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Abstract 

Blood is arguably the most important bodily fluid and its analysis provides crucial health 

status information. A first routine measure to narrow down diagnosis in clinical practice is the 

differential blood count, determining the frequency of all major blood cells. What is lacking 

to advance initial blood diagnostics is an unbiased and quick functional assessment of blood 

that can narrow down the diagnosis and generate specific hypotheses. To address this need, 

we introduce the continuous, cell-by-cell morpho-rheological (MORE) analysis of whole 

blood, without labeling, enrichment or separation, at rates of 1,000 cells/sec. In a drop of 

blood we can identify all major blood cells and characterize their pathological changes in 

several disease conditions in vitro and in patient samples. This approach takes previous results 

of mechanical studies on specifically isolated blood cells to the level of application directly in 

whole blood and adds a functional dimension to conventional blood analysis. 
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Introduction 

Blood is responsible for the distribution of oxygen and nutrients, and centrally involved in the 

immune response. Consequently, its analysis yields crucial information about the health status 

of patients. The complete blood count, the analysis of presence and frequency of all major 

blood cells, constitutes a basic, routine measure in clinical practice. It is often accompanied 

by analysis of blood biochemistry and molecular markers reflecting the current focus on 

molecular considerations in biology and biomedicine. 

 

An orthogonal approach could be seen in the study of the overall rheological properties of 

blood. It is evident that the flow of blood throughout the body will be determined by its 

physical properties in the vasculature, and their alterations could cause or reflect pathological 

conditions (1-3). In this context, blood is a poly-disperse suspension of colloids with different 

deformability and the flow properties of such non-Newtonian fluids have been the center of 

study in hydrodynamics and colloidal physics (4). Probably due to the dominant importance 

of erythrocytes for blood rheology, at the expense of sensitivity to leukocyte properties, this 

approach has not resulted in wide-spread diagnostic application, maybe with the exception of 

blood sedimentation rate (5). 

 

Focusing on the physical properties of individual blood cells has suggested a third possibility 

to glean maximum diagnostic information from blood. Various cell mechanics measurement 

techniques, such as atomic force microscopy (6-8), micropipette aspiration (1, 9-11) or optical 

traps (12-14), have been used to show that leukocyte activation, leukemia, and malaria 

infection, amongst many other physiological and pathological changes, lead to readily 

quantifiable mechanical alterations of the major blood cells (6, 12, 15-19). These proof-of-

concept studies have so far been done on few tens of specifically isolated cells. This line of 

research has not progressed towards clinical application for lack of an appropriate 
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measurement technique that can assess single-cell properties of sufficient number directly in 

whole blood. 

 

This report aims to close this gap by presenting a novel approach for high-throughput single-

cell morpho-rheological (MORE) characterization of all major blood cells in continuous flow. 

Mimicking capillary flow, we analyse human blood without any labeling or separation at rates 

of 1,000 cells/sec. We show that we can sensitively detect MORE changes of erythrocytes in 

spherocytosis and malaria infection, of leukocytes in viral and bacterial infection, and of 

malignant transformed cells in myeloid and lymphatic leukemias. The ready availability of 

quantitative morphological parameters such as cell shape, size, aggregation, and brightness, as 

well as rheological information of each blood cell type with excellent statistics might not only 

inform further investigation of blood as a complex fluid. It also connects many previous 

reports of mechanical changes of specifically isolated cells to a measurement now done 

directly in whole blood. As such, it adds a new functional dimension to conventional blood 

analysis — a MORE complete blood count — and, thus, opens the door to a new era of 

exploration in investigating and diagnosing hematological and systemic disorders 

 

 

Results 

Establishment of MORE analysis 

In order to establish the normal MORE phenotype of cells found in whole blood, we obtained 

venous, citrate-anticoagulated blood of healthy donors, of which 50 µl was diluted in 950 µl 

of measurement buffer with a controlled elevated viscosity, but without any additional 

labeling, sorting, or enrichment. The cell suspension was then pumped through a micro-

channel not unlike micro-capillaries in the blood vasculature (Fig. 1A). Brightfield images of 

the cells, deformed by hydrodynamic shear stresses in the channel (20), were obtained 
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continuously by RT-DC (21) (see Methods; Movie S1). These images revealed distinct 

differences in overall morphology, brightness, and amount of deformation between all major 

cell types found in blood (Fig. 1B). RT-DC further enabled the continuous, real-time 

quantification of the cross-sectional area and of the deformed shape (see detailed description 

in Methods and Fig. S1) of an, in principle, unlimited number of cells at measurement rates of 

100 – 1,000 cells/sec (Fig. 1C). For each cell detected and analyzed, an image was saved and 

the average pixel brightness within the cell determined (Fig. 1D, Fig. S1). This single-cell 

MORE analysis of whole blood revealed distinct and well-separated cell populations in the 

space spanned by the three parameters (Movie S2). Notably, size and brightness alone — 

parameters not unlike those accessible by light scattering analysis in standard flow cytometers 

— were sufficient for the identification of the cell types (Fig. 1D), so that deformation as 

additional, independent parameter was available for assessing their functional changes. The 

identity of the individual cell populations by size and brightness was established by magnetic 

cell sorting, controlled by fluorescence immunophenotyping, and subsequent MORE analysis 

(Fig. S2). A key feature is the very clear separation of the abundant erythrocytes (red blood 

cells; RBCs) from other cells as a result of their much greater deformation and lower 

brightness. This feature gives access to leukocyte properties directly in whole blood, without 

the potentially detrimental effects of hemolysis or other separation steps, which are required 

for analysis with cell mechanics techniques with lower specificity and throughput, or non-

continuous measurement.  
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Fig. 1 | Single-cell, morpho-rheological phenotyping of whole blood.  

A, Analysis of whole, diluted blood. Hydrodynamic shear forces (red arrows) induce 

deformation of cells passing a microfluidic channel (20 x 20 µm2) at speeds of more than 

30 cm/s (blue arrows). B, Representative images of blood cell types acquired. Scale bar is 10 

µm. Images are analyzed for cell size as well as C, cell deformation and D average cell 

brightness. Each dot represents one of N measurement events. E, Normal range of 

deformation and size of cell populations from healthy donors. Each diamond represents the 

median of one donor; transparent ellipses indicate 95 % confidence areas. F, Comparison of 

MORE cell counts with conventional blood count.  

 

In extensive tests of the variability of this approach, MORE phenotyping yielded identical 

results in repeated measurements of blood from the same donor, with sodium citrate added as 

an anti-coagulant and for different storage times (Fig. S3), between different donors of both 

sexes (Fig. S4), and blood samples taken at different times during the day (Fig. S5). This 

robustness served to establish a norm for the different cell types (Fig. 1E). MORE analysis 

provided the identity and frequency of all major white blood cells as with a conventional 
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differential blood count (Fig. 1F; Table S1) — obtained from a single drop of blood, with 

minimal preparation, and within 15 min. Going beyond this current gold-standard of routine 

blood cell analysis, and importantly also beyond all other single-blood-cell mechanical 

analysis studies to date, MORE phenotyping allowed the sensitive characterization of 

pathophysiological changes of individual cells directly in whole blood. In the following, we 

exemplarily demonstrate, in turn for each of the blood cell types, the new possibilities of 

gaining MORE information from an initial blood test as a time-critical step in generating 

specific hypotheses and steering further investigation enabled by this approach. 

 

MORE analysis of erythrocytes 

Spherocytosis is a prototypical hereditary disease in humans in which genetic changes (here 

ankyrin and spectrin mutations) cause abnormal shape and mechanical properties of 

erythrocytes. Current diagnosis based on shape detection in a blood smear, osmotic fragility 

assessed by Acidified Glycerol Lysis Time (AGLT) or by osmotic gradient ektacytometry, 

flow-cytometric determination of staining with Eosin-5-Maleimide (EMA test), or direct 

detection of the mutation by PCR takes time, requires specific preparation, is costly and does 

not lend itself to screening. MORE analysis of whole blood of patients with spherocytosis 

directly revealed significantly stiffer and smaller erythrocytes than normal (Fig. 2A-C). The 

differences are so clear that this analysis can serve as a fast primary and cheap screening test 

for spherocytosis to be followed up by more elaborate analysis. 
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Fig. 2 | MORE phenotyping detects RBC pathologies. 

Exemplary density plots of RBC size vs. deformation in samples from A, healthy donor and 

B, patient with spherocytosis. C, Relative median RBC deformation and size in patients with 

spherocytosis (orange, n = 4) compared to controls (black, n = 21 as in Fig. 1E with 68 % and 

95 % confidence ellipses). Density plots of size vs. deformation of D, control RBCs and E, 

RBCs exposed to P.f. (blue, infected RBCs red), both after 12 h incubation. Scale bars, 10 

µm. F, Evolution of RBC deformation over 46 h time course of control (black), P.f. exposed 

(blue) and P.f. infected RBCs (red); open squares and diamonds, mean ± SD, n = 2; filled 

squares, individual medians, ∗∗ p < 0.01, ∗∗∗ p < 0.001. G, 2BP-treated RBCs compared to 

PA- and non-treated controls (mean ± SD of population medians, n = 4, ∗ p < 0.05). H, 

Reduced parasitemia in 2BP- compared to PA- and non-treated controls at 2 and 4 days post 

infection. Error bars: SD binomial, ∗ p < 0.0125. 

 

A change in RBC deformability has also been implicated in malaria pathogenesis, since single 

cells infected by parasites have been reported to be stiffer (18). This insight has not 

progressed towards clinical application and the gold standard in malaria diagnosis is still a 

manual thick blood smear analysis. To evaluate whether MORE analysis could provide a 
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sensitive, automated alternative, we analyzed populations of RBCs infected in vitro with 

Plasmodium falciparum (P.f.) with a parasitemia of 7 – 8 % at time points over the 2 day 

parasite life cycle. We found a clear, significant, and increasing reduction in the deformation 

of the entire exposed RBC population detectable after 4 h (Fig. 2D-F; Fig. S6). Inspection of 

the individual cell images revealed the appearance of characteristic features likely associated 

with the maturation of parasite inside a subset of RBCs (Fig. 2D, E insets; Fig. S6). These 

features permitted the direct identification of positively infected cells, whose relative 

frequency peaked at 36 h (Fig. S6). The separate assessment of overtly infected cells showed 

an even greater deformation reduction than observed in the entire exposed population (Fig. 

2F; Fig. S6), which relates to the possibility of clearance of stiff, infected cells from the 

circulation by the spleen (22, 23). However, this small fraction of stiffer cells alone cannot 

account for the reduced deformation of the whole population, so that a bystander stiffening of 

non-infected cells seems involved (14). Inhibition of palmitoylation of membrane proteins by 

2-bromo-palmitate (2BP) led to less deformation than in controls and in RBCs treated with 

palmitic acid (PA; Fig. 2G), with a concurrent reduction in P.f. infectivity (Fig. 2H). While a 

previous report found no change in infectability of RBCs treated with 2BP (24), the difference 

could stem from the different RBC receptors involved in invasion by the different parasite 

clones (3D7 vs. HB3), which in turn are differentially affected by palmitoylation. Thus, 

MORE analysis has the potential to not only simplify, automate, and speed up malaria 

diagnosis, but also to provide additional quantitative information aiding research into the 

pathogenesis of the disease (25).  

 

MORE analysis of leukocytes 

While RBC mechanics has already been used for clinical diagnostics using rheoscopes and 

ektacytometers for over 40 years (15, 22, 26), leukocyte mechanics has not been utilized for 

diagnostic purposes. This is likely due to their increased stiffness compared to RBCs and a 
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lack of convenient techniques capable of sufficiently deforming them in suspension — their 

physiological state. Until recently, techniques with sufficient throughput, obviating the need 

for specifically isolating the relevant cells of interest, which always bears the potential of 

inadvertent cell change, did not exist. In this sense, the mechanical phenotyping of diagnostic 

changes of leukocytes directly in whole blood is the most transformative application area of 

MORE analysis. For example, there have been proof-of-concept studies on the mechanical 

changes associated with neutrophil activation, with older reports showing a stiffening, in line 

with the pronounced actin cortex that is a hallmark of neutrophil activation (6, 17). These 

studies are seemingly in conflict with recent findings reporting a softening of neutrophils with 

activation (19). While some of the discrepancy could stem from accidental activation by the 

cell preparation required, the different modes of mechanical testing (11) or the different time-

scales of mechanical response assessed by the different techniques, MORE analysis of the 

neutrophil activation kinetics in whole blood with the bacterial wall-derived tripeptide fMLP 

suggested a different cause. Albeit neutrophils were indeed less deformable and smaller 

15 min post fMLP treatment, the subsequent time-course showed reversal to more deformed 

and larger cells (Fig. 3A, B; Fig. S7). So, the likely reason for the discrepancy of previous 

reports could lie in the different time points of measurement after activation. 

 

We found the same softening response in an experimental medicine trial, where 

lipopolysaccharide (LPS; from E. coli) inhalation in healthy human volunteers likewise 

induced a transient increase in size and greater deformation of the neutrophils (Fig. 3A, B; 

Fig. S7). Also, infecting whole blood in vitro with Staphylococcus aureus (S. aureus), a 

Gram-positive bacterium and one of the major pathogens responsible for life-threatening 

infections world-wide, resulted in larger and more deformed neutrophils, measured between 

30 – 60 min after blood stimulation (Fig. 3A, B; Fig. S8). 
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Fig. 3 | MORE phenotyping identifies leukocyte activation and infections in vitro and in 

vivo. Relative change (mean ± SD) in A, deformation and B, size of neutrophils in whole 

blood after fMLP (n = 5) and S. aureus (n = 4) stimulation in vitro, and LPS inhalation (n = 2) 

in vivo. Exemplary scatter plots of size vs. deformation of neutrophils in blood of a patient 

with C, ALI (magenta) and D, RTI (blue) compared to controls (black). Medians of size and 

deformation of E, I, neutrophils, F, J, monocytes, and G, K, lymphocytes in blood samples of 

patients with E, F, G, ALI (n = 4) and RTI (n = 6), and I, J, K, EBV infection (n = 5; orange) 

relative to the norm (black, n = 21 as in Fig. 1E with 68 % and 95 % confidence ellipses). H, 

I, Mean and SD of these results, ∗ p < 0.05. 

 

Congruently, blood taken from patients with an acute lung injury (ALI) of most likely 

bacterial origin had larger and more deformed neutrophils compared to healthy controls (Fig. 

3C, E, H). The same neutrophil response was found in blood samples from patients 

hospitalized with viral respiratory tract infections (RTI; Fig. 3D, E, H). Also monocytes 

responded by a size increase in both RTI and ALI patients and after in vitro stimulation with 
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S. aureus, but only in viral RTI showed a significantly increased deformation, while blood 

lymphocytes did not show any consistent response (Fig. 3F-H; Fig. S8). The lymphocyte 

response changed when analyzing blood of patients with acute Epstein-Barr-virus (EBV) 

infection, which is known to also stimulate the lymphatic system, where both monocytes and 

lymphocytes showed an increase in cell size and deformation, while neutrophils showed less 

of a response (Fig. 3I-L). These results suggest that MORE blood analysis might be 

sufficiently sensitive to distinguish bacterial from viral infections, and potentially other 

inflammatory diseases, by the differential response of the selective blood leukocyte 

populations. This possibility will be followed up in future specific trials. Importantly, MORE 

blood analysis is of special interest for blood tests in neonatology with patients at high risk of 

infections but only minute amounts of blood available for diagnostics, or to characterize 

neutrophils in neutropenic patients, as it merely requires longer data acquisition periods. 

 

MORE analysis of malignant transformed blood cells 

Blood cancers, or leukemias, affecting both myeloid and lymphoid cell lineages, are a further 

large area, where MORE analysis could potentially contribute fundamental insight, aid 

diagnosis, and improve therapy monitoring. While solid cancer cell mechanics has been a 

focus of cell mechanics research and extensively documented (27-29), the mechanical 

properties of blood cancers are comparatively understudied. The available mechanics research 

on leukemic cells has been undertaken either on cell lines or fully purified cells (1, 7-10, 12, 

13, 17, 30) but so far not in whole blood. MORE analysis of the blood of patients with acute 

myeloid (AML) and lymphatic leukemias (ALL) revealed the new presence of atypical cell 

populations — the characteristic immature blasts not normally present in healthy donors (Fig. 

4A-C). Cell populations gated for AML revealed less deformed cells but at about the same 

size compared to healthy and fully differentiated myeloid cells (Fig. 4D, Fig. S9), in line with 

previous results (7, 9, 10, 12, 13). 
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Fig. 4 | MORE phenotyping detects and distinguishes leukemia subtypes and monitors 

treatment effects. A, Normal brightness vs. size scatter plot of a healthy donor with the gates 

(shaded areas) used to identify lymphocytes (ly), basophils (ba), monocytes (mo), neutrophils 

(neu) and eosinophils (eo). B, Exemplary brightness vs. size scatter plot in AML; blast cells 

were found in (ba) and (mo) gates. C, Exemplary brightness vs. size scatter plot in ALL; blast 

cells were found in (ly), (ba), and (mo) gates. D, Medians of deformation and size for the 

respective gates in blood samples of ALL (red circles, n = 4) and AML (purple triangles, 

n = 7) patients. Shaded areas in D-H (color as in A) represent 95% confidence ellipses of the 

respective cell type norm (n = 21, as in Fig. 1E). Scatter plots of ALL blast deformation and 

size at E, one; F, seven, and G, twelve days post therapy start. H, Median deformation and 

size of ALL cells during 12 days of treatment (red dots). 

 

ALL blast cells were larger in size compared to mature lymphocytes, but did not show any 

consistent trend in deformation (Fig. 4D; Fig. S9). Since larger cells of identical stiffness 

should deform more in RT-DC (20, 21, 31), these findings together imply that mature 

lymphocytes, ALL blasts, mature myeloid cells, and AML blasts have decreasing levels of 

deformability, consistent with the composite findings of previous reports (1, 7-10, 12, 13, 17). 

This is quite different to the general trend in solid tumors, where cancer cells are found to be 
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more deformable than their healthy counterparts (27-29). Sensibly, the differential stiffness of 

AML and ALL blasts, and its potential further increase with chemotherapy, has been 

implicated in the occurrence of leukostasis (8, 17, 32). MORE analysis might not only permit 

screening for novel therapeutic targets to soften cells (19, 33, 34), but also assessing the risk 

of leukostasis directly in each patient. In addition, by following the ALL blast population in a 

patient over 12 days of methylcortisone treatment we could monitor the return to the normal 

morpho-rheological fingerprint of blood as mature lymphocytes successfully replaced the 

lymphoblasts (Fig. 4E-H). Thus, MORE blood analysis can be used to monitor morpho-

rheological effects of chemotherapy in a quantitative manner. This last finding also touches 

upon the study of hematopoietic differentiation of cells in the bone marrow, which is an 

obvious further potential area of application of this approach. 

 

Discussion and Conclusion 

MORE phenotyping allows individual blood cell mechanics to be studied in a range of human 

diseases and takes cell mechanical phenotyping to an entirely new level. While established 

techniques such as micropipette aspiration (1, 9-11), indentation by cell pokers and atomic 

force microscopes (6-8), or optical trapping (12-14) have provided important proof-of-

concept insight over the last decades, the recent advent of microfluidic techniques 

approaching the throughput of conventional flow cytometers (19, 21, 30, 35, 36) has finally 

brought mechanical phenotyping close to real-world applications (29, 37). Amongst the latter 

techniques, RT-DC stands out because it can continuously monitor an unlimited number of 

cells, which enables the direct sensitive assessment of the state of all major blood cell types 

directly in whole blood. A volume as small as 10 µl can be analyzed cell-by-cell, with only 

minimal dilution and no labeling, enrichment or separation, which could otherwise cause 

inadvertent activation of blood cells. The conventional blood count is extended by 

information about characteristic, and diagnostic, morpho-rheological changes of the major 
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cell types. Cell mechanics and morphology are inherent and sensitive markers intimately 

linked to functional changes associated with the cytoskeleton (38-42) and other intracellular 

shape-determining and load-bearing entities (43, 44). Thus, label-free, disease-specific 

MORE blood signatures are a novel resource for generating hypotheses about the underlying 

molecular mechanisms. The availability of such parameters in real-time, easily combined with 

conventional fluorescence detection, are the necessary prerequisite for future sorting of 

morpho-rheologically distinct subpopulations, which then provides a novel opportunity for 

further molecular biological analysis. Of course, at present, MORE phenotyping provides a 

sensitive, but not a very specific marker. For example, neutrophil softening could be a 

signature of different underlying pathological changes. In the future, fuller exploration of the 

large combinatorial space afforded by the multi-parametric response of the various blood 

cells, exploiting many additional MORE parameters in conjunction with machine learning, 

and inclusion of conventional fluorescence-based marker analysis will further increase the 

specificity of this approach. Apart from now enabling realistic blood cell research ex vivo 

close to physiological conditions, delivering for example previously unavailable information 

about leukocyte activation kinetics, and after further in depth studies of the phenomena 

reported here, MORE phenotyping could have a tangible impact on diagnosis, prognosis, and 

monitoring of treatment success of many hematological diseases as well as inflammatory, 

infectious, and metabolic disorders. Beyond blood analysis, MORE phenotyping has the 

potential to become a standard approach in flow cytometry with many applications in biology, 

biophysics, biotechnology and medicine. 
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Materials and Methods 

Real-time deformability cytometry 

Real-time deformability cytometry (RT-DC) was carried out as described previously 

(21). For RT-DC measurements cells were suspended in a viscosity-adjusted measurement 

buffer (MB) based on 1x phosphate buffered saline (PBS) containing methylcellulose. The 

viscosity was adjusted to 15 mPa s at room (and measurement) temperature, determined using 

a falling ball viscometer (Haake, Thermo Scientific). Cells in the MB were taken up into a 1 

ml syringe, placed on a syringe pump (neMESYS, Cetoni GmbH) and connected via tubing to 

the sample inlet of the microfluidic chip with a square measurement channel cross section of 

20 x 20 µm2. The microfluidic chip was made from cured polydimethylsiloxane bonded to a 

thickness #2 cover glass. Another syringe containing MB without cells was connected to the 

sheath flow inlet of the chip. Measurements were carried out at a total flow rate of 0.12 µl/s 

with a sample flow rate of 0.03 µl/s and a sheath flow rate of 0.09 µl/s unless stated 

otherwise. Different gating settings for cell dimensions could be employed during the 

measurement (Fig. S1).  Images of the cells in the channel were acquired in a region of 

interest of 250 x 80 pixels at a frame rate of 2,000 fps. Real-time analysis of the images was 

performed during the measurement and the parameters necessary for MORE analysis were 

stored for all detected cells. 

 

Data processing in MORE analysis 

The raw data obtained from RT-DC measurements consisted of the following 

information of every detected cell: a bright field image of the cell, the contour of the cell, its 

deformation value, and the cell size as the cross-sectional area of the cell in the image (Fig. 

S1).  The deformation was calculated from the convex hull contour of the cell — a processed 

contour, where all points contributing to concave curvature were removed: 
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𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 1−
2 𝜋𝐴
𝑙  , 

where A is the area enclosed by the convex hull contour and l is the length of the convex hull 

contour. Therefore, deformation is the deviation from a perfectly circular cell image. It 

describes the change of the cell’s shape by the hydrodynamic forces in the measurement 

channel but may also contain pre-existing shape deviations from a sphere. Image brightness 

analysis was carried out using the contour information and the image of the cell. The mean 

brightness of the cell was determined from all pixel values within the cell’s contour (Fig. 1D). 

With this information the distinction of leukocyte subpopulations was possible in the space 

spanned by cell size and mean brightness (Fig. 1D and Fig. S2).  It is worth noting that the 

absolute value of the resulting brightness was influenced by several experimental conditions 

such as focus of the image and the thickness of the microfluidic chip. However, this did not 

affect the quality of the distinction of cells by their brightness. Special care had to be taken 

when comparing the brightness of different purified leukocyte subpopulations of similar size 

(like neutrophils, eosinophils, and monocytes). In order to achieve a situation similar to the 

whole blood measurement we used the same microfluidic chip repeatedly after thorough 

flushing. All brightness values reported were normalized to 100 by the background brightness 

of the channel. Apart from the initial brightness distinction, in a second step, the root mean 

square of pixel brightness values was calculated in an area of 9 x 5 pixels (9 in the flow 

direction, 5 perpendicular to the flow direction) around the geometrical center of the cell. This 

information was used to distinguish the relevant leukocyte subpopulations from eventual 

erythrocyte doublets present (Fig. 1D). To ensure best validity of the deformation measure 

based on the area within the cell’s contour and the length of the contour, only cells without 

prominent protrusions were considered for comparisons based on deformation. A reliable 

criterion to select those cells was found by comparing the area within the originally detected 

cell contour and within the convex hull contour. For erythrocytes, the difference of these two 
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areas was limited to 15 %. For leukocytes, a suitable limit was found at 5 %. For the 

identification of malaria-infected erythrocytes we used a semi-automated procedure designed 

to obtain only clearly positive results and to avoid false negatives. The defining property of 

infected cells was the presence of bright spots within the cells. In a first step, all pixel values 

outside the cell’s contour were set to 0. In a twice-repeated procedure, the image of the 

erythrocyte was further reduced by setting all pixel values of the contour pixels to 0 and 

finding the new contour. This measure was used to eliminate possible bright spots due to 

fringes at the border of the cell. From this image, the brightness of every pixel of the 

remaining cell was calculated by taking the mean of the pixel itself and its 8 nearest 

neighbors. The user was then able to set the minimal threshold for this brightness in order to 

identify a cell as potentially infected. Since higher pixel values are frequently obtained at the 

rear of the cell (in flow direction) only bright spots within 70 % of the cell’s length counted 

from the front of the cell were considered. As a last criterion, the calculated brightness was 

compared to the brightness of the cell directly surrounding the bright spot in order to 

eliminate cases of generally bright cells. For this a mean brightness value was formed from all 

pixels located within the two rectangular areas spanned from [k-3,l-1] to [k-2,l+1] as well as 

[k+2,l-1] to [k+3,l+1], where k is the pixel position of the bright spot in the flow direction and 

l is the pixel position of the bright spot orthogonal to the flow direction. All scripts for MORE 

analysis were written in Matlab and Python using OpenCV. 

 

Whole blood measurements 

All studies complied with the Declaration of Helsinki and involved written informed 

consent from all participants or their legal guardians. Ethics for experiments with human 

blood were approved by the ethics committee of the Technische Universität Dresden 

(EK89032013, EK458102015), and for human blood and LPS inhalation in healthy volunteers 

by the East of England, Cambridge Central ethics committee (Study No. 06/Q0108/281 and 
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ClinicalTrialReference NTC02551614). Study participants were enrolled according to good 

clinical practice and recruited at the University Medical Centre Carl Gustav Carus Dresden, 

Germany, the Biotechnology Center, Technische Universität Dresden, Germany, or 

Cambridge University Hospitals, Cambridge, UK. Human blood and serum used to culture 

the malaria parasites was obtained from the Glasgow and West of Scotland Blood Transfusion 

Service; the provision of the material was approved by the Scottish National Blood 

Transfusion Service Committee For The Governance Of Blood And Tissue Samples For Non-

Therapeutic Use. Venous blood was drawn from donors with a 20-gauge multifly needle into 

a sodium citrate S-monovette (Sarstedt) by vacuum aspiration. In case of blood volumes 

above 9 ml, blood was manually drawn via a 19-gauge multifly needle into a 40 ml syringe 

and transferred to 50 ml Falcon polypropylene tubes (BD) containing 4 ml 3.8% sodium 

citrate (Martindale Pharmaceuticals). For whole-blood RT-DC measurements, 50 µl of anti-

coagulated blood were diluted in 950 µl MB and mixed gently by manual rotation of the 

sample tube. Measurements were typically carried out within 2 h past blood donation unless 

stated otherwise. Two different gating settings were employed in the measurement software 

for erythrocyte and leukocyte acquisition, respectively (Fig. S1A). For erythrocytes, gates 

were essentially open allowing cell dimensions in flow direction from 0 µm to 30 µm. The 

leukocyte gate was set to a size of 5 – 16 µm in flow direction and > 5 µm perpendicular to it. 

This setting allowed filtering out single erythrocytes and almost all erythrocyte multiples. The 

leukocyte populations remained unaltered as confirmed in experiments with purified 

leukocytes at open gate settings. Using the leukocyte gate, the majority of thrombocytes was 

also ignored as they possess typical diameters of 2 – 3 µm. A small fraction of very large 

thrombocytes and microerythrocytes were still found within this gate as seen in Fig. 1C and 

D. Mechanical analysis of these events constitutes an interesting challenge in that they can be 

detected and counted, but at present not tested for activation via their deformation given their 

very small size compared to the channel size, which was chosen to accommodate all cells 
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found in blood. Measurements in the leukocyte gate were carried out over a timespan of 15 

min, followed by a separate measurement in the erythrocyte gate for a few seconds until data 

of 5,000 – 10,000 cells were acquired. Measurements for establishing the normal MORE 

blood phenotype in healthy human volunteers (Fig. 1E), and all measurements directly 

compared to this norm, e. g., blood samples derived from patients, were carried out at a 

temperature of 30 °C. The remaining measurements — fMLP stimulation, LPS stimulation, 

purified leukocyte subpopulations, malaria infection, and erythrocyte palmitoylation — were 

carried out at a temperature of 23 °C. The viscosity of the MB was always adjusted to 15 

mPa s at the different temperatures to keep the acting hydrodynamic stress and, thus, the 

resulting deformation regimes the same. An MB with the viscosity of 25 mPa s (to slow blood 

cell sedimentation in the tubing) was used in experiments for comparing the relative cell 

count results of leukocyte subpopulation by MORE analysis and conventional blood count 

(Fig. 1F; Table S1).  Here, the total flow rate was 0.06 µl/s (sample flow 0.015 µl/s, sheath 

flow 0.045 µl/s) and images were acquired at 4,000 fps. 

 

Leukocyte purification and identification 

Leukocyte subpopulations were purified by negative and/or positive magnetic-activated 

cell sorting (MACS) following the instructions provided by the manufacturer. Reagents for 

cell isolation with magnetic beads purchased from Miltenyi Biotec were MACSxpress 

Neutrophil Isolation Kit human (130-104-434), Monocyte Isolation Kit human (130-091-

153), Basophil Isolation Kit II human (130-092-662), Pan T Cell Isolation Kit human (130-

096-535) and CD3 MicroBeads (130-050-101), as well as Pan B Cell Isolation Kit human 

(130-101-638) and CD19 MicroBeads (130-050-301). EasySep Human Eosinophil 

Enrichment Kit (19256) was obtained from StemCell Technologies. The purity of the derived 

cell isolates was controlled twice by staining with 7-Color-Immunophenotyping Kit (Miltenyi 

Biotec, 5140627058), as well as additional single staining of each cell subset for 
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fluorescence-activated cell sorting (FACS).  Individual cell type staining antibodies from 

BioLegend were used for granulocytes (target: CD66ACE, staining: PE, order no.: 342304), 

eosinophils (Siglec-8, APC, 347105), B lymphocytes (CD19, FITC, 302205), NK cells 

(CD56, PE, 318305), T helper cells (CD4, PE-Cy7, 300511), T lymphocytes (CD3, APC, 

300411), cytotoxic T cells (CD8, PacificBlue, 301026), monocytes (CD14, FITC, 325603), as 

well as eosinophils, basophils, mast cells, and mononuclear phagocytes (CD193, PE, 310705). 

For RT-DC measurements, purified cells were pelleted by centrifugation (200 g, 5 min) and 

re-suspended in MB at concentrations of about 5 · 106 cells/ml by repeated, gentle shaking. 

 

In vitro malaria infection 

Plasmodium falciparum (P. falciparum) cultures were grown accordingly to standard 

protocols (45). Two P. falciparum cultures (HB3 clone), were grown independently for 3 

weeks, treated with Plasmion(46) to enrich for the schizont stages, and then allowed to 

reinvade fresh red blood cells in a shaking incubator for 3 h. The cultures were then treated 

with sorbitol (47), to remove all schizonts that had not reached full maturity; only ring stage 

parasites survive sorbitol treatment. The highly synchronised culture used for the RT-DC 

measurements therefore consisted of erythrocytes into which parasites had invaded within a 

3 h window. Samples were removed at 4, 12, 16, 20, 24, 36, 42 and 46 hours post invasion for 

the RT-DC measurements. At the time of each measurement a thin blood smear was taken and 

stained with Giemsa’s stain to assess the parasitemia and the stage of the parasites (Fig. S6A). 

A control sample of the same blood without the parasites underwent the identical treatment as 

the infected samples. For RT-DC measurements, at each time point, 10 µl of the blood culture 

were diluted in 990 µl of the MB to a final concentration of 2.5 · 105 cells/µl. The total flow 

rate through the channel was 0.04 µl/s for all malaria infection experiments (sample flow rate 

0.01 µl/s, sheath flow rate 0.03 µl/s). For experiments on growth and invasion depending on 

erythrocyte palmitoylation status, blood, treated as described in the palmitoylation section 
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below, was shipped from Germany to Scotland in PBS buffer containing 15 mM glucose, 5 

mM sodium pyruvate, 5 µM Coenzyme A, 5 mM MgCl2, 5 mM KCl, 130 mM NaCl. 

Parasites were synchronized by collecting P. falciparum mature stages (trophozoites and 

schizonts) from P. falciparum clone HB3 using MACS columns(48). The trophozoite and 

schizont enriched cultures were mixed with erythrocytes to achieve a starting parasitemia of 

0.5 – 1.0 %. Each erythrocyte type was set up in a separate culture flask at 3 ml volume and 5 

% hematocrit. The parasites were incubated in a shaking incubator at 37°C under standard 

culture conditions of gas and medium. Parasitemia was monitored on day 2 (post invasion) 

and day 4 (second round of invasion). For all experimental conditions, a minimum of 500 

RBCs were counted. Experiments were repeated on 3 different days with erythrocytes of 3 

different donors yielding the same results. 

 

Palmitoylation of erythrocytes 

Red blood cells were pelleted by blood centrifugation (800 g, 5 min), plasma was 

removed, and the RBCs were pretreated with one volume of 1 % fatty acid-free bovine serum 

albumin (BSA) in PBS-glucose (10 mM phosphate, 140 mM NaCl, 5 mM KCl, 0.5 mM 

EDTA, 5 mM glucose, pH7.4) at 37° C for 15 min, in order to lower the endogenous content 

of free fatty acids in their membrane pools, and washed three times with PBS-glucose. Cells 

were re-suspended in 3 volumes of incubation buffer, containing 40 mM imidazole, 90 mM 

NaCl, 5 mM KCl, 5 mM MgC12, 15 mM D-glucose, 0.5 mM EGTA, 30 mM sucrose, 5 mM 

sodium pyruvate, 5 mM Coenzyme A, 50 mg PMSF/ml and 200 U penicillin/streptomycin  

(320 mOsm, pH 7.6). For inhibition of palmitoylation, 100 µM final concentration of 2-

bromopalmitate (2BP) was used. 100 µM palmitic acid (PA) was added as a control. The 

RBCs were incubated in a humidified incubator with 5 % CO2 for 24 h at 37 °C. Prior to 

measurement, RBCs were pelleted, re-suspended in 1 % BSA, incubated for 15 min at 37 °C 

and washed two times with PBS-glucose. Glucose, sucrose, 2-bromopalmitate, palmitic acid, 
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fatty acid free BSA, Coenzyme A, and PMSF were purchased from Sigma-Aldrich; 

Penicilin/streptomycin and sodium pyruvate from Gibco. RT-DC measurements were carried 

out at a room temperature of 23°C and with a total flow rate of 0.032 µl/s (sample flow 0.008 

µl/s, sheath flow 0.024 µl/s) after adding 10 µl of the RBC suspension to 990 µl of MB. 

Experiments were carried out on 2 different days with erythrocytes of 4 different donors. 

 

fMLP-induced neutrophil activation 

For in vitro fMLP stimulation, whole blood was stimulated with 100 nM N-

Formylmethionyl-leucyl-phenylalanine (fMLP; Sigma-Aldrich, 47729, 10 mg-F). Separate 

samples were analyzed in time intervals of 0 – 15 min, 15 – 30 min, 30 – 45 min, and 45 – 60 

min after activation. During incubation all samples were stored in 2 ml Eppendorf tubes at 

37°C at 450 rpm in a ThermoMicer C (Eppendorf). All experiments were performed within 2 

hours maximum after blood drawing. Experiments were repeated with blood samples of 5 

different donors on 5 different days. Due to experimental feasibility PBS controls of these 

donors were measured before fMLP stimulation and after the 60 min fMLP sample. 

Additionally, three control samples of different donors were treated similarly adding 10 µl 

1 x PBS instead of fMLP and were analyzed in time intervals of 0 – 15 min, 15 – 30 min, 30 –

 45 min, and 45 – 60 min after bleeding to exclude kinetic effects due to blood alteration with 

storage. 

 

In vitro Staphylococcus aureus infection 

Whole blood stimulation was performed with Staphylococcus aureus Newmann strain 

(S. aureus; ATCC25904). For reproducible repetitive testing with competent bacterial strains 

cryo-aliquots of S. aureus were prepared as follows. Bacterial cells were pre-cultured to the 

log phase for synchronization of growth in BHI broth (Bacto Brain Heart Infusion, Becton 

Dickinson) at 37°C and transferred to a second culture. Aiming at a high bacterial virulence 
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factor expression, the cells were grown to an early stationary phase in a 96-well-plate (100 µl, 

OD600nm 0.1837, Infinite 200 reader, TECAN), pelleted by centrifugation (2671 g for 5 min at 

4 °C), washed two times in PBS and re-suspended in cell-freezing media (Iscove Basal 

Medium, Biochrom) with 40 % endotoxin-free FBS (FBS Superior, Biochrom) at a final 

concentration of 2.54⋅109 CFU/ml. Aliquots were immediately frozen at –80 °C and only 

thawed once for a single experiment. Blood stimulation and measurement were carried out at 

30 °C temperature for 15 min with one multiplicity of infection (MOI) in 1:20 RT-DC 

measurement buffer. MOI (0.9 - 1.09) was controlled retrospectively by granulocyte count 

and 5 % sheep blood agar culture (Columbia agar, bioMérieux) at 37 °C and bacterial colony 

counting on the following day. PBS blood controls were conducted before and after S. aureus 

blood stimulation. The experiment was repeated with blood of 4 different donors on 4 

different days. All experiments were performed within 2 h after blood drawing. 

 

LPS inhalation 

E. coli lipopolysaccharide (LPS) 50 µg (GSK) was administered to healthy, never-

smoker volunteers via a specialized dosimeter (MB3 Markos Mefar) 90 minutes prior to 

injection of autologous 99mTechnetium-Hexamethylpropleneamine-oxime labeled neutrophils.  

Temperature, forced expiratory volume in 1 second, forced ventilator capacity and triplicate 

blood pressures were recorded prior to, and at 30 min intervals post LPS administration. RT-

DC measurements were obtained at baseline, 90, 135, 210, 330, and 450 min post LPS. 

 

Respiratory tract infections (RTI) and acute lung injury (ALI) 

Patient inclusion criteria for RTI: Patients with clinical signs of lower RTI, a core 

temperature > 38.5°C and the need for supplemental oxygen were recruited on the day of 

hospitalization. Only patients without treatment prior to hospitalization were included. None 

of the included patients received antibiotic treatment for reconstitution. Patient inclusion 
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criteria for ALI: Patients diagnosed with ALI according to the criteria of the North American 

European Consensus Conference (NAECC) (49) and without underlying diseases prior to ALI 

were included. All blood samples were analyzed within 30 min of venipuncture. Size and 

deformation of blood leukocytes was characterized for all blood cells in which the area within 

the original cell contour differed less than 5 % from the area within the convex hull contour. 

 

Acute myeloid/lymphatic leukemias 

Samples from patients diagnosed with ALL or AML based on cytogenetic, molecular-

genetic and morphological criteria according to WHO classification from 2008 (50) were 

assessed by MORE blood analysis on the day of diagnosis. In order to evaluate mechanical 

properties of AML and ALL blast cells in whole blood, several brightness and size gates had 

to be combined as shown in Fig. 4A-C. The AML gate spanned the regions normally used for 

basophils and monocytes. The ALL gate spanned the regions used for lymphocytes, basophils 

and monocytes. In all AML cases, blasts made up > 80 % of all leukocytes, and up to 99 % of 

events in the AML gate. In all ALL cases, blasts made up > 60 % of leukocytes, and up to 85 

% of events in the ALL gate. The blast cell fraction was obtained from the standard 

differential blood count, by comparing the number of blast cells with the number of normal 

cells that would also populate the respective blasts gate in MORE analysis. 

 

Statistics 

Throughout, the number of cells in a single measurement is denoted as N, while the 

number of repeated experiments is denoted as n. For comparison of different donors or 

treatment conditions the median of deformation and cell size of a specific cell population was 

used.  In order to evaluate effects of a disease we calculated a 2D confidence ellipse at 68.3 % 

(or 1 sigma) as well as 95.5 % (or 2 sigma) for the control group/norm norm of healthy 

human blood donors in the space of cell size and deformation. The confidence ellipse was 
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calculated from the covariance matrix of the data and the calculation was carried out with 

OriginPro 2015 (Originlab). Statistically significant differences between two sets of 

experiments were checked to the significance level of p < 0.05 by comparing the groups of 

individual median values of an experiment using a Kruskal-Wallis one-way ANOVA as 

implemented in OriginPro 2015 (Originlab). In erythrocyte MORE analysis in malaria 

infection and palmitoylation, statistically significant differences were checked using linear 

mixed models (51) in combination with a likelihood ratio test to obtain significance levels for 

the comparison of the complete populations. One, two, or three asterisks were awarded for 

significance levels p < 0.05,  p < 0.01 and p < 0.001, respectively. In manual counts of 

malaria infection in RBCs, statistical analyses were performed using a χ2 test with Bonferroni 

correction (adjusted statistical significance for p < 0.0125) to compare the numbers of 

infected and non-infected erythrocytes between erythrocyte samples, except where number of 

parasite infected cells was zero, in which case Fisher`s exact test was used. The standard 

deviation for the parasitemia was calculated assuming a binomial random variable as 

𝑆𝐷 =  𝑁 ∙ 𝑝 (1− 𝑝), where N is the number of cells counted and p is the fraction of 

infected cells. 

 

Code availability 

RT-DC measurement software is commercially available. MORE analysis software is 

available as an open source application at https://github.com/ZELLMECHANIK-

DRESDEN/ShapeOut/releases. 

 

Data availability 

The	data	supporting	the	findings	of	this	study	are	available	from	the	corresponding	

author	upon	reasonable	request.	

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 1, 2017. ; https://doi.org/10.1101/145078doi: bioRxiv preprint 

https://doi.org/10.1101/145078
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 28	

Acknowledgements 

The authors would like to thank Björn Lange, Michael Mögel, Beate Eger, Isabel Deinert, 

Tamara Schön and the whole team for their contributions to patient recruitment, Claudia Krug 

for cell isolation, Uta Falke and Isabel Richter for technical help, Thomas Krüger for help 

with drawing blood, Ramona Hecker for technical advice, Mike Blatt for the loan of a 

microscope, Elizabeth Peat for assistance with malaria parasite culture materials, Salvatore 

Girardo of the BIOTEC/CRTD Microstructure Facility (in part funded by the European Fund 

for Regional Development – EFRE) for help with preparation of PDMS chips, and Stephan 

Grill for critical reading of the manuscript.  

Financial support from the Alexander von Humboldt Stiftung (Alexander von Humboldt 

Professorship to J.G.), a CRTD Seed Grant (A.J. and J.G.), the FP7-funded ITN “LAPASO” 

(L.C., L.R.-C., E.R., G.G., P.M., B.H.-N., and J.G.), TUD Support the Best (R.B and J.G.), 

TG70 (O.O. and J.G.), the ERC Starting Grant “LightTouch” (J.G.), the DFG TRR83 grant 

TP18 (M.G. and Ü.C.), the BMBF grant to the German Center for Diabetes Research (DZD 

e.V.) (M.G. and Ü.C.), the DFG SFB655 grant ‘From cells to tissues’ (subproject B2 to M.K. 

and M.B.), non-commercial grants from ‘Tour der Hoffnung’ (J.S.) and ‘Sonnenstrahl e.V. 

Dresden’ (M.S.), and GlaxoSmithKline (N.Tr. and the LPS inhalation study), and the NIHR 

Cambridge Biomedical Research Centre (E.R.C) is gratefully acknowledged. 

 

Author contributions 

N.To. and C.H. conceived the project and designed and carried out most experiments, 

developed analysis methods, interpreted results and co-wrote the manuscript. O.O. and P.R. 

guided and performed technical developments of the RT-DC and helped with the experiments 

and analysis. A.J., M.K., J.S., L.M. assisted cell isolation experiments and performed the 

leukemia experiments. M.H. programmed analysis methods. L.C. and L.R.C. conceived, 

performed and coordinated the malaria experiments. M.G. and Ü.C. conceived, performed 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 1, 2017. ; https://doi.org/10.1101/145078doi: bioRxiv preprint 

https://doi.org/10.1101/145078
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 29	

and coordinated the palmitoylation experiments. E.R., G.G., P.M. contributed to the 

experiments on bacterial neutrophil activation. E.R.C. and N.Tr. conceived the experiments 

on LPS inhalation. E.R.C., B.H.N., M.S., M.B. and R.B. provided intellectual contributions 

and contributed towards the manuscript writing. J.G. conceived the project, supervised 

experimental designs, interpreted results, and co-wrote the manuscript. 

 

Declaration of potential conflict of interest 

C.H., O.O and P.R. own shares of, and are part- or full-time employed at, Zellmechanik 

Dresden GmbH, a company selling devices based on real-time deformability cytometry.   

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 1, 2017. ; https://doi.org/10.1101/145078doi: bioRxiv preprint 

https://doi.org/10.1101/145078
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 30	

REFERENCES 

 

1. Lichtman MA (1973) Rheology of Leukocytes, Leukocyte Suspensions, and Blood in 
Leukemia - Possible Relationship to Clinical Manifestations. J Clin Invest 52(2):350–
358. 

2. Baskurt OK, Meiselman HJ (2003) Blood rheology and hemodynamics. Semin Thromb 
Hemost 29(5):435–450. 

3. Popel AS, Johnson PC (2005) Microcirculation and hemorheology. Annu Rev Fluid 
Mech 37(1):43–69. 

4. Lan H, Khismatullin DB (2012) A numerical study of the lateral migration and 
deformation of drops and leukocytes in a rectangular microchannel. International 
Journal of Multiphase Flow 47(C):73–84. 

5. Wintrobe MM (1976) Macroscopic examination of the blood in retrospect. Am J Med 
Sci 271(1):103–105. 

6. Worthen GS, Schwab B, Elson EL, Downey GP (1989) Mechanics of stimulated 
neutrophils: cell stiffening induces retention in capillaries. Science 245(4914):183–186. 

7. Rosenbluth MJ, Lam WA, Fletcher DA (2006) Force Microscopy of Nonadherent 
Cells: A Comparison of Leukemia Cell Deformability. Biophys J 90(8):2994–3003. 

8. Lam WA, Rosenbluth MJ, Fletcher DA (2008) Increased leukaemia cell stiffness is 
associated with symptoms of leucostasis in paediatric acute lymphoblastic leukaemia. 
Brit J Haematol 142(3):497–501. 

9. Lichtman MA (1970) Cellular Deformability During Maturation of Myeloblast - 
Possible Role in Marrow Egress. N Engl J Med 283(18):943. 

10. Dombret H, et al. (1995) Changes in microrheology of acute promyelocytic leukemia 
cells during all-trans retinoic acid (ATRA) differentiation therapy: a mechanism for 
ATRA-induced hyperleukocytosis? Leukemia 9(9):1473–1477. 

11. Ravetto A, Wyss HM, Anderson PD, Toonder den JMJ, Bouten CVC (2014) 
Monocytic Cells Become Less Compressible but More Deformable upon Activation. 
PLoS ONE 9(3):e92814. 

12. Lautenschläger F, et al. (2009) The regulatory role of cell mechanics for migration of 
differentiating myeloid cells. Proc Natl Acad Sci USA 106(37):15696–15701. 

13. Ekpenyong AE, et al. (2012) Viscoelastic Properties of Differentiating Blood Cells Are 
Fate- and Function-Dependent. PLoS ONE 7(9):e45237. 

14. Paul A, Pallavi R, Tatu US, Natarajan V (2013) The bystander effect in optically 
trapped red blood cells due to Plasmodium falciparum infection. Trans R Soc Trop Med 
Hyg 107(4):trt010–223. 

15. Schmid-Schönbein H, Weiss J, Ludwig H (1973) A simple method for measuring red 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 1, 2017. ; https://doi.org/10.1101/145078doi: bioRxiv preprint 

https://doi.org/10.1101/145078
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 31	

cell deformability in models of the microcirculation. Blut 26(6):369–379. 

16. Suresh S, et al. (2005) Connections between single-cell biomechanics and human 
disease states: gastrointestinal cancer and malaria. Acta Biomat 1(1):15–30. 

17. Rosenbluth MJ, Lam WA, Fletcher DA (2008) Analyzing cell mechanics in 
hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip 
8(7):1062–1070. 

18. Bow H, et al. (2011) A microfabricated deformability-based flow cytometer with 
application to malaria. Lab Chip 11(6):1065–1073. 

19. Gossett DR, et al. (2012) Hydrodynamic stretching of single cells for large population 
mechanical phenotyping. Proc Natl Acad Sci USA 109(20):7630–7635. 

20. Mietke A, et al. (2015) Extracting Cell Stiffness from Real-Time Deformability 
Cytometry: Theory and Experiment. Biophys J 109(10):2023–2036. 

21. Otto O, et al. (2015) Real-time deformability cytometry: on-the-fly cell mechanical 
phenotyping. Nat Methods 12(3):199–202. 

22. Cranston HA, et al. (1984) Plasmodium falciparum maturation abolishes physiologic 
red cell deformability. Science 223(4634):400–403. 

23. Shelby JP, White J, Ganesan K, Rathod PK, Chiu DT (2003) A microfluidic model for 
single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. Proc 
Natl Acad Sci U S A 100(25):14618–14622. 

24. Jones ML, Collins MO, Goulding D, Choudhary JS, Rayner JC (2012) Analysis of 
protein palmitoylation reveals a pervasive role in Plasmodium development and 
pathogenesis. Cell Host Microbe 12(2):246–258. 

25. Koch M, et al. (2017) Plasmodium falciparum erythrocyte-binding antigen 175 triggers 
a biophysical change in the red blood cell that facilitates invasion. Proc Natl Acad Sci 
USA 114(16):4225–4230. 

26. Reid HL, Dormandy JA, Barnes AJ, Lock PJ, Dormandy TL (1976) Impaired red cell 
deformability in peripheral vascular disease. Lancet 1(7961):666–668. 

27. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Materialia 
55(12):3989–4014. 

28. Kumar S, Weaver VM (2009) Mechanics, malignancy, and metastasis: The force 
journey of a tumor cell. Cancer Metastasis Rev 28(1-2):113–127. 

29. Guck J, Chilvers ER (2013) Mechanics meets medicine. Science Transl Med 
5(212):212fs41. 

30. Zheng Y, et al. (2015) Decreased deformability of lymphocytes in chronic lymphocytic 
leukemia. Sci Rep 5:7613. 

31. Mokbel M, et al. (2017) Numerical Simulation of Real-Time Deformability Cytometry 
to Extract Cell Mechanical Properties. ACS Biomaterials doi:acsbiomaterials.6b00558. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 1, 2017. ; https://doi.org/10.1101/145078doi: bioRxiv preprint 

https://doi.org/10.1101/145078
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 32	

32. Lam WA, Rosenbluth MJ, Fletcher DA (2007) Chemotherapy exposure increases 
leukemia cell stiffness. Blood 109(8):3505–3508. 

33. Di Carlo D (2012) A Mechanical Biomarker of Cell State in Medicine. J Lab Autom 
17(1):32–42. 

34. Surcel A, et al. (2015) Pharmacological activation of myosin II paralogs to correct cell 
mechanics defects. Proc Natl Acad Sci U S A 112(5):1428–1433. 

35. Byun S, et al. (2013) Characterizing deformability and surface friction of cancer cells. 
Proc Natl Acad Sci U S A 110(19):7580–7585. 

36. Lange JR, et al. (2015) Microconstriction arrays for high-throughput quantitative 
measurements of cell mechanical properties. Biophys J 109(1):26–34. 

37. Tse HTK, et al. (2013) Quantitative Diagnosis of Malignant Pleural Effusions by 
Single-Cell Mechanophenotyping. Science Transl Med 5(212):212ra163–212ra163. 

38. Chimini G, Chavrier P (2000) Function of Rho family proteins in actin dynamics 
during phagocytosis and engulfment. Nat Cell Biol 2(10):E191. 

39. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 
463(7280):485–492. 

40. Kasza KE, et al. (2007) The cell as a material. Curr Opin Cell Biol 19(1):101–107. 

41. Patel NR, et al. (2012) Cell Elasticity Determines Macrophage Function. PLoS ONE 
7(9):e41024. 

42. Salbreux G, Charras G, Paluch E (2012) Actin cortex mechanics and cellular 
morphogenesis. Trends in Cell Biology 22(10):536–545. 

43. Rowat AC, Lammerding J, Ipsen JH (2006) Mechanical Properties of the Cell Nucleus 
and the Effect of Emerin Deficiency. Biophys J 91(12):4649–4664. 

44. Munder MC, et al. (2016) A pH-driven transition of the cytoplasm from a fluid- to a 
solid-like state promotes entry into dormancy. eLife 5:e09347. 

45. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 
193(4254):673–675. 

46. Lelièvre J, Berry A, Benoit-Vical F (2005) An alternative method for Plasmodium 
culture synchronization. Exp Parasitol 109(3):195–197. 

47. Lambros C, Vanderberg JP (1979) Synchronization of Plasmodium falciparum 
erythrocytic stages in culture. J Parasitol 65(3):418–420. 

48. Ribaut C, et al. (2008) Concentration and purification by magnetic separation of the 
erythrocytic stages of all human Plasmodium species. Malar J 7(1):45. 

49. Bernard GR, et al. (1994) The American-European Consensus Conference on ARDS - 
Definitions, Mechanisms, Relevant Outcomes, and Clinical-Trial Coordination. Am J 
Respir Crit Care Med 149(3):818–824. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 1, 2017. ; https://doi.org/10.1101/145078doi: bioRxiv preprint 

https://doi.org/10.1101/145078
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 33	

50. Vardiman JW, et al. (2009) The 2008 revision of the World Health Organization 
(WHO) classification of myeloid neoplasms and acute leukemia: rationale and 
important changes. Blood 114(5):937–951. 

51. Bates D, Maechler M, Bolker BM, Walker SC (2015) Fitting Linear Mixed-Effects 
Models Using lme4. J Stat Softw 67(1):1–48. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 1, 2017. ; https://doi.org/10.1101/145078doi: bioRxiv preprint 

https://doi.org/10.1101/145078
http://creativecommons.org/licenses/by-nc-nd/4.0/

