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Abstract:		

With	 few	 exceptions,	 the	 marked	 advances	 in	 knowledge	 about	 the	 genetic	 basis	 for	
schizophrenia	 have	 not	 converged	 on	 findings	 that	 can	 be	 confidently	 used	 for	 precise	
experimental	 modeling.	 Applying	 knowledge	 of	 the	 cellular	 taxonomy	 of	 the	 brain	 from	
single-cell	 RNA-sequencing,	 we	 evaluated	 whether	 the	 genomic	 loci	 implicated	 in	
schizophrenia	 map	 onto	 specific	 brain	 cell	 types.	 The	 common	 variant	 genomic	 results	
consistently	mapped	to	pyramidal	cells,	medium	spiny	neurons,	and	certain	interneurons	but	
far	 less	consistently	to	embryonic,	progenitor,	or	glial	cells.	These	enrichments	were	due	to	
distinct	sets	of	genes	specifically	expressed	in	each	of	these	cell	types.	Many	of	the	diverse	
gene	sets	associated	with	schizophrenia	(including	antipsychotic	targets)	implicate	the	same	
brain	 cell	 types.	 Our	 results	 provide	 a	 parsimonious	 explanation:	 the	 common-variant	
genetic	results	for	schizophrenia	point	at	a	limited	set	of	neurons,	and	the	gene	sets	point	to	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 2, 2017. ; https://doi.org/10.1101/145466doi: bioRxiv preprint 

https://doi.org/10.1101/145466
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page	2	of	41	

the	 same	 cells.	While	 some	of	 the	 genetic	 risk	 is	 associated	with	GABAergic	 interneurons,	
this	risk	largely	does	not	overlap	with	that	from	projecting	cells.		

	

Knowledge	 of	 the	 genetic	 basis	 of	 schizophrenia	 has	markedly	 improved	 in	 the	 past	 five	
years	 1.	 Much	 of	 the	 genetic	 basis	 and	 heritability	 of	 schizophrenia	 is	 due	 to	 common	
variation	2,3.	 Identifying	“actionable”	genes	 in	sizable	studies	4,5	has	proven	difficult	with	a	
few	exceptions	 6-8.	 There	 is	aggregated	 statistical	evidence	 for	diverse	gene	 sets	 including	
genes	expressed	in	brain	or	neurons	3,5,9,	genes	highly	intolerant	of	loss-of-function	variation	
10,	synaptic	genes	11,	and	genes	whose	mRNA	bind	to	FRMP	12	(Table	S1).	Several	gene	sets	
have	been	implicated	by	fundamentally	different	types	of	genetic	studies	of	schizophrenia,	
and	 this	 convergence	 strongly	 implicates	 these	 gene	 sets	 in	 the	 pathophysiology	 of	
schizophrenia.	 However,	 the	 implicated	 gene	 sets	 often	 contain	 hundreds	 of	 functionally	
distinctive	 genes	 that	 do	 not	 immediately	 suggest	 reductive	 targets	 for	 experimental	
modeling.		

Connecting	 the	 genomic	 results	 to	 cellular	 studies	 is	 crucial	 since	 it	 would	 allow	 us	 to	
prioritize	for	cells	fundamental	to	the	genesis	of	schizophrenia.	Enrichment	of	schizophrenia	
genomic	 findings	 in	 genes	 expressed	 in	 macroscopic	 samples	 of	 brain	 tissue	 has	 been	
reported	 3,13,14,	 but	 these	 results	 are	 insufficiently	 specific	 to	 guide	 subsequent	
experimentation.		

A	 more	 precise	 approach	 has	 recently	 become	 feasible.	 Single-cell	 RNA-sequencing	
(scRNAseq)	has	been	 increasingly	used	 to	derive	empirical	 taxonomies	of	brain	 cell	 types.	
We	thus	rigorously	compared	genomic	results	for	schizophrenia	to	brain	cell	types	defined	
by	scRNAseq.	We	assembled	a	superset	of	brain	scRNAseq	data	 from	Karolinska	 Institutet	
(KI;	Supplementary	Methods).	Briefly,	 these	data	were	generated	using	 identical	methods	
from	 the	 same	 labs	 with	 the	 use	 of	 unique	 molecular	 identifiers	 that	 allow	 for	 direct	
comparison	 of	 transcription	 across	 regions.	 The	 KI	 mouse	 superset	 of	 9,970	 cells	 allows	
identification	of	24	Level	1	brain	cell	 types	and	149	Level	2	cell	 types,	 far	more	cell	 types	
than	any	other	brain	scRNAseq	or	single	nuclei	RNA-seq	(snRNAseq)	dataset	now	available	
(Figure	 1A).	 Brain	 regions	 in	 the	 KI	 superset	 include	 neocortex,	 hippocampus,	
hypothalamus,	 striatum,	 midbrain,	 plus	 samples	 enriched	 for	 oligodendrocytes,	
dopaminergic	neurons,	and	cortical	parvalbuminergic	interneurons	(Table	S2	and	Figure	S1).	
The	 cell	 type	 identities	 (both	 level	 1	 and	 2)	 were	 used	 as	 they	 were	 annotated	 in	 the	
individual	 data	 sets	 –briefly	 cell-classification	 is	 based	 on	 clustering	 of	 cell	 by	 algorithms	
taking	all	cell	class-specific	gene-expression	into	account	in	a	hierarchical	manner.	Clustering	
thus	does	not	rely	on	the	use	of	single	markers	but	on	the	correlation	of	hundreds	of	genes.	
Once	 clustered,	 the	 cell	 types	 are	 identified	 post-hoc	 using	 known	 expression	 patterns	
and/or	molecular	investigation	(see	Table	S2	for	details).	While	most	human	single-cell	data	
comes	 from	snRNAseq,	an	advantage	of	 the	KI	 superset,	and	using	 the	mouse	as	a	model	
system,	 is	 that	 it	 allows	 for	 the	 use	 of	 scRNAseq.	 Prepared	 nuclei	 lack	 the	 cytoplasmic	
compartment	and	proximal	dendrites,	and	we	reasoned	that	this	might	result	 in	a	specific	
loss	 of	 signal.	 Indeed,	 by	 comparing	 multiple	 snRNAseq	 and	 scRNAseq	 data	 sets	 (both	
mouse	and	human),	we	 found	 that	 transcripts	destined	 for	export	 to	 synaptic	neuropil	 15,	
which	 are	 enriched	 for	 genetic	 associations	 with	 schizophrenia	 (P=1.6x10-4),	 were	
significantly	better	captured	by	scRNAseq	and	specifically	depleted	in	the	snRNAseq	(Figure	
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S2).	This	unfortunately	suggest	that	nuclear	data	might	never	provide	the	signal	necessary	
for	these	kind	of	analyses.	

For	each	 single-cell/nucleus	data	 set,	we	estimated	a	 specificity	matrix	 for	each	gene	and	
cell	 type.	This	measure	 represents	 the	proportion	of	 the	 total	expression	of	a	gene	 found	
specifically	 in	 a	 cell	 type	 as	 compared	 to	 all	 cell	 types.	 It	 is	 calculated	 as	 the	 average	
expression	 in	one	cell	 type	divided	by	the	total	average	expression	 in	the	other	cell	 types.	
Thus,	if	a	particular	gene’s	expression	(even	if	very	high)	is	shared	between	more	than	one	
cell	type	it	will	get	a	lower	specificity	measure.	As	an	example,	we	show	Drd2,	a	gene	highly	
expressed	in	medium	spiny	neurons	(MSNs),	adult	dopaminergic	neurons,	and	hypothalamic	
interneurons,	and	thus	only	gets	a	specificity	measure	 in	MSNs	of	0.17	but	still	ends	up	in	
the	 top	 specificity	decile	 for	 that	 cell	 type	 (Figure	1c).	 To	 further	visualize	 this	metric,	we	
plotted	 the	 cell	 type	 specificity	 values	 for	 seven	 genes	 with	 known	 expression	 patterns	
(Figure	1c).	For	example,	 the	pan-neuronal	marker	Atp1b1	gets	 lower	values	 than	specific	
markers	Ppp1rb1	 (Darpp-32,	a	MSN	marker),	Aif1	 (Iba1,	a	microglia	marker)	and	Gfap	 (an	
astrocyte	marker)	since	the	expression	signal	is	spread	out	over	several	classes.	For	each	cell	
type,	we	sorted	each	gene	into	ranked	groups	(i.e.,	deciles	or	40	quantiles).	The	hypothesis	
underlying	 our	 approach	 is	 that	 if	 schizophrenia	 is	 associated	 with	 a	 particular	 cell	 type,	
then	a	higher	amount	of	heritability	should	be	located	in	more	specific	deciles/quantiles.	As	
an	example	we	plotted	the	enrichment	of	heritability	for	schizophrenia	and	human	height	in	
the	different	enrichment-deciles	of	MSNs,	a	neuronal	cell	type	(Figure	1d,e).	

To	 identify	 brain	 cell	 types	 associated	 with	 schizophrenia,	 we	 used	 the	 largest	 available	
genome-wide	association	 (GWA)	study	of	 schizophrenia:	CLOZUK	 identified	~140	genome-
wide	significant	loci	in	40,675	cases	and	64,643	controls	16.	We	first	compared	the	CLOZUK	
results	 to	 GTEx	 (RNA-seq	 of	 macroscopic	 samples	 from	 multiple	 human	 tissues)	 17	 and	
confirmed	 3	 that	 smaller	 schizophrenia	GWA	P-values	were	substantially	enriched	 in	brain	
and	pituitary	(Figure	S3).	We	then	evaluated	the	relation	of	the	CLOZUK	GWA	schizophrenia	
results	 to	the	24	KI	Level	1	brain	cell	 types.	We	applied	two	statistical	methods,	based	on	
different	 assumptions	 and	 algorithms,	 to	 evaluate	 the	 association	 of	 cell	 type	 specific	
expression	 and	 schizophrenia	 common	 variant	 genetic	 findings.	 One	 method	 assessed	
enrichment	of	the	common	variant	heritability	of	schizophrenia	only	in	the	most	cell	type-
specific	 genes.	 The	 other	 method	 evaluated	 whether	 heritability	 linearly	 increases	 along	
with	 	 cell	 type	 expression	 specificity.	 We	 used	 two	 separate	 algorithms—	 LDSC9	 and	
MAGMA18—to	 calculate	 heritability	 enrichments	 both	 of	which	 accounts	 for	 confounders	
such	as	gene	size	and	linkage	disequilibrium.	LDSC	was	used	to	test	for	enrichments	in	the	
most	specific	decile,	while	MAGMA	was	used	to	test	for	linear	increases.	We	required	that	
the	two	methods	give	similar	results	after	correcting	for	multiple	comparisons	to	minimize	
the	chance	of	a	spurious	conclusion.		

Both	methods	strongly	highlighted	hippocampal	CA1	pyramidal	cells,	striatal	medium	spiny	
neurons,	neocortical	somatosensory	pyramidal	cells,	and	cortical	interneurons	(Figs.	2a,	S4,	
S5).	Each	exceeded	a	stringent	significance	level	by	several	orders	of	magnitude.	The	results	
are	not	pan-neuronal	as	multiple	other	types	of	neurons	did	not	show	enrichment,	neither	
does	the	total	number	of	molecules	detected	per	cell	type	or	total	number	of	cells	detected	
per	cell	type	confound	the	results	(Table	S3).	Schizophrenia	risk	was	greater	in	mature	cells	
than	in	embryonic	or	progenitor	cells.	We	extended	the	analysis	to	149	KI	Level	2	cell	types	
(Figure	S6):	for	hippocampal	CA1	pyramidal	cells,	both	major	subgroups	were	significant;	for	
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striatum,	 medium	 spiny	 neurons	 expressing	 Drd2,	 Drd1	 and	 striatal	 Pvalb-expressing	
interneurons	 were	 consistently	 significant;	 and	 for	 neocortical	 somatosensory	 pyramidal	
cells,	cortical	layers	2/3,	4,	5,	and	6	were	significant.	The	cortical	Level	1	interneuron	signal	
appeared	to	result	from	four	Level	2	interneuron	subcategories	(all	expressing	Reln).		

We	 evaluated	 whether	 these	 results	 were	 specific	 to	 schizophrenia	 or	 generally	 shared	
across	 human	 traits.	A	heat	map	of	 KI	 Level	 1	 enrichment	P-values	 for	GWA	 results	 from	
eight	 studies	 of	 human	 complex	 traits	 are	 depicted	 in	 Figure	 2b.	 Seven	 of	 these	 studies	
evaluated	 common	 variants	 associations	 for	 brain-related	 diseases	 or	 traits	 with	 ≥20,000	
cases	and	≥10	genome-wide	significant	associations.	Human	height	was	included	as	a	non-
brain	 comparator.	 The	 results	 from	 the	 earlier	 PGC	 GWA	 study	 of	 schizophrenia	 3	 were	
similar	to	those	from	CLOZUK.	Although	we	observed	cell	types	being	enriched	in	other	sets	
none	 had	 the	 specific	 signal	 observed	 in	 the	 two	 schizophrenia	 sets.	 For	 example,	major	
depression	disorder	 (MDD)	 is	 another	major	brain	disorder	 and	we	 found	 that	GABAergic	
interneurons,	embryonic	midbrain	neurons,	and	dopaminergic	interneurons	were	the	most	
enriched	cell	types.	

Using	 independent	 scRNA/snRNAseq	 mouse	 brain	 studies,	 we	 replicated	 our	 results	 and	
found	 significant	 enrichment	 for	 schizophrenia	 in	 hippocampal	 CA1	 pyramidal	 cells,	
neocortical	pyramidal	cells,	cortical	interneurons,	and	medium	spiny	neurons	19-21	(Figs.	S7a-
c).	 Turning	 to	 human	 data,	 we	 evaluated	 a	 snRNAseq	 dataset	 from	mid-temporal	 cortex	
(Allen	 Institute	 for	 Brain	 Science,	 unpublished),	 and	we	 confirmed	 enrichment	 in	 cortical	
pyramidal	neurons	and	cortical	interneurons	(glutamatergic	and	GABAergic	cells,	Figure	2c).	
The	 specificity	of	 the	 temporal	 cortex	 signal	was	confirmed	 in	 relation	 to	 the	 same	set	of	
brain-specific	GWA	studies	(Figure	2d).	Although	oligodendrocyte	precursors	showed	up	as	
significant	 in	 the	 human	 data,	 it	 is	 hard	 to	 judge	 if	 this	 is	 related	 to	 a	 loss	 of	 neuronal-
specific	signal	from	neurons	due	to	differences	in	nuclei	versus	cell	sampling	(Figure	S2).	In	a	
small	 scRNAseq	 study	of	human	adult	 and	 fetal	 cortex	 22,	 adult	 and	 fetal	 cortical	neurons	
were	significantly	enriched.	These	are	likely	pyramidal	cells	but	the	small	size	of	this	study	
precluded	further	exploration	(data	not	shown).	No	significant	enrichments	were	found	 in	
another	snRNAseq	study	of	one	human	23,	perhaps	due	to	a	 lack	of	cellular	diversity	(data	
not	 shown).	We	are	unaware	of	 scRNAseq	data	 from	human	hippocampus	or	 striatum.	 In	
summary,	 all	 major	 findings	 from	 the	 KI	 dataset	 were	 replicated	 in	 independent	 mouse	
studies,	and	the	cortical	pyramidal	cell	and	cortical	interneuron	findings	were	also	replicated	
in	independent	human	studies.		

We	 then	 evaluated	 whether	 gene	 sets	 previously	 implicated	 in	 schizophrenia	 (Table	 S1)	
were	 specifically	 expressed	 in	 the	 KI	 level	 1	 brain	 cell	 types	 using	 EWCE	 (25).	 First,	 we	
evaluated	 pharmacologically-defined	molecular	 targets	 of	 antipsychotics	 (the	mainstay	 of	
treatment	for	schizophrenia),	which	were	also	previously	associated	with	schizophrenia	24.	
As	shown	in	Figure	3a,	antipsychotic	medication	targets	were	associated	with	the	same	cell	
types	that	we	found	using	the	CLOZUK	GWA	schizophrenia	results:	neocortical	S1	pyramidal	
cells,	 medium	 spiny	 neurons	 from	 the	 dorsal	 striatum,	 and	 hippocampal	 CA1	 pyramidal	
cells,	while	 cortical	 interneurons	were	 just	above	 the	 significance	 threshold	after	multiple	
testing	comparison.		

We	 then	 investigated	 whether	 other	 gene	 sets	 previously	 associated	 with	 schizophrenia	
were	specifically	expressed	in	schizophrenia	relevant	cell	types	(Figure	3b-d).	The	gene	sets	
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consistently	associated	with	schizophrenia	–	intolerant	to	loss-of-function	variation,	NMDA	
receptor	 complex,	 post-synaptic	 density,	 RBFOX	 binding,	 CELF4	 binding,	 and	 FMRP	
associated	genes	–	all	had	more	specific	expression	in	neocortical	S1	and	hippocampal	CA1	
pyramidal	cells,	medium	spiny	neurons	from	the	dorsal	striatum,	and	cortical	 interneurons	
(6	out	of	7	but	not	NMDA	receptor	complex).	These	gene	sets	are	involved	in	diverse	cellular	
functions	 and,	 as	 expected,	 some	gene	 sets	were	associated	with	different	KI	 Level	 1	 cell	
types.	For	example,	genes	intolerant	to	loss-of-function	variation	had	greater	expression	in	
progenitor	 cells	 (dopaminergic	 neuroblasts,	 neuroblasts,	 and	 embryonic	 GABAergic	
neurons).		

To	 evaluate	 whether	 these	 enrichments	 could	 be	 due	 to	 some	 inherent	 structure	 of	 the	
data,	 we	 investigated	 enrichment	 of	 gene	 sets	 previously	 associated	 with	 glial	 cells	
(Alzheimer’s	disease	and	multiple	sclerosis	susceptibility	genes),	associated	with	Mendelian	
disorders	 with	 clear	 cellular	 origins	 (leukodystrophy	 and	 abnormal	 vasculature),	 or	 had	
either	weak	or	strong	conservation	(low	or	high	dN/dS	scores	between	humans	and	mice).	
None	of	the	enrichment	profiles	looked	similar	to	that	of	the	schizophrenia-associated	lists.	

We	 next	 assessed	 how	much	 of	 the	 cell	 type-specific	 schizophrenia	 heritability	was	 from	
overlapping	 gene	 expression	 between	 cell	 types.	 For	 instance,	 the	 association	 of	 cortical	
interneurons	 is	 weaker	 than	 that	 of	 MSNs,	 but	 both	 are	 GABAergic	 neurons,	 and	
conceivably	enrichment	in	cortical	interneurons	could	be	detected	due	to	shared	expression	
of	disease	genes.	This	hypothesis	can	be	tested	using	a	resampling	without	replacement:	if	
the	 interneuron	 enrichment	 is	 driven	 solely	 by	 overlapping	 genes	 with	 MSNs,	 then	 an	
equivalent	 level	 of	 interneuron	 association	 should	 be	 obtainable	 if	 the	 scores	 of	 genes	
within	 each	 MSN	 specificity	 decile	 are	 randomized	 (Figure	 S8).	 We	 performed	 this	
randomization	10,000	times	for	each	of	the	KI	level	1	cell	types	while	controlling	for	all	four	
of	 the	 significantly	 associated	 cell	 types	 (Figure	 4a).	 This	 analysis	 revealed	 that	 the	
enrichments	of	MSNs,	 cortical	 interneurons,	and	hippocampal	CA1	pyramidal	neurons	are	
independently	associated	with	schizophrenia	(due	to	non-overlapping	gene	expression).	The	
association	with	somatosensory	pyramidal	neurons	was	found	to	be	largely	from	genes	also	
expressed	by	hippocampal	CA1	pyramidal	neurons.		

To	 use	 a	 more	 qualitative	 measure	 of	 whether	 heritability	 associated	 with	 enriched	 cell	
types	was	due	to	shared	or	distinct	sets	of	genes	we	plotted	the	overlap	of	 the	top	1,000	
genes	associated	with	schizophrenia	 (via	MAGMA)	 in	the	10%	most	specific	genes	of	each	
enriched	 class	 (Figure	 4b).	 Approximately	 half	 of	 the	 schizophrenia-associated	 genes	
enriched	 in	 pyramidal	 cells	 and	medium	 spiny	 neurons	were	 shared	 but	 those	 conferring	
risk-enrichment	 in	 interneurons	 were	 to	 a	 larger	 extent	 exclusive.	 We	 then	 evaluated	
enrichment	of	selected	gene	sets	(Rbfox	binding	genes,	genes	involved	in	synapse	function,	
dendritically	 transported	 genes,	 and	 genes	 involved	 in	 dopaminergic	 signaling;	
Supplementary	Methods)	 in	 the	different	areas	of	Figure	4b	using	a	hypergeometric	 test.	
The	most	 associated	 Rbfox	 genes	were	 enriched	 in	 CA1	 pyramidal	 cells,	 genes	 related	 to	
dopamine	signaling	were	enriched	in	medium	spiny	neurons,	and	synaptic	genes	associated	
with	schizophrenia	were	shared	between	CA1	and	S1	pyramidal	cells	but	largely	separate	in	
cortical	interneurons	and	medium	spiny	neurons	(Figure	4c).	These	findings	show	that	each	
larger	 neuronal	 class	 express	 a	 non-overlapping	 set	 of	 risk	 genes	 even	 within	 the	 same	
functional	set	(e.g.	synapse).	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 2, 2017. ; https://doi.org/10.1101/145466doi: bioRxiv preprint 

https://doi.org/10.1101/145466
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page	6	of	41	

Our	 results	 provide	 a	 parsimonious	 explanation:	 the	 primary	 genetic	 results	 pointed	 at	 a	
limited	 set	 of	 brain	 cells,	 and	 the	 gene	 sets	 associated	 with	 schizophrenia	 (including	
antipsychotic	medication	targets)	pointed	at	the	same	cells.	The	strong	enrichment	found	in	
the	mouse	data	was	at	least	partly	confirmed	in	the	limited	human	data	sets	available.	Thus,	
our	results	suggest	that	these	discrete	cell	types	are	central	to	the	etiology	of	schizophrenia,	
and	provide	an	empirical	rationale	for	deeper	investigation	of	these	cell	types	in	regard	to	
the	basis	of	 schizophrenia.	 These	 results	 can	be	used	 to	guide	 in	 vivo	 studies	and	 in	 vitro	
modeling	 (e.g.,	 patient-derived	 iPSCs)	 and	provide	a	basis	 for	 analyzing	how	different	 risk	
genes	interact	to	produce	the	symptoms	of	schizophrenia.	This	approach	can	be	generalized	
to	understand	other	genetically	complex	brain	disorders.		
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Figure	1.	Specificity	metric	calculated	from	single	cell	transcriptome	sequencing	data	can	be	
used	to	test	for	increased	burden	of	schizophrenia	heritability	in	brain	cell	types.	

(A)	 Comparison	 of	 Level	 2	 cell	 type	 categories	 and	 number	 of	 cells	 with	 snRNAseq	 or	
scRNAseq	 from	adult	brain	 tissue	 (excluding	 retina).	Circles	 (plum)	are	mouse	 studies	and	
diamonds	(blue)	are	human	studies.	See	Table	S2	for	citations.	AIBS=Allen	Institute	for	Brain	
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Science.	 KI=Karolinska	 Institutet.	 (B)	 Histogram	 of	 specificity	 metric	 (SMSN,KI)	 for	 medium	
spiny	 neurons	 from	 the	 KI	 superset	 level	 1.	 Colored	 regions	 indicate	 deciles	 (the	 brown	
region	contains	the	genes	most	specific	 to	MSNs).	Specificity	value	for	dopamine	receptor	
D2	 (Drd2,	SMSN,KI,Drd2=0.17)	 is	 indicated	by	the	arrow.	 (C)	Specificity	values	 in	 the	KI	 level	1	
dataset	for	a	range	of	known	cell	type	markers.	(D)	Enrichment	of	schizophrenia	heritability	
in	each	of	the	specificity	deciles	for	medium	spiny	neurons	(calculated	using	LDSC).	Color	of	
dots	 corresponds	 to	 regions	 of	 the	 specificity	 matrix	 in	 B.	 Error	 bars	 indicate	 the	 95%	
confidence	 intervals.	 The	 light	 blue	 dot	 (marked	 'X')	 represents	 all	 SNPs	which	map	 onto	
named	 transcripts	which	 are	 not	MGI	 annotated	 genes	 or	which	map	onto	 a	 gene	which	
does	not	have	a	1:1	mouse:human	homolog.	The	dark	blue	dot	(marked	'N')	represents	all	
SNPs	which	map	onto	genes	not	expressed	 in	MSNs.	Blue	 line	 slows	 the	 linear	 regression	
slope	 fitted	 to	 the	 enrichment	 values.	 (E)	 Enrichment	of	 height	 heritability	 in	 each	of	 the	
specificity	deciles	for	MSNs.		
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Figure	2.	Evaluation	of	enrichment	of	common	variant	CLOZUK	schizophrenia	GWA	results	
in	brain	scRNAseq	or	snRNAseq	datasets	from	adult	mouse	and	human.		

(A)	 KI	 Level	 1	 brain	 cell	 types.	 Both	 methods	 show	 enrichment	 for	 pyramidal	 neurons	
(somatosensory	cortex	and	hippocampus	CA1),	striatal	medium	spiny	neurons,	and	cortical	
interneurons.	 The	 black	 line	 is	 the	 Bonferroni	 significance	 threshold.	 (B)	 Heat	 map	 of	
enrichment	probabilities	of	diverse	human	GWA	with	KI	Level	1	mouse	brain	cell	types	using	
MAGMA.	Bonferroni	significant	results	are	marked	with	red	borders.	The	CLOZUK	results	do	
not	 generalize	 indiscriminately	 across	 human	 diseases/traits.	 Unlike	 schizophrenia,	 major	
depressive	 disorder	 (MDD)	 is	 primarily	 enriched	 in	 cortical	 interneurons	 and	 embryonic	
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midbrain	neurons.	Total	number	of	cases	and	controls	used	in	the	GWAS	are	shown	in	the	
top	bar	plot	where	red	dots	mark	the	number	of	genome-wide	significant	loci	identified.	(C)	
Human	 mid-temporal	 cortex	 Level	 1	 brain	 cell	 types	 from	 snRNAseq.	 Cortical	 pyramidal	
neurons	and	cortical	interneurons	show	significant	enrichment.	Oligodendrocyte	precursors	
also	 show	 enrichment	 that	 was	 not	 observed	 in	 the	 KI	 Level	 1	 data.	 (D)	 Heat	 map	 of	
enrichment	of	diverse	human	GWA	with	human	mid-temporal	cortex	Level	1	brain	cell	types	
using	MAGMA.	 The	CLOZUK	 results	 do	not	 generalize	 across	 human	diseases.	MDD	again	
shows	significant	enrichments	in	cortical	interneurons.	Common	variant	genetic	associations	
for	Alzheimer’s	disease	were	enriched	in	microglia.	
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Figure	3.	Cell	class	enrichment	of	schizophrenia-associated	gene	sets	(Table	S1)	using	EWCE.		

(A)	Antipsychotic	medication	targets.	 (B-D)	Gene	sets	previously	shown	to	be	enriched	for	
schizophrenia	 risk	 genes	 (B)	 Genes	 intolerant	 to	 loss-of-function	 variation.	 (C)	 Gene	 sets	
defined	by	known	DNA	or	RNA	interactions.	(D)	Synaptic	gene	sets.	(E)	Gene	sets	unrelated	
to	 schizophrenia:	 Alzheimer’s	 disease	 susceptibility	 genes;	 genes	 associated	 with	 Human	
Phenotype	Ontology	 terms	 for	 leukodystrophy;	multiple	 sclerosis	 susceptibility	 genes	 and	
abnormal	vasculature;	and	the	top	500	genes	with	lowest	or	highest	dN/dS	ratios	between	
human	 and	 mice	 (i.e.,	 non-synonymous	 to	 synonymous	 exon	 changes,	 a	 measure	 of	
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conservation).	Nearly	all	KI	Level	1	cell	types	associated	with	schizophrenia	(medium	spiny	
neurons,	pyramidal	CA1,	pyramidal	SS,	and	cortical	interneurons)	show	enrichment	for	gene	
sets	 in	 A–D.	 The	 gene	 sets	 shown	 in	 E	 show	 distinct	 cell	 type	 enrichments	which	 largely	
correspond	to	prior	expectations.	Asterisks	denote	Bonferroni	corrected	p-value	<0.05.		
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Figure	 4.	 CA1	 pyramidal	 neurons,	 medium	 spiny	 neurons,	 and	 cortical	 Interneurons	 are	
independently	associated	with	schizophrenia	and	distinct	molecular	pathways	contribute	to	
each	cell	type.		

(A)	Conditional	enrichment	analysis	accounting	for	correlated	gene	expression	between	cell	
types.	 The	 leftmost	 column	 show	 baseline	 cell	 type	 enrichment	 probabilities	 values	
PcelltypeY,baseline	 for	 schizophrenia	 calculated	 by	 directly	 fitting	 a	 linear	 model	 to	 specificity	
deciles	against	MAGMA	gene	enrichment	z-scores	(where	cell	type	Y	denotes	the	cell	type	
labelled	 on	 the	 y-axis).	 The	 central	 four	 columns	 show	 PcelltypeY,celltypeX	 ,	 the	 enrichment	
probability	of	cell	 type	Y	after	accounting	for	correlated	expression	 in	cell	type	(calculated	
using	 a	 resampling	 method	 described	 in	 the	 methods).	 Values	 of	 log(PcelltypeY,celltypeX)	
approaching	 zero	 indicate	 that	 after	 accounting	 for	 expression	 of	 cell	 type	 X,	 there	 is	 no	
enrichment	in	cell	type	Y.	The	red	box	highlights	that	after	accounting	for	expression	in	CA1	
pyramidal	neurons	there	is	no	longer	any	enrichment	in	somatosensory	pyramidal	neurons;	
note	that	the	converse	 is	not	true.	The	bar	plot	on	the	right	shows	the	minimum	value	of	
PcelltypeY,celltypeX	excluding	self-self-comparisons;	the	vertical	line	marks	p=0.05.	(B)	Overlap	of	
genes	 in	 the	 schizophrenia-associated	 cell	 types.	 Venn-diagram	 of	 the	 top	 1,000	
schizophrenia-associated	genes	from	the	highest	enrichment-deciles	in	the	four	Level	1	cell	
types.	 (C)	P-values	 for	enrichment	of	genes	 in	 the	Figure	4b	Venn	diagram	regions.	There	
was	enrichment	for	Rbfox	 in	CA1	pyramidal	cells	and	dopamine	signaling	 in	medium	spiny	
neurons	 along	 with	 shared	 synaptic	 genes	 between	 pyramidal	 cells	 but	 separate	 for	
GABAergic	cells.	Areas	with	striped	shading	indicates	region	with	gene	number	<10.		
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Materials	and	Methods	

Figures	S1-S9	

Tables	S1-S4	

References	(25-61)	

	

Online	Methods	

Rationale	

The	 overall	 goal	 of	 this	 analysis	 was	 to	 attempt	 to	 connect	 human	 genomic	 findings	 to	
specific	brain	cell	types	defined	by	their	gene	expression	profiles:	to	what	specific	brain	cell	
types	do	the	common	variant	genetic	findings	for	schizophrenia	best	“fit”?	Multiple	studies	
have	approached	this	issue	3,9,13,	but	using	gene	expression	based	on	aggregates	of	millions	
of	 cells.	 We	 also	 evaluated	 whether	 gene	 sets	 previously	 implicated	 in	 schizophrenia	
mapped	to	similar	or	different	brain	cell	 types.	We	focused	on	the	KI	scRNAseq	data	from	
mouse	(Figure	1	and	Table	S2).	We	did	this	because:		

a) These	 comprise	 the	 largest	 dataset	 currently	 available	 generated	 using	 identical	
procedures.	As	shown	in	Figure	1,	the	total	cells	with	scRNAseq	(9,970)	and	Level	2	
cell	types	(149)	exceed	all	other	studies.		

b) The	mouse	data	include	more	brain	regions	than	in	human.	These	regions	include	a	
better	 sampling	of	 those	believed	 to	be	 important	 in	 schizophrenia	 (e.g.,	 currently	
no	data	from	human	striatum	or	adult	dopaminergic	neurons).		

c) Due	 to	 the	 use	 of	 unique	molecular	 identifiers	 in	 the	 KI	 data,	 the	 scRNAseq	 data	
reflect	absolute	counts,	and	are	directly	comparable	across	experiments	(particularly	
for	our	goal	of	evaluating	enrichment).		

d) The	mouse	 data	 appear	 to	 have	 better	 signal	 quality.	 This	 could	 be	 due	 to	 better	
experimental	control	or	the	ability	to	isolate	whole	cells	(excluding	distal	neurites)	of	
good	quality	 from	mouse	but	only	nuclei	or	 lower	quality	cells	 from	adult	humans.	
For	example,	sampling	1,500-3,000	cells	in	cortical	mouse	data	sets	(KI	and	Tasic	et	
al.	 21)	 allowed	 identification	 of	 24	 and	 42	 cortical	 neuronal	 subtypes.	 In	 contrast,	
sequencing	over	3,000	human	neuronal	nuclei	23	or	466	whole	neurons	22	allowed	for	
the	 identification	of	only	16	and	7	subtypes.	More	types	of	 inhibitory	 interneurons	
(16-23)	have	been	identified	in	mouse	but	only	8	in	human	despite	equal	or	greater	
sequencing	depth	but	future	work	may	improve	the	ability	to	discriminate	cell	types	
using	single	nuclei	RNA-Seq	data.		

e) Use	 of	 laboratory	 mice	 allow	 far	 greater	 experimental	 control	 of	 impactful	
perimortem	and	postmortem	events.	All	mice	are	healthy	without	systemic	illnesses	
and	medication-free.	 All	mice	 can	 be	 euthanized	 in	 the	 same	way,	 and	 time	 from	
death	 to	 tissue	 processing	 is	 standardized	 and	 measured	 in	 minutes	 rather	 than	
hours.	 Causes	 of	 death	 in	 human	 are	 highly	 variable,	 and	 perimortem	 events	 can	
alter	brain	gene	expression	(e.g.,	systemic	disease	or	prolonged	hypoxia).	Although	
human	brain	 tissue	 can	be	obtained	during	 certain	 neurosurgical	 procedures	 (e.g.,	
resection	of	a	seizure	focus	in	refractory	epilepsy),	the	individuals	undergoing	these	
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procedures	 are	 atypical	 and	 subject	 to	 the	 effects	 of	 chronic	 brain	 disease	 and	
medication.		

Thus,	from	a	practical	perspective,	more	cell	types	have	been	identified	in	mouse,	and	the	KI	
data	 comprise	over	half	of	 currently	available	brain	 scRNAseq	data.	Key	 findings	 in	 the	KI	
dataset	were	 verified	 in	 other	 human	 and	mouse	 datasets.	We	 also	 applied	 independent	
statistical	 methods	 predicated	 on	 different	 assumptions	 and	 algorithms	 to	 evaluate	 the	
relation	of	brain	cell	types	to	GWA	results	for	schizophrenia.		

Limitations	

Nonetheless,	 despite	 our	 use	 of	 multiple	 statistical	 methods	 and	 efforts	 to	 identify	 and	
resolve	any	spurious	explanations	for	our	findings,	our	work	has	to	be	considered	in	light	of	
inevitable	 limitations.	 First,	 although	 we	 used	 the	 largest	 available	 schizophrenia	 GWA	
dataset,	we	 still	 have	an	 incomplete	portrait	of	 the	genetic	 architecture	of	 schizophrenia.	
This	 is	 an	 active	 area,	 and	more	 informative	 results	 are	 sure	 to	 emerge	 in	 the	 next	 few	
years.	Second,	although	the	KI	scRNAseq	data	cover	a	broad	range	of	brain	regions	thought	
to	 be	 relevant	 to	 the	 neurobiology	 of	 schizophrenia,	 extensive	 coverage	 of	 cortical	 and	
striatal	development	is	lacking	at	present	(gestation,	early	postnatal,	or	adolescence).		

Third,	we	focus	principally	on	mouse	scRNAseq	data.	Our	reasons	for	doing	so	are	explained	
above.	 A	 key	 part	 of	 our	 approach	 is	 replication	 of	 the	main	 findings	 in	 human	datasets.	
However,	we	would	be	remiss	not	to	consider	the	comparability	of	mouse	and	human.	Mice	
are	widely	 used	 for	modeling	 brain	 diseases.	 There	 are	 relatively	 high	degrees	 of	mouse-
human	conservation	in	genes	expressed	in	brain.	The	most	extensive	study	compared	RNA-
seq	 data	 from	 six	 organs	 (cortex,	 cerebellum,	 heart,	 kidney,	 liver,	 and	 testis)	 across	 ten	
species	 (human,	 chimpanzee,	 bonobo,	 gorilla,	 orangutan,	 macaque,	 mouse,	 opossum,	
platypus	 and	 chicken)	 25.	 Using	 principal	 components	 analysis,	 the	 largest	 amount	 of	
variation	(PCs	1	and	2)	explained	differences	between	organs	rather	than	between	species.	
Gene	 expression	 in	 brain	 (including	 several	 key	 gene	 expression	 modules)	 was	 more	
conserved	between	species	than	any	of	the	other	tissues.	These	observations	were	broadly	
replicated	using	scRNAseq	 in	ventral	midbrain	26.	Furthermore,	75%	of	genes	show	similar	
laminar	patterning	in	mouse	and	human	cortex	27.	

Fourth,	 whatever	 the	 general	 similarities,	 there	 are	 certainly	 differences	 between	mouse	
and	human	brain	26,	and	there	are	even	cortical	cells	present	in	human	but	not	mouse	(e.g.,	
spindle	 or	 von	 Economo	 neurons).	 We	 therefore	 evaluated	 mouse-human	 gene	

conservation.	 Using	 empirical	 measures	 of	 gene	 conservation	 (Ensembl,	 URLs),	 we	
determined	that	the	mouse	genes	in	the	KI	Level	1	and	Level	2	gene	expression	dataset	that	
we	 analyzed	 were	 89%	 identical	 (median,	 interquartile	 range	 80-95%)	 to	 human	 1:1	
homologues.	 For	 these	 genes,	 the	 ratio	 of	 non-synonymous	 to	 synonymous	 amino	 acid	
changes	 (dN/dS)	was	 0.094	 (median,	 interquartile	 range	 0.045-0.173):	mutations	 in	 these	
genes	are	thus	subject	to	strong	negative	selection	(dN/dS	=	1	is	consistent	with	neutrality).	
Pathway	analysis	of	 the	400	genes	with	 the	 largest	dN/dS	values	 revealed	enrichments	 in	
genes	 involved	 in	 defense	 responses,	 inflammation,	 cytokines,	 and	 immunoglobulin	
production.	 The	 400	 genes	 with	 extremely	 low	 dN/dS	 ratios	 were	 involved	 in	 neuron	
differentiation,	RNA	splicing,	and	mRNA	processing.		
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In	conclusion,	for	most	brain	cell	types,	use	of	KI	mouse	scRNAseq	data	was	defensible	and	
reasonable	(particularly	given	verification	in	human	transcriptomic	data).	The	major	caution	
is	 with	 respect	 to	 cells	 with	 prominent	 immune	 function	 (e.g.,	 microglia).	 (See	 also	 the	
section	on	mouse-human	gene	mapping	below.)		

We	can	 implicate	 a	 particular	 cell	 type	 (i.e.,	 present	 consistent	 positive	 evidence)	 but	 it	 is	
premature	 to	 exclude	 cell	 types	 for	 which	 we	 do	 not	 have	 data,	 or	 those	 with	 dissimilar	
function	or	under	selection	pressure	between	mouse	and	human.		

Single-cell	transcriptome	data	

Table	S2	shows	the	single	nuclei	or	scRNAseq	data	from	adult	mouse	or	human	brain.	These	
include	 published	 and	 unpublished	 data	 (using	 the	 same	 protocols	 as	 in	 peer-reviewed	
papers).	To	the	best	of	our	knowledge,	these	comprise	all	or	nearly	all	of	the	available	adult	
brain	single	nuclei	or	scRNAseq	data.	Most	of	the	available	data	are	from	mouse,	and	a	large	
fraction	of	the	human	data	are	from	one	person	23.		

We	 focused	 on	 a	 superset	 of	 brain	 scRNAseq	 data	 from	 KI	 generated	 using	 identical	
methods	 from	 the	 same	 labs	 with	 the	 use	 of	 unique	molecular	 identifiers	 that	 allow	 for	
direct	comparison	of	transcription	data	across	regions	(see	above	for	full	rationale).	The	KI	
mouse	superset	of	9,970	cells	and	149	Level	2	cell	types	 is	more	extensive	than	any	other	
single	nuclei	or	scRNAseq	dataset	now	available,	and	includes	most	brain	regions	thought	to	
be	salient	to	schizophrenia.	The	papers	contain	full	method	details.	Briefly,	the	KI	scRNAseq	
data	were	generated	using	the	same	methods	(Fluidigm	C1	with	 Illumina	50	bp	single	end	
sequencing)	 with	 the	 use	 of	 unique	 molecular	 identifiers	 to	 enable	 absolute	 molecular	
counts.	 In	 the	 first	 paper	 describing	 the	method	 it	was	 estimated	 that	 an	 average	 of	 1.2	
million	mapped	reads	per	cells	was	sequenced	(28).	Level	1	and	2	clustering	was	done	using	
the	 BACKSPIN	 algorithm	 28.	 All	 cells	 lacking	 annotations	were	 excluded.	 For	 non-neuronal	
populations,	except	 cells	 from	oligodendrocyte	 lineage	and	VLMCs,	we	only	 included	cells	
from	 Zeisel	 et	 al	 2015	 in	 the	 KI	 data	 set.	 The	 level	 2	 CA1	 pyramidal	 cell	 contain	 a	 small	
number	of	cells	 from	CA2	and	Subiculum	resulting	 from	dissection	 inaccuracies,	 these	are	
represented	 as	 separate	 level	 2	 classes.	 The	 resulting	 data	 have	 been	 shown	 to	 be	
insensitive	to	 linear	variation	 in	total	reads	per	cell.	 If	a	gene	was	detected	in	one	dataset	
and	not	in	another,	it	was	considered	to	have	zero	reads	in	all	cells	where	it	had	not	been	
detected.		

To	confirm	that	no	batch	effects	exist	across	KI	regional	subdatasets	that	may	influence	the	
merged	results,	we	plotted	three	cell	types	using	tSNE	which	were	expected	to	show	little	
real	regional	variation:	endothelial	cells,	vascular	smooth	muscle	cells	and	microglia	(Figure	
S9).	The	tSNE	plots	were	generated	in	R	using	the	Rtsne	and	Scater	packages	using	500	of	
the	most	variable	features.	Only	the	embryonic	midbrain	cells	clustered	separately,	as	was	
expected	due	to	the	difference	between	the	embryonic	and	adult	brain.		

We	 include	 unpublished	 data	 generated	 by	 the	 Hjerling-Leffler	 and	 Linnarsson	 labs	 at	 KI	
using	the	same	methods	as	in	Zeisel	et	al.	28.	Cells	were	isolated	from	dorsolateral	striatum	
from	 p21-p30	 transgenic	mice,	 the	 same	 age	 span	 as	 in	 Zeisel	 et	 al.	 28.	 Coverage	 of	 rare	
interneuron	populations	was	enhanced	by	FACS	sorting	cells	 from	either	5HT3a-EGFP	or	a	
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Lhx6cre::TdTomato	 line.	 The	 cortical	 parvalbuminergic	 cells	 and	 striatal	 neurons	 were	
captured	and	prepared	for	sequencing	as	described	in	Zeisel	et	al.	28.		

The	 largest	 human	 dataset	 is	 an	 unpublished	 data	 set	 from	 the	 Allen	 Institute	 for	 Brain	
Science	which	consisted	of	4401	cells	from	middle	temporal	gyrus	of	3	post-mortem	brains	
from	healthy,	adult	subjects.	Nuclei	were	dissociated	from	cortical	tissue	and	FACS	isolated	
based	 on	 NeuN	 staining,	 resulting	 in	 approximately	 90%	 NeuN+	 and	 10%	 NeuN-	 nuclei.	
Single	 nucleus	 cDNA	 libraries	 were	 generated	 using	 SMARTerV4	 and	 Nextera	 XT	 and	
sequenced	to	a	depth	of	approximately	2	million	reads	per	sample.	Reads	were	aligned	with	
Bowtie	 and	 gene	 expression	 quantified	with	 RSEM	 plus	 intronic	 reads	 and	 normalized	 to	
counts	 per	 million.	 Clustering	 was	 performed	 with	 iterative	 PCA	 and	 tSNE	 with	 cluster	
robustness	 assessed	 with	 100	 bootstrap	 replicates.	 Level	 1	 clusters	 were	 characterized	
based	on	expression	of	known	marker	genes	and	included	two	broad	classes	of	neurons	–	
GABAergic	interneurons	and	glutamatergic	projection	neurons	–	and	4	non-neuronal	types:	
astrocytes,	oligodendrocyte	precursors,	mature	oligodendrocytes,	and	microglia.	

Mouse-to-human	gene	mapping	

Because	most	of	the	scRNAseq	data	were	from	mouse	brain	and	the	schizophrenia	genomic	
results	are	from	human,	it	was	necessary	to	map	1:1	homologs	between	M.	musculus	and	H.	
sapiens.	 To	 accomplish	 this,	 used	 a	 best-practice	 approach	 in	 consultation	 with	 a	 senior	
mouse	 geneticist	 (UNC	 Prof	 Fernando	 Pardo-Manuel	 de	 Villena	 de	 L’Epine,	 personal	
communication).	We	used	the	expert	curated	human-mouse	homolog	list	(Mouse	Genome	
Informatics,	 Jackson	 Laboratory,	 URLs,	 version	 of	 11/22/2016).	 Only	 genes	 with	 a	 high-
confidence,	 1:1	 mapping	 were	 retained.	 A	 large	 fraction	 of	 non-matches	 are	 reasonable	
given	 evolutionary	 differences	 between	 human	 and	 mouse	 (e.g.,	 the	 distinctiveness	 of	
olfactory	or	volmeronasal	receptor	genes	given	the	greater	importance	of	smell	in	mouse).	
Nonetheless,	we	evaluated	the	quality	and	coherence	of	the	mapping.		

• The	mouse	brain	cell	expression	 levels	for	the	KI	Level	1	cell	 types	were	similar	for	
mouse	genes	with	and	without	a	1:1	human	homologue.	This	 is	 inconsistent	with	a	
strong	bias	due	to	the	success/failure	of	identifying	a	human	homologue.		

• A	high	fraction	(93%)	of	the	KI	genes	detected	in	mouse	brain	samples	that	mapped	
to	a	human	gene	were	expressed	in	human	brain	(CommonMind	DLPFC	RNA-seq)	or	
27	 samples	 with	 RNA-seq	 from	 the	 Sullivan	 lab	 (unpublished,	 DLPFC	 from	 9	
schizophrenia	cases	and	9	controls	plus	9	fetal	frontal	cortex	samples).	The	ones	that	
did	not	 (7%)	were	expressed	at	 considerably	 lower	 levels	 in	mouse	brain	or	 in	 cell	
types	not	prevalent	in	cortex.		

• Of	genes	with	evidence	of	expression	in	human	brain	(via	frontal	cortex	RNA-seq	as	
noted	 above),	 human	 homologues	 of	 KI	 mouse	 genes	 accounted	 for	 93.2%	 of	
intellectual	 disability	 genes,	 93.7%	 of	 developmental	 delay	 genes,	 93.8%	 of	 genes	
with	a	CHD8	binding	site,	94.4%	of	post-synaptic	genes,	95.0%	of	proteins	involved	in	
the	 ciliary	 proteome,	 95.1%	of	 genes	 intolerant	 to	 loss-of-function	 variation	 (ExAC	
pLI	>	0.9),	95.6%	of	pre-synaptic	genes,	and	96.4%	of	FMRP	interactors.		

We	 evaluated	 the	mapping	 carefully	 and	 the	 results	 above	 suggest	 the	 coherence	 of	 the	
mouse-human	mapping.	All	key	findings	from	the	KI	mouse	scRNAseq	data	were	evaluated	
in	other	mouse	and	human	brain	scRNAseq	datasets.		
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Calculation	of	cell	type	expression	proportion	

A	key	metric	used	for	our	cell	type	analyses	is	the	proportion	of	expression	for	a	given	gene.	
This	metric	is	calculated	separately	for	each	single	cell	dataset	(although	only	one	specificity	
measure	is	used	for	the	merged	KI	superset).	This	is	a	measure	of	cell	type	specificity	scaled	
so	that	a	value	of	1	implies	that	the	gene	is	completely	specific	to	a	cell	type	and	a	value	of	0	
implies	the	gene	is	not	expressed	in	that	cell	type.	We	denote	this	specificity	metric	as	!",$ 	
for	gene	g	and	cell	type	c.	Values	of	!",$ 	were	calculated	for	the	brain	scRNAseq	datasets	in	
Table	S2.		

Each	dataset	contains	scRNAseq	results	from	w	cells	associated	with	k	cell	types.	Each	of	the	
k	 cell	 types	 is	 associated	 with	 a	 numerical	 index	 from	 the	 set	 1, . . , ' .	 The	 cell	 type	
annotations	for	cell	i	are	stored	using	a	numerical	index	in	L,	such	that	()**+=5	indicates	that	
the	1005th	cell	is	of	the	5th	cell	type.	We	denote	,$ 	as	the	number	of	cells	from	the	cell-type	
indexed	 by	 c.	 The	 expression	 proportion	 for	 gene	 g	 and	 cell	 type	 c	 (where	 -",. 	 is	 the	
expression	of	gene	g	in	cell	i)	is	given	by:		

	 !",$ = 	
1 ",.,$2

345 67

	 1 ",.,82
345 69

:
945

	 	 ; <, =, > =
-",., (. = >

0, (. ≠ >
	

This	 metric	 for	 cell	 specificity	 is	 closely	 related	 to	 other	 measures	 29.	 For	 instance,	 the	
maximum	value	of	s	per	gene	yields	similar	results	to	 t	such	that	smax	>	0.5	is	equivalent	to	t	
>	0.94.		

Thresholding	of	low	expressed	transcripts	

Because	 !",$ 	 is	 independent	 of	 the	 overall	 expression	 level	 of	 a	 gene,	 it	 is	 desirable	 to	
exclude	genes	with	very	low	or	sporadic	gene	expression	levels,	as	a	small	number	of	reads	
in	 one	 cell	 can	 falsely	 make	 that	 gene	 appear	 to	 be	 a	 highly	 specific	 cell	 marker.	 Direct	
thresholding	of	 low	expressed	genes	 is	not	 ideal	for	performing	this	as	thresholds	need	to	
be	set	 individually	 for	each	dataset,	and	some	 individual	 cells	 can	show	exceptionally	and	
anomalously	high	expression	of	the	sporadically	expressed	gene.	We	reasoned	that	all	 the	
genes	we	want	 to	 include	 in	 the	 study	 should	 be	 differentially	 expressed	 in	 at	 least	 one	
Level	2	cell	 type	 included	in	the	study.	We	thus	excluded	sporadically	expressed	genes	via	
ANOVA	with	 the	Level	2	cell	 type	annotations	as	groups,	and	excluding	all	genes	with	P	>	
0.00001.	Gene	 filtering	was	performed	separately	 for	each	single	cell	dataset;	 importantly	
though,	 the	 KI	 dataset	was	 filtered	 as	 a	merged	 superset.	 A	 consequence	 of	 this	 (and	 of	
differences	 in	 sample	 preparation	 and	 sequencing)	 is	 that	 different	 genes	 are	 used	 for	
example	 in	 the	 analysis	 of	 the	 KI	 superset	 than	 were	 used	 for	 the	 Habib	 et	 al	 (Mouse	
Hippocampus	Div-Seq)	dataset.	 For	datasets	where	 level	2	 cell	 type	annotations	were	not	
available	(e.g.	the	Allan	Brain	Institute	Human	Cortex	dataset)	we	used	the	same	approach	
but	with	level	1	cell	type	annotations	instead.	

LD	Score	Regression	(LDSC)	and	partitioning	heritability	

To	partition	heritability	using	LDSC	(URLs)	9,	it	is	necessary	to	pass	LDSC	annotation	files	(one	
per	 chromosome)	with	 a	 row	per	 SNP	and	a	 column	 for	 each	 sub-annotation	 (1=a	 SNP	 is	
part	 of	 that	 sub-annotation).	 To	map	 SNPs	 to	 genes,	 we	 used	 dbSNP	 annotations	 (URLs,	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 2, 2017. ; https://doi.org/10.1101/145466doi: bioRxiv preprint 

https://doi.org/10.1101/145466
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page	22	of	41	

build	 147	 and	 hg19/NCBI	 Build	 37	 coordinates).	 All	 SNPs	 not	 annotated	 in	 this	 file	 were	
given	a	value	of	0	in	all	sub-annotations.	Template	annotation	files	obtained	from	the	LDSC	
Github	 repository	 were	 used	 as	 the	 basis	 for	 all	 cell	 type	 and	 gene	 set	 annotations	
(“cell_type_group.1*”).	Only	SNPs	present	in	the	template	files	were	used.	If	an	annotation	
had	no	SNPs,	 then	50	random	SNPs	 from	the	same	chromosome	were	selected	as	part	of	
the	annotation	(if	no	SNPs	are	selected	then	the	software	fails	to	calculate	heritability).		

Annotation	 files	 were	 created	 for	 each	 cell	 type	 for	 which	 we	 applied	 partitioned	 LDSC.	
Twelve	 sub-annotations	 were	 created	 for	 each	 cell	 type.	 The	 first	 represented	 all	 SNPs	
which	map	onto	named	regions	which	are	not	MGI	annotated	genes	or	which	map	onto	a	
gene	which	 does	 not	 have	 a	 1:1	mouse:human	 homolog.	 The	 second	 contained	 all	 SNPs	
which	 map	 onto	 genes	 not	 expressed	 in	 a	 cell	 type.	 The	 other	 10	 sub-annotations	 are	
associated	with	genes	with	 increasing	 levels	of	expression	specificity	 for	 that	cell	 type.	To	
assign	 these,	 the	 deciles	 of	 !",$ 	 were	 calculated	 over	 all	 values	 of	g	 (separately	 for	 each	
value	 of	 c)	 to	 give	 ten	 equal	 length	 sets	 of	 genes.	 These	 are	 then	 mapped	 to	 SNPs	 as	
described	above.	To	partition	heritability	amongst	the	gene	sets	(not	the	cell	types),	a	single	
set	 of	 annotation	 files	was	 created	with	 each	 of	 the	 gene	 sets	 used	 as	 a	 sub-annotation	
column.		

LDSC	was	then	run	using	associated	data	files	from	phase	3	of	the	1000	Genomes	Project	30.	
We	computed	LD	scores	for	cell	type	annotations	using	a	1	cM	window	(--ld-wind-cm	1).	As	
recommended	(LDSC	Github	Wiki,	URLs),	we	restricted	the	analysis	to	using	Hapmap3	SNPs,	
and,	as	in	the	original	report	9,	these	analyses	excluded	the	major	histocompatibility	region	
due	 to	 its	unusual	gene	density	 (second	highest	 in	 the	human	genome)	and	exceptionally	
high	LD	(highest	in	the	genome).	The	LDSC	“munge_sumstats.py”	script	was	used	to	prepare	
the	summary	statistics	files.	The	heritability	is	then	partitioned	to	each	sub-annotation.	We	
used	LD	weights	calculated	for	HapMap3	SNPs,	excluding	the	MHC	region,	for	the	regression	
weights	available	from	the	Github	page	(files	in	the	‘weights_hm3_no_hla’	folder).		

For	the	LD	score	files	used	as	independent	variables	in	LD	Score	regression	we	used	the	full	
baseline	 model	 9	 and	 the	 annotations	 described	 above.	 We	 used	 the	 ‘--overlap-annot’	
argument	and	the	minor	allele	frequency	files	(‘1000G_Phase3_frq’	folder	via	the	‘--frqfile-
chr’	argument,	URLs).		

Partitioned	 LDSC	 computes	 the	proportion	of	heritability	 associated	with	each	annotation	
column	while	 taking	 into	 account	 all	 other	 annotations.	 Based	 on	 the	 proportion	 of	 total	
SNPs	in	an	annotation,	LDSC	calculates	an	enrichment	score	and	an	associated	enrichment	
P-value	 (one-tailed	 as	 we	 were	 only	 interested	 in	 annotations	 showing	 enrichments	 of	
heritability).	All	figures	showing	partitioned	LDSC	results	show	P-values	associated	with	the	
enrichment	of	the	most	specific	decile	for	each	cell	type.		

Cell	type	identification	using	MAGMA		

We	 used	MAGMA	 (v1.04)	 18,	 a	 leading	 program	 for	 gene	 set	 analysis	 31,	 to	 evaluate	 the	
association	 of	 gene-level	 schizophrenia	 association	 statistics	 with	 cell-type	 specific	
expression	 under	 the	 hypothesis	 that,	 in	 relevant	 cell	 types,	 genes	with	 greater	 cell	 type	
specificity	should	be	more	associated	with	schizophrenia.	
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Gene	level	association	statistics	were	obtained	using	MAGMA	(window	size	10	kb	upstream	
and	 1.5	 kb	 downstream	 of	 each	 gene	 –	 see	 below	 for	 discussion	 window	 size)	 using	 an	
approach	based	on	Brown’s	method	32	(model:	snpwise-unweighted).	This	approach	allows	
to	 combine	 P-values	 in	 the	 specified	 windows	 surrounding	 each	 gene	 into	 a	 gene-level	
pvalue	 while	 accounting	 for	 LD	 (computed	 using	 the	 European	 panel	 of	 1000	 Genomes	
Project	Phase	3	30).	

The	 tissue	 specific	 expression	 metric	 for	 each	 gene	 in	 each	 cell	 type	 was	 obtained	 by	
dividing	the	gene	expression	level	 in	a	particular	cell	type	by	the	sum	of	the	expression	of	
the	gene	 in	all	 cell	 types	 (see	!",$,	defined	above).	The	distributions	of	!",$ 	were	complex	
(point	mass	at	zero	expression,	substantial	right-skewing).		

For	 each	 cell	 type,	 we	 transformed	 S	 into	 41	 bins	 (0=not	 expressed,	 1=below	 2.5th	
percentile,	2=2.5-5th	percentile,	…,	40=above	97.5th	percentile),	so	that	each	cell	type	would	
be	comparable.		

MAGMA	 was	 then	 used	 to	 test	 for	 a	 positive	 association	 (one-sided	 test)	 between	 the	
binned	 fractions	 in	 each	 cell	 type	 and	 the	 gene-level	 associations	 (option	 --gene-covar	
onesided).	For	a	given	mouse	or	human	brain	cell	type,	this	tested	whether	increasing	tissue	
specificity	of	gene	expression	is	associated	with	increasing	common-variant	genetic	findings	
for	 schizophrenia	 using	 information	 from	 all	 genes.	 By	 default,	 the	 linear	 regression	
performed	by	MAGMA	is	conditioned	on	the	following	covariates:	gene	size,	log(gene	size),	
gene	density	(representing	the	relative	level	of	LD	between	SNPs	in	that	gene)	and	log(gene	
density).	The	model	also	takes	into	account	gene-gene	correlations.	

In	regard	to	choice	of	window	size/bin	boundaries,	MAGMA	by	default	combines	P-values	of	
SNPs	located	within	gene	boundaries	(±0	kb).	We	decided	to	extend	the	default	window	size	
as	a	large	fraction	of	trait-associated	SNPs	are	located	just	outside	genes	in	regions	likely	to	
regulate	gene	expression	3,33.	One	of	the	authors	of	MAGMA	(Christiaan	de	Leeuw)	advised	
us	to	expand	the	window	size	by	a	limited	amount	in	order	to	keep	the	ability	to	distinguish	
the	 genetic	 contribution	of	 genes	 located	 in	 close	 proximity.	 Therefore,	we	 set	 expanded	
gene	 boundaries	 to	 10	 kb	 upstream–1.5	 kb	 downstream.	 We	 evaluated	 the	 effect	 of	
different	choices	of	bin	size	including	35	kb	upstream–10	kb	downstream	(as	often	used	by	
the	PGC	34),	150	kb	upstream–10	kb	downstream,	and	150	kb	upstream–150	kb	downstream	
(GTEx	 17	 Supplementary	 Figure	 9	 from).	 The	 results	 were	 not	 substantially	 altered	 by	
window	 size	 as	 the	 ranking	 of	 cell	 types	 (KI	 level	 1)	were	 very	 similar	 for	 these	 different	
window	sizes;	if	anything	ours	was	a	slightly	conservative	choice.		

Enrichment	analyses	of	gene	sets	and	antipsychotic	drug	targets	

Expression	Weighted	Cell	type	Enrichment	(EWCE,	Bioconductor,	URLs)	35	was	used	to	test	
for	 cell	 types	 which	 show	 enriched	 expression	 of	 genes	 associated	 with	 particular	
schizophrenia	associated	gene	sets.	These	analyses	used	the	same	specificity	(S)	values	for	
the	KI	Level	1	data	that	were	used	for	the	MAGMA	and	LDSC	analyses.	EWCE	was	run	with	
10,000	 bootstrap	 samples.	 Enrichment	P-values	were	 corrected	 for	multiple	 testing	 using	
the	Bonferroni	method	calculated	over	all	cell	types	and	gene	lists	tested.	EWCE	returns	a	z-
score	assessing	standard	deviations	from	the	mean.	Values	<	0	(a	depletion	of	expression)	
were	recoded	to	zero.		
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Evaluation	of	genomic	biases	

The	 algorithms	 used	 by	 LDSC	 and	 MAGMA	 both	 account	 for	 the	 non-independence	
introduced	by	linkage	disequilibrium	(LD),	or	the	tendency	for	genomic	findings	to	“cluster”	
due	to	strong	intercorrelations.	LD	block	size	(discrete	regions	of	high	correlations	between	
nearby	genetic	markers)	average	15-20	kb	 in	samples	of	European	ancestry,	but	there	are	
nearly	100	genomic	regions	with	high	LD	extending	over	1	mb	(the	extended	MHC	region	on	
human	 chromosome	 6	 is	 the	 largest	 and	 has	 very	 high	 LD	 over	 8	 mb).	 Gene	 size	 is	 an	
additional	 consideration	 for	 MAGMA	 (accounting	 for	 gene	 size	 is	 a	 component	 of	 the	
algorithm),	 particularly	 as	 brain-expressed	 genes	 are	 considerably	 larger	 than	 genes	 not	
expressed	in	brain	(mean	of	80.7	kb	vs	31.2	kb).	The	algorithms	used	by	LDSC	and	MAGMA	
have	 been	well-tested,	 and	 are	widely	 used.	However,	 it	 is	 conceivable	 that	 certain	 edge	
cases	could	defeat	algorithms	that	work	well	for	the	vast	majority	of	scenarios.	An	example	
might	be	 if	a	 large	 fraction	of	 the	genes	 that	 influence	a	brain	cell	 type	were	 located	 in	a	
region	of	very	high	LD.	First,	brain-expressed	genes	were	slightly	more	likely	to	be	in	a	large	
LD	block	(≥99th	percentile	in	size	across	the	genome),	12.4%	vs	10.2%.	In	discussion	with	the	
developers	 of	 LDSC	 and	 MAGMA,	 this	 should	 not	 yield	 an	 insuperable	 bias.	 Second,	 by	
counting	 the	 numbers	 of	 genes	 and	 brain-expressed	 genes	 per	mb,	we	 found	 that	 brain-
expressed	 genes	 in	 the	 human	 genome	 were	 reasonably	 evenly	 scattered	 across	 the	
genome	 (R2	 0.85),	 and	only	10	of	2,534	1-mb	 intervals	were	outliers.	Most	of	 these	were	
gene	 clusters	 with	 fewer	 than	 expected	 brain-expressed	 genes	 (e.g.,	 a	 late	 cornified	
envelope	gene	cluster	on	chr1:152-153	mb,	an	olfactory	gene	cluster	on	chr1:248-249	mb,	
and	a	keratin	gene	cluster	on	chr17:39-40	mb).	Third,	in	a	similar	manner,	we	evaluated	the	
locations	 of	 the	 human	1:1	mapped	 genes	 influential	 to	 the	 KI	 Level	 1	 classifications	 and	
found	these	to	be	relatively	evenly	scattered	in	the	genome.	Thus,	these	potential	genomic	
biases	did	not	appear	to	present	difficulties	for	our	key	analyses	(that	used	two	independent	
methods	in	any	event).		

Schizophrenia	common	variant	association	results	

The	schizophrenia	GWA	results	were	from	the	CLOZUK	and	PGC	studies	3,16.	CLOZUK	is	the	
largest	currently	obtainable	GWA	for	schizophrenia	(40,675	cases	and	64,643	controls),	and	
the	 authors	 identified	 ~150	 genome-wide	 significant	 loci.	 It	 includes	 the	 schizophrenia	
samples	from	the	earlier	PGC	paper.	The	CLOZUK	manuscript	has	been	submitted,	reviewed,	
revised,	and	 resubmitted,	and	a	preprint	 is	available	 in	biorXiv	 (DOI	10.1101/068593).	For	
selected	 analyses,	 we	 also	 included	 the	 PGC	 schizophrenia	 results	 from	 the	Nature	 2014	
report,	obtained	from	the	PGC	download	site	(URLs).	This	paper	included	36,989	cases	and	
113,075	 controls,	 and	 identified	 108	 loci	 associated	with	 schizophrenia.	 Results	 from	 the	
published	 PGC	 and	 CLOZUK	 studies	 were	 qualitatively	 similar	 with	 the	 CLOZUK	 data	
generally	showing	increased	significance	owing	to	its	larger	sample	size.		

Comparison	GWA	results	for	other	traits	

We	 included	 comparisons	 for	 a	 selected	 set	 of	 brain	 related	 traits	 as	well	 as	 height	 as	 a	
negative	control.	As	power	to	identify	cell	types	is	directly	proportional	to	the	sample	size	of	
the	GWA	study,	we	only	included	traits	with	at	least	20’000	samples	that	discovered	at	least	
20	 genome-wide	 significant	 loci.	 The	 GWA	 results	 were	 from	 the	 following	 sources:	
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schizophrenia	3	from	the	PGC;	Alzheimer’s	disease	36;	educational	attainment	37;	IQ38;	MDD	
from	the	PGC	(unpublished);	Parkinson’s	disease39	and	height	40.	

Gene	sets	associated	with	schizophrenia		

The	gene	set	 results	 for	schizophrenia	are	summarized	 in	Table	S1,	and	the	gene	sets	are	
included	in	Table	S4.	For	CELF4	binding	genes	41,	we	used	genes	with	iCLIP	occupancy	>	0.2	
from	Table	S4.	For	FMRP	binding	genes	12,	we	used	genes	from	Table	S2A.	Genes	intolerant	
to	 loss-of-function	 variation	were	 from	 the	 Exome	Aggregation	 Consortium	 (pLI	 >	 0.9)	 10.	
Genes	 containing	 predicted	 miR-137	 target	 sites	 were	 from	 microrna.org	 (URLs).	 NMDA	
receptor	 complex	genes	came	 from	Genes-to-Cognition	database	entry	 L00000007	 42.	 The	
human	post−synaptic	density	gene	set	was	from	Table	S2	43.	The	PSD95	complex	came	from	
Table	S1	using	all	genes	marked	with	a	cross	 in	 the	 ‘PSD-95	Core	Complex’	column	44.	For	
RBFOX	binding,	we	took	all	genes	with	RBFOX2	count	>	4	or	summed	RBFOX1	and	RBFOX3	>	
12	 from	 Table	 S1	 45.	 For	 antipsychotic	 drug	 targets,	 we	 used	 a	 gene	 list	 provided	 by	 Drs	
Gerome	Breen	and	Héléna	Gaspar	as	reported	in	the	biorXiv	preprint	(DOI	10.1101/091264).		

Gene	sets	not	associated	with	schizophrenia		

The	gene	sets	are	included	in	Table	S4.	For	Multiple	Sclerosis	susceptibility	genes	we	used	
the	 top	 results	 from	 the	 MSGene	 database	 (http://msgene.org/TopResults.asp).	 For	
Alzheimer’s	 disease	 we	 used	 the	 top	 results	 from	 the	 AlzGene	 database46	
(http://www.alzgene.org/TopResult.asp)	as	well	as	genome	wide	significant	genes	reported	
in	an	additional	GWAS	study47.	For	genes	associated	with	leukodystrophy	(HP:0002415)	and	
abnormal	 vasculature	 (HP:0002597)	 we	 used	 the	 Human	 Phenotype	 Ontology48	
(http://compbio.charite.de/hpoweb).	To	obtain	the	genes	with	the	top	500	highest/lowest	
dN/dS	 between	 humans	 and	 mice	 we	 obtained	 the	 dN	 and	 dS	 values	 through	 BioMart	
associated	with	each	ensemble	gene	ID,	mapped	these	onto	HGNC	gene	symbols	(averaging	
where	ensemble	and	HGNC	did	not	have	1:1	matches).	

Depletion	of	dendritically	enriched	transcripts	in	nuclei	datasets	

The	list	of	dendritically	enriched	transcripts	were	obtained	from	15	supplementary	table	10.	
This	list	was	produced	from	pyramidal	cells	from	rat	hippocampus	and	human	1:1	homologs	
were	obtained	as	described	above:	we	refer	to	this	set	of	genes	as	Ldendritic.	To	enable	direct	
comparisons	between	datasets,	all	datasets	were	reduced	to	contain	a	common	core	of	six	
level	1	celltypes:	pyramidal	neurons,	 interneurons,	astrocytes,	 interneurons,	microglia	and	
oligodendrocyte	 precursors.	 In	 the	 case	 of	 the	 KI	 dataset,	we	used	 S1	 Pyramidal	 neurons	
rather	than	CA1	Pyramidal.	The	specificity	metric	(denoted	above	as	!",$)	was	recalculated	
for	each	dataset	using	this	reduced	set	of	celltypes.	Comparisons	were	then	made	between	
datasets	 (denoted	 in	 the	graph	with	 the	 format	 ‘Dataset	X	 vs	Dataset	Y’).	We	denote	 the	
mean	pyramidal	 neuron	 specificity	 scores	 for	 dendritically	 enriched	 genes	 in	 dataset	 X	 as	
BCDE,FGHIG9JKJ7,LM8NOPQNR.	 We	 then	 get	 the	 difference	 in	 pyramidal	 specificity	 of	 for	 list	 S	
between	 two	 datasets	 as	TE,U,V = BCDE,F,LM8NOPQNR −	BCDU,F,LM8NOPQNR.	 We	 then	 calculate	
values	 of	TE,U,V	 for	 10000	 random	gene	 lists,	 having	 the	 same	 length	 as	 the	 dendritically	
enriched	 gene	 list,	with	 the	 genes	 randomly	 selected	 from	 the	 background	 gene	 set.	We	
denote	 the	 nth	 random	 gene	 list	 as	 XY.	 The	 mean	 and	 standard	 deviation	 of	 the	
bootstrapped	TE,U,V	 values	 are	 denoted	 ZC[,\,] 	 and	^C[,\,] 	 respectively.	 The	 depletion	 z-
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score	 is	 then	 calculated	 as:	 _E,U,V`ab`cdedf =
C[,\,gGHIG93K37hij[,\,]

kj[,\,]	
.	 A	 large	 positive	 z-score	

thus	 indiciates	 that	 dendritically	 enriched	 transcripts	 are	 specifically	 depleted	 from	
pyramidal	neurons	from	dataset	Y	relative	to	dataset	X.	

Conditional	cell	type	enrichments	

Gene	association	z-scores	for	Schizophrenia	were	calculated	in	MAGMA	as	described	above.	
To	enable	 randomisation	of	 the	 z-scores	 and	 recalculation	of	 the	 associations	 to	be	done	
programmatically,	 these	 were	 then	 loaded	 into	 R	 and	 associations	 with	 disease	 were	
calculated	within	this	environment	without	external	calls	 to	MAGMA.	All	genes	within	the	
extended	MHC	 region	 (chr6	25-34mb)	were	dropped	 from	all	 aspects	of	 this	 analysis.	We	
controlled	 for	 gene	 size	 and	 gene	 density	 by	 regressing	 out	 the	 effect	 of	 NSNPS	 and	
NDENSITY	parameters	(and	the	log	of	each)	on	the	z-score.	To	ensure	a	meaningful	number	
of	 genes	 were	 randomised	 within	 each	 group,	 associations	 were	 calculated	 over	 deciles	
rather	 than	 the	 smaller	 percentile	 bins	 used	 earlier	 with	 MAGMA.	 Probabilities	 of	
association	are	calculated	using	the	lmFit	and	ebayes	functions	from	the	limma	package	to	
enable	rapid	computation.	We	denote	the	set	of	cells	studied	as	lsuch	that	>.represents	the	
ith	 celltype.	 The	original	 z-scores	 are	denoted	_	 such	 that	m. 	 is	 the	 z-score	of	 the	 i

th	 gene	
while	the	randomised	z-scores	are	denoted	X.	The	set	of	genes	in	the	ith	specificity	decile	of	
the	controlled	cell	 type,	>n	and	the	 j

th	specificity	decile	of	target	cell	 type,	>M	are	denoted	
B.,o
n,M	and	thus	 B.,p

n,M
p∈r contains	all	genes	in	the	ith	specificity	decile	of	cell	type,	>n.		

The	basis	of	the	approach,	as	depicted	in	Figure	S8	is	to	randomise	the	z-scores	with	respect	
to	 the	 specificity	 deciles	 of	 the	 target	 celltype,	 >M	 but	 not	with	 respect	 to	 the	 specificity	
deciles	of	the	controlled	celltype,	>n.	Thus	for	each	of	the	deciles	indexed	by	i	we	randomly	
resampled	without	replacement	the	z-scores	such	that	 X" "∈ s3,:

t,u
:∈v

= _" "∈ s3,:
t,u

:∈v
	and	

yet	 X" ≠ _".	 In	 practical	 terms,	 this	 would	 mean	 that	 if	 we	 controlled	 for	 MSN’s	 and	
targeted	cortical	 interneurons,	 the	mean	z-score	 in	the	10th	MSN	decile	would	remain	the	
same	 but	 would	 be	 different	 in	 cortical	 interneurons;	 the	 question	 being	 tested	 is	 the	
degree	 to	 which	 this	 equates	 to	 total	 randomisation	 in	 terms	 of	 the	 schizophrenia	
association	found	in	cortical	interneurons.	

The	 baseline	 association	 values	 shown	 in	 Figure	 4a	 leftmost	 column	 (described	 as	
PcelltypeY,baseline)	were	calculated	using	_.	The	values	of	PcelltypeY,celltypeX	(probability	of	celltype	y	
being	 associated	 with	 schizophrenia	 controlling	 for	 celltype	 x)	 are	 calculated	 using	
intermediate	probabilities:	10,000	association	p-values	are	calculated	for	resampled	values	
of	X.	We	 selected	 the	 500th	 lowest	 of	 these	 p-values	 (equivalent	 to	 the	 value	which	 the	
baseline	 association	 probability	 would	 need	 to	 exceed	 to	 be	 declared	 independently	
associated	with	a	probability	of	95%)	and	denote	this	wn,M

xyyz{z8N|.	The	value	of	PcelltypeY,celltypeX	
is	 then	 calculated	 as	 exp(log(PcelltypeY,celltypeX)-log(wn,M

xyyz{z8N|)).	 If	 the	 value	 of	 PcelltypeY,celltypeX	
exceeds	 1	 (indicating	 that	 the	 randomised	 samples	 were	 actually	 more	 significantly	
associated	than	was	found	to	be	the	case)	then	it	is	set	to	1.	We	were	also	able	to	evaluate	
whether	the	probability	of	schizophrenia	association	in	celltype	y	is	greater	than	would	be	
expected	 based	 solely	 on	 the	 expression	 in	 celltype	 x	 by	 asking	 whether	 the	 actual	
association	p-value	was	lower	than	95%	of	the	bootstrapped	p-values.	As	expected,	all	self-
self	 comparisons	were	 found	 to	be	non-significant	by	 this	metric	 (i.e.	after	accounting	 for	
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expression	in	CA1	pyramidal	neurons,	CA1	pyramidal	neurons	are	no	longer	significant).	 In	
Figure	 4a,	 a	 red	 box	 was	 placed	 around	 the	 CA1	 Pyramidal	 vs	 Somatosensory	 Pyramidal	
square	because	this	was	the	only	comparison	involving	the	four	significantly	associated	cell	
types	in	which	controlling	for	expression	of	a	different	cell	type	abolished	the	enrichment.	

Venn	diagram	enrichments	

The	Venn	diagram	shown	in	Figure	4	was	generated	using	by	selecting	the	top	1000	genes	
most	associated	with	Schizophrenia	based	on	the	MAGMA	gene	specific	z-scores.	All	genes	
within	 the	 extended	 MHC	 region	 (chr6	 25-34mb)	 were	 dropped	 from	 the	 analysis.	 We	
controlled	 for	 gene	 size	 and	 gene	 density	 by	 regressing	 out	 the	 effect	 of	 NSNPS	 and	
NDENSITY	parameters	(and	the	log	of	each)	on	the	z-score.	We	then	took	the	intersection	of	
the	top	1000	genes	with	the	top	decile	for	each	of	the	four	significantly	associated	level	1	
cell	 types	 and	 generated	 the	 Venn	 diagram	 using	 the	 R	 VennDiagram	 package.	 The	
dopamine	 gene	 set	 include	 all	 genes	 associated	 with	 any	 of	 the	 following	 GO	 terms:	
GO:0090494	 ("dopamine	 uptake"),	 GO:0090493	 (“catecholamine	 uptake”),	 GO:0051584	
(“regulation	 of	 dopamine	 uptake	 involved	 in	 synaptic	 transmission”),	 GO:0032225	
(“regulation	of	synaptic	transmission,	dopaminergic”),	GO:0001963	(“synaptic	transmission,	
dopaminergic”)	and	GO:0015872	(“dopamine	transport”).	The	synaptic	gene	list	comprised	
a	 combination	of	 three	published	gene	 lists:	 the	human	post-synaptic	density	 (referenced	
above);	 presynaptic	 active	 vesicle	 docking	 sites	 49	 and	 synaptic	 vesicle	 genes	 50.	 For	 the	
presynaptic	gene	 list,	 the	data	 came	 from	supplementary	 table	S1,	 the	geneInfo	numbers	
were	 converted	 from	 genInfo	 accessions	 to	 Refseq	 IDs	 using	 Entrez	 Batch	 then	 from	 Rat	
RefSeq	 to	HGNC	 symbols	 keeping	 only	 1:1	 homologs.	 The	 synaptic	 vesicle	 gene	 list	 came	
from	supplementary	table	S1,	and	were	converted	from	Rat	RefSeq	to	HGNC	symbols	using	
only	 1:1	 homologs.	 Enrichment	 probabilities	were	 calculated	 using	 a	 hypergeometric	 test	
against	a	background	set	of	all	MGI	genes	with	1:1	homologs	in	human	(as	described	above).	
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Supplemental	Tables	

	

	

Table	 S1	 shows	 the	gene	 sets	or	biological	pathways	 implicated	 in	 schizophrenia.	 These	
analyses	ask	whether	schizophrenia	case/control	genetic	association	results	are	“enriched”	
in	the	genes	comprising	a	gene	set.	At	 least	20	gene	sets	have	been	implicated,	and	many	
are	 implicated	 by	 different	 types	 of	 genetic	 studies.	 This	 convergence	 is	 highly	 notable.	
However,	these	connect	genetic	risk	for	schizophrenia	to	a	highly	diverse	and	even	puzzling	
set	 of	 genes	 and	 biological	 pathways.	 dURV=disruptive	 or	 damaging	 ultra-rare	 variants.	
WES=whole	 exome	 sequencing.	 GWA=genome-wide,	 common	 variant	 association	 study.	
RVAS=rare	variant	association	study.		

	

	

Report	 Genomic	data	 Convergence	 Notable	pathway/gene	sets	
Schizophrenia	5	 dURV,	WES		

(RVAS)	
	
	
a	
b	
c	
d	
e	
f	
g	
h	

Neurons	 (not	 astrocytes	 or	 oligodendrocytes),	 excitatory	
and	inhibitory	neurons	similar	
Genes	intolerant	to	loss-of-function	variation	
Genes	whose	mRNAs	bind	to	FMRP	or	CELF4		
Genes	with	bindings	sites	for	RBFOX1,	2,	or	3	
Synaptic	genes	
Post-synaptic	density	
Activity-related	cytoskeleton	complex	
NMDA	receptor	components	
Genes	with	miR-137	binding	sites	

Schizophrenia	
(DOI	10.1101/069344)	

dURV,	WES		
(RVAS)	

a	
b	
c	
	
f	
g	
	
	

Genes	intolerant	to	loss-of-function	variation	
Genes	whose	mRNAs	bind	to	FMRP	
Genes	with	bindings	sites	for	RBFOX1,	2,	or	3	
Genes	with	bindings	sites	for	CHD8	
Activity-related	cytoskeleton	complex	
NMDA	receptor	components	
Overlap	with	autism	genes	
Overlap	with	developmental	delay	genes	

Schizophrenia	16	
(DOI	10.1101/068593)	

GWA	 a	
b	
	
	
	
d	
	
	
	

Genes	intolerant	to	loss-of-function	variation	
Genes	whose	mRNAs	bind	to	FMRP	
Serotonin	2C	receptor	complex	
Calcium	ion	import	
Membrane	depolarization	during	action	potential		
Synaptic	transmission	
Abnormal	behavior	
Abnormal	nervous	system	electrophysiology	
Abnormal	long	term	potentiation	

Schizophrenia	3	 GWA	 d	
e	
f	
g	
h	

Synaptic	genes	
Post-synaptic	density	
Activity-related	cytoskeleton	complex	
NMDA	receptor	components	
Genes	with	miR-137	binding	sites	
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Species	 Label	 Citation	 Source	 RNAseq	tech.	 Stage	 Region	 Cells	 L1	 L2	
Mouse	 Gokce	 19	 GEO	GSE82187	 Single	cell	 Adult	 Striatum	 1208	 10	 10	
	 Habib	 20	 GEO	GSE84371	 Single	nuclei	 Adult	 Hippocampus	 1287	 11	 29	
	 KI	 Unpublished	 Pending	 Single	cell	 Adult	 Cortex	 (Pvalb	

interneurons)	
89	 1	 1	

	 KI	 28	 Linnarsson	lab	(URLs)	 Single	cell	 Adult	 Cortex	+	hippocampus	 1996	 6	 41	
	 KI	 51	 GEO	GSE74672	 Single	cell	 Adult	 Hypothalamus	 772	 4	 62	
	 KI	 26	 GEO	GSE76381	 Single	cell	 Adult	 Midbrain	 243	 1	 5	
	 KI	 26	 GEO	GSE76381	 Single	cell	 Fetal	 Midbrain	 1290	 8	 22	
	 KI	 52	 GEO	GSE75330	 Single	cell	 Adult	 Oligodendrocytes	 5051	 3	 13	
	 KI	 Unpublished	 Pending	 Single	cell	 Adult	 Striatum	 529	 2	 6	
	 Tasic	 21	 GEO	GSE71585	 Single	cell	 Adult	 Cortex	 1679	 7	 49	
Human	 AIBS	 Unpublished	 Pending	 Single	nuclei	 Adult	 Cortex	 4401	 6	 6	
	 Darmanis	 22	 GEO	GSE67835	 Single	nuclei	 Adult	 &	

fetal	
Cortex	 420	 8	 8	

	 Lake	 23	 dbGaP	phs000833.v3.p1	 Single	nuclei	 Adult	 Cortex	(N=1)	 3042	 2	 16	

	

Table	 S2.	 Single	 nuclei	 or	 scRNAseq	 data	 from	mouse	 or	 human	 brain.	 Source	 column	 points	 to	 where	 the	 data	 were	 obtained	 (URLs).	
KI=Karolinska	 Institutet.	 AIBS=Allen	 Institute	 for	 Brain	 Science.	 L1=number	 of	 Level	 1	 cell	 type	 categories.	 L2=number	 of	 Level	 2	 cell	 types	
(subdivisions	of	L1	types).	All	datasets	labelled	as	KI	were	merged	into	a	single	superset;	all	other	datasets	were	used	separately.	These	data	
are	depicted	in	Figure	1.		
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KI	Level	1	cell	type	 Level	2	
subdivisions	

Cells	 Total	Average	
Molecules	

Hypothalamic	dopaminergic	neurons	 4	 41	 14220	

Serotonergic	neuron	 1	 59	 10583	

Oxytocin	 &	 vasopressin	 expressing	
neurons	

7	 62	 12156	

Dopaminergic	neuroblast	 1	 71	 4902	

Vascular	leptomeningeal	cells	 1	 76	 3256	

Embryonic	dopaminergic	neuron	 3	 93	 6147	

Microglia	 4	 98	 4567	

Embryonic	midbrain	nucleus	neurons	 2	 105	 11181	

Neuronal	progenitor	 1	 149	 7172	

Astrocytes	/	ependymal	 4	 159	 6130	

Radial	glia	like	 3	 166	 7762	

Medium	spiny	neuron	 2	 218	 8610	

Endothelial-mural	 4	 220	 4319	

Embryonic	GABAergic	neuron	 3	 221	 10129	

Dopaminergic	neuron	 5	 243	 10912	

Cortical	interneurons	 16	 379	 15979	

Pyramidal	(SS)	 8	 290	 17131	

Hypothalamic	glutamatergic	neurons	 32	 305	 8503	

Oligodendrocyte	precursor	 1	 308	 3384	

Striatal	interneuron	 4	 311	 10796	

Hypothalamic	GABAergic	neurons	 19	 364	 9602	

Neuroblasts	 8	 426	 6156	

Pyramidal	(CA1)	 5	 939	 16066	

Oligodendrocytes	 11	 4667	 7581	

Table	 S3.	 Detail	 on	 the	 KI	 scRNAseq	 Level	 1	 and	 2	 dataset.	 There	 are	 24	 Level	 1	 cell	 type	
categories	and	149	Level	2	subdivisions.	The	median	number	of	cells	 in	the	Level	1	categories	

was	 218	 (interquartile	 range	 91-306),	 and	 the	 Level	 2	 subdivisions	 range	 from	 1-32.	 The	

numbers	 of	 single	 cells	 contributing	 to	 the	 Level	 1	 classification	 are	 shown.	 We	 found	 no	

relation	 between	 the	 number	 of	 cells	 and	 the	 cell	 type	 found	 to	 “fit”	 schizophrenia.	 For	

example,	 there	 are	 large	 numbers	 of	 oligodendrocytes	 and	 neuroblasts	 (which	 were	 not	

enriched	 for	 schizophrenia	 genomic	 findings),	 and	 the	 number	 of	 cells	 for	 medium	 spiny	

neurons	 (which	were	associated)	were	at	 the	median.	 Likewise,	 the	 total	 average	number	of	

molecules	detected	 in	each	cell	 type	(as	determined	using	Unique	Molecular	 Identifiers)	does	

not	explain	the	enrichments	found	(note	that	medium	spiny	neurons	have	almost	half	as	many	

molecules	as	hypothalamus	dopaminergic	neurons).		

	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 2, 2017. ; https://doi.org/10.1101/145466doi: bioRxiv preprint 

https://doi.org/10.1101/145466
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

Page	31	of	41	

	

Supplemental	Figures	

	

	

Figure	 S1.	 Correlation	 of	 the	 binned	 measure	 of	 cell	 type-specific	 expression	 (S,	 defined	 in	

Online	Methods)	 for	mouse	brain	 cell	 types	 in	 the	KI	 level	1	dataset.	To	 illustrate	 the	overall	

structure	of	mouse	brain	scRNAseq	dataset,	we	show	a	heat	map	and	clustering	of	the	brain	cell	

types	 identified	 in	 the	 KI	 Level	 1	 data.	 The	 major	 divisions	 are	 embryonic/progenitor	 cells	

(upper	 left),	 support	 cells	 (middle;	 e.g.,	 oligodendrocytes	 and	 microglia),	 and	 mature	 cells	

(lower	 right).	 The	 major	 division	 of	 the	 mature	 cells	 include	 pyramidal	 cells/medium	 spiny	

neurons,	 interneurons,	 and	 “speciality”	 neurons	 (i.e.,	 dopaminergic,	 GABAergic,	 and	

glutamatergic).		
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Figure	S2.	Dendritically	enriched	transcripts	(DETs)	are	specifically	depleted	from	brain	single-

nuclei	(“nuclei”)	RNAseq	datasets	relative	to	single-cell	(“cell	body”)	RNAseq	data.	These	2,252	

DETs	were	identified	in	a	prior	study	of	expression	in	hippocampal	neuropil	relative	to	cell	body	

layer	15.	Each	bar	represents	a	comparison	between	two	datasets	(dataset	X	vs	dataset	Y),	with	

the	 bootstrapped	 z-scores	 representing	 the	 extent	 to	 which	 DETs	 have	 lower	 specificity	 for	

pyramidal	neurons	in	dataset	Y	relative	to	X.	Larger	z-scores	indicate	greater	depletion	of	DETs.	

Table	S2	describes	the	studies.	The	snRNAseq/nuclei	studies	were:	Habib	et	al.	20	(adult	mouse	

hippocampus)	 and	 AIBS	 (Allen	 Institute	 for	 Brain	 Science,	 unpublished,	 adult	 human	 cortex).	

The	scRNAseq/cellbody	studies	were	KI	(adult	mouse	cortex	and	hippocampus)	and	Tasic	et	al.	
21	(mouse	cortex).		
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Figure	S3.	MAGMA	enrichment	of	CLOZUK	schizophrenia	GWA	results	 in	 relation	 to	human	
tissue-specific	gene	expression	(from	GTEx).	Brain	and	pituitary	are	most	associated,	but	there	

are	 significant	 associations	 with	 multiple	 non-brain	 tissues),	 and	 tissues	 not	 believed	 to	 be	

etiologically	 involved	 in	 schizophrenia	 (colon,	 heart,	 uterus.	 Black	 line	 shows	 Bonferroni	

correction.		
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Figure	S4.	LDSC	Schizophrenia	(CLOZUK)	enrichment	values	in	each	specificity	decile	for	each	
of	the	KI	level	1	cell	types.	Error	bars	indicate	the	95%	confidence	intervals.	The	rightmost	point	

and	 its	 confidence	 intervals	 are	 marked	 in	 red	 as	 this	 is	 the	 decile	 used	 for	 reported	 LDSC	

probabilities	throughout	this	paper	(rather	than	the	probability	of	the	slope	increasing	as	was	

used	for	reporting	MAGMA	probabilities).	The	 leftmost	point	(marked	 'N')	represents	all	SNPs	

which	map	onto	genes	not	expressed	in	MSNs.	Blue	line	slows	the	linear	regression	slope	fitted	

to	 the	 enrichment	 values.	 The	 grey	 boxing	 around	 the	 blue	 regression	 line	 depict	 the	
confidence	intervals	of	the	regression	line.	
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Figure	S5.	MAGMA	Schizophrenia	(CLOZUK)	gene	level	model	fit	for	each	KI	level	1	cell	type.	
The	Y-axis	(residuals)	was	obtained	by	regressing	the	gene	length,	gene	density	and	their	 logs	

from	 the	 gene-level	 z-score	 obtained	 from	MAGMA	 using	 the	 CLOZUK	 schizophrenia	 GWAS.	

Negative	 residuals	 indicate	 that	 genes	 are	 less	 associated	 with	 schizophrenia,	 while	 positive	

residuals	 indicate	 that	 genes	 are	 more	 associated	 with	 schizophrenia.	 The	 x-axis	 are	 the	 41	

binned	 tissue	 specificity	measures	 (each	 bin	 represent	 a	 2.5%	 quantile	 of	 the	 distribution	 of	

proportions	in	the	cell	type)	multiplied	by	2.5	(the	bin	40	which	represents	genes	that	are	the	

2.5%	most	specifically	expressed	 in	the	cell	 type	will	have	a	value	of	100,	etc..).	The	coloured	

line	shows	the	best	non-linear	fit	to	the	data	using	a	generalised	additive	model	(GAM)	with	its	

95%	confidence	interval.	The	black	line	represents	the	linear	regression	of	the	residuals	by	the	

binned	proportions	
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Figure	S6.	Association	between	brain	cell	types	(KI	 level	2)	and	schizophrenia.	Cell	types	are	
ranked	by	the	minimum	average	rank	of	LDSC	and	MAGMA	(minimum	average	P-values	for	cell	

types	with	equal	average	rank).	The	black	line	represents	the	Bonferroni	significance	threshold.	
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Figure	S7.	Confirmation	of	enrichment	of	common	variant	CLOZUK	schizophrenia	GWA	results	

from	the	KI	mouse	data	in	independent	mouse	brain	studies.	The	KI	Level	1	findings	connect	the	

CLOZUK	 schizophrenia	 results	 to	 hippocampal	 CA1	 pyramidal	 neurons,	 cortical	 pyramidal	

neurons,	 cortical	 interneurons,	 and	 medium	 spiny	 neurons.	 (A)	 snRNAseq	 from	 mouse	

hippocampus	 20	 showing	enrichment	of	hippocampal	CA1	pyramidal	 cells.	 (B)	 scRNAseq	 from	

mouse	 cortex	 21	 demonstrating	 enrichment	 of	 cortical	 pyramidal	 neurons	 and	 cortical	

interneurons.	(C)	scRNAseq	from	mouse	striatum	with	enrichment	of	“striatal	neurons”,	which	

were	 predominantly	 medium	 spiny	 neurons	 19.	 There	 was	 also	 enrichment	 for	 hippocampal	

dentate	granule	cells	in	Figure	6a	and	migratory	neural	precursors	in	striatum	in	Figure	6c,	but	

these	were	not	included	in	the	larger	KI	dataset.		
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Figure	S8.	Schematic	of	the	resampling	approached	used	for	conditional	cell	type	enrichments	
shown	in	Figure	4a.	The	purpose	of	the	resampling	method	was	to	enable	testing	of	whether	

the	 schizophrenia	 enrichment	 detected	 for	 one	 cell	 type	 (here	 represented	 by	 cortical	

interneurons,	INTs)	is	just	an	unavoidable	result	of	a	significant	enrichment	in	a	second	cell	type	

(here	represented	by	Medium	Spiny	Neurons,	MSNs).	The	plot	on	the	left	shows	the	correlation	

in	specificity	values	between	INTs	and	MSNs.	Each	point	represents	a	single	gene.	Darker	points	

have	 higher	 Schizophrenia	 CLOZUK	 association	 z-scores	 (calculated	 using	MAGMA).	 The	 right	

hand	plot	shows	how	the	z-scores	are	resampled	within	each	MSN	specificity	decile,	such	that	

while	 the	 specificity	 values	 of	 each	 gene	 in	 MSNs	 and	 INTs	 remains	 the	 same,	 and	 the	

distribution	 of	 z-scores	 remains	 constant	 relative	 to	 each	MSN	 decile,	 the	 distribution	 of	 z-

scores	is	however	randomized	relative	to	INTs.	Yellow	boxes	and	arrows	mark	the	location	and	

z-scores	 of	 four	 genes:	 in	 the	 left	 hand	 plot,	 the	 z-scores	 are	 those	 found	 in	 the	 MAGMA	

genes.out	file,	while	in	the	right	hand	plot	the	z-scores	shown	are	resampled	(hence	the	Pvalb	

scores	has	been	switched	with	those	of	Slc10a4,	as	both	are	 in	the	same	specificity	decile	for	

Medium	 Spiny	 Neurons).	 For	 the	 analysis	 shown	 in	 Fig4a,	 this	 resampling	 of	 z-scores	 is	

performed	10000	times	over	and	the	relative	enrichment	of	 INTs	 in	the	left	plot	compared	to	

that	in	the	resampled	right	hand	plot.	
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Figure	 S9.	 tSNE	 plot	 of	 three	 cell	 types	 shared	 between	 brain	 regions	 from	 the	 KI	 superset	

shows	 that	 they	 cluster	 together	 across	 regions.	 Microglia,	 Endothelial	 cells,	 and	 Vascular	

Smooth	Muscle	cells	were	selected	on	the	basis	that	there	is	little	prior	expectation	for	them	to	

have	 regional	 differences	 in	 expression.	 We	 found	 that	 embryonic	 midbrain	 cells	 cluster	

separately	 as	 is	 expected	 as	 they	 were	 obtained	 from	 embryonic	 tissue	 whereas	 all	 other	

samples	were	from	adolescent	mice.	The	cells	from	the	other	datasets	were	largely	overlapping	

confirming	that	little	to	no	batch	effects	exist	in	the	data.	
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