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Abstract:

We assembled and analyzed genetic data of 47,351 multiple sclerosis (MS) subjects and 68,284
control subjects and establish a reference map of the genetic architecture of MS that includes 200
autosomal susceptibility variants outside the major histocompatibility complex (MHC), one
chromosome X variant, and 32 independent associations within the extended MHC. We used an
ensemble of methods to prioritize up to 551 potentially associated MS susceptibility genes, that
implicate multiple innate and adaptive pathways distributed across the cellular components of the
immune system. Using expression profiles from purified human microglia, we do find enrichment
for MS genes in these brain-resident immune cells. Thus, while MS is most likely initially
triggered by perturbation of peripheral immune responses the functional responses of microglia
and other brain cells are also altered and may have a role in targeting an autoimmune process to

the central nervous system.

One Sentence Summary: We report a detailed genetic and genomic map of multiple sclerosis,
and describe the role of putatively affected genes in the peripheral immune system and brain

resident microglia.
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Introduction

Over the last decade, elements of the genetic architecture of multiple sclerosis (MS)
susceptibility have gradually emerged from genome-wide and targeted studies.(/-5) The role of
the adaptive arm of the immune system, particularly its CD4+ T cell component has become
clearer, with multiple different T cell subsets being implicated.(4) While the T cell component
plays an important role, functional and epigenomic annotation studies have begun to suggest that
other elements of the immune system may be involved as well.(6, 7) Here, we assemble available
genome-wide MS data to perform a meta-analysis followed by a systematic, comprehensive
replication effort in large independent sets of subjects. This effort has yielded a detailed genome-
wide genetic map that includes the first successful evaluation of the X chromosome in MS and
provides a powerful platform for the creation of a detailed genomic map outlining the functional
consequence of each variant and their assembly into susceptibility networks.
Discovery and replication of genetic associations

We organized available (1, 2, 4, 5) and newly genotyped genome-wide data in 15 data sets,
totaling 14,802 subjects with MS and 26,703 controls for our discovery study (Supplementary
Methods, Supplementary Tables 1-3). After rigorous per data set quality control, we imputed all
samples using the 1000 Genomes European panel resulting in an average of 8.6 million imputed
single nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) of at least 1%
(Supplementary Methods). We then performed a meta-analysis, penalized for within-data set
residual genomic inflation, to a total of 8,278,136 SNPs with data in at least two data sets
(Supplementary Methods). Of these, 26,395 SNPs reached genome-wide significance (p-value <
5x10®) and another 576,204 SNPs had at least nominal evidence of association (5x10™ > p-value
< 0.05). In order to identify statistically independent SNPs in the discovery set and to prioritize
variants for replication, we applied a genome partitioning approach (Supplementary Methods).
Briefly, we first excluded an extended region of ~12Mb around the major histocompatibility

complex (MHC) locus to scrutinize this unique region separately (see below), and we then
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applied an iterative method to discover statistically independent SNPs in the rest of the genome
using conditional modeling. We partitioned the genome into regions by extracting +1Mbs on
either side of the most statistically significant SNP and repeating this procedure until there were
no SNPs with a p-value<0.05 in the genome. Within each region we applied conditional modeling
to identify statistically independent effects. As a result, we identified 1,961 non-MHC autosomal
regions that included 4,842 presumably statistically independent SNPs. We refer these 4,842
prioritized SNPs as “effects ”, assuming that these SNPs tag a true causal genetic effect. Of these,
82 effects were genome-wide significant in the discovery analysis, and another 125 had a p-value
<1x107.

In order to replicate these 4,842 effects we analyzed two large-scale independent sets of data.
First, we designed the MS Chip to directly replicate each of the prioritized effects
(Supplementary Methods) and, after stringent quality check (Supplementary Methods and
Supplementary Table 4), analyzed 20,282 MS subjects and 18,956 controls, which are organized
in 9 data sets. Second, we incorporated targeted genotyping data generated using the
ImmunoChip platform on an additional 12,267 MS subjects and 22,625 control subjects that had
not been used in either the discovery or the MS Chip subject sets (Supplementary Table 5).(3)
Overall, we jointly analyzed data from 47,351 MS cases and 68,284 control subjects to provide
the largest and most comprehensive genetic evaluation of MS susceptibility to date.

For 4,311 of the 4,842 effects (89%) that were prioritized in the discovery analysis, we could
identify at least one tagging SNP (Supplementary Methods) in the replication data. 157 regions
had at least one genome-wide effect with overall 200 prioritized effects reaching a level of
genome-wide significance (GW) (Figure 1). 61 of these 200 represent secondary, independent,
effects that emerge from conditional modeling within a given locus (Supplementary Results and
Supplementary Table 6). The odds ratios (ORs) of these genome-wide effects ranged from 1.06 to
2.06, and the allele frequencies of the respective risk allele from 2.1% to 98.4% in the European

samples of the 1000 Genomes reference (mean: 51.3%, standard deviation: 24.5%;
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Supplementary Table 7 and Supplementary Figure 1). 19.7% of regions (31 out of 157) harbored
more than one statistically independent GW effect. One of the most complex regions was the one
harboring the EVI5 gene that has been the subject of several reports with contradictory results.(8-
11) In this locus, we identified four statistically independent genome-wide effects, three of which
were found under the same association peak (Figure 2A), illustrating how our approach and the
large sample size clarifies associations described in smaller studies and can facilitate functional
follow-up of complex loci.

We also performed a joint analysis of available data on sex chromosome variants
(Supplementary Methods) and we identified rs2807267 as genome-wide significant (OR1=1.07,
p-value=6.86x10"; Supplementary Tables 8-9). This variant lies within an enhancer peak specific
for T cells and is 948bps downstream of the RNA U6 small nuclear 320 pseudogene (RNUG6-
320P), a component of the U6 snRNP (small nuclear ribonucleoprotein) that is part of the
spliceosome and is responsible for the splicing of introns from pre-mRNA (/2) (Figure 2B). The
nearest gene is VGLL1 (27,486bps upstream) that has been proposed to be a co-activator of
mammalian transcription factors.(/3) No variant in the Y chromosome had a p-value lower than
0.05 in either the discovery or replication sets.

The MHC was the first MS susceptibility locus to be identified, and prior studies have found
that it harbors multiple independent susceptibility variants, including interactions within the class
I HLA genes.(/4, 15) We undertook a detailed modeling of this region to account for its long-
range linkage disequilibrium and allelic heterogeneity using SNP data as well as imputed
classical alleles and amino acids of the human leukocyte antigen (HLA) genes in the assembled
data. We confirm prior MHC susceptibility variants (including a non-classical HLA effect located
in the TNFA/LSTI long haplotype) and we extend the association map to uncover a total of 31
statistically independent effects at the genome-wide level within the MHC (Figure 3,
Supplementary Table 10). An interesting finding is that several HLA and nearby non-HLA genes

have several independent effects that can now be identified due to our large sample, e.g. the HLA-
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DRBI locus has six statistically independent effects. Another exciting finding involves HLA-B
that also appears to harbor 6 independent effects on MS susceptibility. The role of the non-
classical HLA and non-HLA genome in the MHC is also highlighted. One third (9 out of 30) of
the identified variants lie within either intergenic regions or in a long-range haplotype that
contains several non-classical HLA and other non-HLA genes.(/5) Recently, we reported an
interaction between HLA-DRB1*15:01 and HLA-DQA1*01:01 by analyzing imputed HLA
alleles.(/4) Here we reinforce this analysis by analyzing SNPs, HLA alleles, and respective
amino acids. We replicate the presence of interactions among class II alleles but note that the
second interaction term, besides HLA-DRB1*15:01, can vary depending on the other
independent variants that are included in the model. First, we found that there are interaction
models of HLA-DRB1*15:01 with other variants in MHC that explain better the data than our
previously reported HLA-DRB1*15:01/HLA-DQA1*01:01 interaction term (Supplementary
Figure 2). Second, we observe that there is a group of HLA*DQBI and HLA*DQA1 SNPs,
alleles, and amino acids that consistently rank amongst the best models with HLA-DRB1*15:01
interaction terms (Supplementary Figure 3). This group of HLA-DRB1*15:01-interacting variants
is consistently identified regardless of the marginal effects of other statistically independent
variants that are added in the model, implying that these interaction terms capture a different
subset of phenotypic variance and can be explored after the identification of the marginal effects.
Finally, we performed a sensitivity analysis by including interaction terms of HLA-DRB1*15:01
in each step and selecting the model with the lowest Bayesian information criterion (BIC), instead
of testing only the marginal results of the variants as we did in the main analysis. This sensitivity
analysis also resulted in 32 statistically independent effects with a genome-wide significant p-
value (Supplementary Table 11), of which one third (9 out of 32) were not effects in classical
HLA genes. The main differences between the results of the two approaches were the inclusion of
interaction of HLA-DRB1*15:01 and rs1049058 in step 3 and the stronger association of

HLA*DPBI1/2 effects over HLA*DRB]1 effects in the sensitivity model (Supplementary Tables
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11-12 and Supplementary Figure 3). Thus, overall, our MHC results are not strongly affected by
the analytic model that we have selected.
Characterization of non-genome wide effects

The commonly used threshold of genome-wide significance (p-value = 5x10™) has played an
important role in making human genetic study results robust; however, several studies have
demonstrated that non-genome-wide effects explain an important proportion of the effect of
genetic variation on disease susceptibility. (/6, /7) More importantly, several such effects are
eventually identified as genome-wide significant, given enough sample size and true effects.(3)
Thus, we also evaluated the non-genome-wide effects that were selected for replication, have
available replication data (n=4,116), but do not meet a standard threshold of genome-wide
significance (p<5x10™). Specifically, we decided to stratify these 4,116 effects into 2 main
categories (see details in Supplementary Methods): (1) suggestive effects (S, n=416), and (2) non-
replicated effects (NR, n= 3,694). We used these categories in downstream analyses to further
characterize the prioritized effects from the discovery study in terms of potential to eventually be
replicated. We also included a third category: effects for which there were no data for replication
in any of the replication sets (no data, ND, n=532). Furthermore, to add granularity in each
category, we sub-stratified the suggestive effects into 2 groups: (1a) strongly suggestive (5 x10™
> p-value <1x107; sS, n= 118) and (1b) underpowered suggestive (unS, n=299). Of these two
categories of suggestive effects, the ones in the sS category have a high probability of reaching
genome-wide significance as we increase our sample size in future studies (Supplementary
Results and Supplementary Table 13).
Heritability explained

To estimate the extent to which we have characterized the genetic architecture of MS
susceptibility with our 200 genome-wide non-MHC autosomal MS effects, we calculated the
narrow-sense heritability captured by common variation (4£2g), i.e. the ratio of additive genetic

variance to the total phenotypic variance (Supplementary Methods).(/6, 18) Only the 15 strata of
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data from the discovery set had true genome-wide coverage, and hence we used these 14,802 MS
subjects and 26,703 controls for the heritability analyses. The overall heritability estimate for MS
susceptibility in the discovery set of subjects was 19.2% (95%CI: 18.5-19.8%). Heritability
partitioning using minor allele frequency or p-value thresholds has led to significant insights in
previous studies,(/9) and we therefore applied a similar partitioning approach but in a fashion
that took into consideration the study design and the existence of replication information from the
2 large-scale replication cohorts. First, we partitioned the autosomal genome into 3 components:
i) the super extended MHC (SE MHC, see above), ii) a component with the 1,961 regions
prioritized for replication (Regions), and iii) the rest of the genome that had p-value>0.05 in the
discovery study (Non-associated regions). Then, we estimated the #2g that can be attributed to
each component as a proportion of the overall narrow-sense heritability observed. The SE MHC
explained 21.4% of the #2g, with the remaining 78.6% being captured by the second component
(Figure 4A). Then, we further partitioned the non-MHC component into one that captured all
4,842 statistically independent effects (Prioritized for replication), which explained the vast
majority of the overall estimated heritability: 68.3%. The “Non-prioritized” SNPs in the 1,961
regions explained 11.6% of the heritability, which suggests that there may be residual LD with
prioritized effects or true effects that have not yet been identified (Figure 4B).

We then used the replication-based categories described above to further partition the
“Prioritized” heritability component, namely “GW?”, “S”, “NR”, “ND” (Figure 4C). The genome-
wide effects (GW) captured 18.3% of the overall heritability. Thus, along with the contribution of
the SE MHC (20.2% in the same model), we can now explain ~39% of the genetic predisposition
to MS with the validated susceptibility alleles. This can be extended to ~48% if we include the
suggestive (S) effects (9.0%). Interestingly the non-replicated (NR) effects captured 38.8% of the
heritability, which could imply that some of these effects might be falsely non-replicated, i.e. that

these are true effects that need further data to emerge robustly or that their effect may be true and
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present in only a subset of the data. However, few of the 3,694 NR effects would fall in either of
the above two cases; the vast majority of these effects are likely to be false positive results.
Functional implications of the MS loci, enriched pathways and gene-sets

Next, we began to annotate the MS effects. To prioritize the cell types or tissues in which the
200 non-MHC autosomal effects may exert their effect, we used two different approaches: one
that leverages atlases of gene expression patterns and another that uses a catalog of epigenomic
features such as DNase hypersensitivity sites (DHSs) (Supplementary Methods).(7, 20-22)
Significant enrichment for MS susceptibility loci was apparent in many different immune cell
types and tissues, whereas there was an absence of enrichment in tissue-level central nervous
system (CNS) profiles (Figure 5). An important finding is that the enrichment is observed not
only in immune cells that have long been studied in MS, e.g. T cells, but also in B cells whose
role has emerged more recently.(23) Furthermore, while the adaptive immune system has been
proposed to play a predominant role in MS onset,(24) we now demonstrate that many elements of
innate immunity, such as natural killer (NK) cells and dendritic cells also display strong
enrichment for MS susceptibility genes. Interestingly, at the tissue level, the role of the thymus is
also highlighted, possibly suggesting the role of genetic variation in thymic selection of
autoreactive T cells in MS.(25) Public tissue-level CNS data — which are derived from a complex
mixture of cell types - do not show an excess of MS susceptibility variants in annotation analyses.
However, since MS is a disease of the CNS, we extended the annotation analyses by analyzing
new data generated from human iPSC-derived neurons as well as from purified primary human
astrocytes and microglia. As seen in Figure 6, enrichment for MS genes is seen in human
microglia (p=5x10"%) but not in astrocytes or neurons, suggesting that the resident immune cells
of the brain may also play a role in MS susceptibility

We repeated the enrichment analyses for the “S” and “NR” effects aiming to test whether
these have a similar enrichment pattern with the 200 “GW? effects. The “S” effects exhibited a

pattern of enrichment that is similar to the “GW” effects, with only B cell expression reaching a
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threshold of statistical significance (Supplementary Figure 4). This provides additional
circumstantial evidence that this category of variants may harbor true causal associations. On the
other hand, the “NR” enrichment results seem to follow a rather random pattern, suggesting that
most of these effects are indeed not truly MS-related (Supplementary Figure 4).

The strong enrichment of the GW effects in immune cell types motivated us to prioritize
candidate MS susceptibility genes by identifying those susceptibility variants, which affect RNA
expression of nearby genes (cis expression quantitative trait loci effect, cis -eQTL) (£500Kbps
around the effect SNP; Supplementary Methods). Thus, we interrogated the potential function of
MS susceptibility variants in naive CD4+ T cells and monocytes from 415 healthy subjects as
well as peripheral blood mononuclear cells (PBMCs) from 225 remitting relapsing MS subjects.
Thirty-six out of the 200 GW MS effects (18%) had at least one tagging SNP (r2>=0.5) that
altered the expression of 46 genes (FDR<5%) in CD4+ naive T cells (Supplementary Table 14),
and 36 MS effects (18%; 10 common with the CD4+ naive T cells) influenced the expression of
48 genes in monocytes (11 genes in common with T cells). In MS PBMC, 30% of the GW eftects
(60 out of the 200) were cis-eQTLs for 92 genes in the PBMC MS samples, with several loci
being shared with those found in healthy T cells and monocytes (26 effects and 27 genes in T
cells, and 21 effects and 24 genes in monocytes, respectively; Supplementary Table 14).

Since MS is a disease of the CNS, we also investigated a large collection of dorsolateral
prefrontal cortex RNA sequencing profiles from two longitudinal cohort studies of aging (n=455),
which recruit cognitively non-impaired individuals (Supplementary Methods). This cortical
sample provides a tissue-level profile derived from a complex mixture of neurons, astrocytes, and
other parenchymal cells such as microglia and occasional peripheral immune cells. In these data,
we found that 66 of the GW MS effects (33% of the 200 effects) were cis-eQTLs for 104 genes.
Over this CNS and the three immune sets of data, 104 GW effects were cis-eQTLs for 203 unique
genes (n=211 cis-eQTLs), with several appearing to be seemingly specific for one of the

cell/tissue type (Supplementary Table 14). Specifically, 21.2% (45 out of 212 cis-eQTLs) of
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these cortical cis-eQTLs displayed no evidence of association (p-value>0.05 with any SNP with
1>>0.1) in the immune cell/tissue results and are less likely to be immune-related (Supplementary
Table 15).

To further explore the challenging and critical question of whether some of the MS variants
have an effect that is primarily exerted through a non-immune cell, we performed a secondary
analysis of our cortical RNAseq data in which we attempted to ascribe a brain cis-eQTL to a
particular cell type. Specifically, we assessed our tissue-level profile and adjusted each cis-eQTL
analysis for the proportion of neurons, astrocytes, microglia, and oligodendrocytes estimated to
be present in the tissue: the hypothesis was that the effect of a SNP with a cell type-specific cis-
eQTL would be stronger if we adjusted for the proportion of the target cell type (Figure 6). As
anticipated, almost all of the MS variants present in cortex remain ambiguous: it is likely that
many of them influence gene function in multiple immune and non-immune cell types. However,
the SLC1245 locus is different: here, the effect of the SNP is significantly stronger when we
account for the proportion of neurons (Figure 6A and 6B), and the CLECLI locus emerges when
we account for the proportion of microglia. SLC12A435 is a potassium/chloride transporter that is
known to be expressed in neurons, and a rare variant in SLC12A45 causes a form of pediatric
epilepsy (26, 27). While this MS locus may therefore appear to be a good candidate to have a
primarily neuronal effect, further evaluation finds that this MS susceptibility haplotype also
harbors susceptibility to rheumatoid arthritis (28) and a cis-eQTL in B cells for the CD40 gene
(29). Thus, the same haplotype harbors different functional effects in very different contexts,
illustrating the challenge in dissecting the functional consequences of autoimmune variants in
immune as opposed to the tissue targeted in autoimmune disease. On the other hand, CLECL1
represents a simpler case of a known susceptibility effect that has previously been linked to
altered CLECL1 RNA expression in monocytes (24, 30); its enrichment in microglial cells, which
share many molecular pathways with other myeloid cells, is more straightforward to understand.

CLECLI is expressed at low level in our cortical RN Aseq profiles because microglia represent
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just a small fraction of cells at the cortical tissue level, and its expression level is 20-fold greater
when we compare its level of expression in purified human cortical microglia to the bulk cortical
tissue (Figure 6). CLECLI therefore suggests a potential role of microglia in MS susceptibility,
which is under-estimated in bulk tissue profiles that are available in epigenomic and
transcriptomic reference data. Overall, many genes that are eQTL targets of MS variants in the
human cortex are most likely to affect multiple cell types. These brain eQTL results and the
enrichment found in analyses of our purified human microglia data therefore highlight the need
for more targeted, cell-type specific data for the CNS to adequately determine the extent of its
role in MS susceptibility.

These eQTL studies begin to transition our genetic map into a resource outlining the likely
MS susceptibility gene(s) in a locus and the potential functional consequences of certain MS
variants. To assemble these single-locus results into a higher-order perspective of MS
susceptibility, we turned to pathway analyses to evaluate how the extended list of genome-wide
effects provides new insights into the pathophysiology of the disease. Acknowledging that there
is no available method to identify all causal genes following GWAS discoveries, we prioritized
genes for pathway analyses while allowing several different hypotheses for mechanisms of
actions (Supplementary Methods). In brief, we prioritized genes that: (i) were cis-eQTLs in any
of the eQTL data sets outlined above, (ii) had at least one exonic variant at r>>=0.1 with any of
the 200 effects, (iii) had high score of regulatory potential using a cell specific network approach,
(iv) had a similar co-expression pattern as identified using DEPICT.(31) Sensitivity analyses
were performed including different combinations of the above categories, and including genes
with intronic variants at r*>=0.5 with any of the 200 effects (Supplementary Methods and
Supplementary Results). Overall, we prioritized 551 candidate MS genes (Supplementary Table
16; Supplementary Table 17 for sensitivity analyses) to test for statistical enrichment of known
pathways. Approximately 39.6% (142 out of 358) of the Ingenuity Pathway Analysis (IPA)

canonical pathways,(32) that had overlap with at least one of the identified genes, were enriched
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for MS genes at an FDR<5% (Supplementary Table 18). Sensitivity analyses including different
criteria to prioritize genes revealed a similar pattern of pathway enrichment (Supplementary
Results and Supplementary Table 19). Interestingly, the extensive list of susceptibility genes, that
more than doubles the previous knowledge in MS, captures processes of development,
maturation, and terminal differentiation of several immune cells that potentially interact to
predispose to MS. In particular, the role of B cells, dendritic cells and natural killer cells has
emerged more clearly, broadening the prior narrative of T cell dysregulation that emerged from
earlier studies.(4) Given the over-representation of immune pathways in these databases,
ambiguity remains as to where some variants may have their effect: neurons and particularly
astrocytes repurpose the component genes of many “immune” signaling pathways, such as the
ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), and neuregulin signaling
pathways that are highly significant in our analysis (Supplementary Table 18). These results —
along with the results relating to microglia — emphasize the need for further dissection of these
pathways in specific cell types to resolve where a variant is exerting its effect; it is possible that
multiple, different cell types could be involved in disease since they all experience the effect of
the variant.

Pathway and gene-set enrichment analyses can only identify statistically significant
connections of genes in already reported, and in some cases validated, mechanisms of action.
However, the function of many genes is yet to be uncovered and, even for well-studied genes, the
full repertoire of possible mechanisms is incomplete. To complement the pathway analysis
approach and to explore the connectivity of our prioritized GW genes, we performed a protein-
protein interaction (PPI) analysis using GeNets (Supplementary Methods).(33) About a third of
the 551 prioritized genes (n=190; 34.5%) were connected (p-value = 0.052) and these could be
organized into 13 communities, i.e. sub-networks with higher connectivity (p-value: < 0.002;
Supplementary Table 20). This compares to 9 communities that could be identified by the

previously reported MS susceptibility list (81 connected genes out of 307; Supplementary Table
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21).(3) Next, we leveraged GeNets to predict candidate genes based on network connectivity and
pathway membership similarity and test whether our previous known MS susceptibility list could
have predicted any of the genes prioritized by the newly identified effects. Of the 244 genes
prioritized by novel findings (out of the 551 overall prioritized genes) only five could be
predicted given the old results (out of 70 candidates; Supplementary Figure 5 and Supplementary
Table 22). In a similar fashion we estimated that the list of 551 prioritized genes could predict
102 new candidate genes, four of which can be prioritized since they are in the list of suggestive
effects. (Figure 1; Supplementary Figure 6 and Supplementary Table 23).
Discussion

This detailed genetic map of MS is a powerful substrate for annotation and functional
studies and provides a new level of understanding for the molecular events that contribute to MS
susceptibility. It is clear that these events are widely distributed across the many different cellular
components of both the innate and adaptive arms of the immune system: every major immune
cell type is enriched for MS susceptibility genes. An important caveat is that many of the
implicated molecular pathways, such as response to TNFa and type I interferons, are repurposed
in many different cell types, leading to an important ambiguity: is risk of disease driven by
altered function of only one of the implicated cell types or are all of them contributing to
susceptibility equally? This question highlights the important issue of the context in which these
variants are exerting their effects. We have been thorough in our evaluation of available reference
epigenomic data, but many different cell types and cell states remain to be characterized and
could alter our summary. Further, inter-individual variability has not been established in such
reference data that are typically produced from one or a handful of individuals; thus, this issue is
better evaluated in the eQTL data where we have examined a range of samples and states in large
numbers of subjects. Overall, while we have identified putative functional consequences for the
identified MS variants, the functional consequence of most of these MS variants requires further

investigation.
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Even where a function is reported, further work is needed to demonstrate that the effect is
the causal functional change. This is particularly true of the role of the CNS in MS susceptibility:
we mostly have data at the level of the human cortex, a complex tissue with many different cell
types, including resident microglia and a small number of infiltrating macrophage and
lymphocytes. MS variants clearly influence gene expression in this tissue, and we must now: (1)
resolve the implicated cell types and whether pathways shared with immune cells are having their
MS susceptibility effect in the periphery or in the brain and; (2) more deeply identify additional
functional consequences that may be present in only a subset of cells, such as microglia or
activated astrocytes, that are obscured in the cortical tissue level profile. A handful of loci are
intriguing in that they alter gene expression in the human cortex but not in the sampled immune
cells; these MS susceptibility variants deserve close examination to resolve the important
question of the extent to which the CNS is involved in disease onset. Thus, our study suggests
that while MS is a disease whose origin may lie primarily within the peripheral immune
compartment where dysregulation of all branches of the immune system leads to organ specific
autoimmunity, there is subset of loci with a key role in directing the tissue specific autoimmune
response. This is similar to our previous examination of ulcerative colitis, where we observed
enrichment of genetic variants mapping to colon tissue.(6) This view is consistent with our
understanding of the mechanism of important MS therapies such as natalizumab and fingolimod
that sequester pathogenic immune cell populations in the peripheral circulation to prevent
episodes of acute CNS inflammation. It also has important implications as we begin to consider
prevention strategies to block the onset of the disease by early targeting peripheral immune cells.

An important step forward in MS genetics, for a disease with a 3:1 preponderance of
women being affected, is robust evidence for a susceptibility locus on the X chromosome. The
function of this locus remains to be defined in future studies. Nonetheless, it provides a key first

step for a genetic component to the role of sex, which is the risk factor of largest effect in MS
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susceptibility.(34) This result also highlights the need for additional, dedicated genetic studies of
the X chromosome in MS as existing data have not been fully leveraged. (35)

This genomic map of MS — the genetic map and its integrated functional annotation - is a
foundation on which the next generation of projects will be developed. Beyond the
characterization of the molecular events that trigger MS, this map will also inform the
development of primary prevention strategies since we can leverage this information to identify
the subset of individuals who are at greatest risk of developing MS. While insufficient by itself,
an MS Genetic Risk Score has a role to play in guiding the management of the population of
individuals “at risk” of MS (such as family members) when deployed in combination with other
measures of risk and biomarkers that capture intermediate phenotypes along the trajectory from
health to disease.(36) We thus report an important milestone in the investigation of MS and share
a roadmap for future work: the establishment of a map with which to guide the development of
the next generation of studies with high-dimensional molecular data to explore both the initial
steps of immune dysregulation across both the adaptive and innate arms of the immune system
and secondly the translation of this auto-immune process to the CNS where it triggers a

neurodegenerative cascade.
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Figure legends:

Figure 1. The genetic map of multiple sclerosis. The circos plot displays the 4,842 prioritized
autosomal non-MHC effects and the associations in chromosome X. Joint analysis (discovery and
replication) p-values are plotted as lines. The green inner layer displays genome-wide
significance (p-value<5x107), the blue inner layer suggestive p-values (1x10”<p-value>5x10""),
and the grey p-values > 1x107. Each line in the inner layers represents one effect. 200 autosomal
non-MHC and one in chromosome X genome-wide effects are listed. The vertical lines in the
inner layers represent one effect and the respective color displays the replication status (see main
text and Online Methods): green (genome-wide), blue (potentially replicated), red (non-
replicated). 551 prioritized genes are plotted on the outer surface. The inner circle space includes
protein-protein interactions (PPI) between genome-wide genes (green), and genome-wide genes
and potentially replicated genes (blue) that are identified as candidates using protein-protein

interaction networks (see main text and Supplementary Results).

Figure 2. Multiple independent effects in the EVI5 locus and chromosome X associations. A)
Regional association plot of the EVI5 locus. Discovery p-values are displayed. The layer tagged
“Marginal” plots the associations of the marginal analysis, with most statistically significant SNP
being rs11809700 (OR1=1.16; p-value= 3.51x10™"). The “Step 1” plots the associations
conditioning on rs11809700; rs12133753 is the most statistically significant SNP (ORc=1.14; p-
value= 8.53x10™). “Step 2” plots the results conditioning on rs11809700 and rs12133753, with
151415069 displaying the lowest p-value (ORg=1.10; p-value= 4.01x107). Finally, “Step 3” plots
the associations conditioning on rs11809700, rs12133753, and rs1415069, identifying

1s58394161 as the most-statistically significant SNP (OR¢=1.10; p-value= 8.63x10™). All 4 SNPs
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reached genome-wide significance in the respective joint, discovery plus replication, analyses
(Supplementary Table 6). Each of the independent 4 SNPs, i.e. lead SNPs, are highlighted using a
triangle in the respective layer. B) Regional association plot for the genome-wide chromosome X
variant. Joint analysis p-values are displayed. Linkage disequilibrium, in terms of r* based on the
1000 Genomes European panel, is indicated using a combination of color grade and symbol size

(see legend for details). All positions are in human genome 19.

Figure 3. Independent associations in the major histocompatibility locus. Regional
association plot in the MHC locus. Only genome-wide statistically independent effects are listed.
The order of variants in the X-axis represents the order these were identified. The size of the
circle represents different values of —log10(p-value). Different colors are used to depict class I, I,

111, and non-HLA effects. Y-axis displays million base pairs.

Figure 4. Heritability partitioning. Proportion of the overall narrow-sense heritability under the
liability model (~19.2%) explained by different genetic components. (A) The overall heritability
is partitioned in the super extended MHC (SE MHC), the 1,962 Regions that include all SNPs
with p-value<0.05 (Regions), and the rest of genome with p-values>0.05 (Non-associated
regions). (B) The Regions are further partitioned to the seemingly statistically independent effects
(Prioritized) and the residual (Non-prioritized). (C) The Prioritized component is partitioned
based on the replication knowledge to genome-wide effects (GW), suggestive (S), non-replicated
(ND), and no data (ND). The lines connecting the pie charts depict the component that is
partitioned. All values are estimated using the discovery data-sets (n= 4,802 cases and 26,703

controls).
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Figure 5. Tissue and cell type enrichment analyses. (A) Gene Atlas tissues and cell types gene
expression enrichment. (B) DNA hypersensitivity sites (DHS) enrichment for tissues and cell
types from the NIH Epigenetic Roadmap. Rows are sorted from immune cells/tissues to central
nervous system related ones. Both X axes display —log10 of Benjamini & Hochberg p-values

(false discovery rate).

Figure 6. Dissection of cortical RNAseq data. In (A), we present a heatmap of the results of our
analysis assessing whether a cortical eQTL is likely to come from one of the component cell
types of the cortex: neurons, oligodendrocytes, endothelial cells, microglia and astrocytes (in
rows). Each column presents results for one of the MS brain eQTLs. The color scheme relates to
the p-value of the interaction term, with red denoting a more extreme result. (B) We present the
same results in a different form, comparing results of assessing for interaction with neuronal
proportion (y axis) and microglial proportion (x-axis): the SLC1245 eQTL is significantly
stronger when accounting for neuronal proportion, and CLECLI is significantly stronger when
accounting for microglia. The Bonferroni-corrected threshold of significance is highlighted by the
dashed line. (C) Locus view of the SLC1245/CD40 locus, illustrating the distribution of MS
susceptibility and the SLC12A45 brain eQTL in a segment of chromosome 20 (x axis); the y axis
presents the p-value of association with MS susceptibility (top panel) or SLC1245 RNA
expression (bottom panel). The lead MS SNP is denoted by a triangle, other SNPs are circles,
with the intensity of the red color denoting the strength of LD with the lead MS SNP in both
panels. (D) Here we plot the level of expression, transcriptome-wide, for each measured gene in
our cortical RNAseq dataset (n=455)(y-axis) and purified human microglia (n=10)(x-axis) from
the same cortical region. In blue, we highlight those genes with > 4 fold increased expression in
microglia relative to bulk cortical tissue and are expressed at a reasonable level in microglia. Each

dot is one gene. Gray dots denote the 551 putative MS genes from our integrated analysis.
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SLCI12A5 and CLECL]I are highlighted in red; in blue, we highlight a selected subset of the MS
genes — many of them well-validated — which are enriched in microglia. For clarity, we did not

include all of the MS genes that fall in this category.
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The following supplementary materials accompany the paper:
1) Supplementary Methods, Results and Figures

2) Supplementary Tables in excel format
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