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Genetic identification of brain cell types underlying schizophrenia
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Abstract:

With few exceptions, the marked advances in knowledge about the genetic basis for
schizophrenia have not converged on findings that can be confidently used for precise
experimental modeling. Applying knowledge of the cellular taxonomy of the brain from
single-cell RNA-sequencing, we evaluated whether the genomic loci implicated in
schizophrenia map onto specific brain cell types. The common variant genomic results
consistently mapped to pyramidal cells, medium spiny neurons, and certain interneurons but
far less consistently to embryonic, progenitor, or glial cells. These enrichments were due to
distinct sets of genes specifically expressed in each of these cell types. Many of the diverse
gene sets associated with schizophrenia (including antipsychotic targets) implicate the same
brain cell types. Our results provide a parsimonious explanation: the common-variant
genetic results for schizophrenia point at a limited set of neurons, and the gene sets point to
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the same cells. While some of the genetic risk is associated with GABAergic interneurons,
this risk largely does not overlap with that from projecting cells.

Knowledge of the genetic basis of schizophrenia has markedly improved in the past five
years . Much of the genetic basis and heritability of schizophrenia is due to common
variation 2. Identifying “actionable” genes in sizable studies *° has proven difficult with a
few exceptions ®2. There is aggregated statistical evidence for diverse gene sets including
genes expressed in brain or neurons >>°, genes highly intolerant of loss-of-function variation
19 synaptic genes ™, and genes whose mRNA bind to FRMP ** (Table S1). Several gene sets
have been implicated by fundamentally different types of genetic studies of schizophrenia,
and this convergence strongly implicates these gene sets in the pathophysiology of
schizophrenia. However, the implicated gene sets often contain hundreds of functionally
distinctive genes that do not immediately suggest reductive targets for experimental
modeling.

Connecting the genomic results to cellular studies is crucial since it would allow us to
prioritize for cells fundamental to the genesis of schizophrenia. Enrichment of schizophrenia
genomic findings in genes expressed in macroscopic samples of brain tissue has been
reported ***  but these results are insufficiently specific to guide subsequent

experimentation.

A more precise approach has recently become feasible. Single-cell RNA-sequencing
(scRNAseq) has been increasingly used to derive empirical taxonomies of brain cell types.
We thus rigorously compared genomic results for schizophrenia to brain cell types defined
by scRNAseq. We assembled a superset of brain scRNAseq data from Karolinska Institutet
(KI; Supplementary Methods). Briefly, these data were generated using identical methods
from the same labs with the use of unique molecular identifiers that allow for direct
comparison of transcription across regions. The KI mouse superset of 9,970 cells allows
identification of 24 Level 1 brain cell types and 149 Level 2 cell types, far more cell types
than any other brain scRNAseq or single nuclei RNA-seq (snRNAseq) dataset now available
(Figure 1A). Brain regions in the KI superset include neocortex, hippocampus,
hypothalamus, striatum, midbrain, plus samples enriched for oligodendrocytes,
dopaminergic neurons, and cortical parvalbuminergic interneurons (Table S2 and Figure S1).
The cell type identities (both level 1 and 2) were used as they were annotated in the
individual data sets —briefly cell-classification is based on clustering of cell by algorithms
taking all cell class-specific gene-expression into account in a hierarchical manner. Clustering
thus does not rely on the use of single markers but on the correlation of hundreds of genes.
Once clustered, the cell types are identified post-hoc using known expression patterns
and/or molecular investigation (see Table S2 for details). While most human single-cell data
comes from snRNAseq, an advantage of the Kl superset, and using the mouse as a model
system, is that it allows for the use of scRNAseq. Prepared nuclei lack the cytoplasmic
compartment and proximal dendrites, and we reasoned that this might result in a specific
loss of signal. Indeed, by comparing multiple snRNAseq and scRNAseq data sets (both
mouse and human), we found that transcripts destined for export to synaptic neuropil *°,
which are enriched for genetic associations with schizophrenia (P=1.6x10"), were
significantly better captured by scRNAseq and specifically depleted in the snRNAseq (Figure
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$2). This unfortunately suggest that nuclear data might never provide the signal necessary
for these kind of analyses.

For each single-cell/nucleus data set, we estimated a specificity matrix for each gene and
cell type. This measure represents the proportion of the total expression of a gene found
specifically in a cell type as compared to all cell types. It is calculated as the average
expression in one cell type divided by the total average expression in the other cell types.
Thus, if a particular gene’s expression (even if very high) is shared between more than one
cell type it will get a lower specificity measure. As an example, we show Drd2, a gene highly
expressed in medium spiny neurons (MSNs), adult dopaminergic neurons, and hypothalamic
interneurons, and thus only gets a specificity measure in MSNs of 0.17 but still ends up in
the top specificity decile for that cell type (Figure 1c). To further visualize this metric, we
plotted the cell type specificity values for seven genes with known expression patterns
(Figure 1c). For example, the pan-neuronal marker Atplb1 gets lower values than specific
markers Ppplrbl (Darpp-32, a MSN marker), Aifl (Ibal, a microglia marker) and Gfap (an
astrocyte marker) since the expression signal is spread out over several classes. For each cell
type, we sorted each gene into ranked groups (i.e., deciles or 40 quantiles). The hypothesis
underlying our approach is that if schizophrenia is associated with a particular cell type,
then a higher amount of heritability should be located in more specific deciles/quantiles. As
an example we plotted the enrichment of heritability for schizophrenia and human height in
the different enrichment-deciles of MSNs, a neuronal cell type (Figure 1d,e).

To identify brain cell types associated with schizophrenia, we used the largest available
genome-wide association (GWA) study of schizophrenia: CLOZUK identified ~140 genome-
wide significant loci in 40,675 cases and 64,643 controls *°. We first compared the CLOZUK
results to GTEx (RNA-seq of macroscopic samples from multiple human tissues) ’ and
confirmed ? that smaller schizophrenia GWA P-values were substantially enriched in brain
and pituitary (Figure S3). We then evaluated the relation of the CLOZUK GWA schizophrenia
results to the 24 Kl Level 1 brain cell types. We applied two statistical methods, based on
different assumptions and algorithms, to evaluate the association of cell type specific
expression and schizophrenia common variant genetic findings. One method assessed
enrichment of the common variant heritability of schizophrenia only in the most cell type-
specific genes. The other method evaluated whether heritability linearly increases along
with cell type expression specificity. We used two separate algorithms— LDSC® and
MAGMA'—to calculate heritability enrichments both of which accounts for confounders
such as gene size and linkage disequilibrium. LDSC was used to test for enrichments in the
most specific decile, while MAGMA was used to test for linear increases. We required that
the two methods give similar results after correcting for multiple comparisons to minimize
the chance of a spurious conclusion.

Both methods strongly highlighted hippocampal CA1 pyramidal cells, striatal medium spiny
neurons, neocortical somatosensory pyramidal cells, and cortical interneurons (Figs. 2a, S4,
S5). Each exceeded a stringent significance level by several orders of magnitude. The results
are not pan-neuronal as multiple other types of neurons did not show enrichment, neither
does the total number of molecules detected per cell type or total number of cells detected
per cell type confound the results (Table $3). Schizophrenia risk was greater in mature cells
than in embryonic or progenitor cells. We extended the analysis to 149 Kl Level 2 cell types
(Figure $6): for hippocampal CA1 pyramidal cells, both major subgroups were significant; for
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striatum, medium spiny neurons expressing Drd2, Drdl and striatal Pvalb-expressing
interneurons were consistently significant; and for neocortical somatosensory pyramidal
cells, cortical layers 2/3, 4, 5, and 6 were significant. The cortical Level 1 interneuron signal
appeared to result from four Level 2 interneuron subcategories (all expressing Reln).

We evaluated whether these results were specific to schizophrenia or generally shared
across human traits. A heat map of Kl Level 1 enrichment P-values for GWA results from
eight studies of human complex traits are depicted in Figure 2b. Seven of these studies
evaluated common variants associations for brain-related diseases or traits with >20,000
cases and 210 genome-wide significant associations. Human height was included as a non-
brain comparator. The results from the earlier PGC GWA study of schizophrenia > were
similar to those from CLOZUK. Although we observed cell types being enriched in other sets
none had the specific signal observed in the two schizophrenia sets. For example, major
depression disorder (MDD) is another major brain disorder and we found that GABAergic
interneurons, embryonic midbrain neurons, and dopaminergic interneurons were the most
enriched cell types.

Using independent scRNA/snRNAseq mouse brain studies, we replicated our results and
found significant enrichment for schizophrenia in hippocampal CA1 pyramidal cells,
neocortical pyramidal cells, cortical interneurons, and medium spiny neurons > (Figs. S7a-
¢). Turning to human data, we evaluated a snRNAseq dataset from mid-temporal cortex
(Allen Institute for Brain Science, unpublished), and we confirmed enrichment in cortical
pyramidal neurons and cortical interneurons (glutamatergic and GABAergic cells, Figure 2c).
The specificity of the temporal cortex signal was confirmed in relation to the same set of
brain-specific GWA studies (Figure 2d). Although oligodendrocyte precursors showed up as
significant in the human data, it is hard to judge if this is related to a loss of neuronal-
specific signal from neurons due to differences in nuclei versus cell sampling (Figure S2). In a
small scRNAseq study of human adult and fetal cortex ?*, adult and fetal cortical neurons
were significantly enriched. These are likely pyramidal cells but the small size of this study
precluded further exploration (data not shown). No significant enrichments were found in
another snRNAseq study of one human *3, perhaps due to a lack of cellular diversity (data
not shown). We are unaware of scRNAseq data from human hippocampus or striatum. In
summary, all major findings from the Kl dataset were replicated in independent mouse
studies, and the cortical pyramidal cell and cortical interneuron findings were also replicated
in independent human studies.

We then evaluated whether gene sets previously implicated in schizophrenia (Table S1)
were specifically expressed in the Kl level 1 brain cell types using EWCE (25). First, we
evaluated pharmacologically-defined molecular targets of antipsychotics (the mainstay of
treatment for schizophrenia), which were also previously associated with schizophrenia 2.
As shown in Figure 3a, antipsychotic medication targets were associated with the same cell
types that we found using the CLOZUK GWA schizophrenia results: neocortical S1 pyramidal
cells, medium spiny neurons from the dorsal striatum, and hippocampal CA1 pyramidal
cells, while cortical interneurons were just above the significance threshold after multiple
testing comparison.

We then investigated whether other gene sets previously associated with schizophrenia
were specifically expressed in schizophrenia relevant cell types (Figure 3b-d). The gene sets
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consistently associated with schizophrenia — intolerant to loss-of-function variation, NMDA
receptor complex, post-synaptic density, RBFOX binding, CELF4 binding, and FMRP
associated genes — all had more specific expression in neocortical S1 and hippocampal CAl
pyramidal cells, medium spiny neurons from the dorsal striatum, and cortical interneurons
(6 out of 7 but not NMDA receptor complex). These gene sets are involved in diverse cellular
functions and, as expected, some gene sets were associated with different Kl Level 1 cell
types. For example, genes intolerant to loss-of-function variation had greater expression in
progenitor cells (dopaminergic neuroblasts, neuroblasts, and embryonic GABAergic
neurons).

To evaluate whether these enrichments could be due to some inherent structure of the
data, we investigated enrichment of gene sets previously associated with glial cells
(Alzheimer’s disease and multiple sclerosis susceptibility genes), associated with Mendelian
disorders with clear cellular origins (leukodystrophy and abnormal vasculature), or had
either weak or strong conservation (low or high dN/dS scores between humans and mice).
None of the enrichment profiles looked similar to that of the schizophrenia-associated lists.

We next assessed how much of the cell type-specific schizophrenia heritability was from
overlapping gene expression between cell types. For instance, the association of cortical
interneurons is weaker than that of MSNs, but both are GABAergic neurons, and
conceivably enrichment in cortical interneurons could be detected due to shared expression
of disease genes. This hypothesis can be tested using a resampling without replacement: if
the interneuron enrichment is driven solely by overlapping genes with MSNs, then an
equivalent level of interneuron association should be obtainable if the scores of genes
within each MSN specificity decile are randomized (Figure $8). We performed this
randomization 10,000 times for each of the Kl level 1 cell types while controlling for all four
of the significantly associated cell types (Figure 4a). This analysis revealed that the
enrichments of MSNs, cortical interneurons, and hippocampal CA1 pyramidal neurons are
independently associated with schizophrenia (due to non-overlapping gene expression). The
association with somatosensory pyramidal neurons was found to be largely from genes also
expressed by hippocampal CA1 pyramidal neurons.

To use a more qualitative measure of whether heritability associated with enriched cell
types was due to shared or distinct sets of genes we plotted the overlap of the top 1,000
genes associated with schizophrenia (via MAGMA) in the 10% most specific genes of each
enriched class (Figure 4b). Approximately half of the schizophrenia-associated genes
enriched in pyramidal cells and medium spiny neurons were shared but those conferring
risk-enrichment in interneurons were to a larger extent exclusive. We then evaluated
enrichment of selected gene sets (Rbfox binding genes, genes involved in synapse function,
dendritically transported genes, and genes involved in dopaminergic signaling;
Supplementary Methods) in the different areas of Figure 4b using a hypergeometric test.
The most associated Rbfox genes were enriched in CA1 pyramidal cells, genes related to
dopamine signaling were enriched in medium spiny neurons, and synaptic genes associated
with schizophrenia were shared between CA1 and S1 pyramidal cells but largely separate in
cortical interneurons and medium spiny neurons (Figure 4c). These findings show that each
larger neuronal class express a non-overlapping set of risk genes even within the same
functional set (e.g. synapse).
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Our results provide a parsimonious explanation: the primary genetic results pointed at a
limited set of brain cells, and the gene sets associated with schizophrenia (including
antipsychotic medication targets) pointed at the same cells. The strong enrichment found in
the mouse data was at least partly confirmed in the limited human data sets available. Thus,
our results suggest that these discrete cell types are central to the etiology of schizophrenia,
and provide an empirical rationale for deeper investigation of these cell types in regard to
the basis of schizophrenia. These results can be used to guide in vivo studies and in vitro
modeling (e.g., patient-derived iPSCs) and provide a basis for analyzing how different risk
genes interact to produce the symptoms of schizophrenia. This approach can be generalized
to understand other genetically complex brain disorders.

Acknowledgements

JHL was funded by the Swedish Research Council (Vetenskapsradet, award 2014-3863),
StratNeuro, the Wellcome Trust (108726/Z/15/Z), and the Swedish Brain Foundation
(Hjarnfonden). PFS gratefully acknowledges support from the Swedish Research Council
(Vetenskapsradet, award D0886501). NS was supported by the Wellcome Trust
(108726/Z/15/2). JB was supported by the Swiss National Science Foundation. The PGC has
received major funding from the US National Institute of Mental Health (U01 MH109528
and U0O1 MH109532).

Conflicts of Interest

PF Sullivan reports the following potentially competing financial interests: Element
Genomics (Scientific Advisory Board member, stock options), Lundbeck (advisory
committee), Pfizer (Scientific Advisory Board member), and Roche (grant recipient, speaker
reimbursement).

References

1. Sullivan, P.F., Daly, M.J. & O'Donovan, M. Genetic architectures of psychiatric disorders: the
emerging picture and its implications. Nature Reviews Genetics 13, 537-51 (2012).

2. Purcell, S.M. et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature
506, 185-90 (2014).

3. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights
from 108 schizophrenia-associated genetic loci. Nature 511, 421-7 (2014).

4, Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. Nature
506, 179-84 (2014).

5. Genovese, G. et al. Increased burden of ultra-rare protein-altering variants among 4,877
individuals with schizophrenia. Nature Neuroscience (2016).

6. Singh, T. et al. Rare loss-of-function variants in SETD1A are associated with schizophrenia
and developmental disorders. Nat Neurosci 19, 571-7 (2016).

7. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4.
Nature 530, 177-83 (2016).

8. CNV Working Group of the Psychiatric Genomics Consortium & Schizophrenia Working
Groups of the Psychiatric Genomics Consortium. Contribution of copy number variants to
schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet 49, 27-35 (2016).

Page 6 of 41


https://doi.org/10.1101/145466
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/145466; this version posted June 2, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

9. Finucane, H.K. et al. Partitioning heritability by functional category using GWAS summary
statistics. Nature Genetics 47, 1228-35 (2015).

10. Exome Aggregation Consortium et al. Analysis of protein-coding genetic variation in 60,706
humans. Nature 536, 285-91 (2016).

11. Lips, E.S. et al. Functional gene group analysis identifies synaptic gene groups as risk factor
for schizophrenia. Molecular psychiatry 17, 996-1006 (2012).

12. Darnell, J.C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function
and autism. Cell 146, 247-61 (2011).

13. Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for
schizophrenia. Nature Neuroscience 19, 1442-1453 (2016).

14. Pers, T.H. et al. Comprehensive analysis of schizophrenia-associated loci highlights ion
channel pathways and biologically plausible candidate causal genes. Hum Mol Genet 25,
1247-54 (2016).

15. Cajigas, |.J. et al. The local transcriptome in the synaptic neuropil revealed by deep
sequencing and high-resolution imaging. Neuron 74, 453-66 (2012).

16. Pardifias, A.F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes
and maintained by background selection.

http://biorxiv.org/content/early/2016/08/09/068593.abstract (Submitted).

17. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis:
multitissue gene regulation in humans. Science 348, 648-60 (2015).

18. de Leeuw, C.A., Mooij, J.M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set
analysis of GWAS data. PLoS Comput Biol 11, €1004219 (2015).

19. Gokce, O. et al. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-
Seq. Cell Rep 16, 1126-37 (2016).

20. Habib, N. et al. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn
neurons. Science 353, 925-8 (2016).

21. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat
Neurosci 19, 335-46 (2016).

22. Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level.
Proc Natl Acad Sci U S A 112, 7285-90 (2015).

23. Lake, B.B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing
of the human brain. Science 352, 1586-90 (2016).

24, Gaspar, H.A. & Breen, G. Pathways analyses of schizophrenia GWAS focusing on known and
novel drug targets. (Submitted).

25. Brawand, D. et al. The evolution of gene expression levels in mammalian organs. Nature 478,
343-8 (2011).

26. La Manno, G. et al. Molecular Diversity of Midbrain Development in Mouse, Human, and
Stem Cells. Cell 167, 566-580 e19 (2016).

27. Zeng, H. et al. Large-scale cellular-resolution gene profiling in human neocortex reveals
species-specific molecular signatures. Cell 149, 483-96 (2012).

28. Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-
seq. Science 347, 1138-42 (2015).

Page 7 of 41


https://doi.org/10.1101/145466
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/145466; this version posted June 2, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

29. Kryuchkova-Mostacci, N. & Robinson-Rechavi, M. A benchmark of gene expression tissue-
specificity metrics. Brief Bioinform (2016).

30. Genomes Project, C. et al. A global reference for human genetic variation. Nature 526, 68-74
(2015).
31. de Leeuw, C.A., Neale, B.M., Heskes, T. & Posthuma, D. The statistical properties of gene-set

analysis. Nat Rev Genet (2016).

32. Brown, M.B. A Method for Combining Non-Independent, One-Sided Tests of Significance.
Biometrics 31, 987-992 (1975).

33. Nicolae, D.L. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance
discovery from GWAS. PLoS genetics 6, e1000888 (2010).

34, Pathway Analysis Subgroup of the Psychiatric Genomics Consortium. Psychiatric genome-
wide association study analyses implicate neuronal, immune and histone pathways. Nat
Neurosci 18, 199-209 (2015).

35. Skene, N.G. & Grant, S.G. Identification of Vulnerable Cell Types in Major Brain Disorders
Using Single Cell Transcriptomes and Expression Weighted Cell Type Enrichment. Front
Neurosci 10, 16 (2016).

36. Lambert, J.C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci
for Alzheimer's disease. Nat Genet 45, 1452-8 (2013).

37. Okbay, A. et al. Genome-wide association study identifies 74 loci associated with
educational attainment. Nature 533, 539-42 (2016).

38. Sniekers, S. et al. Genome-wide association meta-analysis of 78,308 individuals identifies
new loci and genes influencing human intelligence. Nat Genet (2017).

39. Nalls, M.A. et al. Large-scale meta-analysis of genome-wide association data identifies six
new risk loci for Parkinson's disease. Nature genetics 46, 989-993 (2014).

40. Wood, A.R. et al. Defining the role of common variation in the genomic and biological
architecture of adult human height. Nat Genet 46, 1173-86 (2014).

41. Wagnon, J.L. et al. CELF4 regulates translation and local abundance of a vast set of mRNAs,
including genes associated with regulation of synaptic function. PLoS Genet 8, 1003067
(2012).

42, Collins, M.O. et al. Molecular characterization and comparison of the components and
multiprotein complexes in the postsynaptic proteome. J Neurochem 97 Suppl 1, 16-23
(2006).

43, Bayes, A. et al. Characterization of the proteome, diseases and evolution of the human
postsynaptic density. Nat Neurosci 14, 19-21 (2011).

44, Fernandez, E. et al. Targeted tandem affinity purification of PSD-95 recovers core
postsynaptic complexes and schizophrenia susceptibility proteins. Mol Syst Biol 5, 269
(2009).

45, Weyn-Vanhentenryck, S.M. et al. HITS-CLIP and integrative modeling define the Rbfox
splicing-regulatory network linked to brain development and autism. Cell Rep 6, 1139-52

(2014).

46. Bertram, L., McQueen, M.B., Mullin, K., Blacker, D. & Tanzi, R.E. Systematic meta-analyses of
Alzheimer disease genetic association studies: the AlzGene database. Nature genetics 39, 17-
23 (2007).

Page 8 of 41


https://doi.org/10.1101/145466
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/145466; this version posted June 2, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

47. Lambert, J.-C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci
for Alzheimer's disease. Nature genetics 45, 1452-1458 (2013).

48. Yang, H., Robinson, P.N. & Wang, K. Phenolyzer: phenotype-based prioritization of candidate
genes for human diseases. Nature methods 12, 841-843 (2015).

49, Boyken, J. et al. Molecular profiling of synaptic vesicle docking sites reveals novel proteins
but few differences between glutamatergic and GABAergic synapses. Neuron 78, 285-97
(2013).

50. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831-46 (2006).

51. Romanov, R.A. et al. Molecular interrogation of hypothalamic organization reveals distinct
dopamine neuronal subtypes. Nat Neurosci (2016).

52. Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central
nervous system. Science 352, 1326-9 (2016).

Page 9 of 41


https://doi.org/10.1101/145466
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/145466; this version posted June 2, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

160 . 20 1 Medium Spiny
% Kl Neuron
5 120 . 15 o
0
= Darmanis >
'O - —
(2]
2 80 c 101
7] ) )
N Tasic o
— °
o 40 . 5
E_, ° Hablb‘Lake
o] * ®Gokce @ AIBS 01
0o 5000 10000 0.01 0.10 1.00
No. sequenced cells Specificity of Expression
“©
o
=
%
S 0.751 Gene
%) .
= B Aif1
Z M Atp1b1
= 0.501 B Drd2
%é M Gad1
Gfap
w 4
0.25 Pppirib
I l ] M Pvab
0.004--"- LY I I ]l L - n L _.J -
< SN .
FESSSFTadadessebssoedfs
S 5555988~ F8s5s588e858¢
NG 5$9$°’§§Q9$’§’0? §%§§§§Q§\S§Q§§
> NN > § LESNL L oF2
S8 GLEEIIES & $TET FELS
LS CF TOLS g o TE°E
5 O S oS S s X
< IS 5 S §
G £ S S S
& 8 kN
Q _§Z Oév
& z
Schizophrenia Height
= 2' — 2-
[ [
S S —Cl)_. - Q0
E E T T
5 5 Lol
— —
c 11 c 11 I
(5 5] Q
0 (In Medium Spiny Neurons) 0 (In Medium Spiny Neurons)
XN12345678910 XN71 234567839510
Specificity Decile Specificity Decile

Figure 1. Specificity metric calculated from single cell transcriptome sequencing data can be
used to test for increased burden of schizophrenia heritability in brain cell types.

(A) Comparison of Level 2 cell type categories and number of cells with snRNAseq or
scRNAseq from adult brain tissue (excluding retina). Circles (plum) are mouse studies and
diamonds (blue) are human studies. See Table S2 for citations. AIBS=Allen Institute for Brain
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Science. Kl=Karolinska Institutet. (B) Histogram of specificity metric (Smsnx) for medium
spiny neurons from the Kl superset level 1. Colored regions indicate deciles (the brown
region contains the genes most specific to MSNs). Specificity value for dopamine receptor
D2 (Drd2, Swsn,k,prd2=0.17) is indicated by the arrow. (C) Specificity values in the Kl level 1
dataset for a range of known cell type markers. (D) Enrichment of schizophrenia heritability
in each of the specificity deciles for medium spiny neurons (calculated using LDSC). Color of
dots corresponds to regions of the specificity matrix in B. Error bars indicate the 95%
confidence intervals. The light blue dot (marked 'X') represents all SNPs which map onto
named transcripts which are not MGI annotated genes or which map onto a gene which
does not have a 1:1 mouse:human homolog. The dark blue dot (marked 'N') represents all
SNPs which map onto genes not expressed in MSNs. Blue line slows the linear regression
slope fitted to the enrichment values. (E) Enrichment of height heritability in each of the
specificity deciles for MSNs.
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Figure 2. Evaluation of enrichment of common variant CLOZUK schizophrenia GWA results
in brain scRNAseq or snRNAseq datasets from adult mouse and human.

(A) KI Level 1 brain cell types. Both methods show enrichment for pyramidal neurons
(somatosensory cortex and hippocampus CA1), striatal medium spiny neurons, and cortical
interneurons. The black line is the Bonferroni significance threshold. (B) Heat map of
enrichment probabilities of diverse human GWA with Kl Level 1 mouse brain cell types using
MAGMA. Bonferroni significant results are marked with red borders. The CLOZUK results do
not generalize indiscriminately across human diseases/traits. Unlike schizophrenia, major
depressive disorder (MDD) is primarily enriched in cortical interneurons and embryonic
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midbrain neurons. Total number of cases and controls used in the GWAS are shown in the
top bar plot where red dots mark the number of genome-wide significant loci identified. (C)
Human mid-temporal cortex Level 1 brain cell types from snRNAseq. Cortical pyramidal
neurons and cortical interneurons show significant enrichment. Oligodendrocyte precursors
also show enrichment that was not observed in the Kl Level 1 data. (D) Heat map of
enrichment of diverse human GWA with human mid-temporal cortex Level 1 brain cell types
using MAGMA. The CLOZUK results do not generalize across human diseases. MDD again
shows significant enrichments in cortical interneurons. Common variant genetic associations
for Alzheimer’s disease were enriched in microglia.
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Figure 3. Cell class enrichment of schizophrenia-associated gene sets (Table S1) using EWCE.

(A) Antipsychotic medication targets. (B-D) Gene sets previously shown to be enriched for
schizophrenia risk genes (B) Genes intolerant to loss-of-function variation. (C) Gene sets
defined by known DNA or RNA interactions. (D) Synaptic gene sets. (E) Gene sets unrelated
to schizophrenia: Alzheimer’s disease susceptibility genes; genes associated with Human
Phenotype Ontology terms for leukodystrophy; multiple sclerosis susceptibility genes and
abnormal vasculature; and the top 500 genes with lowest or highest dN/dS ratios between
human and mice (i.e., non-synonymous to synonymous exon changes, a measure of
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conservation). Nearly all KI Level 1 cell types associated with schizophrenia (medium spiny
neurons, pyramidal CA1, pyramidal SS, and cortical interneurons) show enrichment for gene
sets in A-D. The gene sets shown in E show distinct cell type enrichments which largely
correspond to prior expectations. Asterisks denote Bonferroni corrected p-value <0.05.
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Figure 4. CA1 pyramidal neurons, medium spiny neurons, and cortical Interneurons are
independently associated with schizophrenia and distinct molecular pathways contribute to
each cell type.

(A) Conditional enrichment analysis accounting for correlated gene expression between cell
types. The leftmost column show baseline cell type enrichment probabilities values
Pcelitypev,baseline fOr schizophrenia calculated by directly fitting a linear model to specificity
deciles against MAGMA gene enrichment z-scores (where cell type Y denotes the cell type
labelled on the y-axis). The central four columns show Pceiitypey,celitypex , the enrichment
probability of cell type Y after accounting for correlated expression in cell type (calculated
using a resampling method described in the methods). Values of l0g(Pcelitypey,celitypex)
approaching zero indicate that after accounting for expression of cell type X, there is no
enrichment in cell type Y. The red box highlights that after accounting for expression in CA1l
pyramidal neurons there is no longer any enrichment in somatosensory pyramidal neurons;
note that the converse is not true. The bar plot on the right shows the minimum value of
Pcelitypev,celitypex €XCluding self-self-comparisons; the vertical line marks p=0.05. (B) Overlap of
genes in the schizophrenia-associated cell types. Venn-diagram of the top 1,000
schizophrenia-associated genes from the highest enrichment-deciles in the four Level 1 cell
types. (C) P-values for enrichment of genes in the Figure 4b Venn diagram regions. There
was enrichment for Rbfox in CA1 pyramidal cells and dopamine signaling in medium spiny
neurons along with shared synaptic genes between pyramidal cells but separate for
GABAergic cells. Areas with striped shading indicates region with gene number <10.
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Materials and Methods
Figures S1-S9
Tables S1-S4

References (25-61)

Online Methods
Rationale

The overall goal of this analysis was to attempt to connect human genomic findings to
specific brain cell types defined by their gene expression profiles: to what specific brain cell
types do the common variant genetic findings for schizophrenia best “fit”? Multiple studies
have approached this issue ****, but using gene expression based on aggregates of millions
of cells. We also evaluated whether gene sets previously implicated in schizophrenia
mapped to similar or different brain cell types. We focused on the Kl scRNAseq data from
mouse (Figure 1 and Table S2). We did this because:

a) These comprise the largest dataset currently available generated using identical
procedures. As shown in Figure 1, the total cells with scRNAseq (9,970) and Level 2
cell types (149) exceed all other studies.

b) The mouse data include more brain regions than in human. These regions include a
better sampling of those believed to be important in schizophrenia (e.g., currently
no data from human striatum or adult dopaminergic neurons).

c) Due to the use of unique molecular identifiers in the Kl data, the scRNAseq data
reflect absolute counts, and are directly comparable across experiments (particularly
for our goal of evaluating enrichment).

d) The mouse data appear to have better signal quality. This could be due to better
experimental control or the ability to isolate whole cells (excluding distal neurites) of
good quality from mouse but only nuclei or lower quality cells from adult humans.
For example, sampling 1,500-3,000 cells in cortical mouse data sets (KI and Tasic et
al. %) allowed identification of 24 and 42 cortical neuronal subtypes. In contrast,
sequencing over 3,000 human neuronal nuclei ** or 466 whole neurons ?* allowed for
the identification of only 16 and 7 subtypes. More types of inhibitory interneurons
(16-23) have been identified in mouse but only 8 in human despite equal or greater
sequencing depth but future work may improve the ability to discriminate cell types
using single nuclei RNA-Seq data.

e) Use of laboratory mice allow far greater experimental control of impactful
perimortem and postmortem events. All mice are healthy without systemic illnesses
and medication-free. All mice can be euthanized in the same way, and time from
death to tissue processing is standardized and measured in minutes rather than
hours. Causes of death in human are highly variable, and perimortem events can
alter brain gene expression (e.g., systemic disease or prolonged hypoxia). Although
human brain tissue can be obtained during certain neurosurgical procedures (e.g.,
resection of a seizure focus in refractory epilepsy), the individuals undergoing these
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procedures are atypical and subject to the effects of chronic brain disease and
medication.

Thus, from a practical perspective, more cell types have been identified in mouse, and the Ki
data comprise over half of currently available brain scRNAseq data. Key findings in the Kl
dataset were verified in other human and mouse datasets. We also applied independent
statistical methods predicated on different assumptions and algorithms to evaluate the
relation of brain cell types to GWA results for schizophrenia.

Limitations

Nonetheless, despite our use of multiple statistical methods and efforts to identify and
resolve any spurious explanations for our findings, our work has to be considered in light of
inevitable limitations. First, although we used the largest available schizophrenia GWA
dataset, we still have an incomplete portrait of the genetic architecture of schizophrenia.
This is an active area, and more informative results are sure to emerge in the next few
years. Second, although the Kl scRNAseq data cover a broad range of brain regions thought
to be relevant to the neurobiology of schizophrenia, extensive coverage of cortical and
striatal development is lacking at present (gestation, early postnatal, or adolescence).

Third, we focus principally on mouse scRNAseq data. Our reasons for doing so are explained
above. A key part of our approach is replication of the main findings in human datasets.
However, we would be remiss not to consider the comparability of mouse and human. Mice
are widely used for modeling brain diseases. There are relatively high degrees of mouse-
human conservation in genes expressed in brain. The most extensive study compared RNA-
seq data from six organs (cortex, cerebellum, heart, kidney, liver, and testis) across ten
species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum,
platypus and chicken) ?°. Using principal components analysis, the largest amount of
variation (PCs 1 and 2) explained differences between organs rather than between species.
Gene expression in brain (including several key gene expression modules) was more
conserved between species than any of the other tissues. These observations were broadly
replicated using scRNAseq in ventral midbrain *°. Furthermore, 75% of genes show similar
laminar patterning in mouse and human cortex ’.

Fourth, whatever the general similarities, there are certainly differences between mouse
and human brain %, and there are even cortical cells present in human but not mouse (e.g.,
spindle or von Economo neurons). We therefore evaluated mouse-human gene
conservation. Using empirical measures of gene conservation (Ensembl, URLs), we
determined that the mouse genes in the Kl Level 1 and Level 2 gene expression dataset that
we analyzed were 89% identical (median, interquartile range 80-95%) to human 1:1
homologues. For these genes, the ratio of non-synonymous to synonymous amino acid
changes (dN/dS) was 0.094 (median, interquartile range 0.045-0.173): mutations in these
genes are thus subject to strong negative selection (dN/dS = 1 is consistent with neutrality).
Pathway analysis of the 400 genes with the largest dN/dS values revealed enrichments in
genes involved in defense responses, inflammation, cytokines, and immunoglobulin
production. The 400 genes with extremely low dN/dS ratios were involved in neuron
differentiation, RNA splicing, and mRNA processing.
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In conclusion, for most brain cell types, use of KI mouse scRNAseq data was defensible and
reasonable (particularly given verification in human transcriptomic data). The major caution
is with respect to cells with prominent immune function (e.g., microglia). (See also the
section on mouse-human gene mapping below.)

We can implicate a particular cell type (i.e., present consistent positive evidence) but it is
premature to exclude cell types for which we do not have data, or those with dissimilar
function or under selection pressure between mouse and human.

Single-cell transcriptome data

Table S2 shows the single nuclei or scRNAseq data from adult mouse or human brain. These
include published and unpublished data (using the same protocols as in peer-reviewed
papers). To the best of our knowledge, these comprise all or nearly all of the available adult
brain single nuclei or scRNAseq data. Most of the available data are from mouse, and a large
fraction of the human data are from one person 2.

We focused on a superset of brain scRNAseq data from Kl generated using identical
methods from the same labs with the use of unique molecular identifiers that allow for
direct comparison of transcription data across regions (see above for full rationale). The Ki
mouse superset of 9,970 cells and 149 Level 2 cell types is more extensive than any other
single nuclei or scRNAseq dataset now available, and includes most brain regions thought to
be salient to schizophrenia. The papers contain full method details. Briefly, the KI scRNAseq
data were generated using the same methods (Fluidigm C1 with I[llumina 50 bp single end
sequencing) with the use of unique molecular identifiers to enable absolute molecular
counts. In the first paper describing the method it was estimated that an average of 1.2
million mapped reads per cells was sequenced (28). Level 1 and 2 clustering was done using
the BACKSPIN algorithm 8. All cells lacking annotations were excluded. For non-neuronal
populations, except cells from oligodendrocyte lineage and VLMCs, we only included cells
from Zeisel et al 2015 in the Kl data set. The level 2 CA1 pyramidal cell contain a small
number of cells from CA2 and Subiculum resulting from dissection inaccuracies, these are
represented as separate level 2 classes. The resulting data have been shown to be
insensitive to linear variation in total reads per cell. If a gene was detected in one dataset
and not in another, it was considered to have zero reads in all cells where it had not been
detected.

To confirm that no batch effects exist across Kl regional subdatasets that may influence the
merged results, we plotted three cell types using tSNE which were expected to show little
real regional variation: endothelial cells, vascular smooth muscle cells and microglia (Figure
59). The tSNE plots were generated in R using the Rtsne and Scater packages using 500 of
the most variable features. Only the embryonic midbrain cells clustered separately, as was
expected due to the difference between the embryonic and adult brain.

We include unpublished data generated by the Hjerling-Leffler and Linnarsson labs at Kl
using the same methods as in Zeisel et al. 2%, Cells were isolated from dorsolateral striatum
from p21-p30 transgenic mice, the same age span as in Zeisel et al. ?%. Coverage of rare
interneuron populations was enhanced by FACS sorting cells from either 5HT3a-EGFP or a
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Lhx6cre::-TdTomato line. The cortical parvalbuminergic cells and striatal neurons were
captured and prepared for sequencing as described in Zeisel et al. %%,

The largest human dataset is an unpublished data set from the Allen Institute for Brain
Science which consisted of 4401 cells from middle temporal gyrus of 3 post-mortem brains
from healthy, adult subjects. Nuclei were dissociated from cortical tissue and FACS isolated
based on NeuN staining, resulting in approximately 90% NeuN+ and 10% NeuN- nuclei.
Single nucleus cDNA libraries were generated using SMARTerV4 and Nextera XT and
sequenced to a depth of approximately 2 million reads per sample. Reads were aligned with
Bowtie and gene expression quantified with RSEM plus intronic reads and normalized to
counts per million. Clustering was performed with iterative PCA and tSNE with cluster
robustness assessed with 100 bootstrap replicates. Level 1 clusters were characterized
based on expression of known marker genes and included two broad classes of neurons —
GABAergic interneurons and glutamatergic projection neurons — and 4 non-neuronal types:
astrocytes, oligodendrocyte precursors, mature oligodendrocytes, and microglia.

Mouse-to-human gene mapping

Because most of the scRNAseq data were from mouse brain and the schizophrenia genomic
results are from human, it was necessary to map 1:1 homologs between M. musculus and H.
sapiens. To accomplish this, used a best-practice approach in consultation with a senior
mouse geneticist (UNC Prof Fernando Pardo-Manuel de Villena de L’Epine, personal
communication). We used the expert curated human-mouse homolog list (Mouse Genome
Informatics, Jackson Laboratory, URLs, version of 11/22/2016). Only genes with a high-
confidence, 1:1 mapping were retained. A large fraction of non-matches are reasonable
given evolutionary differences between human and mouse (e.g., the distinctiveness of
olfactory or volmeronasal receptor genes given the greater importance of smell in mouse).
Nonetheless, we evaluated the quality and coherence of the mapping.

e The mouse brain cell expression levels for the Kl Level 1 cell types were similar for
mouse genes with and without a 1:1 human homologue. This is inconsistent with a
strong bias due to the success/failure of identifying a human homologue.

e A high fraction (93%) of the KI genes detected in mouse brain samples that mapped
to a human gene were expressed in human brain (CommonMind DLPFC RNA-seq) or
27 samples with RNA-seq from the Sullivan lab (unpublished, DLPFC from 9
schizophrenia cases and 9 controls plus 9 fetal frontal cortex samples). The ones that
did not (7%) were expressed at considerably lower levels in mouse brain or in cell
types not prevalent in cortex.

e Of genes with evidence of expression in human brain (via frontal cortex RNA-seq as
noted above), human homologues of KI mouse genes accounted for 93.2% of
intellectual disability genes, 93.7% of developmental delay genes, 93.8% of genes
with a CHD8 binding site, 94.4% of post-synaptic genes, 95.0% of proteins involved in
the ciliary proteome, 95.1% of genes intolerant to loss-of-function variation (ExAC
pLl > 0.9), 95.6% of pre-synaptic genes, and 96.4% of FMRP interactors.

We evaluated the mapping carefully and the results above suggest the coherence of the
mouse-human mapping. All key findings from the KI mouse scRNAseq data were evaluated
in other mouse and human brain scRNAseq datasets.
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Calculation of cell type expression proportion

A key metric used for our cell type analyses is the proportion of expression for a given gene.
This metric is calculated separately for each single cell dataset (although only one specificity
measure is used for the merged Kl superset). This is a measure of cell type specificity scaled
so that a value of 1 implies that the gene is completely specific to a cell type and a value of 0
implies the gene is not expressed in that cell type. We denote this specificity metric as s,
for gene g and cell type c. Values of s, . were calculated for the brain scRNAseq datasets in

Table S2.

Each dataset contains scRNAseq results from w cells associated with k cell types. Each of the
k cell types is associated with a numerical index from the set {1,..,k}. The cell type
annotations for cell i are stored using a numerical index in L, such that [, ,,5=5 indicates that
the 1005 cell is of the 5 cell type. We denote N, as the number of cells from the cell-type
indexed by c. The expression proportion for gene g and cell type ¢ (where 7, ; is the
expression of gene g in cell i) is given by:

rg,i'li =C
0, li *C

_ VL F(g,i,c)/N; . _ {
S9.c = T (W, Flgir)/Ny) F(g.i,c)

This metric for cell specificity is closely related to other measures *. For instance, the
maximum value of s per gene yields similar results to t such that s, > 0.5 is equivalentto t
>0.94.

Thresholding of low expressed transcripts

Because s, . is independent of the overall expression level of a gene, it is desirable to
exclude genes with very low or sporadic gene expression levels, as a small number of reads
in one cell can falsely make that gene appear to be a highly specific cell marker. Direct
thresholding of low expressed genes is not ideal for performing this as thresholds need to
be set individually for each dataset, and some individual cells can show exceptionally and
anomalously high expression of the sporadically expressed gene. We reasoned that all the
genes we want to include in the study should be differentially expressed in at least one
Level 2 cell type included in the study. We thus excluded sporadically expressed genes via
ANOVA with the Level 2 cell type annotations as groups, and excluding all genes with P >
0.00001. Gene filtering was performed separately for each single cell dataset; importantly
though, the Kl dataset was filtered as a merged superset. A consequence of this (and of
differences in sample preparation and sequencing) is that different genes are used for
example in the analysis of the Kl superset than were used for the Habib et al (Mouse
Hippocampus Div-Seq) dataset. For datasets where level 2 cell type annotations were not
available (e.g. the Allan Brain Institute Human Cortex dataset) we used the same approach
but with level 1 cell type annotations instead.

LD Score Regression (LDSC) and partitioning heritability

To partition heritability using LDSC (URLs) °, it is necessary to pass LDSC annotation files (one
per chromosome) with a row per SNP and a column for each sub-annotation (1=a SNP is
part of that sub-annotation). To map SNPs to genes, we used dbSNP annotations (URLs,
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build 147 and hg19/NCBI Build 37 coordinates). All SNPs not annotated in this file were
given a value of 0 in all sub-annotations. Template annotation files obtained from the LDSC
Github repository were used as the basis for all cell type and gene set annotations
(“cell_type_group.1*”). Only SNPs present in the template files were used. If an annotation
had no SNPs, then 50 random SNPs from the same chromosome were selected as part of
the annotation (if no SNPs are selected then the software fails to calculate heritability).

Annotation files were created for each cell type for which we applied partitioned LDSC.
Twelve sub-annotations were created for each cell type. The first represented all SNPs
which map onto named regions which are not MGI annotated genes or which map onto a
gene which does not have a 1:1 mouse:human homolog. The second contained all SNPs
which map onto genes not expressed in a cell type. The other 10 sub-annotations are
associated with genes with increasing levels of expression specificity for that cell type. To
assign these, the deciles of s, . were calculated over all values of g (separately for each
value of c) to give ten equal length sets of genes. These are then mapped to SNPs as
described above. To partition heritability amongst the gene sets (not the cell types), a single
set of annotation files was created with each of the gene sets used as a sub-annotation
column.

LDSC was then run using associated data files from phase 3 of the 1000 Genomes Project *°.
We computed LD scores for cell type annotations using a 1 cM window (--ld-wind-cm 1). As
recommended (LDSC Github Wiki, URLs), we restricted the analysis to using Hapmap3 SNPs,
and, as in the original report °, these analyses excluded the major histocompatibility region
due to its unusual gene density (second highest in the human genome) and exceptionally
high LD (highest in the genome). The LDSC “munge_sumstats.py” script was used to prepare
the summary statistics files. The heritability is then partitioned to each sub-annotation. We
used LD weights calculated for HapMap3 SNPs, excluding the MHC region, for the regression
weights available from the Github page (files in the ‘weights_hm3_no_hla’ folder).

For the LD score files used as independent variables in LD Score regression we used the full
baseline model ° and the annotations described above. We used the ‘--overlap-annot’
argument and the minor allele frequency files (‘1000G_Phase3_frq’ folder via the ‘--frgfile-
chr’ argument, URLs).

Partitioned LDSC computes the proportion of heritability associated with each annotation
column while taking into account all other annotations. Based on the proportion of total
SNPs in an annotation, LDSC calculates an enrichment score and an associated enrichment
P-value (one-tailed as we were only interested in annotations showing enrichments of
heritability). All figures showing partitioned LDSC results show P-values associated with the
enrichment of the most specific decile for each cell type.

Cell type identification using MAGMA

We used MAGMA (v1.04) ®, a leading program for gene set analysis >, to evaluate the
association of gene-level schizophrenia association statistics with cell-type specific
expression under the hypothesis that, in relevant cell types, genes with greater cell type
specificity should be more associated with schizophrenia.
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Gene level association statistics were obtained using MAGMA (window size 10 kb upstream
and 1.5 kb downstream of each gene — see below for discussion window size) using an
approach based on Brown’s method *? (model: snpwise-unweighted). This approach allows
to combine P-values in the specified windows surrounding each gene into a gene-level
pvalue while accounting for LD (computed using the European panel of 1000 Genomes
Project Phase 3 ).

The tissue specific expression metric for each gene in each cell type was obtained by
dividing the gene expression level in a particular cell type by the sum of the expression of
the gene in all cell types (see s; ., defined above). The distributions of s; . were complex
(point mass at zero expression, substantial right-skewing).

For each cell type, we transformed S into 41 bins (O=not expressed, 1=below 2.5
percentile, 2=2.5-5" percentile, ..., 40=above 97.5™" percentile), so that each cell type would
be comparable.

MAGMA was then used to test for a positive association (one-sided test) between the
binned fractions in each cell type and the gene-level associations (option --gene-covar
onesided). For a given mouse or human brain cell type, this tested whether increasing tissue
specificity of gene expression is associated with increasing common-variant genetic findings
for schizophrenia using information from all genes. By default, the linear regression
performed by MAGMA is conditioned on the following covariates: gene size, log(gene size),
gene density (representing the relative level of LD between SNPs in that gene) and log(gene
density). The model also takes into account gene-gene correlations.

In regard to choice of window size/bin boundaries, MAGMA by default combines P-values of
SNPs located within gene boundaries (0 kb). We decided to extend the default window size
as a large fraction of trait-associated SNPs are located just outside genes in regions likely to
regulate gene expression >**. One of the authors of MAGMA (Christiaan de Leeuw) advised
us to expand the window size by a limited amount in order to keep the ability to distinguish
the genetic contribution of genes located in close proximity. Therefore, we set expanded
gene boundaries to 10 kb upstream—1.5 kb downstream. We evaluated the effect of
different choices of bin size including 35 kb upstream-10 kb downstream (as often used by
the PGC **), 150 kb upstream—10 kb downstream, and 150 kb upstream—150 kb downstream
(GTEx '” Supplementary Figure 9 from). The results were not substantially altered by
window size as the ranking of cell types (Kl level 1) were very similar for these different
window sizes; if anything ours was a slightly conservative choice.

Enrichment analyses of gene sets and antipsychotic drug targets

Expression Weighted Cell type Enrichment (EWCE, Bioconductor, URLs) *> was used to test
for cell types which show enriched expression of genes associated with particular
schizophrenia associated gene sets. These analyses used the same specificity (S) values for
the Kl Level 1 data that were used for the MAGMA and LDSC analyses. EWCE was run with
10,000 bootstrap samples. Enrichment P-values were corrected for multiple testing using
the Bonferroni method calculated over all cell types and gene lists tested. EWCE returns a z-
score assessing standard deviations from the mean. Values < 0 (a depletion of expression)
were recoded to zero.
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Evaluation of genomic biases

The algorithms used by LDSC and MAGMA both account for the non-independence
introduced by linkage disequilibrium (LD), or the tendency for genomic findings to “cluster”
due to strong intercorrelations. LD block size (discrete regions of high correlations between
nearby genetic markers) average 15-20 kb in samples of European ancestry, but there are
nearly 100 genomic regions with high LD extending over 1 mb (the extended MHC region on
human chromosome 6 is the largest and has very high LD over 8 mb). Gene size is an
additional consideration for MAGMA (accounting for gene size is a component of the
algorithm), particularly as brain-expressed genes are considerably larger than genes not
expressed in brain (mean of 80.7 kb vs 31.2 kb). The algorithms used by LDSC and MAGMA
have been well-tested, and are widely used. However, it is conceivable that certain edge
cases could defeat algorithms that work well for the vast majority of scenarios. An example
might be if a large fraction of the genes that influence a brain cell type were located in a
region of very high LD. First, brain-expressed genes were slightly more likely to be in a large
LD block (299th percentile in size across the genome), 12.4% vs 10.2%. In discussion with the
developers of LDSC and MAGMA, this should not yield an insuperable bias. Second, by
counting the numbers of genes and brain-expressed genes per mb, we found that brain-
expressed genes in the human genome were reasonably evenly scattered across the
genome (R? 0.85), and only 10 of 2,534 1-mb intervals were outliers. Most of these were
gene clusters with fewer than expected brain-expressed genes (e.g., a late cornified
envelope gene cluster on chr1:152-153 mb, an olfactory gene cluster on chr1:248-249 mb,
and a keratin gene cluster on chr17:39-40 mb). Third, in a similar manner, we evaluated the
locations of the human 1:1 mapped genes influential to the Kl Level 1 classifications and
found these to be relatively evenly scattered in the genome. Thus, these potential genomic
biases did not appear to present difficulties for our key analyses (that used two independent
methods in any event).

Schizophrenia common variant association results

The schizophrenia GWA results were from the CLOZUK and PGC studies **°. CLOZUK is the
largest currently obtainable GWA for schizophrenia (40,675 cases and 64,643 controls), and
the authors identified ~150 genome-wide significant loci. It includes the schizophrenia
samples from the earlier PGC paper. The CLOZUK manuscript has been submitted, reviewed,
revised, and resubmitted, and a preprint is available in biorXiv (DOl 10.1101/068593). For
selected analyses, we also included the PGC schizophrenia results from the Nature 2014
report, obtained from the PGC download site (URLs). This paper included 36,989 cases and
113,075 controls, and identified 108 loci associated with schizophrenia. Results from the
published PGC and CLOZUK studies were qualitatively similar with the CLOZUK data
generally showing increased significance owing to its larger sample size.

Comparison GWA results for other traits

We included comparisons for a selected set of brain related traits as well as height as a
negative control. As power to identify cell types is directly proportional to the sample size of
the GWA study, we only included traits with at least 20°000 samples that discovered at least
20 genome-wide significant loci. The GWA results were from the following sources:
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schizophrenia ® from the PGC; Alzheimer’s disease >®; educational attainment *’; 1Q3%; MDD
from the PGC (unpublished); Parkinson’s disease*® and height *°.

Gene sets associated with schizophrenia

The gene set results for schizophrenia are summarized in Table S1, and the gene sets are
included in Table S4. For CELF4 binding genes *', we used genes with iCLIP occupancy > 0.2
from Table S4. For FMRP binding genes *2, we used genes from Table S2A. Genes intolerant
to loss-of-function variation were from the Exome Aggregation Consortium (pLl > 0.9) *°.
Genes containing predicted miR-137 target sites were from microrna.org (URLs). NMDA
receptor complex genes came from Genes-to-Cognition database entry L00000007 **. The
human post-synaptic density gene set was from Table $2 **. The PSD95 complex came from
Table S1 using all genes marked with a cross in the ‘PSD-95 Core Complex’ column **. For
RBFOX binding, we took all genes with RBFOX2 count > 4 or summed RBFOX1 and RBFOX3 >
12 from Table S1 **. For antipsychotic drug targets, we used a gene list provided by Drs
Gerome Breen and Héléna Gaspar as reported in the biorXiv preprint (DOl 10.1101/091264).

Gene sets not associated with schizophrenia

The gene sets are included in Table S4. For Multiple Sclerosis susceptibility genes we used
the top results from the MSGene database (http://msgene.org/TopResults.asp). For
Alzheimer’s disease we used the top results from the AlzGene database®
(http://www.alzgene.org/TopResult.asp) as well as genome wide significant genes reported
in an additional GWAS study”’. For genes associated with leukodystrophy (HP:0002415) and
abnormal vasculature (HP:0002597) we used the Human Phenotype Ontology®®
(http://compbio.charite.de/hpoweb). To obtain the genes with the top 500 highest/lowest
dN/dS between humans and mice we obtained the dN and dS values through BioMart
associated with each ensemble gene ID, mapped these onto HGNC gene symbols (averaging
where ensemble and HGNC did not have 1:1 matches).

Depletion of dendritically enriched transcripts in nuclei datasets

The list of dendritically enriched transcripts were obtained from ** supplementary table 10.
This list was produced from pyramidal cells from rat hippocampus and human 1:1 homologs
were obtained as described above: we refer to this set of genes as Lgendritic. TO enable direct
comparisons between datasets, all datasets were reduced to contain a common core of six
level 1 celltypes: pyramidal neurons, interneurons, astrocytes, interneurons, microglia and
oligodendrocyte precursors. In the case of the Kl dataset, we used S1 Pyramidal neurons
rather than CA1 Pyramidal. The specificity metric (denoted above as s; ) was recalculated
for each dataset using this reduced set of celltypes. Comparisons were then made between
datasets (denoted in the graph with the format ‘Dataset X vs Dataset Y’). We denote the
mean pyramidal neuron specificity scores for dendritically enriched genes in dataset X as
SD=X LaenarinePyramdal- We then get the difference in pyramidal specificity of for list L

between two datasets as Dyy 1 = Sp=x 1 pyramidal — Sp=v,LpPyramidai- W€ then calculate
values of Dy for 10000 random gene lists, having the same length as the dendritically
enriched gene list, with the genes randomly selected from the background gene set. We
denote the n™ random gene list as R,. The mean and standard deviation of the
bootstrapped Dy, values are denoted pp, ., and op, . respectively. The depletion z-
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DXY Lyendritic " MDxy R

score is then calculated as: Zyy dendritic = . A large positive z-score

9Dxy,R
thus indiciates that dendritically enriched transcripts are specifically depleted from
pyramidal neurons from dataset Y relative to dataset X.

Conditional cell type enrichments

Gene association z-scores for Schizophrenia were calculated in MAGMA as described above.
To enable randomisation of the z-scores and recalculation of the associations to be done
programmatically, these were then loaded into R and associations with disease were
calculated within this environment without external calls to MAGMA. All genes within the
extended MHC region (chr6 25-34mb) were dropped from all aspects of this analysis. We
controlled for gene size and gene density by regressing out the effect of NSNPS and
NDENSITY parameters (and the log of each) on the z-score. To ensure a meaningful number
of genes were randomised within each group, associations were calculated over deciles
rather than the smaller percentile bins used earlier with MAGMA. Probabilities of
association are calculated using the ImFit and ebayes functions from the limma package to
enable rapid computation. We denote the set of cells studied as Csuch that c;represents the
ith celltype. The original z-scores are denoted Z such that z; is the z-score of the ith gene
while the randomised z-scores are denoted R. The set of genes in the ith specificity decile of
the controlled cell type, ¢, and the jth specificity decile of target cell type, ¢, are denoted

S;7" and thus Uyec S; contains all genes in the i" specificity decile of cell type, c,.
The basis of the approach, as depicted in Figure S8 is to randomise the z-scores with respect
to the specificity deciles of the target celltype, ¢, but not with respect to the specificity
deciles of the controlled celltype, c,. Thus for each of the deciles indexed by i we randomly

resampled without replacement the z-scores such that {R =i{Z
P P { g}geukec55f,;y { ‘g}QEUkecsi,;(

yet R, # Z,. In practical terms, this would mean that if we controlled for MSN’s and
targeted cortical interneurons, the mean z-score in the 10™ MSN decile would remain the
same but would be different in cortical interneurons; the question being tested is the
degree to which this equates to total randomisation in terms of the schizophrenia
association found in cortical interneurons.

The baseline association values shown in Figure 4a leftmost column (described as
Pcelitypev,baseline) Were calculated using Z. The values of Pcelitypey,celitypex (pProbability of celltype y
being associated with schizophrenia controlling for celltype x) are calculated using
intermediate probabilities: 10,000 association p-values are calculated for resampled values
of R. We selected the 500" lowest of these p-values (equivalent to the value which the
baseline association probability would need to exceed to be declared independently

associated with a probability of 95%) and denote this pﬁ";"t“m”

bootstrap
X,y

exceeds 1 (indicating that the randomised samples were actually more significantly
associated than was found to be the case) then it is set to 1. We were also able to evaluate
whether the probability of schizophrenia association in celltype y is greater than would be
expected based solely on the expression in celltype x by asking whether the actual
association p-value was lower than 95% of the bootstrapped p-values. As expected, all self-
self comparisons were found to be non-significant by this metric (i.e. after accounting for

. The value of I:’celltypeY,ceIItypeX

is then calculated as exp(log(Pceiitypev,celitypex)-10g(p ). If the value of Pceiitypev,celitypex
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expression in CA1 pyramidal neurons, CA1 pyramidal neurons are no longer significant). In
Figure 4a, a red box was placed around the CA1 Pyramidal vs Somatosensory Pyramidal
square because this was the only comparison involving the four significantly associated cell
types in which controlling for expression of a different cell type abolished the enrichment.

Venn diagram enrichments

The Venn diagram shown in Figure 4 was generated using by selecting the top 1000 genes
most associated with Schizophrenia based on the MAGMA gene specific z-scores. All genes
within the extended MHC region (chr6é 25-34mb) were dropped from the analysis. We
controlled for gene size and gene density by regressing out the effect of NSNPS and
NDENSITY parameters (and the log of each) on the z-score. We then took the intersection of
the top 1000 genes with the top decile for each of the four significantly associated level 1
cell types and generated the Venn diagram using the R VennDiagram package. The
dopamine gene set include all genes associated with any of the following GO terms:
G0:0090494 ("dopamine uptake"), GO:0090493 (“catecholamine uptake”), G0O:0051584
(“regulation of dopamine uptake involved in synaptic transmission”), G0:0032225
(“regulation of synaptic transmission, dopaminergic”), GO:0001963 (“synaptic transmission,
dopaminergic”) and GO:0015872 (“dopamine transport”). The synaptic gene list comprised
a combination of three published gene lists: the human post-synaptic density (referenced
above); presynaptic active vesicle docking sites *° and synaptic vesicle genes *°. For the
presynaptic gene list, the data came from supplementary table S1, the genelnfo numbers
were converted from genlnfo accessions to Refseq IDs using Entrez Batch then from Rat
RefSeq to HGNC symbols keeping only 1:1 homologs. The synaptic vesicle gene list came
from supplementary table S1, and were converted from Rat RefSeq to HGNC symbols using
only 1:1 homologs. Enrichment probabilities were calculated using a hypergeometric test
against a background set of all MGI genes with 1:1 homologs in human (as described above).
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Supplemental Tables

Report Genomic data Convergence Notable pathway/gene sets
Schizophrenia > dURV, WES Neurons (not astrocytes or oligodendrocytes), excitatory
(RVAS) and inhibitory neurons similar
Genes intolerant to loss-of-function variation
Genes whose mRNAs bind to FMRP or CELF4
Genes with bindings sites for RBFOX1, 2, or 3
Synaptic genes
Post-synaptic density
Activity-related cytoskeleton complex
NMDA receptor components
Genes with miR-137 binding sites
Genes intolerant to loss-of-function variation
Genes whose mRNAs bind to FMRP
Genes with bindings sites for RBFOX1, 2, or 3
Genes with bindings sites for CHD8
Activity-related cytoskeleton complex
g NMDA receptor components

Overlap with autism genes

Overlap with developmental delay genes
Schizophrenia 16 GWA a Genes intolerant to loss-of-function variation
(DOI110.1101/068593) b Genes whose mRNAs bind to FMRP

Serotonin 2C receptor complex

Calcium ion import

Membrane depolarization during action potential

d Synaptic transmission

Abnormal behavior
Abnormal nervous system electrophysiology
Abnormal long term potentiation
Synaptic genes
Post-synaptic density
Activity-related cytoskeleton complex
NMDA receptor components
Genes with miR-137 binding sites

Schizophrenia dURV, WES
(DOI110.1101/069344) (RVAS)

0O OO T0m —H~0O Q0o T W

—h

Schizophrenia 3 GWA

SS0m —~ MO Q

Table S1 shows the gene sets or biological pathways implicated in schizophrenia. These
analyses ask whether schizophrenia case/control genetic association results are “enriched”
in the genes comprising a gene set. At least 20 gene sets have been implicated, and many
are implicated by different types of genetic studies. This convergence is highly notable.
However, these connect genetic risk for schizophrenia to a highly diverse and even puzzling
set of genes and biological pathways. dURV=disruptive or damaging ultra-rare variants.
WES=whole exome sequencing. GWA=genome-wide, common variant association study.
RVAS=rare variant association study.
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Species Label Citation Source RNAseq tech. Stage Region Cells L1 L2

Mouse Gokce 19 GEO GSE82187 Single cell Adult Striatum 1208 10 10
Habib 20 GEO GSE84371 Single nuclei Adult Hippocampus 1287 11 29
Kl Unpublished Pending Single cell Adult Cortex (Pvalb 89 1 1
interneurons)
KI 28 Linnarsson lab (URLs) Single cell Adult Cortex + hippocampus 1996 6 41
K >t GEO GSE74672 Single cell Adult Hypothalamus 772 4 62
K 26 GEO GSE76381 Single cell Adult Midbrain 243 1 5
K 26 GEO GSE76381 Single cell Fetal Midbrain 1290 8 22
K > GEO GSE75330 Single cell Adult Oligodendrocytes 5051 3 13
Kl Unpublished Pending Single cell Adult Striatum 529 2 6
Tasic 2t GEO GSE71585 Single cell Adult Cortex 1679 7 49
Human AIBS Unpublished Pending Single nuclei Adult Cortex 4401 6 6
Darmanis % GEO GSE67835 Single nuclei  Adult & Cortex 420 8 8
fetal
Lake 23 dbGaP phs000833.v3.p1  Single nuclei  Adult Cortex (N=1) 3042 2 16

Table S2. Single nuclei or scRNAseq data from mouse or human brain. Source column points to where the data were obtained (URLs).
Kl=Karolinska Institutet. AIBS=Allen Institute for Brain Science. L1=number of Level 1 cell type categories. L2=number of Level 2 cell types
(subdivisions of L1 types). All datasets labelled as KI were merged into a single superset; all other datasets were used separately. These data
are depicted in Figure 1.
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Kl Level 1 cell type

Hypothalamic dopaminergic neurons
Serotonergic neuron

Oxytocin & vasopressin expressing
neurons

Dopaminergic neuroblast

Vascular leptomeningeal cells
Embryonic dopaminergic neuron
Microglia

Embryonic midbrain nucleus neurons
Neuronal progenitor

Astrocytes / ependymal

Radial glia like

Medium spiny neuron
Endothelial-mural

Embryonic GABAergic neuron
Dopaminergic neuron

Cortical interneurons

Pyramidal (SS)

Hypothalamic glutamatergic neurons
Oligodendrocyte precursor

Striatal interneuron

Hypothalamic GABAergic neurons
Neuroblasts

Pyramidal (CA1)

Oligodendrocytes

Table S3. Detail on the KI scRNAseq Level 1 and 2 dataset. There are 24 Level 1 cell type
categories and 149 Level 2 subdivisions. The median number of cells in the Level 1 categories
was 218 (interquartile range 91-306), and the Level 2 subdivisions range from 1-32. The
numbers of single cells contributing to the Level 1 classification are shown. We found no
relation between the number of cells and the cell type found to “fit” schizophrenia. For
example, there are large numbers of oligodendrocytes and neuroblasts (which were not
enriched for schizophrenia genomic findings), and the number of cells for medium spiny
neurons (which were associated) were at the median. Likewise, the total average number of
molecules detected in each cell type (as determined using Unique Molecular Identifiers) does
not explain the enrichments found (note that medium spiny neurons have almost half as many

Level 2
subdivisions
4
1
7

UV WEANWDRARNDWERPR

=
®

32

molecules as hypothalamus dopaminergic neurons).
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41
59
62

71
76
93
98
105
149
159
166
218
220
221
243
379
290
305
308
311
364
426
939
4667

Total Average
Molecules
14220
10583
12156

4902
3256
6147
4567
11181
7172
6130
7762
8610
4319
10129
10912
15979
17131
8503
3384
10796
9602
6156
16066
7581
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Supplemental Figures

Embryonic Midbrain Nucleus Neurons

Embryonic GABAergic Neuron

0.8

Embryonic Dopaminergic Neuron

Serotonergic Neuron
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Radial Glia Like

Neuronal Progenitor

o

Ol Precursor

Vascular L i Cells

Microglia
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Pyramidal (SS)

Pyramidal (CA1)

Medium Spiny Neuron
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Oxytocinand Vasopressin Expressing Neurons

D i Neuron

ic Neurons

\\ Hypothalamic GABAergic Neurons

Hypothalamic Dopaminergic Neurons

Figure S1. Correlation of the binned measure of cell type-specific expression (S, defined in
Online Methods) for mouse brain cell types in the Kl level 1 dataset. To illustrate the overall
structure of mouse brain scRNAseq dataset, we show a heat map and clustering of the brain cell
types identified in the Kl Level 1 data. The major divisions are embryonic/progenitor cells
(upper left), support cells (middle; e.g., oligodendrocytes and microglia), and mature cells
(lower right). The major division of the mature cells include pyramidal cells/medium spiny
neurons, interneurons, and “speciality” neurons (i.e., dopaminergic, GABAergic, and
glutamatergic).
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Figure S2. Dendritically enriched transcripts (DETs) are specifically depleted from brain single-
nuclei (“nuclei”) RNAseq datasets relative to single-cell (“cell body”) RNAseq data. These 2,252
DETs were identified in a prior study of expression in hippocampal neuropil relative to cell body
layer *°. Each bar represents a comparison between two datasets (dataset X vs dataset Y), with
the bootstrapped z-scores representing the extent to which DETs have lower specificity for
pyramidal neurons in dataset Y relative to X. Larger z-scores indicate greater depletion of DETSs.
Table S2 describes the studies. The snRNAseqg/nuclei studies were: Habib et al. % (adult mouse
hippocampus) and AIBS (Allen Institute for Brain Science, unpublished, adult human cortex).
The scRNAseq/cellbody studies were Kl (adult mouse cortex and hippocampus) and Tasic et al.
21 (mouse cortex).

Page 32 of 41


https://doi.org/10.1101/145466
http://creativecommons.org/licenses/by-nc-nd/4.0/

Brain -

Pituitary -

Muscle Skeletal -

Artery -

Esophagus 1

Colon -

Heart -

Adrenal Gland 4

Uterus 1

Ovary -

Whole Blood

Cells EBVtransformed lymphocytes -
Vagina 1

Cervix -

Cells Transformed fibroblasts
Bladder

Nerve Tibial 4

Stomach

Pancreas 1

Fallopian Tube -

Adipose

Small Intestine Terminal lleum -
Spleen -

Minor Salivary Gland 4
Thyroid -

Prostate -

Skin -

Breast Mammary Tissue 1
Kidney Cortex

Liver -

Lung -

Testis -

*'llllllllq

5 10 15
—logyo(pvalue)

Figure S3. MAGMA enrichment of CLOZUK schizophrenia GWA results in relation to human
tissue-specific gene expression (from GTEx). Brain and pituitary are most associated, but there
are significant associations with multiple non-brain tissues), and tissues not believed to be
etiologically involved in schizophrenia (colon, heart, uterus. Black line shows Bonferroni

correction.

Page 33 of 41


https://doi.org/10.1101/145466
http://creativecommons.org/licenses/by-nc-nd/4.0/

] ] Medium Spiny Cortical Striatal
Pyramidal (CA1) Pyramidal (SS) Neurons Interneurons Interneuron

3
2 ST il
1 N
Serotonergic ] Oligodendrocyte Embr. GABAergic
Neurons DB e Oligodendrocytes Precursor Neurons
3

N

N pieEer ol gedslie  cipelth gl

Embr. Midbrain

NEELS NEVES DA Neuroblast Microglia Embr. DA Neurons Neuroblasts
é 3
2| FExaEpiehy ;H%L[ TLII% FEFiitlye I illlE
<
L
Vasc. Hypoth. Oxytocin / Hypoth.
Endothelial-Mural Leptomeningeal Glutamatergic Vasopressin GABAergic
Cells Neurons Neurons Neurons
3
2 IEIlﬂ {If it 1 1
1 & X3 KN 2
Z-NOTOONO®HO
Astrocytes / : S Hypoth. DA Neuronal
Ependymal Fiaslal) Gl e Neurons Progenitor
3
2

e, Dol Teldenr saagl

Zr-rAOITOONOOO ZmANTONONOOO ZrANOITOONOOO Zr-rAOSTOONOOO
— — — —

—_

Specificity Decile

Figure S4. LDSC Schizophrenia (CLOZUK) enrichment values in each specificity decile for each
of the Kl level 1 cell types. Error bars indicate the 95% confidence intervals. The rightmost point
and its confidence intervals are marked in red as this is the decile used for reported LDSC
probabilities throughout this paper (rather than the probability of the slope increasing as was
used for reporting MAGMA probabilities). The leftmost point (marked 'N') represents all SNPs
which map onto genes not expressed in MSNs. Blue line slows the linear regression slope fitted
to the enrichment values. The grey boxing around the blue regression line depict the
confidence intervals of the regression line.
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Figure S5. MAGMA Schizophrenia (CLOZUK) gene level model fit for each Kl level 1 cell type.
The Y-axis (residuals) was obtained by regressing the gene length, gene density and their logs
from the gene-level z-score obtained from MAGMA using the CLOZUK schizophrenia GWAS.
Negative residuals indicate that genes are less associated with schizophrenia, while positive
residuals indicate that genes are more associated with schizophrenia. The x-axis are the 41
binned tissue specificity measures (each bin represent a 2.5% quantile of the distribution of
proportions in the cell type) multiplied by 2.5 (the bin 40 which represents genes that are the
2.5% most specifically expressed in the cell type will have a value of 100, etc..). The coloured
line shows the best non-linear fit to the data using a generalised additive model (GAM) with its
95% confidence interval. The black line represents the linear regression of the residuals by the
binned proportions
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Figure S6. Association between brain cell types (KI level 2) and schizophrenia. Cell types are
ranked by the minimum average rank of LDSC and MAGMA (minimum average P-values for cell
types with equal average rank). The black line represents the Bonferroni significance threshold.
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Figure S7. Confirmation of enrichment of common variant CLOZUK schizophrenia GWA results
from the KI mouse data in independent mouse brain studies. The Kl Level 1 findings connect the
CLOZUK schizophrenia results to hippocampal CAl pyramidal neurons, cortical pyramidal
neurons, cortical interneurons, and medium spiny neurons. (A) snRNAseq from mouse
hippocampus *° showing enrichment of hippocampal CA1 pyramidal cells. (B) scRNAseq from
mouse cortex ' demonstrating enrichment of cortical pyramidal neurons and cortical
interneurons. (C) scRNAseq from mouse striatum with enrichment of “striatal neurons”, which
were predominantly medium spiny neurons ® There was also enrichment for hippocampal
dentate granule cells in Figure 6a and migratory neural precursors in striatum in Figure 6c, but
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these were not included in the larger Kl dataset.
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Figure S8. Schematic of the resampling approached used for conditional cell type enrichments
shown in Figure 4a. The purpose of the resampling method was to enable testing of whether
the schizophrenia enrichment detected for one cell type (here represented by cortical
interneurons, INTs) is just an unavoidable result of a significant enrichment in a second cell type
(here represented by Medium Spiny Neurons, MSNs). The plot on the left shows the correlation
in specificity values between INTs and MSNs. Each point represents a single gene. Darker points
have higher Schizophrenia CLOZUK association z-scores (calculated using MAGMA). The right
hand plot shows how the z-scores are resampled within each MSN specificity decile, such that
while the specificity values of each gene in MSNs and INTs remains the same, and the
distribution of z-scores remains constant relative to each MSN decile, the distribution of z-
scores is however randomized relative to INTs. Yellow boxes and arrows mark the location and
z-scores of four genes: in the left hand plot, the z-scores are those found in the MAGMA
genes.out file, while in the right hand plot the z-scores shown are resampled (hence the Pvalb
scores has been switched with those of Slc10a4, as both are in the same specificity decile for
Medium Spiny Neurons). For the analysis shown in Figda, this resampling of z-scores is
performed 10000 times over and the relative enrichment of INTs in the left plot compared to
that in the resampled right hand plot.
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Figure S9. tSNE plot of three cell types shared between brain regions from the Kl superset
shows that they cluster together across regions. Microglia, Endothelial cells, and Vascular
Smooth Muscle cells were selected on the basis that there is little prior expectation for them to
have regional differences in expression. We found that embryonic midbrain cells cluster
separately as is expected as they were obtained from embryonic tissue whereas all other
samples were from adolescent mice. The cells from the other datasets were largely overlapping
confirming that little to no batch effects exist in the data.
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