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Abstract 
 
Background: Complex traits can share a substantial proportion of their polygenic heritability. 

However, genome-wide polygenic correlations between pairs of traits can mask heterogeneity in 

their shared polygenic effects across loci. We propose a novel method (WML-RPC) to evaluate 

polygenic correlation between two complex traits in small genomic regions using summary 

association statistics. Our method tests for evidence that the polygenic effect at a given region 

affects two traits concurrently. Results: We show through simulations that our method is well 

calibrated, powerful and more robust to misspecification of linkage disequilibrium than other 

methods under a polygenic model. As small genomic regions are more likely to harbour specific 

genetic effects, our method is ideal to identify heterogeneity in shared polygenic correlation across 

regions. We illustrate the usefulness of our method by addressing two questions related to cardio-

metabolic traits. First, we explored how regional polygenic correlation can inform on the strong 
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epidemiological association between HDL cholesterol and coronary artery disease (CAD), 

suggesting a key role for triglycerides metabolism. Second, we investigated the potential role of 

PPAR activators in the prevention of CAD. Conclusions: Our results provide a compelling 

argument that shared heritability between complex traits is highly heterogeneous across loci. 

 

Keywords: Complex traits, polygenic inheritance, genetic correlation, linkage disequilibrium, 

1000 Genomes Project, maximum likelihood 

 

Background 

Most complex traits follow a polygenic model of inheritance, whereby thousands of common 

genetic variants contribute to phenotypic variance. Furthermore, genetic variance is not spread 

evenly throughout the genome, but rather, tends to concentrate in specific regions [1-3]. Shared 

polygenic heritability between pairs of complex traits has been shown at a genome-wide level, and 

there is broad interest in developing novel methods to estimate such shared genetic architectures 

between pairs of complex traits [4-6]. Existing methods for regional correlation either use 

individual-level data [7, 8] or test for co-localisation of single variant associations without 

considering polygenic inheritance [9-12]. Nonetheless, the observation that a majority of polygenic 

heritability lies in variants associated below genome-wide significance, coupled with the 

concentration of such associations at specific loci, dictates the need for a method that can estimate 

polygenic correlation within small (~1 Mb) regions. As each genetic region includes a different 

set of genes, genome-wide correlations will miss heterogeneity in the contribution of individual 

genes to shared heritability. A method (pHESS) [6] was recently described to estimate regional 

genetic correlation, but its sensitivity to misspecification of linkage disequilibrium (LD) was not 
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explored. This is particularly important as most recent large genetic meta-analyses are trans-ethnic, 

such that the LD structure underlying summary association statistics is difficult to estimate. Thus, 

there is a need for a method to estimate regional genetic correlation that is robust to 

misspecification of LD. 

Further motivation for this work stems from a series of observations suggesting that (1) the 

majority of additive genetic effects appear to be polygenic and well below genome-wide 

significance, (2) polygenic inheritance tends to concentrate at specific regions [1], and (3) there is 

widespread genome-wide correlation observed in pairs of complex traits [4]. We propose a novel 

method (WML-RPC) to estimate the regional polygenic correlation between two traits, retaining 

all variants in a given region, irrespective of LD, and using summary association statistics. Our 

method adopts a weighted maximum likelihood approach to estimate the regional polygenic 

variance of each trait and their polygenic correlation. It assumes random polygenic effects, or in 

other words, that multiple genetic variants are associated with a trait in each region. This 

framework builds on our previous work [1, 13] and has the distinct advantage of being robust to 

misspecification of either LD or genetic effect sizes. Unlike other approaches, our method makes 

no assumption about the causal relationship of one trait over the other, but rather, is intended to 

test whether a single polygenic effect affects two traits concurrently at a given locus. In addition, 

as WML-RPC provides estimates for the strength of the polygenic correlation, it can be used to 

test for the presence of correlation, or alternatively, for deviation from a set level of correlation 

(i.e., the null hypothesis can be set to any level of genetic correlation). We illustrate the utility of 

our method by using it to answer two questions related to cardio-metabolic traits, bringing novel 

insights into the inverse association of HDL cholesterol with coronary artery disease (CAD), and 

exploring the role of PPAR activators in the prevention of CAD. 
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Results 

Simulations using 1000 Genomes Project Haplotypes 

We simulated two traits using phased 1000 Genomes (1000G) Project [14] haplotypes. The five 

simulated regions comprised from 296 to 1,117 SNPs, corresponding to a physical distance of 

~1Mb, and summary association statistics were generated in two distinct populations of 100,000 

simulated individuals each. Assuming realistic levels of genetic association, there was no type I 

error inflation when either or both traits were truly genetically associated in the absence of any 

genetic correlation at p<0.001. Based on 100,000 simulations, the proportion of false-positives 

was 0.00015 at a more stringent -level of 0.0001, which did not differ significantly from the 

expected (p=0.083).  The power to detect genetic correlation was dependent on genetic effect sizes 

and the strength of true underlying genetic correlation (Figure 1). We evaluated the influence of 

correlated error terms, which could occur if summary association statistics were derived from 

overlapping sets of participants. With 25% of participants overlapping and the non-genetic 

correlation between traits set at 𝜌 = 0.2, the impact on both type I error rate and power was 

minimal (Supplementary Figures S1 and S2) at p<0.001. We also tested a more extreme scenario 

that assumed a complete overlap in participants assuming a correlation of non-genetic error terms 

of 0.2. Again, minimal type I error inflation was observed under the null hypothesis of no 

correlation (Supplementary Figures S1 and S2) at p<0.001.  

We also sought to benchmark our method against other recently described co-localisation 

methods. Two of the tested methods (gwas-pw [12] and jlim [10]) assess the possibility that a 

single causal variant underlies a genetic association with two traits. As expected given their model 

assumptions, neither method performed well in the presence of polygenic inheritance, with both 
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showing inflated type I error rates and decreased power compared to WML-RPC (Figure 2).  On 

the other hand, pHESS [6] was designed to assess genetic correlation under a polygenic model and 

its power was better than that of WML-RPC (Figure 2A), although at the expense of inflated type 

I error rates (0.011 and 0.0020 at p-value thresholds of 0.001 and 0.0001, respectively) under the 

null hypothesis of no correlation. To assess the robustness of WML-RPC and pHESS to 

misspecification of LD structure, additional analyses were performed, as previously, but with the 

reference LD matrix calculated using an increasing proportion of 1000G African (AFR) 

individuals (Figure 2). In other words, summary association statistics were calculated using only 

individuals of European ancestry under the null hypothesis of no genetic correlation while the LD 

matrix used for WML-RPC and pHESS calculations included varying proportions of African 

individuals. As shown in Figure 2B, WML-RPC type I error was minimally affected by differences 

in LD structure, even under scenarios of extreme LD misspecification. However, pHESS was more 

sensitive to LD misspecification with type I error increasing up to 0.161 using a p-value threshold 

of 0.001 (Figure 2B). 

WML-RPC and pHESS were also used to calculate the regional genetic correlation under 

different LD structures. As shown in Figure 3, regional genetic correlation estimates from both 

methods agreed with the true genetic correlation, even when a gross misspecification of LD 

structure was applied (Figure 3B). However, the dispersion of estimates was larger with pHESS 

than WML-RPC when LD was misspecified, as illustrated by larger confidence intervals.  

 

Insights into the relationship between HDL cholesterol and coronary artery disease 

To illustrate how regional polygenic correlation can provide novel epidemiological insights, we 

first explored the genetic relationship between HDL cholesterol (HDLc) and CAD using summary 
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association statistics from large genetic meta-analyses. Blood HDLc concentration is one of the 

strongest predictors of decreased CAD risk in epidemiological studies [15], yet it is widely agreed 

that the association is non-causal. Several Mendelian randomization studies have been conducted 

to address this question, supporting a lack of causal relationship [16-20]. Furthermore, 

pharmacological interventions to raise HDLc have thus far been disappointing [21-23], further 

strengthening the hypothesis of a non-causal relationship. If the relationship is truly non-causal, 

then one or more upstream biological pathways can be expected to jointly affect HDLc 

concentration and the risk of CAD; thus, explaining the strong epidemiological association. In 

other words, underlying causal risk factor(s) must exist that cause decreased HDLc to increase the 

risk of CAD, even if HDLc itself is an epiphenomenon. Regional polygenic correlation can help 

identify regions whose effects on HDLc and CAD are consistent with epidemiological studies, and 

thus, provide insights into the identity of biological pathways that are responsible for their strong 

epidemiological association. 

We divided the genome into 2,687 regions of ~ 1Mb and determined which regions showed 

evidence of polygenic correlation between HDLc and CAD. Keeping only the 848 regions with at 

least nominal evidence (p < 0.05) of a polygenic association with either HDLc or CAD, we tested 

for regional polygenic correlation and applied a conservative Bonferroni correction (p 

<0.05/2,687). Consistent with a non-causal role of HDLc in CAD, none of the seven regions 

identified were directly involved in HDL production (e.g., the APOA1 locus) and heterogeneity in 

polygenic correlation was present, with one region having positive polygenic correlation while 

others had negative correlation (Table 1 and Supplementary Table S1 for unclipped 95% 

confidence intervals for regional polygenic correlations). The seven regions with significant 

negative polygenic correlation between HDLc and CAD are of particular interest since they could 
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potentially underpin the epidemiological association. Tellingly, all of the seven regions were 

located at loci directly related to triglycerides metabolism. The LPL, TRIB1 and MC4R loci are 

strongly associated with fasting triglycerides [24], while APOE is linked to the postprandial 

regulation of triglyceride-rich lipoproteins [25] and SORT1 to hepatic triglyceride-rich VLDL 

secretion [26]. The region with significant (p = 1.8 x10-6) positive correlation encompassed the 

gene encoding hepatic lipase (LIPC). LIPC deficiency leads to increased HDLc [27] and 

triglycerides-rich intermediate-density lipoproteins (IDL) [28], but its role in CAD remains 

controversial. Consistently, genome-wide significant positive polygenic correlation between 

HDLc and triglycerides was also observed at the locus surrounding LIPC (data not shown).  

The genome-wide genetic correlation between HDLc and CAD was estimated at -0.44 

when using a weighted average of regional genetic correlations, while it was estimated at -0.25 

(0.07) with LDScore regression [4]. The distribution of regional genetic correlations is illustrated 

in Supplementary Figure S3. 

Overall, our results support the hypothesis the role of HDLc, as a marker of triglycerides 

levels, can help explain the strong epidemiological association with CAD. Triglycerides are known 

causal mediators of CAD [20]. Their levels are notoriously variable and can increase dramatically 

in the post-prandial state.  As HDLc concentrations are more stable and inversely correlated to 

triglycerides concentrations, they can provide a surrogate for long-term exposure to triglycerides. 

Indeed, non-fasting triglycerides, although seldom measured, have been shown to better predict 

CAD risk than fasting measurements [29]. Our results also suggest that high HDLc caused by 

decreased LIPC activity increases the risk of CAD. 

 

Thiazolidinediones, PPAR and risk of CAD 
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Pharmacological activation of PPAR with thiazolidinediones is used to treat and prevent diabetes. 

However, the role of thiazolidinediones in the prevention of CAD is controversial. Post hoc 

analyses of randomized trials identified the potential for thiazolidinediones to increase CAD risk 

[30], which, with the exception of pioglitazone, led to the removal of all thiazolidinediones from 

clinical use. Based on these observations, a large clinical trial addressing the issue of CAD risk 

reduction by rosiglitazone was stopped early [31]; thus, leaving this important clinical question 

unanswered. The controversy was further fuelled by the recent publication of the IRIS trial 

showing a significant reduction in cardiovascular events in individuals randomized to pioglitazone 

[32]. While the ongoing debate around the cardiovascular protective effects of thiazolidinediones 

has focused on their glucose-lowering effects, our results suggest their effect on lipoproteins (also 

seen in randomized clinical trials) might be of greater importance with respect to CAD than 

previously appreciated. We tested the region surrounding PPARG (+/- 500 Kb) for evidence of 

association with cardiometabolic traits. As expected from the known pharmacological effects of 

thiazolidinediones [33], significant (p < 0.05) regional associations were observed with diabetes, 

triglycerides, HDLc, LDLc and BMI. As an added measure of sensitivity, assessments of +/- 100 

Kb and +/- 300 Kb regions surrounding the PPARG locus were also performed. The reduction in 

assessment region yielded similar results to those observed when a +/- 500 Kb region was used 

(Supplementary Tables S2 and S3, respectively)  

We then tested this set of traits for polygenic correlation with diabetes and CAD (Table 2). 

The polygenic variance p-values at the PPARG locus are shown in Table 2 (column 2). A 

significant (p<0.05/9) and positive polygenic correlation was observed between diabetes and 

triglycerides, LDLc and CAD, and triglycerides and CAD. A trend towards a negative polygenic 

correlation was observed between diabetes and BMI (p=0.008). Polygenic correlation was not 
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significant between diabetes and LDLc, or diabetes and CAD. Polygenic correlation between 

LDLc and CAD is of particular interest since pioglitazone has recently been shown to reduce LDL 

particle number and size [34, 35]. This observation and the polygenic correlation with triglycerides 

support the hypothesis that the protective effect of pioglitazone (and perhaps other 

thiazolidinediones) on CAD risk is the consequence of its beneficial effect on atherogenic 

lipoproteins. 

 

Discussion 

We herein propose a novel method to estimate regional polygenic correlation between two traits. 

Our method is distinct from other co-localisation and genetic correlation tests as it is based on a 

polygenic model of inheritance, only requires summary association statistics, and is robust to 

misspecification of the LD structure. The latter point is of particular importance as large genetic 

meta-analyses include participants of mixed ancestry, such that the underlying LD structure is 

difficult to estimate. Our approach is particularly attractive when studying complex traits with 

strong polygenic inheritance, where any single genetic association is unlikely to fully capture a 

large proportion of genetic effects. Our method has several other advantages, including the ability 

to adjust for LD, the possibility to test specific hypotheses regarding polygenic correlation, and 

the ability to estimate regional genetic variance for a single trait. WML-RPC has wide ranging 

applications, as we have illustrated. It can help discover biological pathways explaining 

epidemiological associations such as those for HDLc and CAD, identify regions with complex 

patterns of polygenic correlation, or help gain insights into the role of single genes or drug targets.  

Our examples make a compelling argument that shared heritability is highly dependent on 

regional genetic effects. Unless a locus has a direct effect on a risk factor (e.g., the APOB or LDLR 
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loci on LDLc), it cannot be assumed that correlation implies a causal effect of the risk factor on 

the outcome. For instance, genetic correlation between HDLc and CAD at the LIPC locus, 

combined with prior knowledge of the effect of LIPC on intermediate density lipoproteins, 

suggests that decreased LIPC activity leads to both increased HDLc and CAD risk. Inclusion of 

that locus in Mendelian randomization studies may thus result in biased inferences about the causal 

role of HDLc in CAD. Such considerations stress the importance of taking the biological effects 

of each genetic region into account before concluding on the relationship between a risk factor and 

outcome. Knowledge of biological effects can also provide insights into epidemiological 

relationships, such as regions with negative correlation between HDLc and CAD pointing to 

triglycerides metabolism as a key factor to explain the epidemiological association.  

WML-RPC can also be used to explore candidate gene regions. We found that regional 

polygenic associations recapitulate the effects of PPAR agonist thiazolidinediones on cardio-

metabolic traits. Our results support the hypothesis thiazolidinediones can reduce CAD risk 

through their effect on lipids, particularly LDLc and triglycerides. In line with this hypothesis, 

recent data have shown that pioglitazone decreased the concentration of atherogenic lipoproteins 

[34, 35]. However, genetic correlation with CAD was only significant with LDLc and 

triglycerides, but not diabetes itself, as might have been expected given triglycerides had 

significant correlation with diabetes and CAD. While this finding could have been serendipitous, 

it is also possible that genetic variants regulating PPARG function vary from one tissue to the 

other, such that genetic regulation of LDLc at the PPARG locus (and thus, the risk of CAD) 

overlaps only partially with its effect on diabetes. Indeed, such tissue-specific effects of PPARG 

have been described [33], with adipocytes being mainly responsible for glycemic effects and 

hepatocytes regulating atherogenic lipoprotein metabolism [36]. Similarly, it is possible that 
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thiazolidinediones have varying affinities for different tissues. This illustrates a further advantage 

of our method as it is agnostic to gene regulation mechanisms, and thus, not dependent on known 

eQTL associations, which may vary according to tissue and cellular context. 

There are some limitations to this study. First, the WML-RPC approach assumes that all 

functional variants within a region affect a trait through the same pathway. Importantly, 

distinguishing a single causal variant for multiple traits, as opposed to multiple causal variants, in 

the presence of strong LD, is not possible. Thus, the presence of two highly correlated causal 

variants is also possible and should be considered [12]. Second, some loci may fail to fit a 

polygenic model, for example when there is a single very strong association at a locus, and other 

methods might be better suited. Third, statistical power to detect genetic correlation depends on 

sample size and genetic variance. While we are confident in regions identified using stringent 

statistical criteria, many other covariant regions have likely been missed. Fourth, many regions 

have no known candidate genes, in which case our method can point to regions of interest, but not 

necessarily biological interpretations. Nonetheless, improving knowledge of gene function and 

regulation, combined with the expanding repertoire of genome-wide association studies, should 

provide increasing opportunities for WML-RPC to lead to novel insights into complex traits. Fifth, 

reliable correlation estimates depend on the quality of summary association statistics, for instance, 

the proper adjustment for population stratification in large genomic consortia, which is almost 

invariably the case. 

 

Conclusions 

In conclusion, we present a novel robust method to estimate regional polygenic correlation using 

summary association statistics. WML-RPC can estimate polygenic correlation within relatively 
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small genetic regions, enabling a more detailed characterization of genetic correlation than 

genome-wide genetic correlations. Our method can be used to identify pathways shared between 

two traits, pinpoint regions of interest, or test specific hypotheses for a given gene. Our examples 

illustrate the heterogeneity in pairwise genetic correlation across loci. They support the notion that 

genetic effects are specific to each region and that unless a locus directly affects a risk factor, 

caution must be exercised when making causal inferences.  

  

Methods 

Overview of Methods 

Here, we propose a novel weighted maximum likelihood (WML) method to estimate the regional 

polygenic correlation between pairs of complex traits using summary association statistics. Our 

framework is derived from our previous work [13] where we developed a simple procedure to 

estimate regional polygenic variance for single traits using summary association statistics. We 

assume random, normally distributed genetic effects for each trait. The polygenic regional effects 

for each trait under the random effects model was first estimated, and then the polygenic 

correlation between traits was estimated using WML. Our method has several advantages, 

including a convenient framework for hypothesis testing using a likelihood ratio test, the use of 

summary-level data, and robustness to misspecification of LD structure. We validated our method 

using data simulated based on the 1000 Genomes Project and applied our method to summary-

level data from large genetic meta-analyses of cardio-metabolic traits. 

 

Estimation of regional polygenic variance and correlation 
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We recently described a simple procedure to estimate regional genetic variance using summary 

association statistics, adjusting for linkage disequilibrium (LD) [13]. We now propose to adapt this 

procedure to estimate polygenic correlation between a pair of traits using a weighted maximum 

likelihood (WML) approach. Suppose the genotype matrix is fixed while the true, unobserved 

genetic effect is a random vector 𝛽, whose individual components, i.e., the effect size of SNPs, I 

= 1,2,…,m, have mean zero and variance 𝜎ଶ. The true, unobserved, genetic model can be expressed 

as: 

𝑌 = 𝑋௡×௠𝛽 + 𝜖 (Equation 1), 

where ε is a vector of standard normal error with identity variance-covariance matrix and the 

genetic variance is given by 𝑚𝜎ଶ. Without loss of generalizability, we assume the observed 

quantitative trait (y) and the n x m genotype matrix X standardized to have zero mean and unit 

variance throughout. The pairwise LD (𝑟2) between two SNPs k and l is denoted by 𝑟௞,௟
ଶ . For a SNP 

d, the following LD adjustment (𝜂ௗ) can be defined as the summation of LD between the dth SNP 

and all SNPs within the same region (herein defined as encompassing all SNPs within ~1 Mb): 

𝜂ௗ = ∑ 𝑟ௗ,௝
ଶ  (Equation 2). 

We suggest setting all instances of 𝑟௞,௟
ଶ  < 0.1 to zero when considering large regions to avoid 

imprecision in the estimation of 𝑟௞,௟
ଶ  unduly inflating 𝜂ௗ. Only including SNPs with summary 

GWAS statistics in the sum, the estimated variance explained by each SNP d is given by: 

𝑅෠ௗ
ଶ =

௕෠೏
మ

ఎ೏
 (Equation 3), 

where 𝑏෠ௗ denotes the univariate regression coefficient commonly reported in GWAS results with 

sample size N (assuming genotypes from external GWASs have also been standardized to have 

zero mean and unit variance). Assuming a strictly additive genetic model where each SNP 

contributes additively to a trait without any interaction or haplotype effects, we have previously 
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shown[13] that ∑ 𝑅෠ௗ
ଶ௠

ௗୀଵ  is an estimator of the regional variance 𝑚𝜎ଶ by demonstrating the 

approximated equivalence between the expected total genetic variance over a region 

𝐸ൣ∑ 𝑅෠ௗ
ଶ௠

ௗୀଵ ൧ = 𝑚𝜎ଶ +
ଵ

ே
∑

ଵ

ఎ೏

௠
ௗୀଵ     (Equation 4),  

and the estimated adjusted coefficient of determination in multiple linear regression can be 

considered an estimator of the regional variance 

𝐸ൣ𝑅෠adj
ଶ ൧ = 𝑚𝜎ଶ +

௠

ே
    (Equation 5), 

when the sample size is sufficiently large. 

 Since the true genetic effects are given by a random vector 𝛽, this implies: 

𝒃~𝒩(𝟎, 𝜎ଶ
(𝑋′𝑋)(𝑋′𝑋)

𝑁ଶ
+

(𝑋′𝑋)

𝑁ଶ
) 

or marginally: 

𝑏ௗ~𝒩(0, 𝜂ௗ𝜎ଶ +
ଵ

ே
)  (Equation 6) 

 As we are interested in the estimation of 𝜎ଶ via the surrogate 𝑅෠ௗ
ଶ =

௕෠೏
మ

ఎ೏
 , the following 

weighted likelihood function is maximized to find 𝜎ොଶ: 

𝑙𝑜𝑔ℒ൫𝜎ଶห𝑏෠ଵ, 𝑏෠ଶ , … , 𝑏෠௠  ൯ = − ∑
ଵ

ଶఎ೏
(log ቀ𝜂ௗ𝜎ଶ +

ଵ

ே
ቁ +

௕෠೏
మ

ఎ೏ఙమା
భ

ಿ

)௠
ௗୀଵ    (Equation 7), 

where the log-likelihood of each observed 𝑏෠ௗ is weighted by the inverse of the LD adjustment, 

such that if two SNPs were in complete LD, then effectively only one SNP contributes to the log-

likelihood for the genetic variance. 

This framework can be extended to study the genetic correlation between a pair of traits. 

In this scenario we have 𝑏ௗ
(ଵ) and 𝑏ௗ

(ଶ), which are the summary association statistics for trait 1 and 

2, respectively, following a bivariate normal distribution: 
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൬
𝒃𝒅

(𝟏)

𝒃
𝒅
(𝟐)൰ ~𝒩(𝟎, 𝚺𝒅) (Equation 8), 

with covariance matrix: 

𝚺𝒅 =

⎣
⎢
⎢
⎡ 𝜂ௗ𝜎ଵ

ଶ +
1

𝑁ଵ
Cov௚௘௡ + Cov௘௥௥௢௥

Cov௚௘௡ + Cov௘௥௥௢௥ 𝜂ௗ𝜎ଶ
ଶ +

1

𝑁ଶ ⎦
⎥
⎥
⎤

 

where 𝜎ଵ
ଶ and 𝜎ଶ

ଶ are the genetic variance of trait 1 and 2, respectively, and 𝑁ଵand 𝑁ଶ the 

corresponding sample sizes. Cov௚௘௡ represents the genetic covariance between both traits whereas 

Cov௘௥௥௢௥ is the error term covariance and can be assumed to be zero. 

The weighted likelihood function can be adapted using genetic variance estimates from the 

previous weighted likelihood 𝜎ොଵ
ଶ, 𝜎ොଶ

ଶ: 

logℒ൫Cov௚௘௡ห𝒃෡𝒅, 𝜎ොଵ
ଶ, 𝜎ොଶ

ଶ , Cov௘௥௥௢௥ ൯ = − ∑
ଵ

ଶఎ೏
(log|𝚺𝒅| + 𝒃෡𝒅

்
 𝚺𝒅

ିଵ𝒃෡𝒅)௠
ௗୀଵ  (Equation 9). 

The maximum likelihood estimates of Cov௚௘௡ enables the use of a likelihood ratio test for 

hypothesis testing. While Cov௘௥௥௢௥ could be estimated, we found that under realistic scenarios its 

effect is negligible and has therefore been set to zero for current analyses. This might not be ideal 

when the correlation of error terms is very strong, in which case a non-zero Cov௘௥௥௢௥ could be 

used in the likelihood estimation. As a note, Cov௚௘௡ estimated from empirical data can cause 

numerical estimates to be higher than both 𝜎ොଵ
ଶ, 𝜎ොଶ

ଶ or lower than −𝜎ොଵ
ଶ, −𝜎ොଶ

ଶ, and thus causing the 

genetic correlation Cor௚௘௡ to be higher 1 or lower than -1, and will correspondingly be set to 1 or 

-1.  Also note that stable and meaningful estimates of Cor௚௘௡ can only be obtained when both traits 

1 and 2 have positive estimates for regional genetic variance. We also note that the stability of 

genetic correlation estimates depends on the regional genetic effect size of both traits, such that 

stable estimates can be obtained when one trait is weakly associated while the other trait is strongly 
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associated. Finally, although the aim of the method is to estimate regional polygenic correlation, 

it is important to confirm there is no bias in regional polygenic variance under the null hypothesis 

of no genetic association, which we checked using simulations (Supplementary Figure S4).  

 

Simulations using 1000 Genomes Project data and a study of cardio-metabolic traits 

We used 379 participants of European descent from the 1000G [14] as the reference panel for LD 

as it is the dominant ancestry in the studies included. Phased haplotypes are provided by the 1000G 

project for each of the 379 participants (i.e., a total of 758 phased haplotypes). The set of 758 

haplotypes constitutes the reference population, with each haplotype having an equal allele 

frequency of 1/758=0.0013. We randomly sampled two phased haplotypes (with replacement) 

from the 758 phased haplotypes for each of the 100,000 simulated individual, and derived 

corresponding genotypes. For each simulated individual, two traits were simulated based on 

unobserved genetic effects and error terms. The simulated traits were used to derive the summary 

association statistics for each SNP by regressing the simulated traits on SNP genotype (i.e., 

summary association statistics were simulated, not fixed). Since polygenic inheritance was being 

assessed, we used an infinitesimal model according to which every SNP was associated to some 

extent, and the effect size was sampled from a normal distribution. Thus, the set of causal SNPs 

was not the same for both traits, with the exception of scenarios where both traits had perfect 

regional genetic correlations. The LD structure needed as input for calculation of regional genetic 

correlation was derived from an independent set of 1,000 simulated individuals, again using the 

758 phased European haplotypes as the reference population. To assess the robustness of methods 

to misspecification of LD structure, we included a varying proportion of 1000G phased haplotypes 

of African descent in the reference population when simulating the 1,000 individuals. All 
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simulations were performed on five randomly chosen regions of 1 Mb. Only the results from the 

first region are presented in the main manuscript, but consistent results were obtained for all four 

other regions (Supplementary Figure S5).  

We tested our method using summary association statistics from large genetic meta-

analyses of cardiometabolic traits, including coronary artery disease [37], LDL cholesterol, HDL 

cholesterol, triglycerides [38], type 2 diabetes [39], body mass index [40], and blood pressure [41]. 

We identified a common set of SNPs among all corresponding meta-analyses and subsequently 

divided the genome into blocks of ~1Mb by calibrating the number of SNPs per block to minimize 

inter-block LD, as previously described [13]. 

 
List of abbreviations 

1000G – 1000 Genomes Project 

AFR – African 

APOA1 – Apolipoprotein A1 

APOE – Apolipoprotein E 

BMI – Body-mass index 
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HDL – High-density lipoprotein 
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LIPC – hepatic lipase C 

LPL – Lipoprotein lipase 

Mb - Megabases 

PPARG – Peroxisome proliferator-activated receptor gamma 

SNP – Single nucleotide polymorphism 

TRIB1 – Tribbles pseudokinase 1 

TG - triglyceride 

WML – Weighted maximum likelihood 
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Tables and Figures Legends 

Table 1: Regions with significant polygenic correlation estimates between HDLc and CAD. 

 

Table 2: Polygenic correlation at the PPARG locus. 

 

Table S1: Regions with significant polygenic correlation estimates (unclipped) between 

HDLc and CAD. 

 

Table S2: Regional polygenic correlation at the PPARG locus (+/- 100Kb). 

 

Table S3: Regional polygenic correlation at the PPARG locus (+/- 300Kb). 

 

Figure 1: Performance of WML-RPC in simulated data using 1000 Genomes Project 

haplotypes. 

The power to detect polygenic correlation at a nominal -level of 0.001 as a function of the true 

polygenic correlation was calculated over 1,000 simulated replicates on a region of 1Mb  simulated 

using haplotypes of European participants from 1000 Genomes Project. In panel A), the sample 

size ranged from 25K to 100K individuals, while keeping the true regional genetic variance 

constant at 0.005 for each trait. In panel B), sample size was fixed at 100K individuals, but the 

regional polygenic variance varied from 0.001 to 0.005. In panel C), the mean regional polygenic 

correlation over 1,000 replicates is illustrated as a function of the true (red dashed line) polygenic 

correlation, assuming a sample size of 100K and genetic variance of 0.005 for both traits. The error 

bars represent the mean polygenic correlation ± 1.96SD over 1,000 replicates. 
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Figure 2: A comparison of statistical power to detect true genetic correlation and type I error 

resilience by WML-RPC, gwas-pw, jlim, and pHESS. 

A) Power to detect polygenic correlation at a nominal -level of 0.001 (for WML-RPC, jlim, and 

pHESS) or posterior probability > 0.90 (for gwas-pw) as a function of the true polygenic 

correlation. Results are based on regions of 1Mb simulated using haplotypes of European 

participants from 1000 Genomes Project, with a sample size of 100,000 and assuming the true 

regional genetic variance is 0.005 for each trait. For each condition, the simulation was repeated 

1,000 times unless stated otherwise. Under the null hypothesis of no polygenic correlation, the 

type I error rate, which can be assessed at the true genetic correlation of 0, was 0.1% for WML-

RPC (10,000 simulations), while the estimated rates of type I error were 2.5%, 1.4%, and 1.1% for 

gwas-pw, jlim, and pHESS, respectively. B) Comparison of the effect of misspecification of the 

reference LD structure on type I error between WML-RPC and pHESS methods. Results are based 

on simulations performed under the same parameters described in A); however, the LD matrix was 

calculated using an increasing number of individuals of African ancestry. The dashed red line 

represents the expected type I error at a nominal -level of 0.001. 

 

Figure 3: Comparison of the estimated regional polygenic correlation by WML-RPC and 

pHESS methods under different LD structures.  

Results are based on regions of 1Mb simulated using haplotypes of 1000 Genomes Project 

participants of European descent, with a sample size of 100,000 and assuming the true regional 

genetic variance is 0.005 for each trait and non-genetic correlation of 0. Regional genetic 
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correlations were calculated under the LD structure for A) European (i.e., the correct LD 

specification) and B) African individuals (i.e., a gross misspecification of LD).  

 

Figure S1: Quantile-quantile plot of WML-RPC correlation p-values against the null 

hypothesis of no polygenic correlation. 

Quantile-quantile plot of polygenic correlation p-values from WML-RPC on a region of 1Mb with 

100K individuals simulated using haplotypes of European participants from the 1000 Genomes 

Project. Each condition was repeated 1,000 times. The observed –log10 p-values were plotted 

against the expected, shown with 95% confidence regions (dashed red lines). We assumed regional 

genetic variances of 0.005 for each trait, without polygenic correlation. In panel A), we assumed 

the error terms were uncorrelated with 𝜌 = 0. In panel B), 25% of participants overlapped between 

traits, such that the non-genetic correlation was set at 𝜌 = 0.05. In panel C), the overlap between 

participants was set at 100%, again with the non-genetic correlation set at 𝜌 = 0.2. 

 

Figure S2: Statistical power and estimated polygenic correlation as functions of the true 

polygenic correlation in simulated data when error terms correlate. 

The power of WML-RPC to detect polygenic correlation at a nominal -level of 0.001 for each 

true polygenic correlation values was calculated over 1,000 simulated replicates on a region of 

1Mb simulated using haplotypes of European participants from the 1000 Genomes Project. The 

non-genetic correlation between error terms was set at 0.05 in simulations illustrated in panels A), 

B) and C), and was set to 0.2 in simulations illustrated in panels D), E) and F). In panels A) and 

D), the sample sizes varied from 25K to 100K individuals, while keeping the true regional genetic 

variance constant at 0.005 for each trait. In panels B) and E), the sample size was constant at 100K 
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individuals, but the true regional genetic variance was varied from 0.001 to 0.005. In panels C) 

and F), the mean (SD) estimated regional polygenic correlation is illustrated in black, as a 

function of the true (red dashed line) polygenic correlation, assuming a sample size of 100K and a 

true genetic variance of 0.005 for both traits. 

 

Figure S3: Distribution of estimated regional genetic correlation between HDLc and CAD.  

Regional genetic correlations for 2,687 regions were estimated for high-density lipoprotein 

cholesterol (HDLc) and coronary artery disease (CAD). 

 

Figure S4: Quantile-quantile plot for regional genetic variance p-values generated by WML-

RPC under the null hypothesis of no regional genetic variance. 

Each observed p-value was calculated based on a region of 1Mb simulated using haplotypes of 

1000 Genomes Project participants of European descent, with a sample size of 100K and assuming 

the true regional genetic variance was 0. The simulation was repeated 1,000 times. The observed p-

values were plotted on a –log10 scale against the expected, shown with 95% confidence regions 

in dashed red lines. 

 

Figure S5: Performance of WML-RPC in simulated data using 1000 Genomes Project 

haplotypes at five other randomly chosen regions. 

The power to detect polygenic correlation at a nominal -level of 0.001 as a function of the true 

polygenic correlation was calculated over 1,000 simulated replicates on five regions of 1Mb each, 

simulated using haplotypes of European participants from 1000 Genomes Project. In panels A), 

C), E), G), I) the sample sizes ranged from 25K to 100K individuals, while keeping the true 
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regional genetic variance constant at 0.005 for each trait. In panels B), D), F) H), J), the mean 

regional polygenic correlation over 1,000 replicates is illustrated as a function of the true (red 

dashed line) polygenic correlation, assuming a sample size of 100K and genetic variance of 0.005 

for both traits. The error bars represent the mean polygenic correlation ± 1.96SD over 1,000 

replicates. 
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Table 1: Regions with significant polygenic correlation between HDLc and CAD 

 

CHR Position (Kb) 
Candidate 

gene 
Candidate 

Gene function 

HDLc 
polygenic 
regional 
p-value 

CAD 
polygenic 
regional 
p-value 

Polygenic correlation 
(95% CI) 

Polygenic 
correlation 
p-value 

1 109,723-110,710 SORT1 VLDL secretion 2.58E-24 3.16E-20 -0.83(-1.00, -0.61) 3.69E-07 
8 18,869-19,875 LPL Lipoprotein triglyceride lipase <1.00E-323 2.09E-06 -0.94 (-1.00, -0.79) 1.02E-10 
8 19,875-20,875 LPL Lipoprotein triglyceride lipase 1.86E-213 5.81E-04 -0.93(-1.00, -0.79) 5.17E-08 
8 126,042-127,062 TRIB1 Regulation of hepatic lipogenesis 1.43E-48 1.66E-03 -1.00 (-1.00, -0.79) 2.84E-06 

15 58,311-59,348 LIPC Hepatic triglyceride lipase <1.00E-323 9.49E-02 1.00 (0.87, 1.00) 1.82E-06 

18 57,456-58,421 MC4R Appetite regulation  5.61E-18 1.12E-06 -0.98(-1.00, -0.79) 1.07E-05 

19 44,789-45,840 APOE 
Catabolism of triglyceride-rich 

lipoproteins 
6.83E-52 2.62E-10 -0.89 (-1.00, -0.77) 6.74E-11 
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Table 2: Polygenic correlation at the PPARG locus. 

Trait Regional 
association 
p-value 

Polygenic correlation 
with diabetes 

(95%CI) 

Polygenic correlation  
with diabetes p-

value  

Polygenic 
correlation 

with CAD (95%CI) 

Polygenic 
correlation 

with CAD p-value 
BMI 0.04 -0.99 (-1.00, -0.20) 0.008 0.24 (-0.65, 1.00) 0.608 
Diabetes 5.00E-03 N/A N/A 0.38 (-0.39, 1.00) 0.350 
HDLc 1.17E-03 -0.44 (-1.00, 0.17) 0.176 -0.14 (-0.89, 0.62) 0.727 
LDL 1.11E-16 0.36 (-0.11, 0.83) 0.146 0.99 (0.44, 1.00) 4.58E-4 
Triglycerides 8.20E-07 0.98 (0.56, 1.00) 2.31E-4 0.84 (0.23, 1.00) 0.01 
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