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Abstract 
Bacterial cells have a remarkable capacity to adapt and to evolve to environmental changes. 

Although many mutations contributing to adaptive evolution have been identified, the relationship 

between the mutations and the phenotypic changes responsible for fitness gain has yet to be fully 

elucidated. For a better understanding of phenotype-genotype relationship in evolutionary dynamics, 

we performed high-throughput laboratory evolution of Escherichia coli under various stress 

conditions using an automated culture system. One measure of phenotype, transcriptome analysis, 

revealed that the expression changes which occurred during the evolution were generally similar 

among the strains evolved in the same stress environment. We also found several genes and gene 

functions for which mutations were commonly fixed in the strains resistant to the same stress, and 

whose effects on resistance were verified experimentally. We demonstrated that the integration of 

transcriptome and genome data enables us to extract the mechanisms for stress resistance.  

 

 
Author summary 
Understanding the relationship between phenotypic and genetic changes is a fundamental goal in 

evolutionary biology, which can provide insights into the past and future evolutionary trajectories. 

Evolution of microorganisms in a laboratory has been the primary approach to clarify the mappings 

of phenotypic and genotypic changes. Here, we performed high-throughput laboratory evolution 

with bacteria using an automated culture system, to quantify phenotypic and genotypic changes 

occurred under various stress conditions. We identified various stress-specific gene expression 

changes and mutations, and contributions of them to fitness gain were validated. These results 

demonstrated that the integration of phenotypic and genotypic changes makes it possible to extract 

the mechanisms for stress resistance evolution, which will contribute to bioengineering applications. 
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Introduction 
Laboratory evolution of microorganisms is a powerful approach for elucidating the nature of 

evolutionary dynamics[1,2]. Recent advances in measurement technologies including 

high-throughput sequencing have enabled us to quantify phenotypic and genotypic changes during 

laboratory evolution, which have provided valuable information on the mechanisms and principles 

of adaptive evolution[3–5]. The impact of laboratory evolution has extended beyond the field of 

evolutionary biology into engineering and medicine. For example, by using laboratory evolution 

approaches, a number of candidate mutations that can contribute to antibiotic resistance have been 

identified, which sheds light on how to control the emergence of antibiotic resistant strains[6–9]. 

Laboratory evolution has also become a widely used tool for bioengineering applications[10–13], in 

order to generate cells with improved growth, production titer, and stress tolerance, which are 

essential to improved industrial production by microorganisms.  

 A central problem in laboratory evolution of microorganisms is identification of 

phenotypic and genotypic changes responsible for an observed fitness gain in an evolved strain. 

Such identification is often difficult, even after whole-genome sequencing analysis of the evolved 

strains. In some cases, a large number of genotypic changes, mutations, are fixed in evolved strains, 

and only a portion of such mutations contribute to the fitness gain. Furthermore, various different 

mutations can cause a similar phenotypic change[5,9,14], and one mutation can affect various 

cellular functions. The many-to-many relationships between phenotypic and genotypic changes 

make identifying the mechanisms of fitness gain challenging.  

 One strategy to overcome such complexity in the analysis of laboratory evolution is to 

integrate changes of genomic sequence with various levels of phenotypic data. Such phenotypic data 

include those from omics analysis such as transcriptome and metabolome. Based on such phenotypic 

data, one can extract correlated phenotypic changes to the observed fitness gain, which facilitates 

identification of mutations responsible for the phenotypic and fitness changes. For example, analysis 

of laboratory evolution of antibiotic resistant E. coli revealed that the change in antibiotic resistance 

can be quantitatively predicted by the transcriptomic change during adaptive evolution, which led to 

identification of genomic mutations contributing the resistance[9]. Furthermore, cross-stress 

protection, a phenomenon whereby stress resistance is acquired to one stress after adaptive evolution 

to another stress, also provided valuable information on which phenotypic and genotypic changes 

related to the stress resistances when analyzed by integrating transcriptome and genome 

resequencing data[15]. Integration of various levels of phenotypic data with the change of genomic 

sequence is the future of investigating evolutionary dynamics and will be an essential method for the 

application of laboratory evolution in medical and engineering fields.  

 Given the importance of the integration of multiple levels of phenotypic and genotypic 

data in laboratory evolution, we performed high-throughput laboratory evolution of E. coli cells 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2017. ; https://doi.org/10.1101/143792doi: bioRxiv preprint 

https://doi.org/10.1101/143792
http://creativecommons.org/licenses/by/4.0/


under 11 different stress conditions and then quantified phenotypic changes, specifically 

transcriptome expression changes and growth rate, and genotypic mutations of independently 

evolved strains. Transcriptome analysis revealed that, the expression changes which occurred during 

the adaptive evolution were generally similar among the strains evolved in the same stress 

environment. We analyzed the correlation between these expression changes and mutations 

commonly fixed in the strains resistant to the same stress. This analysis revealed the mechanisms for 

some of the stress resistances, which were validated by introducing the relevant mutations into the 

genome of the parent strain. The integration of the multilevel phenotypic and genotypic data enables 

us to understand a wide spectrum of molecular mechanisms in E. coli stress resistances.  

 

Results  

Laboratory evolution under 11 stress conditions and analysis of cross-protection 
We selected 11 stresses that cover a wide range of environmental stresses (Table 1). E. coli MDS42 

cells[16] were cultured in 200 μL of M9 synthetic medium[17] with constant concentration of 

stressors. The concentrations of these stressors were set to levels which initially decreased the 

specific growth rate by approximately one half of the non-stress growth condition. Every 6 hours, a 

fraction of the cells was transferred into fresh medium with the stressor. The transfer volume was 

adjusted to keep the final cell concentration below a threshold and to maintain the culture in 

exponential growth phase. The specific growth rate was quantified by initial and final cell 

concentration, which was used as the measure of fitness under these stress environments (Fig 1a). To 

evaluate the reproducibility of the evolutionary pathways, for each stress, five independent culture 

lines were propagated in parallel. For this high-throughput laboratory evolution, we used a 

custom-developed automated system for laboratory evolution[18], by which we can maintain 

hundreds of independent culture series in a fully automated manner. After 906 hours of propagation, 

we observed significant increases in specific growth rate in all 11 stress environments (Fig 1b to 1m). 

In addition to the cultures with stressors, we maintained the cells in the synthetic medium without 

adding stressors (Fig 1n). In these cultures, without stress, slight increases of specific growth rate 

were also observed, although these increases were significantly smaller than those in the stress 

conditions. For all resistant strains, we confirmed maintenance of the stress resistances by 

reintroduction after cultivation in the absence of the stressors for at least 60 generations, indicating 

that the phenotypes of stress resistance were stable. 

 To explore evolutionary cross-protection, for each obtained resistant strain, we measured 

the specific growth rate under all 11 stress conditions. In Fig 2, the relative growth rates of the 

resistant strains to the parent strain are presented (All the growth rates are presented in S1 Table). 

The results demonstrated that the stress resistant strains often show cross-protection and 

hyper-sensitivity to multiple stresses. A clear symmetric cross-protection was observed among NaCl 
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and KCl stress resistant strains, i.e., NaCl resistant strains exhibited significant KCl resistance, and 

vice versa. This fact suggested that, at least a part of the mechanisms of the resistances were shared 

among NaCl and KCl resistant strains. For other cases, the cross-protections were asymmetric, 

which suggested that the mechanisms of these resistance and hyper-sensitivity were independent, or 

there are hierarchical relationships between the resistance/hyper-sensitivity mechanisms. For 

example, methylglyoxal (MG) resistant strains exhibited resistance to lactate (Lac), while Lac 

resistant strains did not significantly affect MG resistance. This asymmetric cross-protection might 

be explained by a hierarchical structure of the resistance mechanisms. To degrade MG in metabolic 

pathways, one possible intermediate is Lac[19], and thus MG resistance strains might need to have 

Lac resistance at the same time. In contrast, MG is not involved in Lac the degradation pathway, and 

thus Lac resistance would not necessarily be accompanied with MG resistance.  

 

Changes in expression profiles in stress resistant strains 
To elucidate the mechanisms of the various stress resistance phenotypes, we performed 

transcriptome analysis of all the resistant strains we created by using microarray experiments (all 

transcriptome data are presented in S2 Table). The results demonstrated that the expression changes 

which occurred during the long-term cultivation were generally most similar among the strains 

evolved in the same stress environment, as shown in the hierarchical clustering analysis 

transcriptome data (Fig 3a). To characterize the similarity in transcriptomic changes in these resistant 

strains, the expression changes of representative transcriptional factors (TFs) are presented in Fig 3b. 

As shown, these TFs exhibited similar expression patterns within each stress resistant clade. For 

example, expression levels of marR encoding a repressor protein for the marRAB operon were 

commonly down-regulated in BuOH and Na2CO3 resistant strains (S1a Fig). The marRAB operon is 

involved in resistance to several stresses including antibiotics and organic solvents[20], and the 

inactivation of marR has been shown to increase the resistance of E. coli to multiple antibiotics and 

organic solvents by up-regulation of the AcrAB-TolC multidrug efflux pump[21,22]. Our results also 

showed a negative correlation between marR and acrAB expression levels (S1b Fig), which suggests 

up-regulation of acrAB contributed to the observed BuOH and Na2CO3 resistances. In contrast, 

marR expression was up-regulated in Crotonate (Cro) resistant strains. Although this characteristic 

up-regulation might be involved the resistance, the mechanism remains unclear. For another example, 

hns encoding a histone-like protein H-NS were up-regulated in all CoC, Lac, Mal, MG, and CPC 

resistant strains (S2a Fig). H-NS is a global regulator involved in the adaptation to various stress 

environments, whose change in expression level affects hundreds of genes. Among these target 

genes, we found that rcsD expression levels in the resistant strains clearly showed a negative 

correlation to hns expression level (S2b Fig). rcsD is known to be involved in acid stress 

resistance[23], and thus the correlation suggests the contribution of hns regulation to stress resistance 
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through rcsD expression changes. The observed similarity of expression changes in the resistant 

strains, as represented by the TFs expression patterns in Fig 3b, strongly suggests that such 

expression changes contributed to the acquisition of the resistances.  

 To further analyze the correlations between two elements of phenotype, transcriptome 

changes and stress resistance, we used a simple, previously published[9] mathematical model to 

predict the resistances using the obtained gene expression profiles (see Materials and Methods for 

details). Briefly, we assumed the changes in the specific growth rates under stresses are represented 

by a linear combination of log-transformed expression changes during the long-term cultivation. 

Then, we sought the optimal number and combination of genes which have the highest predictive 

accuracy by using cross-validation and genetic algorithm. As result, we found that the combinations 

of 15 to 20 genes offered the highest prediction accuracy on average (S3a Fig). Fig 3c-e show 

examples of prediction accuracy by the linear model with 15 genes (see legend of Fig 3 for details; 

all fitting results are shown in S3 Fig). In this analysis, for each stress environment, the coefficients 

of the linear model were estimated by fitting the training data, while the plotted data are test data that 

were not used for fitting. The estimated growth rate under stresses agreed with those observed, 

indicating that this linear model can predict the change of stress resistance phenotype by a relatively 

small number of genes. This analysis enabled us to extract the genes whose expression changes 

provided the most relevant information for predicting stress resistance (S3k Fig). For example, tbpA 

encoding thiamin ABC transporter was specifically up-regulated in Na2CO3 resistant strains, while it 

was down-regulated in NaCl, KCl, and Cro resistant strains (S4a Fig). Similarly, ydiH which 

encodes a predicted protein with unknown function was commonly up-regulated in CoCl2 and Cro 

resistant strains, while it was down-regulated in several resistant strains (S4b Fig). Here, we 

successfully screened genes whose expression changes are highly correlated to resistance acquisition, 

which can contribute to highly accurate descriptions of complex evolutionary dynamics. 

 

Mutations fixed in stress resistant strains 
The mutations identified in the resistant strains are shown in Fig 4, and the detailed information 

about the mutations is presented in S3 Table. Less than 10 mutations were fixed in each of the 

resistant strains. We also sequenced two strains maintained without addition of stress (Fig 1n), and 

found that relatively small number of mutations were fixed in these control strains, as shown in 

Table S3. 

We found several genes and gene functions for which mutations were commonly fixed in 

the resistant strains, suggesting contributions by these mutations to the resistances. To verify the 

possible contribution of these mutations to the stress resistance, we introduced some of such 

commonly identified mutations (highlighted by a red character in Fig 4) into the genome of the 

parent strain, and quantified the change of growth rate under corresponding stresses (Fig 5). Below, 
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we discuss some examples of the relationship between resistance acquisition and 

phenotype/genotype changes. A full description of the discussions is presented in S1 Text.  

 The first example of the common mutations is that of to the proU ABC transporter which 

was identified in all NaCl resistant strains and 4 KCl resistant strains (Fig 4a and 4b). All of these 

mutations caused frame-shifts, suggesting that they disrupted the activity of the proU transport 

system. The proU operon (proVWX) encodes a binding protein-dependent transport system which is 

essential for the uptake of osmoprotectants such as glycine betaine and is known to be up-regulated 

in response to osmotic stress[24]. Our expression analysis showed that, the expression of proU 

operon was significantly up-regulated (> 50 times) in response to the initial NaCl stress addition, 

however after long-term cultivation the expression levels decreased when the cells acquired NaCl 

resistance (S5 Fig). These results suggested that, the programmed up-regulation of proU operon in 

response to osmotic stress is not beneficial in an environment without osmoprotectants such as that 

which we used. Instead, the up-regulation of proU operon suppresses the cellular growth presumably 

due to its energy consumption. Thus, the disruption of proU transport activity can contribute to the 

active cellular growth under NaCl stress. To support this hypothesis, we introduced a frame-shift 

mutation identified in one of the NaCl resistance strains into the parent strain using site-directed 

mutagenesis, and confirmed that this mutation increased the growth under NaCl stress (Fig 5).  

 For another example, all resistant strains to MG stress had mutations related to ydhM 

(nemR) as shown in Fig 4i, which encodes N-ethylmaleimide reductase repressor (4 strains had 

mutations in the upstream region and one strain had mutation in the coding region of ydhM). We 

confirmed that the introduction of mutation in the upstream region of ydhM caused significant 

increase of growth rate under MG stress (Fig 5). The expression level of ydhM was significantly 

up-regulated (approximately 100 times) by the addition of MG stress to the parent strain, while 

similar expression levels were maintained after the acquisition of MG resistance by laboratory 

evolution (S6a Fig). Interestingly, after the adaptive evolution to MG stress, the up-regulation of 

ydhM was observed even without addition of MG stress (S6a Fig), which suggested that the 

identified ydhM mutations in the resistant strains serve to “assimilate” the stress response into a 

genetically encoded invariant resistance phenotype. This genetic assimilation[25,26] might 

contribute to the robustness of the resistance phenotype by altering reaction norm[27] to MG stress. 

ydhM expression controls the expression of gloA, which is involved in the degradation pathway of 

MG to lactate and is known to contribute to MG resistance[19]. There is a clear correlation between 

ydhM and gloA expression levels in the resistant strains (S6b Fig), which suggests that the observed 

MG resistance was caused by increasing MG degradation activity through the up-regulation of gloA.  

 The detailed descriptions for the other common mutations found in the resistant strains are 

presented in S1 Text. We demonstrated that the identified common mutations generally contributed 

to resistance acquisition, as shown in Fig 5. It should be noted that, to understand the mechanism 
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how such mutations affected the stress resistance phenotype in addition to the identification of 

genomic mutations, the information on expression changes, transcriptome phenotype, during the 

adaptive evolution was also highly valuable, as in the cases of proU and ydhM mentioned above.  

 It is worth noting that, although in some cases the data suggested simple causal 

relationships between genomic mutations and phenotypic changes, the relationships between them 

were not always a simple one-to-one correspondence. As shown in Fig 3, the expression changes of 

various genes were generally similar among independently evolved resistant strains to a given stress, 

while the number of fixed mutations was often small and the overlap among them was imperfect. 

For example, the expression changes of TFs in five Na2CO3 resistant strains are quite similar during 

their adaptive evolution as shown in Fig 3b. In contrast, there was no gene or gene function for 

which mutations were fixed in common in all the Na2CO3 resistant strains. One possible explanation 

for these results was that mutations in different genes caused similar expression changes. Since it is 

known that epistatic interactions among mutations are ubiquitous, similar expression changes caused 

by different mutations might emerge through selection under stresses. Another possibility is that 

epigenetic factors without alternation of genome sequence might contribute to the stress resistance 

acquisition, as suggested in several previous studies[28,29].  

 

Conclusion 
Laboratory evolution experiments combined with organism-wide phenotype and genotype analyses 

enable us to understand mechanisms of adaptive evolution. In this study, we demonstrated that the 

high-throughput system for laboratory evolution we developed can create resistant strains of E. coli 

to various stress environments by long-term cultivation. Using this system, we can cultivate up to 44 

microplates (96 or 384 wells) simultaneously, and thus more than 10,000 independent culture series 

can be maintained in a fully automated manner. This system allows us to trace evolutionary 

dynamics under various environmental conditions and initial conditions (e.g., all E. coli strains in 

single-gene knockout library[30]), with numerous replicate experiments.  

 In this system for laboratory evolution, we maintain cells under relatively small culture 

scale (i.e., 200 μL). One might question whether such small culture scale might result in small 

population size, which causes fixation of random drifts and accumulation of neutral mutations. Our 

data suggested that this is not the case. We confirmed that the population size was maintained more 

than 105 cells. The ratio of synonymous to non-synonymous substitutions over all resistant strains 

was relatively small in comparison with that of neutral mutations, suggesting that the fixation of a 

majority of substitutions were driven by evolutionary selection pressure. The fact that, for many 

stresses, resistant strains to a common stress shared common mutations also supports the idea of 

evolutionary selection.  

 The genome-wide expression and resequencing analyses showed common phenotypic and 
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genotypic changes in the resistant strains to an identical stress. It is worth noting that, our results 

demonstrated that combined use of transcriptome and genome resequencing analysis greatly 

accelerated our interpretation about how E. coli strains acquired the stress resistance. For example, 

mutations related to the proU operon found in all NaCl resistant strains were thought to cancel the 

deleterious regulatory program. Using only sets of fixed mutations in resistant strains often makes it 

difficult to establish the causal relationship with stress resistance. Integrating both gene expression 

and genotype data can overcome this problem and it allows a highly accurate description of the 

mechanisms responsible for stress resistance.  

 The adaptive evolution to environmental changes is a phenomenon that involves changes 

in genome, transcriptome, metabolome, and so on, meaning a complex interaction network is 

involved. One possible strategy to understanding such complex dynamics is to analyze large-scale 

data for each hierarchical layer and then to integrate the analyses to extract the essential components 

for the phenotypic and genotypic changes. The present study is one of the first to achieve 

genome-wide analysis of evolved strains obtained by high-throughput laboratory evolution, and we 

succeeded in extracting phenotypic/genotypic changes responsible for stress resistance. Such 

large-scale data of laboratory evolution will, we believe, help us to unveil principles of evolutionary 

dynamics and provide valuable information on rational design of industrially useful microbial 

strains.  

 

Materials and Methods 
Laboratory evolution. 
The IS elements-free Escherichia coli strain MDS42[16] was purchased from Scarab Genomics and 

used as the parent strain of the laboratory evolution. The use of the IS elements-free strain can make 

the resequencing analysis reliable since the determination of the precise position of IS element 

insertions is often difficult by using high-throughput sequencers. For serial transfer culture, we used 

200 μL modified M9 medium[17] including 5g/L glucose as a carbon source. The cells were cultured 

in 96-well microplates (Corning Inc. 3595) with shaking at 300 rotations/min at 34 °C. All 

cultivations were performed by the automated culture system[18] (Fig 1a) which consists of a 

Biomek® NX span8 laboratory automation workstation (Beckman Coulter, Tokyo, JP) in a clean 

booth connected to a microplate reader (FilterMax F5; Molecular devices, Tokyo, JP), shaker 

incubator (STX44; Liconic, Mauren, LI), and microplate hotel (LPX220, Liconic, Mauren, LI). The 

movie of this automated culture system for laboratory evolution is available at youtube 

(https://www.youtube.com/watch?v=4k6qCN7ppsk). We diluted the cells into a fresh medium every 

6 hours. The cells were maintained in the exponential growth phase by adjusting the initial cell 

concentration of each dilution to keep a final cell concentration of less than 107 cells per well as 

measured by optical density at 620 nm (OD620). Before laboratory evolution under the stress 
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conditions, we cultivated the cells without adding stressors for 96 hours (approximately 90 

generations) to adapt them to M9 medium. The specific growth rate was calculated based on the 

initial and final cell concentrations of the each dilution. The cells after the evolution experiments 

were single-cloned and were stored as glycerol stocks at −80 °C and used for further analysis. The 

quantifications of specific growth rates of evolved or genetically manipulated strains (Fig 2 and Fig 

5) were performed after 60 hours preculture (approximately 30 to 60 generations) while maintaining 

exponential growth phase. For the preculture, the same culture conditions as the laboratory evolution 

with the corresponding stressor were used.  

 

Transcriptome analysis by microarray. 
The cells were precultured for 60 hours under the same condition with the laboratory with or without 

the corresponding stressors. Then, 5×107 cells in the exponential growth phase were killed 

immediately by the addition of an equal volume of ice-cold ethanol containing 10% (w/v) phenol. 

After that, the cells were harvested by centrifugation and stored at −80 °C before RNA extraction. 

Total RNA was isolated and purified from cells using an RNeasy mini kit with on-column DNA 

digestion (Qiagen, Hilden, Germany) in accordance with the manufacturer’s instructions. The quality 

of the purified RNA was evaluated using Agilent 2100 Bioanalyzer with an RNA 6000 Nano kit 

(Agilent Technologies). The purified RNAs were stored at −80 °C prior to transcriptome analysis. 

Microarray experiments were performed using custom designed the Agilent 8×60K array for E. coli 

W3110, in which 12 probes were prepared for each gene. One hundred ng of purified total RNAs was 

labeled using the Low Input Quick Amp WT Labeling Kit (Agilent Technologies) with Cyanine3 

(Cy3) in accordance with the manufacturer’s instructions. After confirmation of yields (> 825 ng) 

and specific activities (> 15 pmol/μg) of the Cy3-labbeled cRNAs using NanoDrop ND-2000, 

labeled cRNAs (600 ng) were fragmented and then hybridized on the microarray for 17 h while 

rotating at a speed of 10 rpm at 65 °C in an hybridization oven (Agilent Technologies). Washing and 

scanning of microarrays were performed in accordance with the manufacturer’s instructions. 

Microarray image analysis was performed using Feature extraction version 10.7.3.1 (Agilent 

Technologies). The background corrected intensity values were normalized using the quantile 

normalization method. The normalized data of microarrays have been deposited in GEO under the 

accession code [GSE89746] and are presented in S2 Table. In that table, we also present the 

biological triplicate data to check the reproducibility of the analysis, i.e., expression data obtained 

from different cultures of the parent strain without addition of stress. So as to use only quantitatively 

reliable data, genes with low expression levels (less than 100 a.u. in any strain) were excluded from 

the following analysis (approximately 60 % of genes remain). We confirmed that after the removal 

of low expression genes, more than 99 % of expression ratios between the biological repetitive data 

were within the range 1/1.3 to 1.3.  
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Predicting stress resistance by gene expression levels. 
To examine the contribution of the gene expression changes to the stress resistances, we constructed 

a simple mathematical model to predict the resistances using the obtained gene expression 

profiles[9]. Here, we assumed that the stress resistances, quantified by the change of growth rate 

after stress addition, are determined as a function of gene expression levels and neglected any direct 

effect of the mutations on the resistance. Furthermore, for simplification, we neglected non-linear 

effects and cross terms of the gene expression changes. Thus, we assumed the following simple 

linear model to predict the growth rate change by the expression levels of N genes: ∆݃௝௞ = ෍ ௜௞ߙ ௜ܺ௝ +୒
୧ୀଵ  ௞                                                                                                                            (1) ∆݃௝௞ is the growth rate changes in the j th strain for the k th stress, ௜ܺ௝ is the log10-transformedߚ

expression level of the i th gene in the j th strain after standardization to zero mean and unit variance, 

and ߙ௜௞ and ߚ௞are fitting parameters. Since the number of genes used in this analysis is much 
larger than the number of fitness data, the use of all transcriptome data for the fitting resulted in 

overfitting leading a meaningless prediction of the fitness. In order to avoid such overfitting and to 

investigate the number of genes with the highest predictive accuracy, we used the cross-validation 

method, in which the fitness data were separated into training data used for the parameter fitting and 

test data used to verify the prediction accuracy. When N was large, the prediction accuracy for the 

test data became small due to overfitting, while the accuracy became small when N was small since 

the linear combination of expressions was insufficient to represent changes of the fitness data. In this 

analysis, we used a 4-fold cross validation method. That is, the resistant strains were randomly 

partitioned into 4 equally sized subgroups; 1 subgroup was used as the test data set for validation and 

the remaining 3 subgroups were used for the fitting.  

 Expression levels of genes in the same operon are generally correlated, which can cause 

problems in the gene selection procedure. Thus, in each operon, we selected a gene having the 

highest average expression level over all samples and use it for the fitting, while we discarded the 

data of other genes. Furthermore, we excluded data with relatively small expression changes among 

the resistant and parent strains, since the expression changes of such relatively unchanged genes 

dominated the experimental errors. These selection criteria left 413 genes for the analysis. 

 N genes used for the fitting were selected by a genetic algorithm (GA), in which the 

correlation coefficient between the predicted and observed growth rate changes of the training data 

sets was used as the fitness function. As an initial population, 1000 sets of N genes were randomly 

selected, and the fitness of the sets was calculated. Then, gene sets within the top 5% of the highest 

fitness were selected as the parent sets of the next generation from which mutant sets were generated 

by randomly replacing a single gene. We iterated 300 cycles of the mutant sets and selected gene sets 
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with the highest fitness to obtain sets of small number of genes whose expression levels can 

represent changes in drug resistances and susceptibility. We repeated the selection of gene sets using 

10,000 different training data sets prepared by randomly partitioning the total data set to obtain the 

frequency of genes selected after the GA, as shown in S3b Fig. 

  
Genomic DNA preparation. 
We prepared precultures by shaking stocked strains in 200 μL of modified M9 medium in 96-well 

microplates for 23 h at 34 °C without stressors. The precultured cells were diluted to an OD600 nm of 3 

× 10-5 in 10 mL of fresh modified M9 medium in test tubes. Cell culture was performed at 34 °C for 

23 h with shaking at 150 strokes min-1 using water bath shakers (Personal-11, Taitec Co.), and we 

confirmed that the OD600 nm values reached more than 1.0. Rifampicin (final concentration 300 μg/mL) 

was subsequently added, and the culture was continued for a further 3 h to block the initiation of DNA 

replication. The cells were collected by centrifugation at 25 °C and 20,000 × g for 5 min, and the 

pelleted cells were stored at −80 °C prior to genomic DNA purification. Genomic DNA was isolated 

and purified using a Wizard® Genomic DNA Purification Kit (Promega) in accordance with the 

manufacturer's instructions. To improve the purity of genomic DNA, additional phenol extractions 

were performed before and after the RNase treatment step. The quantity and purity of the genomic 

DNA were determined by the absorbance at 260 nm and the ratio of the absorbance at 260 and 280 nm 

(A260/280) using NanoDrop ND-2000, respectively. As a result, we confirmed that A260/280 values of all 

samples were greater than 1.7. The purified genomic DNAs were stored at −30 °C prior to use. 

 

Genome sequence analyses using Illumina HiSeq System. 
Genome sequence analyses were performed with Illumina HiSeq System. An 150 bp paired-end 

library was generated according to the Illumina protocol and sequenced in Illumina HiSeq. In this 

study, 58 samples with different barcodes were mixed and then sequenced in two lanes, resulting in 

about 300-fold coverage on average. The raw sequence data are available in the DDBJ Sequence 

Read Archive under accession number [DRA005229]. 

The quality of the sequence data was first assessed with FastX Toolkit 0.0.13.2 

(http://hannonlab.cshl.edu/fastx_toolkit), and the raw reads were trimmed using PRINSEQ[31], in 

which both ends with quality scores lower than Q20 were trimmed. The potential nucleotide 

differences were also validated with BRESEQ version 0.28[3]. For structural variations, we used the 

same method as above[5] to detect large ins/del.  

  

Construction of deletion and single nucleotide substitution strains. 
To construct mutated strains shown in Fig 5, we introduced identified mutations into the parent strain 

by the markerless gene replacement method[32]. Briefly, to construct DNA fragments that had 
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deleted coding regions, upper flanking regions of the start codon were amplified by PCR using 

genomic DNA of the parent strain as templates with forward primers containing the EcoRI site and 

reverse primers containing overlaps with lower flanking regions of the stop codon. The lower 

flanking regions were amplified by PCR with forward primers containing overlaps with the upper 

flanking regions and reverse primers containing the KpnI site. After purification by the MinElute 

PCR Purification Kit (Qiagen), the PCR products were combined by overlap extension PCR. To 

construct DNA fragments that introduce an identified mutation, DNA fragments were amplified by 

PCR using genomic DNA of each resistant strain in which the mutation was identified. Each DNA 

fragment was purified by the MinElute PCR Purification Kit and then cloned into the suicide 

plasmid pST76-K[32] (The plasmid was kindly provided by Dr. György Pósfai, Biological Research 

Centre of the Hungarian Academy of Sciences, Hungary). After confirmation of DNA fragment 

sequences by Sanger method, transformation, integration into the parent strain genome, replacement 

stimulated by double-stand break, and plasmid curing were performed in accordance with a previous 

method[32]. After construction of mutant strains, corresponding genomic regions were amplified by 

PCR and then confirmed by Sanger sequencing of the PCR products directly.  
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Figure Legends  
 

Figure 1. Laboratory evolution under environmental stresses. (a) Overview of the experimental 

setting. E. coli cells were evolved in 11 stress environments by using the automated culture system. 

Selected clones from adapted populations were sequenced and transcriptional profiles were 

quantified to analyze phenotype-genotype relationships. (b)-(n) The time courses of the specific 

growth rate in experimental evolution. Five parallel series of experiments were performed. The 

values in parentheses show the average number of generations at the end-point of cultivation. 

 

Figure 2. Quantification of cross-protection and hyper-sensitivity. The vertical axis of each figure 

shows the difference of specific growth rate compared to the parent strains, while the horizontal axis 

corresponds to the index of five resistant strains obtained independently. Each column of figures 

corresponds to the data obtained under a same stressor, while each row indicates the stress used for 

the laboratory evolution. 
 
Figure 3. Transcriptomic changes in resistant strains. (a) Hierarchical clustering of overall 

expression changes in the resistant strains. The expression changes were calculated by dividing 

expression level of genes in the resistant strains with that of the parent strains, where these 
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expressions were quantified under the condition with the corresponding stress addition. (b) 

Expression changes of transcriptional factors. Representative transcriptional factors having larger 

variance of expression changes over resistant strains were plotted. The expression changes more than 

2-fold or less than 1/2 are shown in the same color with 2 and 1/2, respectively. (c-e) Prediction of 

growth rate using transcriptomic changes. Comparisons between observed and predicted growth rate 

under (c) NaCl, (d) CPC, and (e) all data were calculated by fitting using the following 15 genes: 

tbpA, appB, ydiH, gadE, sbp, aldB, asr, marC, proW, tktB, nac, thiC, ydhZ, acs, and gcd. Only test 

data, not used for the fitting, are plotted. The error bars in the y-axis were obtained by predicted 

growth rate calculated from 10,000 different sets of test data and training data. For the details of the 

prediction of growth rate, see Materials and Methods.  

 

Figure 4. The map of mutations identified in the resistant strains. Coordinates are relative to the 

reference MDS42 genome. The representative mutations commonly identified in the resistant strains 

to a same stress are highlighted by red characters, and whose effects on the corresponding stress 

resistance were evaluated as shown in Fig 5. The detailed information on the identified mutations 

was shown in S3 Table.  

 

Figure 5. Growth rates of site-directed mutants. One of mutations commonly identified in the 

resistant strains to a given stress (highlighted by red character in Figure 4) were introduced back to 

the parent strain. For each mutant, the names of the mutated genes are shown. Error bars indicate 

standard deviations calculated from three independent cultures. Statistical analysis was performed by 

t test. Significances were accepted at *P < 0.05, and **P <0.01. 

 

S1 Figure. (a) Expression changes of marR in the resistant strains. (b) Correlation between 

expression levels of marR and acrB. Each dot represents the expression levels in each resistant 

strain.  

 

S2 Figure. (a) Expression changes of hns in the resistant strains. (b) Correlation between expression 

levels of hns and rcsD. 

 

S3 Figure. Prediction of stress resistance using transcriptomic data. (a) Prediction accuracy as a 

function of the number of genes, N, used for the fitting. The prediction accuracy was quantified by 

the correlation coefficients between predicted growth rate and observed growth rate of the test data. 

(b) Frequency of genes selected in GA trials in cases with N=15. Randomly generated 10,000 sets of 

test data and training data were used to calculate the frequency. Comparisons between observed and 

predicted growth rate for (c) NaCl, (d) KCl, (e) CoCl2, (f) Na2CO3, (g) Lac, (h) Mal, (i) MCL, (j) 
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Cro, (k) MG, (l) BuOH, (m) CPC, and (n) all data were calculated by fitting using the following 15 

genes: tbpA, appB, ydiH, gadE, sbp, aldB, asr, marC, proW, tktB, nac, thiC, ydhZ, acs, and gcd. 

Only test data not used for the fitting are plotted. The error bars in the y-axis were obtained by 

predicted growth rate calculated from 10,000 different sets of test data and training data.  

 

S4 Figure. Expression changes of (a) tbpA and (b) ydiH in the resistant strains.  

 

S5 Figure. Expression levels of genes in proVWX operon. Log-transformed expression levels of (a) 

proV, (b) proW, and (c) proX in the parent and NaCl resistant strains with and without NaCl stress 

are plotted.  

 

S6 Figure. (a) Expression levels of ydhM. Log-transformed expression levels of ydhM in the parent 

and MG resistant strains with and without MG stress are plotted. (b) Correlation between expression 

levels of ydhM and gloA. 

 

S7 Figure. Expression levels of yojL. Log-transformed expression levels of yojL in the parent and 

Mal resistant strains with and without Mal stress are plotted.  

 

S8 Figure. (a) Expression changes of rpoS in the resistant strains. (b) Expression levels of rpoS in 

the parent and BuOH resistant strains with and without BuOH stress are plotted.  

 

S9 Figure. Expression levels of sugE. Log-transformed expression levels of sugE in the parent and 

CPC resistant strains with and without CPC stress are plotted.  

 

S1 Table. Summary of relative growth rates of the resistant strains in stress conditions. 

 

S2 Table. Transcriptome changes observed in the resistant strains. 

 

S3 Table. List of mutations identified in the resistant strains.  
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Table I. List of stress environments used for laboratory evolution 

Stressor Abbreviation Concentration Description of stress 

Sodium chloride NaCl 400 mM Inorganic salt

Potassium chloride KCl 210 mM Inorganic salt

Cobalt chloride CoCl2 16 μM Heavy metal

Sodium carbonate Na2CO3 32.5 mM Alkali

L-Lactate Lac 40 mM Organic acid

L-Malate Mal 30 mM Organic acid

Methacrylate  MCL 8.75 mM Unsaturated carboxylic acid

Crotonate Cro 50 mM Unsaturated carboxylic acid

Methylglyoxal MG 350 μM Ketoaldehyde

n-butanol BuOH 1.25 % Alcohol

Cetylpyridinium chloride CPC 4.8 μM Surfactant
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Supporting Text S1: Detailed description of common mutations identified in resistant strains. 

 

The number of mutations identified in the resistant strains is shown in Fig. 4, and detailed 

information about the mutations is presented in Supplementary Table S2. Below, for each stress we 

discuss the relationship between resistance acquisition, genome mutations and gene expression 

changes.  

 

Sodium chloride (NaCl) resistant strains 

See Main Text. 

 

Potassium chloride (KCl) resistant strains 

In KCl resistant strains, in addition to mutations in proU operon as described in Main Text, we found 

three resistant strains have mutations in the coding region of ftsI, which is involved in the cell 

division process. Since ftsI is an essential gene, we did not evaluate the effect of the identified ftsI 

mutations by introducing them into the parent strain. The role of ftsI mutations in KCl resistance 

remains unclear. 

 

Cobalt chloride (CoCl2) resistant strains 

All resistant strains to CoCl2 stress had mutations in corA 1, which encodes a transporter mediating 

influx of Mg2+, Ni2+, and Co2+. The identified mutations included frame-shift and deletion of ORF, 

suggesting that the disruption of corA activity contributed to CoCl2 resistance. This hypothesis was 

supported by the fact that the introduction of the corA mutation found in a CoCl2 resistant strain into 

the parent strain significantly increased the growth under CoCl2 stress (Fig. 5). Four out of five 

CoCl2 resistant strains also had mutations in feoA/feoB encoding ferrous iron transporters2. Even 

though the role of FeoA/FeoB in cobalt uptake has not been demonstrated3, these identified 

feoA/feoB mutations suggested that FeoA/FeoB transporters are involved in Co2+ transport.  

 

Sodium carbonate (Na2CO3) resistant strains 

Two out of five Na2CO3 resistant strains had mutations in sapABCDF operon, which encode Sap 

(Sensitive to antimicrobial peptides) ABC importer4. To evaluate the effect of the mutations, we 

introduced sapA mutation in its coding region (found in Na2CO3-2 resistant strain) into the parent 

strain, and confirmed that it significantly increased the growth under Na2CO3 stress. Sap transporter 

is known to contribute alkali stress resistance in Sinorhizobium meliloti, root nodule bacteria5, and 

thus our result might suggest that Sap transporter is involved in alkali stress resistance also in E. coli.  

 

L-Lactate (Lac) resistant strains 
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Four Lac resistant strains (Lac-1, 2, 3, and 4) had mutations either purT or purU genes, which are 

involved in purine biosynthesis6. In Lactobacillus lactis, it was suggested that perturbing purine 

biosynthesis is related to multi-stress resistance by changing 3',5'-bispyrophosphate (ppGpp) 

concentration7, which is known as a master regulator of the stringent response to amino acid 

starvation. Thus, the identified mutations in pur genes might be related to the control of the stringent 

response, although the details still remain unclear. We confirmed that the introduction of the 

mutation in the purT coding region significantly increased the growth under Lac stress (Fig. 5). 

 

L-Malate (Mal) resistant strains 

Four Mal resistant strains (Mal-1, 2, 3, and 5) had mutations in the promoter region of yojL (apbE). 

The expression levels of yojL in these four strains significantly increased (Fig. S7), probably due to 

the mutations in the promoter region. yojL encodes a periplasmic lipoprotein which is involved in 

thiamine biosynthesis8, and also it is thought to play a role in assembly or maintenance of iron-sulfur 

clusters9. These mutations commonly fixed in yojL promoter region suggests their contribution to 

Malate resistance by up-regulating its expression level. However, we could not observe a significant 

growth rate increase under Mal stress when one of these mutations was introduced in the parent 

strain (Fig. 5).  

 

Methacrylate (MCL) resistant strains 

All resistant strains to MCL had mutations in pykF, which encodes a pyruvate kinase that catalyzes 

the conversion of phosphoenolpyruvate (PEP) into pyruvate in the central metabolic pathway. All 

these mutations in pykF were nonsynonymous single nucleotide substitutions, which might suggest 

that the change of enzymatic activity contribute to the methacrylate resistance. To verify this, we 

introduced the mutation found in a MCL-3 resistant strain into the parent strain, and confirmed that 

it significantly increased the growth rate under methacrylate stress (Fig. 5). Although the mechanism 

how pykF mutations contribute to MCL resistance remains unclear, controlling intracellular 

accumulation of pyruvate caused by MCL stress might be related to the mechanism of resistance. 

MCL is known to inhibit the enzymatic activity of pyruvate formate-lyase (Pfl) that converts 

pyruvate into acetyl-CoA and formate10, and thus MCL stress can cause an increase in intra-cellular 

pyruvate. Since the PEP/pyruvate concentration ratio is an important parameter to control various 

metabolic pathways, including glucose uptake via sugar phosphotransferase system (PTS)11, the 

decrease of PykF activity by the mutations might play a role in rebalancing the disrupted 

PEP/pyruvate ratio by MCL stress.  

 

Crotonate (Cro) resistant strains 

No common mutation was identified in Cro resistant strains. 
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Methylglyoxal (MG) resistant strains 

See Main Text. 

 

n-butanol (BuOH) resistant strains 

Three BuOH resistant strains (BuOH-3, 4, and 5) had mutations in the coding region of cspC, and 

we confirmed that one of these mutations can slightly increase the BuOH stress resistance (Fig. 5). 

CspC is a constitutively produced member of the CspA family of RNA-binding proteins, which 

increases RpoS expression level presumably by stabilizing its mRNA12. RpoS is a central regulator 

of the general stress response whose up-regulation leads to growth arrest12. We found that the rpoS 

mRNA expression increased in response to BuOH stress addition, while it relaxed to the original 

levels in BuOH resistant strains (Fig. S8). This result suggests that the growth rate increase under 

BuOH stress can be partially explained by the down-regulation of rpoS caused by the cspC 

mutations. Furthermore, all BuOH resistant strains had deletion of region including yneK, ydeA, and 

marC genes. Interestingly, disruption of marC was also identified in isobutanol resistant E. coli 

strains obtained by laboratory evolution13,14. Although marC is a poorly characterized gene whose 

function is unknown, these results suggest a positive effect of marC disruption on butanol resistance.   

 

Cetylpyridinium chloride (CPC) resistant strains 

Three out of five CPC resistant strains (CPC-2, 4, and 5) had mutations in dcm, which encodes a 

DNA cytosine methyltransferase. To verify the effect of dcm mutations, we introduced the 

nonsynonymous single nucleotide substitutions found in CPC-5 strain into the parent strain. This 

mutant strain exhibited a slight increase of growth rate under the CPC stress (Fig. 5), although the 

difference was not statistically significant. This result might suggest that the mutation in dcm has a 

weak fitness gain effect in the CPC stress environments. The mechanism for CPC resistance by these 

dcm mutations remains unclear. A recent study demonstrated that the deletion of dcm contributes to 

antibiotic resistance through up-regulation of sugE encoding multidrug efflux transporters15. In three 

of five CPC resistant strains (CPC-3, 4, and 5), mutations are found in the promoter region of sugE, 

which suggests that these resistant strains acquired CPC resistance by activating the SugE efflux 

transporter. The fact that the expression levels of sugE significantly increased in CPC-3, 4, and 5 

strains and weakly increased in CPC-2 strain supported this hypothesis (Fig. S9). 
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