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Abstract

Background: Complex traits can share a substantial proportion of their polygenic heritability.
However, genome-wide polygenic correlations between pairs of traits can mask heterogeneity in
their shared polygenic effects across loci. We propose a novel method (WML-RPC) to evaluate
polygenic correlation between two complex traits in small genomic regions using summary
association statistics. Our method tests for evidence that the polygenic effect at a given region
affects two traits concurrently. Results: We show through simulations that our method is well
calibrated, powerful and more robust to misspecification of linkage disequilibrium than other
methods under a polygenic model. As small genomic regions are more likely to harbour specific
genetic effects, our method is ideal to identify heterogeneity in shared polygenic correlation across
regions. We illustrate the usefulness of our method by addressing two questions related to cardio-

metabolic traits. First, we explored how regional polygenic correlation can inform on the strong
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epidemiological association between HDL cholesterol and coronary artery disease (CAD),
suggesting a key role for triglycerides metabolism. Second, we investigated the potential role of
PPARYy activators in the prevention of CAD. Conclusions: Our results provide a compelling

argument that shared heritability between complex traits is highly heterogeneous across loci.

Keywords: Complex traits, polygenic inheritance, genetic correlation, linkage disequilibrium,

1000 Genomes Project, maximum likelihood

Background

Most complex traits follow a polygenic model of inheritance, whereby thousands of common
genetic variants contribute to phenotypic variance. Furthermore, genetic variance is not spread
evenly throughout the genome, but rather, tends to concentrate in specific regions [1-3]. Shared
polygenic heritability between pairs of complex traits has been shown at a genome-wide level, and
there is broad interest in developing novel methods to estimate such shared genetic architectures
between pairs of complex traits [4-6]. Existing methods for regional correlation either use
individual-level data [7, 8] or test for co-localisation of single variant associations without
considering polygenic inheritance [9-12]. Nonetheless, the observation that a majority of polygenic
heritability lies in variants associated below genome-wide significance, coupled with the
concentration of such associations at specific loci, dictates the need for a method that can estimate
polygenic correlation within small (~1 Mb) regions. As each genetic region includes a different
set of genes, genome-wide correlations will miss heterogeneity in the contribution of individual
genes to shared heritability. A method (pHESS) [6] was recently described to estimate regional

genetic correlation, but its sensitivity to misspecification of linkage disequilibrium (LD) was not
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explored. This is particularly important as most recent large genetic meta-analyses are trans-ethnic,
such that the LD structure underlying summary association statistics is difficult to estimate. Thus,
there is a need for a method to estimate regional genetic correlation that is robust to
misspecification of LD.

Further motivation for this work stems from a series of observations suggesting that (1) the
majority of additive genetic effects appear to be polygenic and well below genome-wide
significance, (2) polygenic inheritance tends to concentrate at specific regions [1], and (3) there is
widespread genome-wide correlation observed in pairs of complex traits [4]. We propose a novel
method (WML-RPC) to estimate the regional polygenic correlation between two traits, retaining
all variants in a given region, irrespective of LD, and using summary association statistics. Our
method adopts a weighted maximum likelihood approach to estimate the regional polygenic
variance of each trait and their polygenic correlation. It assumes random polygenic effects, or in
other words, that multiple genetic variants are associated with a trait in each region. This
framework builds on our previous work [1, 13] and has the distinct advantage of being robust to
misspecification of either LD or genetic effect sizes. Unlike other approaches, our method makes
no assumption about the causal relationship of one trait over the other, but rather, is intended to
test whether a single polygenic effect affects two traits concurrently at a given locus. In addition,
as WML-RPC provides estimates for the strength of the polygenic correlation, it can be used to
test for the presence of correlation, or alternatively, for deviation from a set level of correlation
(i.e., the null hypothesis can be set to any level of genetic correlation). We illustrate the utility of
our method by using it to answer two questions related to cardio-metabolic traits, bringing novel
insights into the inverse association of HDL cholesterol with coronary artery disease (CAD), and

exploring the role of PPARY activators in the prevention of CAD.
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Results
Simulations using 1000 Genomes Project Haplotypes
We simulated two traits using phased 1000 Genomes (1000G) Project [14] haplotypes. The five
simulated regions comprised from 296 to 1,117 SNPs, corresponding to a physical distance of
~1Mb, and summary association statistics were generated in two distinct populations of 100,000
simulated individuals each. Assuming realistic levels of genetic association, there was no type I
error inflation when either or both traits were truly genetically associated in the absence of any
genetic correlation at p<0.001. Based on 100,000 simulations, the proportion of false-positives
was 0.00015 at a more stringent a-level of 0.0001, which did not differ significantly from the
expected (p=0.083). The power to detect genetic correlation was dependent on genetic effect sizes
and the strength of true underlying genetic correlation (Figure 1). We evaluated the influence of
correlated error terms, which could occur if summary association statistics were derived from
overlapping sets of participants. With 25% of participants overlapping and the non-genetic
correlation between traits set at p = 0.2, the impact on both type I error rate and power was
minimal (Supplementary Figures S1 and S2) at p<0.001. We also tested a more extreme scenario
that assumed a complete overlap in participants assuming a correlation of non-genetic error terms
of 0.2. Again, minimal type I error inflation was observed under the null hypothesis of no
correlation (Supplementary Figures S1 and S2) at p<0.001.

We also sought to benchmark our method against other recently described co-localisation
methods. Two of the tested methods (gwas-pw [12] and jlim [10]) assess the possibility that a
single causal variant underlies a genetic association with two traits. As expected given their model

assumptions, neither method performed well in the presence of polygenic inheritance, with both
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showing inflated type I error rates and decreased power compared to WML-RPC (Figure 2). On
the other hand, pHESS [6] was designed to assess genetic correlation under a polygenic model and
its power was better than that of WML-RPC (Figure 2A), although at the expense of inflated type
I error rates (0.011 and 0.0020 at p-value thresholds of 0.001 and 0.0001, respectively) under the
null hypothesis of no correlation. To assess the robustness of WML-RPC and pHESS to
misspecification of LD structure, additional analyses were performed, as previously, but with the
reference LD matrix calculated using an increasing proportion of 1000G African (AFR)
individuals (Figure 2). In other words, summary association statistics were calculated using only
individuals of European ancestry under the null hypothesis of no genetic correlation while the LD
matrix used for WML-RPC and pHESS calculations included varying proportions of African
individuals. As shown in Figure 2B, WML-RPC type I error was minimally affected by differences
in LD structure, even under scenarios of extreme LD misspecification. However, pHESS was more
sensitive to LD misspecification with type I error increasing up to 0.161 using a p-value threshold
of 0.001 (Figure 2B).

WML-RPC and pHESS were also used to calculate the regional genetic correlation under
different LD structures. As shown in Figure 3, regional genetic correlation estimates from both
methods agreed with the true genetic correlation, even when a gross misspecification of LD
structure was applied (Figure 3B). However, the dispersion of estimates was larger with pHESS

than WML-RPC when LD was misspecified, as illustrated by larger confidence intervals.

Insights into the relationship between HDL cholesterol and coronary artery disease
To illustrate how regional polygenic correlation can provide novel epidemiological insights, we

first explored the genetic relationship between HDL cholesterol (HDLc) and CAD using summary
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association statistics from large genetic meta-analyses. Blood HDLc concentration is one of the
strongest predictors of decreased CAD risk in epidemiological studies [15], yet it is widely agreed
that the association is non-causal. Several Mendelian randomization studies have been conducted
to address this question, supporting a lack of causal relationship [16-20]. Furthermore,
pharmacological interventions to raise HDLc have thus far been disappointing [21-23], further
strengthening the hypothesis of a non-causal relationship. If the relationship is truly non-causal,
then one or more upstream biological pathways can be expected to jointly affect HDLc
concentration and the risk of CAD; thus, explaining the strong epidemiological association. In
other words, underlying causal risk factor(s) must exist that cause decreased HDLc to increase the
risk of CAD, even if HDLc itself is an epiphenomenon. Regional polygenic correlation can help
identify regions whose effects on HDLc and CAD are consistent with epidemiological studies, and
thus, provide insights into the identity of biological pathways that are responsible for their strong
epidemiological association.

We divided the genome into 2,687 regions of ~ 1Mb and determined which regions showed
evidence of polygenic correlation between HDLc and CAD. Keeping only the 848 regions with at
least nominal evidence (p < 0.05) of a polygenic association with either HDLc or CAD, we tested
for regional polygenic correlation and applied a conservative Bonferroni correction (p
<0.05/2,687). Consistent with a non-causal role of HDLc in CAD, none of the seven regions
identified were directly involved in HDL production (e.g., the APOAI locus) and heterogeneity in
polygenic correlation was present, with one region having positive polygenic correlation while
others had negative correlation (Table 1 and Supplementary Table S1 for unclipped 95%
confidence intervals for regional polygenic correlations). The seven regions with significant

negative polygenic correlation between HDLc and CAD are of particular interest since they could
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potentially underpin the epidemiological association. Tellingly, all of the seven regions were
located at loci directly related to triglycerides metabolism. The LPL, TRIBI and MC4R loci are
strongly associated with fasting triglycerides [24], while APOE is linked to the postprandial
regulation of triglyceride-rich lipoproteins [25] and SORT1 to hepatic triglyceride-rich VLDL
secretion [26]. The region with significant (p = 1.8 x107) positive correlation encompassed the
gene encoding hepatic lipase (LIPC). LIPC deficiency leads to increased HDLc [27] and
triglycerides-rich intermediate-density lipoproteins (IDL) [28], but its role in CAD remains
controversial. Consistently, genome-wide significant positive polygenic correlation between
HDLc and triglycerides was also observed at the locus surrounding L/PC (data not shown).

The genome-wide genetic correlation between HDLc and CAD was estimated at -0.44
when using a weighted average of regional genetic correlations, while it was estimated at -0.25
(0.07) with LDScore regression [4]. The distribution of regional genetic correlations is illustrated
in Supplementary Figure S3.

Overall, our results support the hypothesis the role of HDLc, as a marker of triglycerides
levels, can help explain the strong epidemiological association with CAD. Triglycerides are known
causal mediators of CAD [20]. Their levels are notoriously variable and can increase dramatically
in the post-prandial state. As HDLc concentrations are more stable and inversely correlated to
triglycerides concentrations, they can provide a surrogate for long-term exposure to triglycerides.
Indeed, non-fasting triglycerides, although seldom measured, have been shown to better predict
CAD risk than fasting measurements [29]. Our results also suggest that high HDLc caused by

decreased LIPC activity increases the risk of CAD.

Thiazolidinediones, PPARY and risk of CAD
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Pharmacological activation of PPARYy with thiazolidinediones is used to treat and prevent diabetes.
However, the role of thiazolidinediones in the prevention of CAD is controversial. Post hoc
analyses of randomized trials identified the potential for thiazolidinediones to increase CAD risk
[30], which, with the exception of pioglitazone, led to the removal of all thiazolidinediones from
clinical use. Based on these observations, a large clinical trial addressing the issue of CAD risk
reduction by rosiglitazone was stopped early [31]; thus, leaving this important clinical question
unanswered. The controversy was further fuelled by the recent publication of the IRIS trial
showing a significant reduction in cardiovascular events in individuals randomized to pioglitazone
[32]. While the ongoing debate around the cardiovascular protective effects of thiazolidinediones
has focused on their glucose-lowering effects, our results suggest their effect on lipoproteins (also
seen in randomized clinical trials) might be of greater importance with respect to CAD than
previously appreciated. We tested the region surrounding PPARG (+/- 500 Kb) for evidence of
association with cardiometabolic traits. As expected from the known pharmacological effects of
thiazolidinediones [33], significant (p < 0.05) regional associations were observed with diabetes,
triglycerides, HDLc, LDLc and BMI. As an added measure of sensitivity, assessments of +/- 100
Kb and +/- 300 Kb regions surrounding the PPARG locus were also performed. The reduction in
assessment region yielded similar results to those observed when a +/- 500 Kb region was used
(Supplementary Tables S2 and S3, respectively)

We then tested this set of traits for polygenic correlation with diabetes and CAD (Table 2).
The polygenic variance p-values at the PPARG locus are shown in Table 2 (column 2). A
significant (p<0.05/9) and positive polygenic correlation was observed between diabetes and
triglycerides, LDLc and CAD, and triglycerides and CAD. A trend towards a negative polygenic

correlation was observed between diabetes and BMI (p=0.008). Polygenic correlation was not
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significant between diabetes and LDLc, or diabetes and CAD. Polygenic correlation between
LDLc and CAD is of particular interest since pioglitazone has recently been shown to reduce LDL
particle number and size [34, 35]. This observation and the polygenic correlation with triglycerides
support the hypothesis that the protective effect of pioglitazone (and perhaps other
thiazolidinediones) on CAD risk is the consequence of its beneficial effect on atherogenic

lipoproteins.

Discussion
We herein propose a novel method to estimate regional polygenic correlation between two traits.
Our method is distinct from other co-localisation and genetic correlation tests as it is based on a
polygenic model of inheritance, only requires summary association statistics, and is robust to
misspecification of the LD structure. The latter point is of particular importance as large genetic
meta-analyses include participants of mixed ancestry, such that the underlying LD structure is
difficult to estimate. Our approach is particularly attractive when studying complex traits with
strong polygenic inheritance, where any single genetic association is unlikely to fully capture a
large proportion of genetic effects. Our method has several other advantages, including the ability
to adjust for LD, the possibility to test specific hypotheses regarding polygenic correlation, and
the ability to estimate regional genetic variance for a single trait. WML-RPC has wide ranging
applications, as we have illustrated. It can help discover biological pathways explaining
epidemiological associations such as those for HDLc and CAD, identify regions with complex
patterns of polygenic correlation, or help gain insights into the role of single genes or drug targets.
Our examples make a compelling argument that shared heritability is highly dependent on

regional genetic effects. Unless a locus has a direct effect on a risk factor (e.g., the APOB or LDLR
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loci on LDLc), it cannot be assumed that correlation implies a causal effect of the risk factor on
the outcome. For instance, genetic correlation between HDLc and CAD at the LIPC locus,
combined with prior knowledge of the effect of LIPC on intermediate density lipoproteins,
suggests that decreased LIPC activity leads to both increased HDLc and CAD risk. Inclusion of
that locus in Mendelian randomization studies may thus result in biased inferences about the causal
role of HDLc in CAD. Such considerations stress the importance of taking the biological effects
of each genetic region into account before concluding on the relationship between a risk factor and
outcome. Knowledge of biological effects can also provide insights into epidemiological
relationships, such as regions with negative correlation between HDLc and CAD pointing to
triglycerides metabolism as a key factor to explain the epidemiological association.

WML-RPC can also be used to explore candidate gene regions. We found that regional
polygenic associations recapitulate the effects of PPARY agonist thiazolidinediones on cardio-
metabolic traits. Our results support the hypothesis thiazolidinediones can reduce CAD risk
through their effect on lipids, particularly LDLc and triglycerides. In line with this hypothesis,
recent data have shown that pioglitazone decreased the concentration of atherogenic lipoproteins
[34, 35]. However, genetic correlation with CAD was only significant with LDLc and
triglycerides, but not diabetes itself, as might have been expected given triglycerides had
significant correlation with diabetes and CAD. While this finding could have been serendipitous,
it is also possible that genetic variants regulating PPARG function vary from one tissue to the
other, such that genetic regulation of LDLc at the PPARG locus (and thus, the risk of CAD)
overlaps only partially with its effect on diabetes. Indeed, such tissue-specific effects of PPARG
have been described [33], with adipocytes being mainly responsible for glycemic effects and

hepatocytes regulating atherogenic lipoprotein metabolism [36]. Similarly, it is possible that
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thiazolidinediones have varying affinities for different tissues. This illustrates a further advantage
of our method as it is agnostic to gene regulation mechanisms, and thus, not dependent on known
eQTL associations, which may vary according to tissue and cellular context.

There are some limitations to this study. First, the WML-RPC approach assumes that all
functional variants within a region affect a trait through the same pathway. Importantly,
distinguishing a single causal variant for multiple traits, as opposed to multiple causal variants, in
the presence of strong LD, is not possible. Thus, the presence of two highly correlated causal
variants is also possible and should be considered [12]. Second, some loci may fail to fit a
polygenic model, for example when there is a single very strong association at a locus, and other
methods might be better suited. Third, statistical power to detect genetic correlation depends on
sample size and genetic variance. While we are confident in regions identified using stringent
statistical criteria, many other covariant regions have likely been missed. Fourth, many regions
have no known candidate genes, in which case our method can point to regions of interest, but not
necessarily biological interpretations. Nonetheless, improving knowledge of gene function and
regulation, combined with the expanding repertoire of genome-wide association studies, should
provide increasing opportunities for WML-RPC to lead to novel insights into complex traits. Fifth,
reliable correlation estimates depend on the quality of summary association statistics, for instance,
the proper adjustment for population stratification in large genomic consortia, which is almost

invariably the case.

Conclusions

In conclusion, we present a novel robust method to estimate regional polygenic correlation using

summary association statistics. WML-RPC can estimate polygenic correlation within relatively
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small genetic regions, enabling a more detailed characterization of genetic correlation than
genome-wide genetic correlations. Our method can be used to identify pathways shared between
two traits, pinpoint regions of interest, or test specific hypotheses for a given gene. Our examples
illustrate the heterogeneity in pairwise genetic correlation across loci. They support the notion that
genetic effects are specific to each region and that unless a locus directly affects a risk factor,

caution must be exercised when making causal inferences.

Methods

Overview of Methods

Here, we propose a novel weighted maximum likelihood (WML) method to estimate the regional
polygenic correlation between pairs of complex traits using summary association statistics. Our
framework is derived from our previous work [13] where we developed a simple procedure to
estimate regional polygenic variance for single traits using summary association statistics. We
assume random, normally distributed genetic effects for each trait. The polygenic regional effects
for each trait under the random effects model was first estimated, and then the polygenic
correlation between traits was estimated using WML. Our method has several advantages,
including a convenient framework for hypothesis testing using a likelihood ratio test, the use of
summary-level data, and robustness to misspecification of LD structure. We validated our method
using data simulated based on the 1000 Genomes Project and applied our method to summary-

level data from large genetic meta-analyses of cardio-metabolic traits.

Estimation of regional polygenic variance and correlation

12
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We recently described a simple procedure to estimate regional genetic variance using summary
association statistics, adjusting for linkage disequilibrium (LD) [13]. We now propose to adapt this
procedure to estimate polygenic correlation between a pair of traits using a weighted maximum
likelihood (WML) approach. Suppose the genotype matrix is fixed while the true, unobserved
genetic effect is a random vector §, whose individual components, i.e., the effect size of SNPs, /
=1,2,...,m, have mean zero and variance ¢ 2. The true, unobserved, genetic model can be expressed
as:

Y = X,,umB + € (Equation 1),

where ¢ is a vector of standard normal error with identity variance-covariance matrix and the
genetic variance is given by ma?2. Without loss of generalizability, we assume the observed
quantitative trait (y) and the n x m genotype matrix X standardized to have zero mean and unit
variance throughout. The pairwise LD (r°) between two SNPs k and / is denoted by r,i ;- For a SNP
d, the following LD adjustment (1) can be defined as the summation of LD between the 4" SNP
and all SNPs within the same region (herein defined as encompassing all SNPs within ~1 Mb):
ng =% 14; (Equation 2).

We suggest setting all instances of r,i ; < 0.1 to zero when considering large regions to avoid
imprecision in the estimation of r,é ; unduly inflating n4. Only including SNPs with summary

GWAS statistics in the sum, the estimated variance explained by each SNP d is given by:
N b2 .
R3 = =2 (Equation 3),
Na
where by denotes the univariate regression coefficient commonly reported in GWAS results with
sample size N (assuming genotypes from external GWASs have also been standardized to have

zero mean and unit variance). Assuming a strictly additive genetic model where each SNP

contributes additively to a trait without any interaction or haplotype effects, we have previously

13
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shown[13] that ¥, R2 is an estimator of the regional variance mo? by demonstrating the

approximated equivalence between the expected total genetic variance over a region
E[ZZL=1 ﬁczz] = mo? + %Z;’Llni (Equation 4),
d

and the estimated adjusted coefficient of determination in multiple linear regression can be

considered an estimator of the regional variance
E[R%;] = mo? +% (Equation 5),
when the sample size is sufficiently large.

Since the true genetic effects are given by a random vector £, this implies:

L XX (X'X)
NZ N2

b~N (0,0
or marginally:

by~N(0,n40% + %) (Equation 6)

. . o . 5 b3 .
As we are interested in the estimation of ¢? via the surrogate R3 = n_d , the following
d

weighted likelihood function is maximized to find 62:

£2
bg
1
2,1
do +N

~ -~ ~ 1 1 .
logL(c?|by, by, ., by ) = — zg;lﬁ (log (ndaz + ﬁ) + ; ) (Equation 7),

where the log-likelihood of each observed by is weighted by the inverse of the LD adjustment,
such that if two SNPs were in complete LD, then effectively only one SNP contributes to the log-
likelihood for the genetic variance.

This framework can be extended to study the genetic correlation between a pair of traits.
In this scenario we have b c(ll) and bc(iz), which are the summary association statistics for trait 1 and

2, respectively, following a bivariate normal distribution:

14
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b(l) ‘
<b§2)> N‘N(Ol zd) (Equatlon 8)’

with covariance matrix:

[ ndalz +— COVgen + C()Verror—I
Y, = | Nl |
d— 1
[COVgen + CoVerror 77610-22 + N_ J
2

where 02 and o7 are the genetic variance of trait 1 and 2, respectively, and N;and N, the
corresponding sample sizes. Cov g, represents the genetic covariance between both traits whereas
CoVerror 18 the error term covariance and can be assumed to be zero.

The weighted likelihood function can be adapted using genetic variance estimates from the

previous weighted likelihood 67, 62:

T A2 A 1 ~ T = .
IOgL(COVgenlbd; 67,65 ,CoVerror ) = g:l% (log|Zq| + bg X4 1bd) (Equation 9).

The maximum likelihood estimates of Cov e, enables the use of a likelihood ratio test for
hypothesis testing. While Cov,,.,,- could be estimated, we found that under realistic scenarios its
effect is negligible and has therefore been set to zero for current analyses. This might not be ideal
when the correlation of error terms is very strong, in which case a non-zero Cov,,.,, could be
used in the likelihood estimation. As a note, Covyge, estimated from empirical data can cause
numerical estimates to be higher than both 62, 6% or lower than —6Z, —6%, and thus causing the
genetic correlation Cor e, to be higher 1 or lower than -1, and will correspondingly be set to 1 or
-1. Also note that stable and meaningful estimates of Corg,,, can only be obtained when both traits
1 and 2 have positive estimates for regional genetic variance. We also note that the stability of

genetic correlation estimates depends on the regional genetic effect size of both traits, such that

stable estimates can be obtained when one trait is weakly associated while the other trait is strongly
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associated. Finally, although the aim of the method is to estimate regional polygenic correlation,
it is important to confirm there is no bias in regional polygenic variance under the null hypothesis

of no genetic association, which we checked using simulations (Supplementary Figure S4).

Simulations using 1000 Genomes Project data and a study of cardio-metabolic traits

We used 379 participants of European descent from the 1000G [14] as the reference panel for LD
as it is the dominant ancestry in the studies included. Phased haplotypes are provided by the 1000G
project for each of the 379 participants (i.e., a total of 758 phased haplotypes). The set of 758
haplotypes constitutes the reference population, with each haplotype having an equal allele
frequency of 1/758=0.0013. We randomly sampled two phased haplotypes (with replacement)
from the 758 phased haplotypes for each of the 100,000 simulated individual, and derived
corresponding genotypes. For each simulated individual, two traits were simulated based on
unobserved genetic effects and error terms. The simulated traits were used to derive the summary
association statistics for each SNP by regressing the simulated traits on SNP genotype (i.e.,
summary association statistics were simulated, not fixed). Since polygenic inheritance was being
assessed, we used an infinitesimal model according to which every SNP was associated to some
extent, and the effect size was sampled from a normal distribution. Thus, the set of causal SNPs
was not the same for both traits, with the exception of scenarios where both traits had perfect
regional genetic correlations. The LD structure needed as input for calculation of regional genetic
correlation was derived from an independent set of 1,000 simulated individuals, again using the
758 phased European haplotypes as the reference population. To assess the robustness of methods
to misspecification of LD structure, we included a varying proportion of 1000G phased haplotypes

of African descent in the reference population when simulating the 1,000 individuals. All
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simulations were performed on five randomly chosen regions of 1 Mb. Only the results from the
first region are presented in the main manuscript, but consistent results were obtained for all four
other regions (Supplementary Figure S5).

We tested our method using summary association statistics from large genetic meta-
analyses of cardiometabolic traits, including coronary artery disease [37], LDL cholesterol, HDL
cholesterol, triglycerides [38], type 2 diabetes [39], body mass index [40], and blood pressure [41].
We identified a common set of SNPs among all corresponding meta-analyses and subsequently
divided the genome into blocks of ~1Mb by calibrating the number of SNPs per block to minimize

inter-block LD, as previously described [13].
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Tables and Figures Legends

Table 1: Regions with significant polygenic correlation estimates between HDLc and CAD.

Table 2: Polygenic correlation at the PPARG locus.

Table S1: Regions with significant polygenic correlation estimates (unclipped) between

HDLc and CAD.

Table S2: Regional polygenic correlation at the PPARG locus (+/- 100Kb).

Table S3: Regional polygenic correlation at the PPARG locus (+/- 300Kb).

Figure 1: Performance of WML-RPC in simulated data using 1000 Genomes Project
haplotypes.

The power to detect polygenic correlation at a nominal a-level of 0.001 as a function of the true
polygenic correlation was calculated over 1,000 simulated replicates on a region of 1Mb simulated
using haplotypes of European participants from 1000 Genomes Project. In panel A), the sample
size ranged from 25K to 100K individuals, while keeping the true regional genetic variance
constant at 0.005 for each trait. In panel B), sample size was fixed at 100K individuals, but the
regional polygenic variance varied from 0.001 to 0.005. In panel C), the mean regional polygenic
correlation over 1,000 replicates is illustrated as a function of the true (red dashed line) polygenic
correlation, assuming a sample size of 100K and genetic variance of 0.005 for both traits. The error

bars represent the mean polygenic correlation + 1.96SD over 1,000 replicates.
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Figure 2: A comparison of statistical power to detect true genetic correlation and type I error
resilience by WML-RPC, gwas-pw, jlim, and pHESS.

A) Power to detect polygenic correlation at a nominal a-level of 0.001 (for WML-RPC, jlim, and
pHESS) or posterior probability > 0.90 (for gwas-pw) as a function of the true polygenic
correlation. Results are based on regions of 1Mb simulated using haplotypes of European
participants from 1000 Genomes Project, with a sample size of 100,000 and assuming the true
regional genetic variance is 0.005 for each trait. For each condition, the simulation was repeated
1,000 times unless stated otherwise. Under the null hypothesis of no polygenic correlation, the
type I error rate, which can be assessed at the true genetic correlation of 0, was 0.1% for WML-
RPC (10,000 simulations), while the estimated rates of type I error were 2.5%, 1.4%, and 1.1% for
gwas-pw, jlim, and pHESS, respectively. B) Comparison of the effect of misspecification of the
reference LD structure on type I error between WML-RPC and pHESS methods. Results are based
on simulations performed under the same parameters described in A); however, the LD matrix was
calculated using an increasing number of individuals of African ancestry. The dashed red line

represents the expected type I error at a nominal a-level of 0.001.

Figure 3: Comparison of the estimated regional polygenic correlation by WML-RPC and
pHESS methods under different LD structures.

Results are based on regions of 1Mb simulated using haplotypes of 1000 Genomes Project
participants of European descent, with a sample size of 100,000 and assuming the true regional

genetic variance is 0.005 for each trait and non-genetic correlation of 0. Regional genetic
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correlations were calculated under the LD structure for A) European (i.e., the correct LD

specification) and B) African individuals (i.e., a gross misspecification of LD).

Figure S1: Quantile-quantile plot of WML-RPC correlation p-values against the null
hypothesis of no polygenic correlation.

Quantile-quantile plot of polygenic correlation p-values from WML-RPC on a region of 1Mb with
100K individuals simulated using haplotypes of European participants from the 1000 Genomes
Project. Each condition was repeated 1,000 times. The observed —logl0 p-values were plotted
against the expected, shown with 95% confidence regions (dashed red lines). We assumed regional
genetic variances of 0.005 for each trait, without polygenic correlation. In panel A), we assumed
the error terms were uncorrelated with p = 0. In panel B), 25% of participants overlapped between
traits, such that the non-genetic correlation was set at p = 0.05. In panel C), the overlap between

participants was set at 100%, again with the non-genetic correlation set at p = 0.2.

Figure S2: Statistical power and estimated polygenic correlation as functions of the true
polygenic correlation in simulated data when error terms correlate.

The power of WML-RPC to detect polygenic correlation at a nominal a-level of 0.001 for each
true polygenic correlation values was calculated over 1,000 simulated replicates on a region of
IMb simulated using haplotypes of European participants from the 1000 Genomes Project. The
non-genetic correlation between error terms was set at 0.05 in simulations illustrated in panels A),
B) and C), and was set to 0.2 in simulations illustrated in panels D), E) and F). In panels A) and
D), the sample sizes varied from 25K to 100K individuals, while keeping the true regional genetic

variance constant at 0.005 for each trait. In panels B) and E), the sample size was constant at 100K
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individuals, but the true regional genetic variance was varied from 0.001 to 0.005. In panels C)
and F), the mean (£SD) estimated regional polygenic correlation is illustrated in black, as a
function of the true (red dashed line) polygenic correlation, assuming a sample size of 100K and a

true genetic variance of 0.005 for both traits.

Figure S3: Distribution of estimated regional genetic correlation between HDLc¢ and CAD.

Regional genetic correlations for 2,687 regions were estimated for high-density lipoprotein

cholesterol (HDLc) and coronary artery disease (CAD).

Figure S4: Quantile-quantile plot for regional genetic variance p-values generated by WML-
RPC under the null hypothesis of no regional genetic variance.

Each observed p-value was calculated based on a region of 1Mb simulated using haplotypes of
1000 Genomes Project participants of European descent, with a sample size of 100K and assuming
the true regional genetic variance was 0. The simulation was repeated 1,000 times. The observed p-
values were plotted on a —logl0 scale against the expected, shown with 95% confidence regions

in dashed red lines.

Figure S5: Performance of WML-RPC in simulated data using 1000 Genomes Project
haplotypes at five other randomly chosen regions.

The power to detect polygenic correlation at a nominal a-level of 0.001 as a function of the true
polygenic correlation was calculated over 1,000 simulated replicates on five regions of 1Mb each,
simulated using haplotypes of European participants from 1000 Genomes Project. In panels A),

C), E), G), I) the sample sizes ranged from 25K to 100K individuals, while keeping the true
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regional genetic variance constant at 0.005 for each trait. In panels B), D), F) H), J), the mean
regional polygenic correlation over 1,000 replicates is illustrated as a function of the true (red
dashed line) polygenic correlation, assuming a sample size of 100K and genetic variance of 0.005
for both traits. The error bars represent the mean polygenic correlation = 1.96SD over 1,000

replicates.
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Table 1: Regions with significant polygenic correlation between HDLc and CAD

CHR Position (Kb)

1 109,723-110,710
8 18,869-19,875
8 19,875-20,875
8 126,042-127,062
15 58,311-59,348

18 57,456-58,421

19 44,789-45,840

Candidate
gene

SORT1
LPL
LPL

TRIB1

LIPC

MC4R

APOE

Candidate
Gene function

VLDL secretion
Lipoprotein triglyceride lipase
Lipoprotein triglyceride lipase

Regulation of hepatic lipogenesis
Hepatic triglyceride lipase

Appetite regulation

Catabolism of triglyceride-rich
lipoproteins

HDLc
polygenic
regional
p-value
2.58E-24
<1.00E-323
1.86E-213
1.43E-48
<1.00E-323

5.61E-18

6.83E-52

CAD
polygenic
regional
p-value
3.16E-20
2.09E-06
5.81E-04
1.66E-03
9.49E-02

1.12E-06

2.62E-10

Polygenic correlation

(95% C1)

-0.83(-1.00, -0.61)
-0.94 (-1.00, -0.79)
-0.93(-1.00, -0.79)
-1.00 (-1.00, -0.79)
1.00 (0.87, 1.00)

-0.98(-1.00, -0.79)

-0.89 (-1.00, -0.77)

Polygenic
correlation
p-value

3.69E-07
1.02E-10
5.17E-08
2.84E-06
1.82E-06

1.07E-05

6.74E-11
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Table 2: Polygenic correlation at the PPARG locus.

Trait

BMI
Diabetes
HDLc

LDL
Triglycerides

Regional
association
p-value
0.04
5.00E-03
1.17E-03
1.11E-16
8.20E-07

Polygenic correlation

with diabetes
(95%Cl)
-0.99 (-1.00, -0.20)
N/A
-0.44 (-1.00, 0.17)
0.36 (-0.11, 0.83)
0.98 (0.56, 1.00)

Polygenic correlation

with diabetes p-
value
0.008

N/A
0.176
0.146

2.31E-4

Polygenic
correlation
with CAD (95%Cl)
0.24 (-0.65, 1.00)
0.38 (-0.39, 1.00)
-0.14 (-0.89, 0.62)
0.99 (0.44, 1.00)
0.84 (0.23, 1.00)

Polygenic
correlation
with CAD p-value
0.608
0.350
0.727
4.58E-4
0.01
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