
We selected the SNP with the lowest P-value per LD block, and then used different P-value cutoffs to
build the score: 109, 1078, 107.
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Posterior distributions of alpha parameters: EDU (num. SNPs: 96)
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Figure S47: Boxplot and poly-graph of estimated « parameters for completion of college / university
degree, using the Neale lab GWAS summary statistics obtained from the UK Biobank data. The popu-
lation graph is the 7-leaf tree of the following 1000 Genomes panels: ESN, MSL, CEU, TSI, CDX, JPT

and PEL.
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Figure S48: Side-by-side comparison of a graph built using the posterior estimates of the alpha parame-
ters using variants associated with height (left), and a graph built using the g, statistics using the same
variants (right). The color scale is arbitrary and specific to each graph.
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Figure S49: Auto-correlation plots for a parameters of simulation 1 of Figure S5. The rest of the «
parameters did not pass the Qp cutoff and were therefore set to a fixed value of 0 throughout the chain.
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Figure S50: A. We produced 100 simulations of polygenic adaptation in an internal branch of a graph
(v-q), each with 400 SNPs and « = 0.1. All branches had drift lengths equal to 0.02 B. We tested
various cutoffs for @Qp and plotted the average number of candidate branches that passed the cutoff, over
all simulations. The blue line is the X? cutoff corresponding to P = 0.05/k, where k is the number of
branches in the graph, under the null hypothesis of no selection. C. For each of the same cutoffs, we
also plotted the proportion of simulations in which the true selected branch was among the candidate
branches. D. Instead of testing constant values for the @ p cutoff, we chose the cutoff to be the maximum
branch statistic in each simulation, divided by %, and tested various values of . We plotted the average
number of candidate branches that passed the cutoff, over all simulations. E. For the same cutoff method
as in panel D, we plotted the proportion of simulations in which the true selected branch was among the
candidate branches. For simulations and applications to real data, we chose a heuristic value (i=3, red
line).
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Figure S51: A. We produced 100 simulations of polygenic adaptation in a terminal branch of a graph
(C-v), each with 400 SNPs and o = 0.1. All branches had drift lengths equal to 0.02 B. We tested
various cutoffs for @ p and plotted the average number of candidate branches that passed the cutoff, over
all simulations. The blue line is the X7 cutoff corresponding to P = 0.05/k, where k is the number of
branches in the graph, under the null hypothesis of no selection. C. For each of the same cutoffs, we
also plotted the proportion of simulations in which the true selected branch was among the candidate
branches. D. Instead of testing constant values for the Qg cutoff, we chose the cutoff to be the maximum
branch statistic in each simulation, divided by %, and tested various values of i. We plotted the average
number of candidate branches that passed the cutoff, over all simulations. E. For the same cutoff method
as in panel D, we plotted the proportion of simulations in which the true selected branch was among the
candidate branches. For simulations and applications to real data, we chose a heuristic value (i=3, red
line).
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Figure S52: A. We produced 100 simulations of polygenic adaptation in an internal branch of a graph
(v-q), each with 400 SNPs and o = 0.1. All branches had drift lengths equal to 0.05 B. We tested
various cutoffs for @ p and plotted the average number of candidate branches that passed the cutoff, over
all simulations. The blue line is the X7 cutoff corresponding to P = 0.05/k, where k is the number of
branches in the graph, under the null hypothesis of no selection. C. For each of the same cutoffs, we
also plotted the proportion of simulations in which the true selected branch was among the candidate
branches. D. Instead of testing constant values for the Qg cutoff, we chose the cutoff to be the maximum
branch statistic in each simulation, divided by i, and tested various values of i. We plotted the average
number of candidate branches that passed the cutoff, over all simulations. E. For the same cutoff method
as in panel D, we plotted the proportion of simulations in which the true selected branch was among the
candidate branches. For simulations and applications to real data, we chose a heuristic value (i=3, red
line).
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Figure S53: A. We produced 100 simulations of polygenic adaptation in a terminal branch of a graph
(C-v), each with 400 SNPs and o = 0.1. All branches had drift lengths equal to 0.05 B. We tested
various cutoffs for @Qp and plotted the average number of candidate branches that passed the cutoff, over
all simulations. The blue line is the X? cutoff corresponding to P = 0.05/k, where k is the number of
branches in the graph, under the null hypothesis of no selection. C. For each of the same cutoffs, we
also plotted the proportion of simulations in which the true selected branch was among the candidate
branches. D. Instead of testing constant values for the Qg cutoff, we chose the cutoff to be the maximum
branch statistic in each simulation, divided by i, and tested various values of i. We plotted the average
number of candidate branches that passed the cutoff, over all simulations. E. For the same cutoff method
as in panel D, we plotted the proportion of simulations in which the true selected branch was among the
candidate branches. For simulations and applications to real data, we chose a heuristic value (i=3, red
line).
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Figure S54: A. We produced 100 simulations of polygenic adaptation in an internal branch of a graph
(v-q), each with 400 SNPs and « = 0.2. All branches had drift lengths equal to 0.02 B. We tested
various cutoffs for @Qp and plotted the average number of candidate branches that passed the cutoff, over
all simulations. The blue line is the X? cutoff corresponding to P = 0.05/k, where k is the number of
branches in the graph, under the null hypothesis of no selection. C. For each of the same cutoffs, we
also plotted the proportion of simulations in which the true selected branch was among the candidate
branches. D. Instead of testing constant values for the @ p cutoff, we chose the cutoff to be the maximum
branch statistic in each simulation, divided by %, and tested various values of . We plotted the average
number of candidate branches that passed the cutoff, over all simulations. E. For the same cutoff method
as in panel D, we plotted the proportion of simulations in which the true selected branch was among the
candidate branches. For simulations and applications to real data, we chose a heuristic value (i=3, red
line).

101


https://doi.org/10.1101/146043
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/146043; this version posted January 6, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

gamma

@
O

o] Q]
— | — Critical value for P < 0.05 / k under null 3 DAL L L .
o 3
5 8
g * 3
= 2
5 . s
g g
g L] s
5« ., 33
3 . H
o
o S
o
o S ‘
2 4 6 8 10 2 4 6 8 10

10 D
1.0 l_-n

—— Heuristic value chosen

8
0.8

6
0.6

mean candidate branch number
L ]
prop. true branch in candidates

< 4 L] g
.
L]
. 8
ole g,.
2 4 6 8 10 2 4 6 8 10

cutoff = max branch /i cutoff = max branch / i

Figure S55: A. We produced 100 simulations of polygenic adaptation in a terminal branch of a graph
(C-v), each with 400 SNPs and o = 0.2. All branches had drift lengths equal to 0.02 B. We tested
various cutoffs for @ p and plotted the average number of candidate branches that passed the cutoff, over
all simulations. The blue line is the X7 cutoff corresponding to P = 0.05/k, where k is the number of
branches in the graph, under the null hypothesis of no selection. C. For each of the same cutoffs, we
also plotted the proportion of simulations in which the true selected branch was among the candidate
branches. D. Instead of testing constant values for the Qg cutoff, we chose the cutoff to be the maximum
branch statistic in each simulation, divided by %, and tested various values of i. We plotted the average
number of candidate branches that passed the cutoff, over all simulations. E. For the same cutoff method
as in panel D, we plotted the proportion of simulations in which the true selected branch was among the
candidate branches. For simulations and applications to real data, we chose a heuristic value (i=3, red
line).
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Figure S56: A. We produced 100 simulations of polygenic adaptation in an internal branch of a graph
(v-q), each with 400 SNPs and o = 0.2. All branches had drift lengths equal to 0.05 B. We tested
various cutoffs for @ p and plotted the average number of candidate branches that passed the cutoff, over
all simulations. The blue line is the X7 cutoff corresponding to P = 0.05/k, where k is the number of
branches in the graph, under the null hypothesis of no selection. C. For each of the same cutoffs, we
also plotted the proportion of simulations in which the true selected branch was among the candidate
branches. D. Instead of testing constant values for the Qg cutoff, we chose the cutoff to be the maximum
branch statistic in each simulation, divided by i, and tested various values of i. We plotted the average
number of candidate branches that passed the cutoff, over all simulations. E. For the same cutoff method
as in panel D, we plotted the proportion of simulations in which the true selected branch was among the
candidate branches. For simulations and applications to real data, we chose a heuristic value (i=3, red
line).
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Figure S57: A. We produced 100 simulations of polygenic adaptation in a terminal branch of a graph
(C-v), each with 400 SNPs and o = 0.2. All branches had drift lengths equal to 0.05 B. We tested
various cutoffs for @Qp and plotted the average number of candidate branches that passed the cutoff, over
all simulations. The blue line is the X? cutoff corresponding to P = 0.05/k, where k is the number of
branches in the graph, under the null hypothesis of no selection. C. For each of the same cutoffs, we
also plotted the proportion of simulations in which the true selected branch was among the candidate
branches. D. Instead of testing constant values for the Qg cutoff, we chose the cutoff to be the maximum
branch statistic in each simulation, divided by i, and tested various values of i. We plotted the average
number of candidate branches that passed the cutoff, over all simulations. E. For the same cutoff method
as in panel D, we plotted the proportion of simulations in which the true selected branch was among the
candidate branches. For simulations and applications to real data, we chose a heuristic value (i=3, red
line).
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Figure S58: A. Topology inferred by TreeMiz when forcing no admixture events and inputting the
following populations from the 1000 Genomes Project: MSL, ESN, CDX, JPT, CEU, TSI and PEL. B.
Topology inferred by TreeMiz when inputting the same populations as in panel A, but forcing 1 migration
event. C. Topology inferred by TreeMix when forcing no admixture events and inputting the following
populations from the 1000 Genomes Project: YRI, CEU, CHB, PEL, CLM. D. Topology inferred by
TreeMiz when inputting the same populations as in panel C, but forcing 1 migration event. The trees
were rooted such that the African populations were an outgroup to the rest of the populations. We note
that the drift parameters outputted by TreeMiz - unlike those outputted by MizMapper - are a product
of the drift parameter that we use in PolyGraph and the average over the inferred heterozygosities at
each branchs ancestral node, computed over all SNPs used to produce the TreeMiz graph.
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