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Abstract

Phylogenetics has witnessed dramatic increases in the sizes of data matrices assembled to resolve
branches of the tree of life, motivating the development of programs for fast, yet accurate, inference. For
example, several different fast programs have been developed in the very popular maximum likelihood
framework, including RAXML/ExaML, PhyML, IQ-TREE, and FastTree. Although these four programs are
widely used, a systematic evaluation and comparison of their performance using empirical genome-scale data
matrices has so far been lacking. To address this question, we evaluated these four programs on 19 empirical
phylogenomic data sets from diverse animal, plant, and fungal lineages with respect to likelihood
maximization, tree topology, and computational speed. For single-gene tree inference, we found that the
more exhaustive and slower strategies (ten searches per alignment) outperformed faster strategies (one tree
search per alignment) using RAXML, PhyML, or IQ-TREE. Interestingly, single-gene trees inferred by the
three programs yielded comparable coalescent-based species tree estimations. For concatenation—based
species tree inference, IQ-TREE consistently achieved the best-observed likelihoods for all data sets, and
RAxML/ExaML was a close second. In contrast, PhyML often failed to complete concatenation-based
analyses, whereas FastTree was the fastest but generated lower likelihood values and more dissimilar tree
topologies in both types of analyses. Finally, data matrix properties, such as the number of taxa and the
strength of phylogenetic signal, sometimes substantially influenced the relative performance of the programs.
Our results provide real-world gene and species tree phylogenetic inference benchmarks to inform the design

and execution of large-scale phylogenomic data analyses.
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Introduction

Phylogenetic analysis — that is, the identification of the tree best representing the evolutionary history of
the underlying data — is of fundamental importance to many biological disciplines, including but not limited
to systematics, molecular evolution, and comparative genomics (Felsenstein 2003; Xia 2013; Hamilton 2014;
Yang 2014). However, finding the best tree is an exceptionally difficult task because evaluation of each tree
requires a considerable amount of calculations (Bryant et al. 2005) as well as because the number of
candidate strictly bifurcating trees grows very rapidly with the number of sequences (Felsenstein 1978) — for
example, there are ~8 x 10?' possible rooted topologies for a set of 20 taxa. Therefore, fast programs that
employ heuristic algorithms that can efficiently infer the best tree (or nearly as good alternatives) are of
pivotal importance to phylogenetic analysis. This is evident by the success of the Neighbour-Joining (NJ)
method, a distance-based clustering (instead of tree searching) algorithm (Saitou and Nei 1987) that is the
most highly cited phylogenetic method (Van Noorden et al. 2014). NJ and its variants (e.g. BIONJ which
takes the variance of distance estimation into consideration) (Gascuel 1997; Bruno et al. 2000) were among
the few available options for analyzing large data sets until the 2000s, and are still widely used today to
quickly produce good starting points for more sophisticated methods (e.g. Guindon et al. 2010; Nguyen et al.

2015).

It is now generally accepted that statistical methods, such as maximum likelihood (ML) (Felsenstein
1981), produce more reliable results than distance and parsimony methods (Yang and Rannala 2012; Whelan
and Morrison 2017). However, ML-based methods are also computationally more expensive, necessitating
the use of heuristic search algorithms for searching the enormity of tree space (Chor and Tuller 2005).
Heuristic search algorithms typically adopt iterative, “hill-climbing” optimization techniques that involve
three steps: (1) generate a quick starting tree (e.g. BIONJ tree, stepwise-addition parsimony tree, etc.); (2)
modify the tree using certain topological rearrangement rules and evaluate the resultant trees under the ML
criterion; and (3) replace the starting tree and repeat step 2 if the rearrangements identify a better tree, or
otherwise terminate the search. The most common rearrangement algorithms for step 2 are Nearest-
Neighbor-Interchange (NNI), where the four subtrees connected by a given internal branch are re-arranged to
form two new, alternative topologies (Robinson 1971), and Subtree-Pruning-and-Regrafting (SPR), in which

a given subtree is detached from the full tree and re-inserted onto each of the remaining branches (Swofford
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et al. 1996). SPR is more expansive in searching tree space than NNI since it can evaluate many more trees

from one initial topology, but it is also much slower because of the extra tree evaluations.

Four of the most popular fast ML-based phylogenetic programs that differ in their choices or
implementations of rearrangement algorithms are PhyML (Guindon and Gascuel 2003; Guindon et al. 2010),
RAxML / ExaML (Stamatakis 2014; Kozlov et al. 2015), FastTree (Price et al. 2010), and IQ-TREE (Nguyen
et al. 2015). First introduced in the early 2000s, PhyML has been one of the most widely used programs for
ML-based phylogenetic inference (Guindon and Gascuel 2003). The original algorithm was based solely on
NNI and achieved comparable performance as other contemporary ML methods but with much lower
computational costs. The latest version of PhyML (version 20160530) performs hill-climbing tree searches
using SPR rearrangements in early stages and NNI rearrangements in later stages of the tree search (Guindon
et al. 2010). Specifically, during the SPR-based search, candidate re-grafting positions are first filtered based
on parsimony scores; the most parsimonious ones are then subject to approximate ML evaluation where
branch-lengths are only re-optimized at the branches adjacent to the pruning and re-grafting positions. To
accelerate the tree search, the best “up-hill” SPR move for each subtree is accepted immediately, potentially
leading to the simultaneous application of multiple SPRs in one round. Once the search has converged to a
single topology, the resultant tree is further optimized by NNI-based hill-climbing. Similar to the SPR stage,
PhyML evaluates candidate NNIs only approximately by re-optimizing the five relevant branches, and may
apply multiple NNI moves simultaneously at each round. The addition of the SPR algorithm in PhyML has

significantly improved its accuracy, although at the cost of longer runtimes (Guindon et al. 2010).

RAXML is another widely used program for fast estimation of ML trees (Stamatakis 2006, 2014). The
latest version (8.2.11) implements the standard SPR-based hill-climbing algorithm and employs important
heuristics to reduce the amount of unpromising SPR candidates, including: 1) candidate re-grafting positions
are limited to only those within a certain distance from the pruning position (known as the “lazy subtree
rearrangement”) (Stamatakis et al. 2005); and 2) if the re-grafting to a candidate position results in a
substantially worse likelihood value, all branches further away from that point will be ignored (Stamatakis et
al. 2007). As in PhyML, the approaches of approximate pre-scoring of SPR candidates and simultaneous
SPRs are also used by RAXML to speed up the analysis (Stamatakis et al. 2005). In addition to RAXML, its

sister program ExaML is specifically engineered for large concatenated data sets (Kozlov et al. 2015); it
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achieves greatly enhanced parallel efficiency through a novel balance load algorithm and parallel I/O
optimization. As RAXML has exhibited excellent performance in both accuracy and speed (Stamatakis 20006),

it is considered by many to be the state-of-the-art ML fast phylogenetic program.

Although both PhyML and RAXML represent great advances in developing fast and accurate
phylogenetic programs, efforts aimed at improving the speed of ML tree estimation continue. For example,
the recently developed FastTree program can be orders of magnitude faster than either PhyML or RAXML /
ExaML (Price et al. 2010). FastTree (latest version 2.1.10) first constructs an approximate NJ starting tree
which is then improved under the minimum evolution criterion using both NNI and SPR rearrangements,
followed by ML-based NNI rearrangements to search for the final tree. With computational efficiency at the
very heart of its design, FastTree makes heavy use of heuristics at all stages to limit the numbers of tree
searches and likelihood optimizations. As a tradeoff, FastTree generates less accurate tree estimates than
SPR-based ML methods (Price et al. 2010). The substantial edge of the FastTree program in speed has made

it very popular, particularly in analyses of very large phylogenomic data matrices.

An important weakness of pure hill-climbing methods is that they can be easily trapped in local optima.
The IQ-TREE program, the most recent of the four fast ML-based phylogenetic programs, was developed
aiming to overcome this local optimum problem through the use of stochastic techniques (Nguyen et al.
2015). Specifically, IQ-TREE (latest version 1.5.5) generates multiple starting trees instead of one and
subsequently maintains a pool of candidate trees during the entire analysis. The tree inference proceeds in an
iterative manner; at every iteration, IQ-TREE selects a candidate tree randomly from the pool, applies
stochastic perturbations (e.g. random NNI moves) onto the tree, and then uses the modified tree to initiate a
NNI-based hill-climbing tree search. If a better tree is found, the worst tree in the current pool is replaced and
the analysis continues; otherwise, the iteration is considered unsuccessful and the analysis terminates after a
certain number of unsuccessful iterations. IQ-TREE takes advantage of successful preexisting heuristics (e.g.
simultaneous NNIs [Guindon and Gascuel 2003]) and a highly-optimized implementation of likelihood

functions (Flouri et al. 2015) for better computational efficiency.

These four programs offer different tradeoffs between the extent of tree space searched and speed in fast

phylogenetic inference, and they may exhibit different behaviors toward diverse phylogenomic data sets
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whose properties (e.g. taxon number and gene number) and evolutionary characteristics (e.g. age of lineage,
taxonomic range, and evolutionary rate) vary. Therefore, a good understanding of their relative performance
across diverse empirical phylogenomic data matrices is critical to the success of phylogenetic inference when
computational resources are limited. This is particularly relevant for large-scale studies using data matrices
of ever-increasing data volumes and complexities. So far, these four programs have only been evaluated
using simulated data (Guindon et al. 2010; Price et al. 2010; Liu et al. 2011), which might not well
approximate real data, and relatively small empirical data sets containing ~10 to ~200 gene alignments
(Guindon et al. 2010; Price et al. 2010; Liu et al. 2011; Money and Whelan 2012; Nguyen et al. 2015;
Chernomor et al. 2016), which might lack generality. In these studies, RAXML and PhyML showed largely
similar performance in identifying trees of higher likelihood scores (Guindon et al. 2010; Money and Whelan
2012), while IQ-TREE exhibited improved efficiency compared to both RAXML and PhyML (Nguyen et al.
2015; Chernomor et al. 2016). On the other hand, FastTree was found to be much faster than RAXML and
PhyML but reported lower likelihood scores for data sets with both small and large numbers of sequences
(Guindon et al. 2010; Price et al. 2010; Liu et al. 2011). However, it remains unclear if these patterns would

hold for large empirical data sets and for species tree estimation based on genome-scale data.

To comprehensively evaluate the four fast ML-based phylogenetic programs (table 1), we used a large
collection of 19 empirical phylogenomic data sets representing a wide range of properties, including data
types (both DNA and protein data), numbers of taxa (up to 200) and genes (up to 14,446), and taxonomic
range for diverse animal, plant, and fungal lineages (table 2; for details on the source of each data set, see
supplementary table S1). For each of these data sets, we compared the performance of all programs for
single-gene tree inference and, for coalescent-based and concatenation-based species tree inference, the two
major current approaches to inferring species phylogenies from phylogenomic data (Liu et al. 2015). In the
coalescent approach, the species tree is estimated by considering all individually inferred single-gene trees
using coalescent methods that take into account that the histories of genes may differ from those of species
due to incomplete lineage sorting (fig. 1A), whereas in the concatenation approach, the species tree is

estimated from the supermatrix derived by concatenating all single-gene alignments (fig. 1B).

In single-gene tree estimation, we found that, although the more comprehensive analysis strategy (ten

searches per alignment using RAXML, PhyML, or IQ-TREE) performed considerably better than fast
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strategies (one tree search per alignment using the same programs), all produced results of comparable
quality when the inferred gene trees were used for coalescent-based species tree inference. The impact of tree
search numbers and starting tree types on the efficiency of single-gene alignment analysis was also
investigated. For the concatenation-based species tree inference, we found that, in some cases, IQ-TREE
recovered trees with higher likelihood scores than RAxML/ExaML, although both showed the best
performance for most data sets. Importantly, IQ-TREE exhibited comparable or better speed in both
coalescent-based and concatenation-based species tree inference compared with RAXML/ExaML. In
contrast, FastTree produced significantly worse single-gene and species trees than the other three programs
even when allowed to run multiple times, whereas PhyML did not scale well to supermatrices because the
concatenation-based species tree inferences failed to complete for multiple data sets. Overall, our
benchmarking of the four fast ML-based phylogenetic programs against 19 state-of-the-art data matrices is

highly informative for the design of efficient data analysis strategies in phylogenomic studies.

Results and Discussion
A comprehensive collection of empirical data

For a comprehensive evaluation of the four fast ML-based phylogenetic programs, we retrieved 19 data
sets from 14 recently published phylogenomic studies (table 2; see supplementary table S1 for detailed
sources of each data set), representing a wide range of characteristics: 1) they include both amino acid and
nucleotide data sets (nine and ten, respectively); 2) they contain either moderate numbers of taxa (e.g.
PrumD6, 200 taxa and 259 genes [Prum et al. 2015]), large numbers of genes (e.g. JarvD5a, 48 taxa and
14,448 genes [Jarvis et al. 2014]), or both (e.g. MisoA2, 144 taxa and 1,478 genes [Misof et al. 2014]); 3)
they cover three major taxonomic groups (i.e. animals, plants, and fungi) and various depths within each
group (e.g. data sets SongD1 [Song et al. 2012], ChenA4 [Chen et al. 2015], and WhelA6 [Whelan et al.
2015] cover mammals, vertebrates, and metazoans, respectively); and 4) they consist of sequence data
derived from different technologies (e.g. some data sets were built entirely on whole genome sequences
[Song et al. 2012; Jarvis et al. 2014; Shen et al. 2016b; Tarver et al. 2016], while some others contained

mostly transcriptome sequencing data [Misof et al. 2014; Wickett et al. 2014; Yang et al. 2015]). In addition,
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these data sets were assembled and curated in state-of-the-art phylogenomic studies and thus are of high
quality. Therefore, these data sets are well suited for benchmarking the performance of fast phylogenetic

programs in the context of phylogenomics.
Performance Test I: Single-gene tree inference

In the first test, we examined the performance of four fast ML-based phylogenetic programs (i.e.
RAxXML, PhyML, IQ-TREE, and FastTree) in inferring single-gene trees (fig. 1A). We designed seven
strategies, including four basic strategies in which each program was used to infer each gene tree from a
single starting tree (these were named RAXML, PhyML, IQ-TREE, and FastTree), as well as three more
comprehensive strategies in which each of RAXML, PhyML, and IQ-TREE was used to infer each gene tree
from ten replicates (these were named RAXML-10, PhyML-10, and 1Q-TREE-10). In both RAXML-10 and
PhyML-10, five of the starting trees were obtained via parsimony (including the ones used in the RAXML and
PhyML strategies, respectively) and the other five were random starting trees. On the other hand, 1Q-TREE-

10 consists of ten independent IQ-TREE searches, including the one performed in 1Q-TREE.

The seven strategies were compared for the likelihood scores and topologies of their single-gene tree
inferences, as well as for their computational speeds. Since the true evolutionary histories are unknown for
the empirical data used here, we identified the tree with the highest likelihood score for each alignment
(hereafter referred to as the “best-observed” tree) among trees inferred by the seven strategies and the trees
reported in previous studies, if available. These “best-observed” trees were used as the reference in the

comparisons of likelihood score and topology.

Likelihood score maximization — We first examined the performance of the seven strategies in
likelihood score maximization on single-gene alignments (supplementary table S2) by calculating the
frequencies with which each of the seven strategies had the highest score (fig. 2). Overall, IQ-TREE-10 and
RAXML-10 had the highest frequencies of finding the highest likelihood scores (80.17% and 75.99%,
respectively) and reported the highest likelihood scores more frequently than the other strategies in all data
sets except for JarvD5b, highlighting the benefit of using multiple starting trees. Importantly, the
performances of 1Q-TREE-10 and RAXML-10 varied substantially among data sets; whereas the two

strategies performed very similarly on several data sets (e.g. NagyAl and SongD1), in others RAXML-10


https://doi.org/10.1101/142323
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/142323; this version posted October 6, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

outperformed 1Q-TREE-10 by large margins (e.g. MisoA2, MisoD2a, and MisoD2b), or vice versa (e.g.

JarvD5Db).

Notably, the basic strategy 1Q-TREE was the third best strategy with an overall frequency of 54.03%,
slightly higher than that of the more comprehensive strategy PhyML-10 (52.35%). In fact, IQ-TREE not only

outperformed PhyML-10 in 11 / 19 data sets, but also showed higher frequency than RAXML-10 in the data
set JarvD5b. On the other hand, PhyML-10 performed consistently better than RAXML and PhyML, two basic

strategies which were fifth and sixth, respectively, and had considerably lower overall frequencies (35.98%
and 24.17%). Among basic strategies, RAXML performed better than 1Q-TREE on only four (MisoA2,
StruAS, MisoD2a, and MisoD2b) data sets, yet neither of them performed well on these data sets. Both 1Q-
TREE and RAXML found higher likelihood scores more often than PhyML in all data sets except for JarvD5b

in which RAXML had slightly lower frequency.

In comparison, the likelihood scores obtained by FastTree were much lower than those of the other six
strategies; the program produced the highest likelihood scores in only 1.67% of all alignments. However,
FastTree also had substantial advantages in computational speed compared to the others (see below). Since
FastTree can initiate tree searches using distinct starting trees, we performed additional FastTree analyses for
selected data sets, consisting of 100 tree searches for each alignment starting from 50 parsimony trees and 50
random trees. The results show that in the vast majority of cases FastTree still generated worse likelihood
scores than the other strategies even after compensating for the differences in runtime (supplementary table

S3).

To further investigate the relative performance of the strategies using RAXML, PhyML, and IQ-TREE,
we carried out pairwise comparisons between the three comprehensive strategies (i.e. RAXML-10, PhyML-10,
and IQ-TREE-10) and also between their corresponding basic strategies (i.e. RAXML, PhyML, and 1Q-TREE)
(supplementary fig. S1). The overall trend is the same as that observed in fig. 2; on most data sets, 1Q-TREE-
10 found better likelihood scores more frequently than RAXML-10 which, in turn, outperformed PhyML-10;
the same is true for the basic strategies. Interestingly, the three programs showed much closer performance
when multiple trees searches were conducted. For instance, compared with RAXML, 1Q-TREE found trees

with equally good likelihood scores on 32.67% of all alignments and better scores for additional 20.59% of
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all alignments; the frequencies changed to 60.44% and 3.20%, respectively, in the comparison between 1Q-
TREE-10 and RAXML-10. Nonetheless, 1Q-TREE-10 and RAXML-10 still showed considerable advantages
over PhyML-10; cumulatively, they found higher likelihood scores for additional 28.76% and 30.18%,

respectively, of alignments than PhyML-10.

Tree topology — Trees with similar likelihood scores may differ substantially in their topologies, or vice
versa. Hence, it is important to also examine the topological similarities between trees inferred by different
methods in addition to their likelihood scores. Our evaluation is based on empirical data sets for which the
true evolutionary histories are unknown, thus preventing a direct measurement of topological accuracy.
Instead, we compared the trees inferred by various methods against the best-observed tree (i.e. the tree with
the highest likelihood score) for each alignment. The rationale for using the best-observed ML trees as the
references in our comparison is that, under the ML optimality criterion (which underlies all the methods
examined here), the topologies of the trees with the highest likelihood scores are considered the best

(currently known) answer.

We measured the normalized Robinson-Foulds, or nRF, distances (Robinson and Foulds 1981) between
trees inferred by the seven strategies on each alignment against the corresponding best-observed tree.
Overall, there was a strong positive correlation between the differences in likelihood scores and the
topological distances when comparing inferred trees to the best-observed trees (Spearman’s correlations of
0.87 for all alignments and above 0.90 for most data sets, p-values < 2.2x107'® in all cases). In other words,
strategies that yielded likelihood scores closest or equal to the best-observed likelihood scores tended to be
those whose topologies were also closest or identical to the best-observed topologies (supplementary table

S4; see fig. 3 for data set YangAS as an example).

Among the seven strategies, |Q-TREE-10, RAXML-10, and 1Q-TREE showed the best performance in
tree topology with median nRF distances of 0 for more than half of the data sets (supplemental table S4); this
was unsurprising since these strategies contributed most of the best-observed trees. PhyML-10, RAXML, and
PhyML also performed relatively well, with median nRF distances less than 0.03, 0.06, and 0.13,
respectively, for most data sets. Here again, FastTree was behind the other strategies as it led to median nRF

distances greater than 0.33 for most data sets.
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Computational speed — To compare the computational speed of the seven strategies, we first measured
the runtimes of RAXML (using a parsimony starting tree), PhyML (using a parsimony starting tree), 1Q-TREE,
and FastTree, as well as of RAXML and PhyML analyses using one random starting tree (referred to as
RAXML(RT) and PhyML(RT), respectively). We then plotted the runtimes of all these strategies against that of
RAXML (fig. 4; supplementary table S5), and found strong positive correlations between the speeds of
strategies over a wide range of runtimes (Spearman’ correlation > 0.91 for all combinations of data types and
strategies, p-values < 2.2x107'° in all cases). The runtimes of RAXML(RT) and PhyML(RT) were highly
similar to those of RAXML and PhyML, suggesting that RAXML-10 and PhyML-10 would take about ten times
longer than RAXML and PhyML, respectively (supplementary table S6). Interestingly, PhyML was ~1.5 times
faster than RAXML on protein alignments, but ~3.1 times slower on DNA alignments. On the contrary, 1Q-
TREE was faster than RAXML for both protein and DNA data (~1.6 and ~1.3 times faster, respectively), and
the runtime of 1Q-TREE-10 would simply be ten times longer since it consists of ten independent IQ-TREE
analyses. Lastly, FastTree was substantially more time-efficient than RAXML on both DNA alignments (~47.9
times faster) and protein alignments (~95.4 times faster). In addition, the time advantage of FastTree was
greater for alignments requiring longer runtimes; for instance, our linear regression analysis suggests that
FastTree might run ~162.0 times faster than RAXML on the largest single protein alignments but only ~9.6

times faster on the smallest ones.

Overall, our results at the level of single-gene tree inference are consistent with previous, smaller-scale
studies on the better efficiency of IQ-TREE relative to RAXML and PhyML (all using one search per
alignment) (Nguyen et al. 2015), and the inferior performance of FastTree in likelihood score maximization
as compared to other programs (Guindon et al. 2010; Liu et al. 2011). However, in contrast to previous
observations (Guindon et al. 2010), we found that RAXML consistently outperformed PhyML in all data sets.
This difference might be due to the small number of alignments examined in the previous study (Guindon et

al. 2010) and the numerous updates of both programs since then.

Implications for efficient tree search on single-gene alignments — The inclusion of RAXML-10,
PhyML-10, and IQ-TREE-10 in our evaluation provided an opportunity to examine the effect of running
multiple independent tree searches. For each of the three strategies, we first determined the highest likelihood

score for each alignment, and then calculated the percentages of alignments for which the highest scores
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were found by given numbers of tree searches (supplementary fig. S2). In 1Q-TREE-10, the highest
likelihood scores were found in the first tree search for more than 70% of the alignments in 11 / 19 data sets
(which explains the excellent performance of 1Q-TREE in fig. 2), and the frequencies quickly approached
100% with additional tree searches. In contrast, the first tree search in PhyML-10 found the highest
likelihood scores for much fewer alignments (less than 30% in 10 / 19 data sets), and the frequencies
increased more evenly with increasing numbers of tree searches. The plots of RAXML-10 lie in between those
of 1Q-TREE-10 and PhyML-10 in most data sets. Interestingly however, in some data sets (e.g. MisoA2,
StruAS, MisoD2a, MisoD2b), all three strategies showed almost the same linear increases in their
frequencies of finding the highest scores with the number of tree searches (about 10% of the highest
likelihood scores were found in each tree search). These results suggest that efficient tree search strategies
are likely to vary between data sets and fast phylogenetic programs. To avoid unnecessary (or insufficient)
tree search efforts, it is important to monitor the likelihood improvements over rounds of independent

searches.

Additionally, the use of both parsimony and random starting trees in RAXML-10 and PhyML-10 allowed
us to investigate the relative performance of the two types of starting tree. In our comparisons, parsimony
and random starting trees showed comparable overall performance (supplementary fig. S3). For RAXML,
five (or one) searches per alignment using random starting trees found better likelihood scores than using
parsimony starting trees for only additional 3.47% (or 1.86%) of all alignments. In addition, equally good
likelihood scores were obtained using both types of starting trees on 50.12% (or 31.73%) of all alignments
when five (or one) RAXML searches were conducted. The same trend was also observed for PhyML.
Together with their similar run-time performances (fig. 4), these results suggest that the two types of starting

trees might be equally efficient in the analysis of single-gene alignments with moderate sequence numbers.
Performance Test Il: Coalescent-based species tree inference

In the second test, we assessed the fast ML-based phylogenetic programs in the context of the “two-
step” coalescent-based species tree inference, in which single-gene trees were first estimated from individual
alignments by each examined strategy and then used collectively to infer the species tree under a coalescent

model (fig. 1A) (Liu et al. 2015). Here, we used the single-gene trees produced in the Performance Test I as
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input for the ASTRAL program (Mirarab and Warnow 2015), which was used to infer coalescent-based
species trees. The species tree inferences by the seven strategies were then compared with the species tree
estimated from the best-observed gene trees (referred to as best-observed species trees hereafter) to measure

the topological distances (i.e. nRF distances).

We first determined for each data set the topological distances between the species tree inferred from the
best-observed single-gene trees and those inferred from the gene trees inferred by each of the seven
strategies. In that regard, the species tree estimations of all six strategies using RAXML, PhyML or IQ-TREE
displayed comparably small topological distances to the best-observed species trees (median nRF distances
ranged between0 and 0.03 across data sets), whereas the species trees inferred by FastTree were considerably
more dissimilar (median nRF distances of 0.121) (table 3). When we only considered the bipartitions or splits
that were strongly supported (i.e. had quartet-based posterior probability, or PP, support greater or equal to
0.9 [Sayyari and Mirarab 2016]), the species tree inferred by these strategies became even more similar to the
best-observed species trees, although FastTree-generated species trees still showed the greatest topological
distances (supplementary table S7). Nonetheless, for most strategies and data sets, the species tree estimates
were much more similar to the best-observed trees than the corresponding single-gene tree inferences (table

3; supplementary table S8).

We further assessed the confidence levels (i.e. PP supports) of the incongruent bipartitions or splits
identified in the abovementioned species tree comparison. Worryingly, the incongruent splits between the
species tree inferred using FastTree-generated gene trees as input and the best-observed species tree received
significantly higher PP supports (fig. 5; see supplementary table S9 for the results of Wilcoxon rank-sum
tests); the median PP values of which were 0.81 for protein data sets and close to 1 for DNA data sets. Both
of these values were much higher than those of the other six strategies, which were all below 0.60 and 0.71

for protein and DNA data sets, respectively.
Performance Test I11: Concatenation-based species tree inference

In the third test, we examined the relative performance of the four programs in concatenation analysis of
17 taxon-rich and gene-rich supermatrices (we conducted concatenation analyses on 17, rather than 19, data

matrices because: a) JarvD5a and JarvD5b correspond to different partitioning strategies from the same
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supermatrix [Jarvis et al. 2014], and b) MisoD2a does not have a corresponding supermatrix available from
the original study [Misof et al. 2014]) (fig. 1B; table 2). Here, we again focused on the programs’
performance on likelihood score maximization, tree topology, and computational speed. However, as PhyML
required exceedingly high runtime, memory, or crashed on multiple data sets, its results are not included in
the evaluation. In addition to our analyses, all the supermatrices have also been previously extensively
analyzed using either RAXML or ExaML (e.g. Jarvis et al. 2014; Misof et al. 2014; Wickett et al. 2014).
Therefore, we included the reported likelihood scores and topologies — we refer to them as

“RAxML/ExaML-published” trees — in our examination of relative performance.

Likelihood score maximization — Consistent with the pattern observed in single-gene tree analyses,
RAxML and IQ-TREE achieved substantially higher likelihood scores than FastTree on supermatrix analyses
(fig. 6; supplementary table S10). Interestingly, [Q-TREE found the highest likelihood scores in all 17 data
sets and outperformed both our RAXML and previous RAxML/ExaML-published results on 7 and 8 data
sets, respectively. Remarkably, IQ-TREE consistently yielded the highest likelihood scores in all independent
replicates (except for the analyses of data set MisoD2a), while RAXML replicates were often trapped at
suboptimal solutions (supplementary table S11). Moreover, the highest likelihood scores were usually found
quite early in the IQ-TREE analyses (supplementary table S11), further suggesting its high efficiency in

concatenation analysis.

In comparison, RAXML/ExaML did not yield the highest likelihood scores for several data sets (fig. 6;
supplementary table S10). One possible explanation is that, due to its “lazy SPR” heuristic, RAXML might
report trees that are not optimal in terms of strict NNI or SPR rearrangement (Stamatakis 2015). Indeed, the
best ML trees can be recovered by simply re-optimizing the RAxML-generated (or RAXML/ExaML-
published) results using a function built in RAXML itself for four (or six) data sets (fig. 6; supplementary
table S10). In addition, many of the differences in likelihood scores between trees inferred by
RAxXML/ExaML and IQ-TREE (the best ML trees) were small; three and five of the RAXML and previously
published trees, respectively, were found to be equally good as the corresponding IQ-TREE trees as
determined by approximately unbiased (AU) tests (fig. 6; supplementary table S10) (Shimodaira 2002). After
taking these two factors into account, the likelihood scores of only one of our RAxML-generated trees and of

two RAXML/ExaML-published trees that were significantly worse than their corresponding IQ-TREE
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results. In contrast, FastTree yielded significantly, and sometimes substantially, worse likelihood scores for
most data sets. Furthermore, FastTree obtained lower likelihood scores than ExaML and IQ-TREE, even

when it was allowed to run multiple times from distinct starting trees (supplementary table S12).

Tree topology — For all data sets, we calculated the nRF distances between trees inferred by the three
programs and the best ML trees. As shown in figure 6, the topological distances of the examined programs
are in agreement with their performance in likelihood score maximization (see also supplementary table
S10). RAxML-generated or RAXML/ExaML-published trees were identical or highly similar to the best ML
trees, with the largest nRF distance being 0.064. Importantly, some of the differences between the results of
RAxML/ExaML and IQ-TREE correspond to contentious relationships in phylogenomic studies (e.g. in data
set A4: the relative positions of pigeon, falcon, and other Neoaves; and in data set WickD3a: the relationships
between Chloranthales, Eudicots, and Magnoliids) (Shen et al. 2017). Furthermore, some of these differences
disappeared (and nRF distances became smaller) after the NNI-based re-optimization of RAXML/ExaML
results. FastTree trees, on the other hand, showed much greater nRF distances from the best trees. We also
evaluated the confidence levels (measures by Shimodaira—Hasegawa approximate likelihood ratio test, or
SH-aLLRT support [Guindon et al. 2010]) of trees that were significantly worse than the best ML trees. Figure

7 shows that large proportions of the incongruent splits in FastTree trees were highly supported.

Computational speed — We compared the runtimes of ExaML, IQ-TREE, and FastTree on ten selected
supermatrix data sets; each program was used to analyze each data set three independent times. The results
are summarized in figure 8 (see also supplementary table S13). Overall, FastTree was significantly and
substantially faster than ExaML and IQ-TREE (Wilcoxon signed-rank test, p-values < 0.01 for all pairwise
comparisons), whereas the last two programs were on par with each other with respect to speed (Wilcoxon
signed-rank test, p-value=0.56). Interestingly, IQ-TREE was faster on five of the six protein data sets, while

ExaML was faster on all four DNA supermatrices.

These results suggest that IQ-TREE is a very appealing alternative to RAXML/ExaML, which is
currently the default choice in most concatenation-based phylogenomic studies. This finding might not be
entirely surprising because IQ-TREE represents the latest development in fast phylogenetic programs and has

implemented a novel data structure to facilitate concatenation analysis (Chernomor et al. 2016). For RAXML
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and ExaML, our findings indicate that their results, even after multiple independent searches, should not be
directly taken as the best answers and instead should be checked for potential improvements. On the other
hand, together with the results of the coalescent-based test, our benchmarking suggests that FastTree is not
suitable for production-level phylogenomic analyses. The exceptional runtime of FastTree might make it an

attractive option for exploratory investigations, yet the results should still be interpreted with care.
Impact of data properties on the relative performance of fast phylogenetic programs

In this benchmarking, we noticed several data properties that appear to have an influence on the relative
performance of the examined programs. The first one is the number of sequences in the data set; in single-
gene analyses, while [Q-TREE outperformed RAXML and PhyML in most instances, it did not do so on
some of the data sets that had the largest numbers of taxa (MisoA2 and MisoD2a/b, 144 taxa; StruA5, 100
taxa; PrumD6, 200 taxa, when single tree search was performed; supplementary fig. S1). A potential
explanation could be that IQ-TREE uses NNI as its topological rearrangement mechanism (Nguyen et al.
2015), whereas RAXML and PhyML are both based on SPR (Stamatakis 2006; Guindon et al. 2010). It is
well recognized that SPR explores a greater proportion of tree space than NNI (Whelan and Morrison 2017)
and that it does so in a manner proportional to the sequence number (SPR examines O(n?) neighbors for
each tree instead of O(n) neighbors as by NNI). Therefore, while IQ-TREE exhibited better performance on
data sets with fewer taxa through a combination of NNI rearrangement and stochastic algorithm, NNI might

become a limiting factor on its performance on larger data sets.

Interestingly, in concatenation analyses, [Q-TREE found equally good or better trees than
RAxML/ExaML for all data sets (fig. 6; supplementary table S10), including for the ones on which RAXxML
performed better in single-gene tree inference. The only difference between concatenation and single-gene
tree analyses was the number of sites analyzed, a property that is strongly correlated with phylogenetic signal
(Rokas et al. 2003; Shen et al. 2016a). Similarly, in single-gene tree inference, IQ-TREE showed much better
performance over RAXML on data set JarvD5b than on JarvD5a (supplementary fig. S1); JarvD5b was
derived from concatenating single-gene alignments in JarvD5a into a smaller number of longer partitions
(Mirarab et al. 2014), resulting in enhanced phylogenetic signal (measured by average bootstrap support, or

ABS, of gene tree) (supplementary fig. 4A). Compared with the single-gene data sets, these concatenated
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data matrices probably correspond to much simpler tree spaces in which the NNI algorithm might be
sufficient. Consistent with this explanation, we found that the relative performance of SPR-based (RAxML
and PhyML) and NNI-based (IQ-TREE) programs was indeed associated with the phylogenetic signal of
alignment data. For instance, we compared the ABS values of the best-observed single-gene trees recovered
by RAXML-10 only, by 1Q-TREE-10 only, or by both programs, and found that they exhibited lower,
intermediate, and higher ABS values, respectively (p-values < 2.2x107'® for all Wilcoxon rank-sum tests; fig.
9). This trend held across most data sets (supplementary fig. 3A). We also observed the same pattern in the
comparison between PhyML-10 and 1Q-TREE-10 (supplementary fig. 4B), but not between RAXML-10 and
PhyML-10 (supplementary fig. 4C). Investigating the relationship between the performance of fast
phylogenetic programs and the strength of phylogenetic signal, which is in turn correlated with many other

factors (Shen et al. 2016a), is an interesting area of future research.

A hypothesis that stems from these results is that the performance of the SPR-based RAxML/ExaML
programs will become more favorable (relative to that of the NNI-based programs) as the numbers of taxa
included in phylogenomic data sets continue to increase beyond the numbers in the data sets examined in this
study (i.e. 200 taxa in PrumD6). To that end, we further compared the performance of RAXML/ExaML and
IQ-TREE on two supermatrices with much greater numbers of taxa, namely KatzA10 (800 taxa, 150 genes
[Katz and Grant 2015]) and HugA11 (3083 taxa, 16 genes [Hug et al. 2016]) (supplementary table S1).
Notably, all independent RAXxML/ExaML searches were able to find better likelihood scores than IQ-TREE
on both data sets (supplementary table S12), which is completely opposite to the results on data sets with 200
or less taxa. This result suggests that, in their current implementations, the SPR-based RAxML/ExaML is
likely to be considerably more powerful than the NNI-based IQ-TREE in analyzing phylogenomic data sets

that contain several hundreds or thousands of taxa.

Lastly, in agreement with previous studies (Guindon et al. 2010; Nguyen et al. 2015), we found that
some programs displayed different time efficiency on protein and DNA data sets. For example, in single-
gene analyses, PhyML was ~1.5 times faster on protein alignments but ~3.1 times slower on DNA
alignments in comparison with RAXML (fig. 4; supplementary table S6). Similarly, in concatenation
analyses, [Q-TREE required shorter runtimes than RAxML/ExaML on most protein data sets, while the

opposite was true for DNA data sets. Such differential behavior may be attributed to the distinct algorithmic
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designs and/or software implementations of the programs on protein and DNA data (Guindon et al. 2010).

Conclusion

In this study, we systematically examined and compared the performance of four popular, ML-based fast
phylogenetic programs. As our evaluation covered standard phylogenetic and phylogenomic approaches
(gene tree inference, as well as coalescent-based and concatenation-based species tree inference), assessed
key parameters of inference (likelihood score, topology, and computational speed), and examined a
comprehensive collection of empirical state-of-the-art phylogenomic data sets, our findings are directly
relevant for the experimental design and execution of real-world phylogenetic and, particularly,

phylogenomic studies.

Materials and Methods
Empirical phylogenomic data sets

The data sets were retrieved from their respective sources as listed in supplementary table S1. They were
used in this study without any filtering on their contents, with two operations performed when necessary: 1)
file split — some data sets (e.g. MisoD2) have only the concatenated alignments available, hence they needed
to be split up to obtain single gene alignments; and 2) format conversion — alignments in the data sets are
provided in either the “FASTA” or the “Phylip” formats, and had to be converted into the other format to be
compatible with all examined phylogenetic programs (e.g. FastTree requires the “FASTA” format and
PhyML requires the “Phylip” format). Similarly, all partition model files were transformed into the desired
format for each phylogenetic program. Both the original and the actual files used for this study, as well as all
the inferred trees are available from the figshare repository

(https://figshare.com/account/home#/projects/22040, last accessed May 24, 2017).
Single-gene tree inference

For single-gene tree inference, model selection analysis was first performed for each amino acid

alignment to determine the best-fit model using the “TESTONLY” option of IQ-TREE v1.4.2 (Nguyen et al.
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2015). The set of candidate models included all amino acid substitution models supported by RAXML, with
and without empirical amino acid frequencies, and with the GAMMA correction for among site
heterogeneity of evolutionary rates (Yang 1994) always enforced. For nucleotide alignments, the GTR model
with empirical base frequencies and GAMMA distribution was used since it is the choice of almost all
phylogenomic studies. Further details on the commands used for the model selection and all the analyses

described below are available in the Supplementary Text.

Then each alignment was analyzed by single-threaded versions of the four fast phylogenetic programs.
For the purpose of benchmarking, one tree search was conducted using each program under the same model
settings (see below for FastTree as the only exception). We also performed additional RAXML searches with
multiple parsimony and random starting trees, which represents a common strategy used in phylogenomic

studies. In total, seven strategies of phylogenetic analysis were assessed:

1) RAXML-10: Two analyses were carried out for each alignment using RAXML v8.2.0 (Stamatakis
2014); one included five independent searches starting from parsimony trees and the other five
starting from random trees. A random number seed was generated independently and fed into each
analysis. The BFGS optimization method was turned off in the analyses of nucleotide alignments
since it has been reported previously to produce unstable results (Church et al. 2015). The likelihood
scores of the trees inferred by the two analyses were compared to determine the final result of
RAXML-10 and the tree with the highest likelihood was selected; in cases where two trees had
equally high likelihood scores but different topologies, a random selection was made from the two
trees (see the “Assessment of tree inferences” section for detailed procedure on likelihood score and

topological distance calculations);

2) RAXML: One search was carried out for each alignment using RAXML v8.2.0 (Stamatakis 2014)
with a parsimony starting tree. The analysis was initiated using the same random seed number as the
analysis based on parsimony starting tree in RAXML-10, and thus can be considered as a subset of
the tree inferences conducted in RAXML-10. Therefore, RAXML-10 will always produce equal or

better results than RAXML. All other settings were the same as RAXML-10;

3) PhyML-10: Five independent analyses were carried out for each alignment using PhyML v20160530
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(Guindon et al. 2010); each included one search starting from a parsimony tree and one other search
starting from a random tree. The “SPR” algorithm was selected for tree topology search. Certain
amino acid substitution models (e.g. JTTDCMut and mtZOA) were specified as custom models
since they were not supported by PhyML natively. Unlike in RAXML analyses, random number
seeds were generated automatically by PhyML. The tree with the highest likelihood was selected in

the same way as in RAXML-10;

PhyML: One single search on each alignment using PhyML v20160530 (Guindon et al. 2010) with a
parsimony starting tree, corresponding to the first parsimony starting tree-based search in PhyML-

10.

IQ-TREE-10: Ten independent searches were carried out for each alignment using IQ-TREE v1.4.2
with default settings except for the model. Similar to PhyML, IQ-TREE generates random seed
numbers automatically. The tree with the highest likelihood was selected in the same way as in

RAXML-10;

IQ-TREE: One search on each alignment using IQ-TREE v1.4.2, corresponding to the first tree

search in IQ-TREE-10;

FastTree: One search was carried out for each alignment using FastTree v2.1.9 (Price et al. 2010)
with the default heuristic NJ starting tree. The “-spr 4”, “-mlacc 2”, and “-slownni” options were
specified to enable more thorough heuristic tree search. Unlike the other programs, FastTree only
supports three amino acid substitution models (i.e. JTT, WAG, and LG). Therefore, the best-fit
model among the three was selected for each FastTree analysis of amino acid alignment. Moreover,
the algorithm of FastTree is deterministic, thus independent analyses of the same alignment will

always lead to the same result.

Once all single-gene tree estimations were completed, each alignment was associated with at least seven

gene trees, which included the trees inferred by the seven above-mentioned strategies and, for most data sets,

previously reported single-gene trees from respective publications. The gene trees of each alignment were

then compared to identify the one with the best likelihood score, which is referred to as the “best-observed”

tree; the tree with the highest likelihood score was selected to be the best-observed tree, or, if multiple trees
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had the same likelihood score, a random selection was made among them (see the “Assessment of tree

inferences” section for detailed procedure on likelihood score and topological distance calculations).
Coalescent-based species tree inference

Each of the 19 data sets was analyzed following the “two-step” procedure of coalescent-based species
tree inference (Liu et al. 2015); single-gene trees were first estimated using fast ML-based phylogenetic
programs (see above) and were then used to infer the species tree with the coalescent-based approach
implemented in the ASTRAL program, v4.10.12 (Mirarab and Warnow 2015). In total, eight coalescent-
based species trees were estimated for each data set, seven of which were based on single-gene trees

produced by the seven strategies, and the eighth one was based on the “best-observed” trees.
Concatenation-based species tree inference

Supermatrices consisting of all single-gene alignments and corresponding model files indicating
partition scheme as well as model assignments are available for all data sets except for MisoD2a and
JarvD5b. Concatenation-based species tree inferences were performed on these supermatrices using
parallelized versions of all phylogenetic tools whenever possible due to the heavy computation being
required. Edge-linked partitioned analyses (i.e. branch-lengths shared across partitions) were performed on
each supermatrix using both RAXML and IQ-TREE. The RAXML analyses were conducted using RAXML-
MPI v8.2.3 (available through the CIPRES Scientific Gateway), each consisting of six to eight tree searches
with parsimony starting trees, while five independent IQ-TREE searches were carried out for each
supermatrix using [Q-TREE-OMP v1.4.2. FastTreeMP v2.1.9 was run once per supermatrix with the
thorough search parameters (see above); partition schemes were not used since FastTree does not support
partitioned analysis. PhyML v20160530 was also used to analyze the supermatrices but failed on multiple

data sets (the analyses either collapsed or did not finish after more than one week of computation).
Assessment of tree inferences

In order to evaluate the performance of different fast phylogenetic programs, their inferred trees were

compared from the following three aspects:

1) Likelihood: With respect to likelihood score maximization, a program was considered to perform
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better than another if it yielded a log-likelihood score that was more than 0.01 higher than the other.
To ensure the fairness of the comparison, the likelihood scores of all trees were re-calculated using
RAXML v8.2.0 with models set to the best-fit models and “GTR+G” for amino acid and nucleotide
single-gene alignments, respectively, or the respective partition schemes for supermatrices. Trees of
the same topology are presumed to have the same likelihood score. The BFGS optimization method
was turned off in the analyses of nucleotide alignments. Independent likelihood score re-calculations
were conducted for all trees using [Q-TREE v.1.4.2 and the R package “phangorn” v2.2.0 to control
for potential biases since RAXML itself is one of the programs to be assessed. The results were
essentially the same (Spearman’s correlations > 0.99 and p-values < 2.2x107'® for all pairwise

comparisons; supplementary fig. S5; supplementary tables S14 and S15);

Topology: Our benchmarking is based on empirical data sets whose true underlying histories were
unknown, thus preventing a direct measurement of the topological accuracy of programs. Thus, we
compared the trees inferred by various strategies/programs against the tree with the best likelihood
score observed for each alignment by calculating the pairwise Robinson-Foulds (RF) distances
(Robinson and Foulds 1981) between them. To allow for comparison across alignments, the RF
distances were normalized by the total numbers of internodes in respective pairs of trees. The
reliabilities of coalescent-based and concatenation-based species tree estimations were evaluated
using the local posterior probability measure (Sayyari and Mirarab 2016) implemented in ASTRAL

v4.10.12 and the SH-aLLRT test (Guindon et al. 2010) implemented in IQ-TREE v1.4.2, respectively;

Speed: Computational efficiency is another critical factor affecting the choice of phylogenetic
programs, especially when the availability of computational resource is a concern. The
aforementioned phylogenetic analyses were conducted on multiple different computational
platforms, each equipped with different types of CPUs, thus preventing a direct comparison of the
runtimes. To address this issue, we selected 10% of single-gene alignments randomly from each data
set and redid all relevant phylogenetic analyses on Vanderbilt University’s ACCRE cluster

(http://www.accre.vanderbilt.edu/) using the same type of computing nodes. Similarly, a subset of

supermatrices were selected and re-analyzed by ExaML v3.0.17 and IQ-TREE-OMP v1.4.2 (each
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with three replicates) on the same type of ACCRE nodes.
Computational resources

In this study, we conducted more than 670,000 tree inferences on about 45,000 single-gene alignments
and supermatrices, which costed more than 300,000 CPU hours of computational time in total. This huge
amount of phylogenetic analyses was made possible by using three supercomputing resources, including the
Advanced Computing Center for Research and Education (ACCRE) at the Vanderbilt University, the
University of Wisconsin-Madison Center for High Throughput Computing (CHTC), and the CIPRES
Scientific Gateway at the San Diego Supercomputer Center (Miller et al. 2010). Single-gene analyses were
distributed between ACCRE and CHTC. For supermatrices, RAXML analyses were performed using the

“RAxXML-HPC v.8 on XSEDE” interface on CIPRES, while the other analyses were carried out on ACCRE.
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Table 1. Overview of the four fast ML-based phylogenetic programs evaluated in this study.

Optimality Topological Supported models Partitioned
Programs Starting tree
criterion moves AA DNA analysis
RAxXML
Parsimony / Common JC69, K80,
v8.2.0
ML random / SPR and custom HKY8S5, Y
(ExaML
custom models GTR
v3.0.17)
Parsimony / Interleaved Common Common
PhyML
ML random / NNI and and custom  and custom Y
v20160530
custom SPR models models
BIONIJ and
multiple NNI and Common Common
IQ-TREE
ML parsimony /  stochastic ~ and custom  and custom Y
v1.4.2
random/  perturbation models models
custom
NNI and
FastTree Heuristic SPR (ME) JTT, WAG,
ML JC69, GTR N
v2.1.9 NJ followed by LG
NNI (ML)

Note: ML — maximum likelihood; ME — minimum evolution; NJ — neighbor joining; NNI — nearest neighbor

interchange; SPR — subtree pruning and re-grafting.
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Table 2. Overview of the 19 phylogenomic data sets included in this study.

Data set™*
Study Genes Taxa  Taxonomic group Data type
AA DNA
(Nagy et al. 2014) NagyAl 594 60 Fungi Genome
MisoA2
(Misof et al. 2014) MisoD2a'? 1,478 144 Insects Transcriptome
MisoD2b?
WickA3
(Wickett et al. 2014) WickD3a? 844 103 Land plants Transcriptome
WickD3b?
(Chen et al. 2015) ChenA4 4,682 58 Vertebrates Transcriptome
(Struck et al. 2015) StruAS 679 100 Worms Transcriptome
(Borowiec et al.
BoroA6 1,080 36 Metazoans Genome
2015)

(Whelan et al. 2015) WhelA7 210 70 Metazoans Transcriptome
(Yang et al. 2015) YangAS 1,122 95 Caryophyllales Transcriptome

(Shen et al. 2016b) ShenA9 1,233 96 Yeasts Genome

(Song et al. 2012) SongD1 424 37 Mammals Genome
(Xietal. 2014) XiD4 310 46 Flowering plants Transcriptome

JarvD5a* 14,446 48
(Jarvis et al. 2014) Birds Genome
JarvD5b* 2,022 48

(Prum et al. 2015) PrumD6 259 200 Birds Target
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Enrichment

(Tarver et al. 2016) TarvD7 11,178 36 Mammals Genome

*Data sets are named using the first four letters of the first author’s last name from the study the data set was
generated, followed by the letter A (for amino acid) or D (for DNA), followed by a unique numeric or

alphanumeric identifier.
'Data set MisoD2a does not have a corresponding supermatrix from the original study;

’DNA data sets MisoD2a and WickD3a include the codon-based alignments corresponding to the amino acid

alignments in data sets MisoA2 and WickA3, respectively;

*DNA data sets MisoD2b and WickD3b include the full codon-based alignments corresponding to the amino

acid alignments in data sets Miso2 and Wick3, respectively, with the third codon positions removed;

“Data set JarvD5b were derived from data set JarvD5a through statistical binning (Mirarab et al. 2014), and

the two data sets correspond to the same supermatrix.


https://doi.org/10.1101/142323
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/142323; this version posted October 6, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Table 3. Normalized Robinson-Foulds distances between the coalescent-based species trees estimated

from gene trees inferred by various strategies and the “best-observed” gene trees.

Analysis strategies

Data set 1Q-
RAXML_10 PhyML_10 RAXML PhyML IQ-TREE FastTree
TREE_10

NagyAl 0.035 0.035 0.018 0.07 0.035 0.035 0.123
MisoA2 0.007 0.014 0.028 0.028 0.021 0.035 0.099
WickA3 0.01 0.01 0 0.01 0.03 0.01 0.09
ChenA4 0 0 0 0 0 0 0

=

2

= StruAS 0.103 0.124 0.155 0.124 0.186 0.124 0.289

.5
BoroA6 0 0.03 0 0 0.03 0 0.121
WhelA7 0.03 0 0 0.06 0.015 0.015 0.06
YangAS8 0.022 0 0 0.011 0.011 0 0.054
ShenA9 0.011 0.022 0 0.032 0.022 0.032 0.054
SongD1 0 0 0 0 0 0 0
MisoD2a 0.007 0.05 0.043 0.043 0.071 0.05 0.206
MisoD2b 0.007 0.035 0.035 0.05 0.043 0.064 0.156

_—Qg’ WickD3a 0.03 0.01 0.02 0.03 0.02 0.04 0.15

E

§ WickD3b 0.01 0.01 0 0.02 0.03 0.01 0.09

XiD4 0 0.023 0.023 0.023 0.023 0.023 0.186

JarvD5a 0.022 0.022 0 0 0 0 04

JarvD5b 0 0.022 0 0.067 0.044 0.022 0.289
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PrumD6 0.03 0.041 0.025 0.051 0.091 0.066 0.137

TarvD7 0 0 0 0 0 0 0
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Figure legends

Figure 1. Schematics of the (A) single-gene tree inference test as well as the coalescent-based and (B)
concatenation-based species tree inference tests used to evaluate the performance of fast phylogenetic

programs in phylogenomic analysis.

Figure 2. Performance of fast phylogenetic programs in the inference of single-gene trees. The bar-plots
show the frequencies with which each of the six analysis strategies produced the best likelihoods for single-
gene alignments in each of the (A) protein and (B) DNA data sets. Note that the best likelihood score for a
given single-gene alignment can be found by more than one strategies; therefore the sum of frequencies for a

data set may be greater than one.

Figure 3. The performances of fast phylogenetic programs with respect to likelihood maximization and
tree topology are positively correlated. Dots in the scatter plot correspond to trees inferred by various
analysis strategies from single-gene alignments in data set A8. Log-likelihood score differences between
inferred trees and the “best-observed” trees are plotted against the corresponding topological distances. The
log-likelihood score differences are shown in logarithmic scale (with the addition of a small value of 0.01).
The violin plots on the top and right show the distributions of log-likelihood differences (top) and topological

distances (right), respectively, for trees inferred by each strategy.

Figure 4. Runtime comparisons of fast phylogenetic programs in single-gene tree inferences. The
runtimes required by each strategy to analyze a randomly selected subset of all protein (top row) and DNA
(bottom row) alignments are plotted against the corresponding runtimes of RAXML. All runtimes (in seconds)

are shown in logarithmic scale.

Figure 5. Incongruent splits in coalescent-based species trees estimated by the strategies using
RAXML, PhyML, and IQ-TREE are weakly supported. The violin plots show the distribution of local
posterior probabilities for incongruent splits in coalescent-based species trees estimated by various analysis
strategies. Here, incongruent splits are defined as the splits that are not present in species trees estimated
from best-observed single-gene trees. The areas of violin plots are proportional to the total numbers of
incongruent splits. The grey dots and bars in each violin plot indicate the median and the first/third quartiles

of the local posterior probabilities, respectively.
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Figure 6. Likelihood score differences (A) and normalized Robinson-Foulds distances (B) between
concatenation-based species trees inferred by various fast phylogenetic programs and the best-
observed trees. In panel (A), the log-likelihood score differences are shown in logarithmic scale (with the
addition of a small value of 0.01), and the likelihood scores that are not significantly different from the best-
observed scores are shown in grey. In panel (B), the nRF distances of ExaML/RAxML-published and

RAxML-generated trees that can be further improved by NNI rearrangements are shown in grey.

Figure 7. Many incongruent splits in concatenation-based species trees estimated by FastTree receive
strong support. The jitter plots show the distribution of SH-aLRT supports for incongruent splits in
concatenation-based species trees estimated by various fast phylogenetic programs. Here, incongruent splits
are defined as the splits that are not present in the species trees with the best likelihoods. The species trees

inferred by IQ-TREE contain no incongruent splits and therefore the data for IQ-TREE is not shown.

Figure 8. Runtime comparisons of fast phylogenetic programs in concatenation-based species tree
inferences. The bar-plots show the runtimes (averaged over three replicates) required by RAXML, IQ-TREE,

and FastTree to analyze 10 selected supermatrices.

Figure 9. The strength of phylogenetic signal in the data has an impact on the relative performance of
RAXML-10 and 1Q-TREE-10. The violin plots show the distributions of average bootstrap values of
alignments for which the best likelihood scores were found by either RAXML-10 or 1Q-TREE-10, or both
strategies at the same time. The average bootstrap values are taken from previously reported phylogenies for

the alignments are used here as a measure of the strength of phylogenetic signal.
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Figure 6
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Figure 7
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Figure 8

Runtime (hr)

A1

80-

60-

40-

20-

Jl=_

D1

10-

A2

A3

D3b

A6

D4

D6

A7 A8

B

o Program

£ B ExaML
o [ ]IQ-TREE
) [ |FastTree
]

(2]

S)es ejep ul9)old


https://doi.org/10.1101/142323
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 9
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