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Abstract
The genomic inventory of protein domains is an important indicator of an organism’s regulatory
and metabolic capabilities. Existing gene annotations, however, can be plagued by substantial
ascertainment biases that make it difficult to obtain and compare quantitative domain data. We
find that quantitative trends across the Eukarya can be investigated based on a combination of
gene prediction and standard domain annotation pipelines. Species-specific training is required,
however, to account for the genomic peculiarities in many lineages. In contrast to earlier studies
we find wide-spread statistically significant avoidance of protein domains associated with distinct
functional high-level gene-ontology terms.
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1 Introduction

Proteins embody a wide variety of functions in a cell, ranging from enzymatic activity to
structural scaffolding. The range of an organism’s biochemical capabilities, both metabolic
and regulatory, is thus largely encoded in its protein content. This is true even though
RNA-based mechanisms can play a fundamental role as in the case of post-transcriptional
regulation by microRNAs. In fact, the presence or absence of RNAi pathways, for instance,
can be inferred from the presence or absence of its protein components [8]. Large-scale
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2 Protein Domain Distributions in Eukaryotes

trends in evolution such as an increased complexity of transcriptional regulation [16, 28],
the diversification of chromatin modification [25], or novel modes of post-transcriptional
processing are visible in comparisons of the predicted protein complements and thus are focal
features of most genome papers.

Most proteins are composed of smaller building blocks. A protein domain typically forms
a compact three-dimensional structure that is frequently stable and foldable on its own
and conveys a specific molecular function such a particular catalytic activity or binding
specificity. Protein domains are characterized by local amino-acid patterns and hence can
be annotated computationally in protein sequences. Several databases, most notably Pfam
[26] and SUPERFAMILY [7], provide large collections of domain descriptions in the form of
Hidden Markov Models HMMS for this purpose. Since protein domains are also regarded as
functional units, the same databases provide maps to link domains with GeneOntology (GO)
terms. As GO terms are primarily associated with entire proteins, these maps are obtained
at least in part computationally [7, 27]. Conversely protein function can be computed from
domain content [10].

Protein domains also constitute units in evolutionary terms. They can be readily recom-
bined in different arrangements leading to proteins that utilize different combinations of
the same (types of) molecular interactions to fulfill different higher-level functions [1, 22, 4].
Over very large evolutionarily time scales, such as those of interest in a comparative analysis
of the eukaryotic kingdoms, it thus becomes impossible in many cases to identify orthologous
proteins since larger proteins more often than not a composite of domains deriving from
several ancestral sources [18, 14]. Fusions, fissions, and terminal loss have turned out to be
much more frequent than the innovation of novel protein domains [3, 37]. The abundance
and co-occurrence of domains thus becomes the most natural and promising framework to
understand patterns of protein evolution at kingdom-level time-scales, see e.g. [13, 25, 35].
In [37], for instance, showed that frequent gains and losses of domains lead to significant
differences in functional profiles of major eukaryotic clades. Their results argue for a complex
last eukaryotic common ancestor and reveal suggest that animals are gaining increased
regulatory complexity at the expense of their metabolic capabilities. Similarly, the rise
of chromatin-based regulation mechanisms in crown-group eukaryotes can be traced by
considering abundances and co-occurrences of the relevant protein domains [25].

The most complete information on the protein complement can be inferred from the
genome sequence. In fact, only two thirds of the predicted human proteins have been directly
observed so far [21]. For most of the less-studied species, on the other hand, the set of
predicted proteins in the current genome annotations is far from complete. For example,
the number of annotated transcripts varies by more than a factor of three even between
great ape genomes [24]. The accumulation of transcriptomics data in a few well-studied
organisms such as human, mouse, or fruit fly, on the other hand, leads to an increasing
number of annotated splice variants and transcripts with alternative start sites, and thus
to an increasing number of redundant protein variants. In our previous studies we have
argued, therefore, that the large ascertainment biases in present day protein databases make
it effectively impossible to use these data for a quantitative comparison of protein domain
abundances across species [24, 23]. Instead, we proposed to use de novo gene predictions to
obtain quantitatively comparable estimates, Fig. 1, and showed that a simple general-purpose
gene finder such as genscan [5, 6] already yields plausible numbers.

Several major lineages of the Eukarya feature gene structures and a genomic organization
that is very different from the situation in animals, fungi, or plants. Both Giardia lamblia
and Trichomonas vaginalis are extremely intron-poor; Trichomonas vaginalis in addition
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Figure 1 Work flow for the estimation of domain abundance data. We start with a de novo gene
annotation (l.h.s), here using AUGUSTUS to obtain a collection of non-overlapping protein predictions
that is as unbiased as possible. Most studies instead start from protein databases that suffer from
a variety of ascertainment biases. Protein domains from the Pfam or SUPERFAMILY database are
mapped to the known or predicted proteins and form the basis for subsequent statistical analysis.

features very large numbers of paralogs. Kinetoplastids (Trypanosoma and Leishmania)
produce large polycistronic transcripts from which individual mature mRNAs are produced
by trans-splicing, cis-splicing, and polyadenylation [17, 34]. Trans-splicing is also prevalent in
the nematodes, but absent from most other animal genomes. Intron-sizes differ dramatically
between invertebrates and vertebrates, where intron-sizes of more than 10 kb are not at
all uncommon. Another problem is posed by the extreme sequence composition as in the
AT-rich genome of Plasmodium falciparum [15].

In this contribution we therefore employ AUGUSTUS [31] a gene prediction tool that can
be adapted to the individual genomes and their peculiarities. In extension of our earlier work
we furthermore use both SUPERFAMILY and Pfam database of domain annotation.

2 Material and Methods

2.1 Genome Sequences and Gene Prediction
We consider the following 18 species with sequenced genomes covering the entire phyloge-
netic range of the eukaryotes: Homo sapiens hg19, Drosophila melanogaster BDGP5.13,
Caenorhabditis elegans WS200, Schizosaccharomyces pombe EF1, Aspergillus niger CADRE,
Arabidopsis thaliana TAIR9.55, Clamydomonas Chlre4, Tetrahymena tta1_oct2008, Plas-
modium falciparum PlasmoDB-7.0, Leishmania major Lmj_20070731_V5.2, Giardia lamblia
WBC6, Trichomonas vaginalis TrichDB-1.2, Trypanosoma brucei Tb927_May08_v4, Naeg-
leria gruberi Naegr1, Thalassiosira pseudonana Thaps3, Phytophthora ramorum Phyra1_1,
Oryza sativa OSV6.1, Dictyostelium discoideum DDB. Sources are listed in the Supplement
http://www.bioinf.uni-leipzig.de/supplements/12-007.

We decided to use AUGUSTUS [32, 31, 30] for gene prediction because the package has
gained popularity in genome annotation projects and because it can be trained for applications
to a given genome with known cDNAs. For our analysis, we used both “off-line” (local) and
“on-line” (web-based) trained models prepared as described in the AUGUSTUS tutorial [29].
For the several species, the default training sets are provided at the AUGUSTUS website. For
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4 Protein Domain Distributions in Eukaryotes

Table 1 Summary of gene and domain annotation. The first block gives the results from AUGUSTUS
with both training methods where available and the contents of the RefSeq database. The following
blocks of columns list the numbers of genes that have at least one SUPERFAMILY or PFAM domains,
respectively. Below, the phylogenetic distribution of the 18 investigates species is summarized [2].
See sect. 2.1 for full species names.

Species Gene Total Gene(sf) Gene Pfam
Onl. Offl. Refs. Onl. Offl. Refs. Onl. Offl. Refs.

Giardia 4357 5178 6583 3240 3265 3183 2450 2672 2540
Trichomonas 61750 60924 60815 3278 3344 6392 5872 5478 28364
Trypanosoma 7874 9696 10192 4626 4626 4010 4939 5580 2800
Leishmania 9451 9155 4949 4056 4451 2762
Naegleria 16792 16443 16620 6572 6442 7091 10070 9578 10070
Plasmodium 6043 5512 4110 2607 3338 1741
Tetrahymena 21650 24725 2502 1003 1763 952
Thalassiosira 10428 10528 10988 6248 6145 6264 6752 7141 7500
Phytophthora 17154 16292 15743 7384 7382 7394 10524 10746 10663
Chlamydomonas 15141 14488 6852 6749 9193 8472
Arabidopsis 27945 25498 8088 9302 22521 22716
Oryza 62327 63693 62709 8580 7527 8417 44243 45322 42523
Dictyostelium 12904 12595 12646 6877 6744 5246 7757 7403 4018
Aspergillus 9866 10785 6432 6275 7827 6815
Schizosaccharomyces 4783 4824 4259 3204 4305 4405
Caenorhabditis 22902 21175 7418 8806 14460 17253
Drosophila 14217 13601 7654 8925 10550 10283
Homo 33507 36073 8908 10069 20878 27577
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these, there is no difference between local and web-based training. For the remaining species,
we used the cDNAs available in GenBank. Redundancies were removed with duplicate.pl
script. The FASTA sequences and their headers were cleaned from meta-characters and
gaps. Models were trained both “off-line” and using the pipeline offered at the AUGUSTUS
website. For our applications, AUGUSTUS was configured to generate only non-overlapping
protein-coding genes. The predicted protein sequences are part of the AUGUSTUS output. We
verified with bed-tools that no overlapping sequences were contained in the output.

The results of AUGUSTUS are compiled in Table 1 together with the RefSeq (release 53)
genes for each of the 18 species. In order to compare the two training modes of AUGUSTUS
with each other and with the RefSeq annotation we computed their overlaps with bed-tools
and used lucidchart to compute Venn diagrams so that the displayed overlaps in Fig. 2 are
drawn to scale.

2.2 Domain Annotation
We used the entire Pfam version 26.0 database, comprising 33672 domain models as well as the
entire collection of 9821 Hidden Markov Models (HMMs) provided by the SUPERFAMILY
database (version 1.75). In both cases we used HMMER3.0rc1 [9] with an E-value threshold
of E ≤ 10−3 to map the HMMs to the predicted amino acid sequences as well as the RefSeq
proteins.
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Figure 2 Comparison of gene predictions for 8 of the 18 species. (See online supplement for the
remaining data. For each species we show a Venn diagram for both the raw output of the gene
predictions and for the subset of proteins with at least one matching Pfam model. RefSeq is shown
in red AUGUSTUS prediction with online and offline trained models are shown in blue and green,
respectively.

In order to test the quality of gene predictions we compared the sub-collections protein
sequences with at least one mapped Pfam domain between the gene prediction methods and
RefSeq database. A representative selection of these results is shown in Fig. 2. Overall, the
online-trained AUGUSTUS predictions have the best coverage of the manually curated RefSeq
and are hence used as data basis for subsequent quantitative analysis.

2.3 Functional Classification
The domain databases contain thousands of distinct domain models. Few domains thus
appear a sufficiently large number of time to allow a quantitative statistical analysis of their
occurrences. Thus we pool the data by functional categories. The SUPERFAMILY database
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6 Protein Domain Distributions in Eukaryotes

offers a “Structural Domain Functional Ontology” providing functional and phenotypic
annotations of protein domains at the superfamily and family levels [7]. The Pfam
annotation is already integrated into GO database, providing a mapping from Pfam domains
to GO ontology terms [33, 26].

As example we use here the same high-level functional categories as in previous work [23].
bN binding of nucleic acids: GO:0003676 at superfamily level.
bP binding of proteins with potential nuclear localization: GO:0005515 superfamily level.
rC regulation of chromatin GO:0016568 at superfamily level.
rB regulation of binding: GO:0051098 at superfamily level.
rE regulators of enzymatic activity: GO:0050790 at superfamily level.
mS metabolism of saccharides: GO:0005976 at superfamily level.

The four functional groups bN, bP, rC, and rB encapsulate major modes of regulation. Both
bN and bP play an important role for gene regulation by transcription factors and are among
the most abundant GO classes, while rC focuses on chromatin-based epigenetic regulation.
We have shown in [23] that rC group correlates well with the hand-picked collection of domain
models that can act as readers, writers, and erasers of histone modification [25]. The domain
groups rE and mS were intended as a form of controls that a priori we did not expect to
correlate in a particular way with either nucleic acid or protein binding domains (bN, bP).

From the co-occurrences of domains in predicted proteins and the map of domains to
functional (GO-)classes it is straightforward to obtain the number n(C,D) of co-occurrences
of the functional classes. As in [23] we correct n(C,D) for the fact that the same domain x
can be a member of both C and D by counting these cases with a weight of 1/2.

2.4 Co-occurrence Analysis
For each of the 18 species, we separately evaluated the number of domain co-occurrences and
the number of genes in which two domain types x and y co-occur. Here x and y can be either
individual domains, sets of domains belonging to the same superfamily, or the collections of
domains compiled into functional classes according to their GO annotations. Denote by nx
the total number of annotated domains belonging to group x. The simplest estimate for the
expected number of domain co-occurrences is E(x, y) = nxny/ng, where ng is the number
genes in the genome under consideration. As discussed in [23] this estimate does not account
for biases arising from the non-uniform distribution of domains over genes. Let nd(i) be the
number of domains predicted for protein i, and let nd =

∑
i nd(i) be the total number of

domains. Then the number of x-domains that occur in genes that also contain a y-domain
can be estimated as

E(x|y) = (nx/nd)
∑
i:y∈i

(nd(i)− 1) (1)

where the sum runs over all genes i that contain a domain belonging to group y. We obtain
an alternative estimate by exchanging x and y in equ.(1).

We compared these expectations with the number of empirically observed co-occurrences
n(x, y). We speak of co-occurrence of domain families or groups x and y if n(x, y) �
max{E(x|y), E(y|x)} and of avoidance if n(x, y) � min{E(x|y), E(y|x)} The statistical
significance of an observed difference between n(x, y) and the values of max{E(x|y), E(y|x)}
and max{E(x|y), E(y|x)}, respectively, is determined under the assumption that n(x, y) is
drawn from a Poisson distribution.

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 27, 2017. ; https://doi.org/10.1101/142182doi: bioRxiv preprint 

https://doi.org/10.1101/142182
http://creativecommons.org/licenses/by-nd/4.0/


A.A. Parikesit, P.F. Stadler, S.J. Prohaska 7

G.la

T.va

T.br

L.ma

N.gr

P.fa

T.th

T.ps

P.ra

C.re

A.th

O.sa

D.di

A.ni

S.po

C.el

D.me

H.sa

b
N
-b
P

b
N
-rC

b
N
-m

S

b
N
-rB

b
N
-rE

b
P
-rC

b
P
-m

S

b
P
-rB

b
P
-rE

rC
-m

S

rC
-rB

rC
-rE

m
S
-rB

m
S
-rE

rE
-rB

G.la

T.va

T.br

L.ma

N.gr

P.fa

T.th

T.ps

P.ra

C.re

A.th

O.sa

D.di

A.ni

S.po

C.el

D.me

H.sa

b
N
-b
P

b
N
-rC

b
N
-m

S

b
N
-rB

b
N
-rE

b
P
-rC

b
P
-m

S

b
P
-rB

b
P
-rE

rC
-m

S

rC
-rB

rC
-rE

m
S
-rB

m
S
-rE

rE
-rB

bN

bP

rC

mS

rB

rE

b
N

b
P

rC

m
S rB rE

Pfam

bN

bP

rC

mS

rB

rE

b
N

b
P

rC

m
S rB rE

SUPERFAMILY

Pfam SUPERFAMILY

Figure 3 Summary of co-occurrences patterns of major functional classes of protein domains across
the Eukaryotes. The estimated obtained from Pfam-domains (l.h.s.) are qualitatively consistent
with those from SUPERFAMILY-domains (r.h.s). The top row shows the data separately for each
species, the smaller panels below summarize the co-occurrence patterns across the 18 species. Blue
rectangles indicate statistically significant avoidance between functional classes of protein domains,
red indicates co-occurrence. The saturation of the color denotes the significance levels p < 0.001
(saturated color), 0.001 ≤ p < 0.01 (intermediate), and 0.01 ≤ p < 0.1 (pale). Entries that show
neither avoidance or co-occurrence at a significance level of at least 10% remain white.

3 Results and Discussion

The comparison of the AUGUSTUS gene prediction results and RefSeq gene inventories agrees
rather well in some species, while in others there are substantial differences, depending on
the various degree of completeness of the gene annotation, Fig. 2. Since we are interested
primarily in the distributions of protein domains we also compared RefSeq data with gene
predictions restricted to only those genes in which at least one Pfam domain was annotated.
For most species this improves the congruence between the gene sets. In a few cases, however,
the differences persist, as in the case of Trypanosoma and Human, Fig. 2. In Trypanosoma,
most of the difference is explained by annotated RefSeq proteins without recognizable
domains. In human, the discrepancy is in part explained by RefSeq isoforms and in part by
AUGUSTUS prediction without domains.

Among the predictions with annotated domains, we find e.g. for Leishmania, Tetrahymena,
and Plasmodium that both the online and the offline trained gene predictions have a much
larger coverage than the RefSeq data. For Trichomonas and Giardia, the situation is reversed.
This can probably be explained in part by the large number of paralogs and possible
pseudogenes included in RefSeq in Trichomonas, but also indicated as lack of sensitivity of
the gene predictor for the two parabasalids with their extremely intron-poor genomes. At
the domain level, AUGUSTUS and RefSeq agree nearly perfectly e.g. in human in Naegleria. In
general, the RefSeq entries missed by the gene predictor are frequently putative pseudogenes
and ORFs lacking further annotation. Since the AUGUSTUS ‘online’ predictions overall yield
the most inclusive data set, these predictions are used below for all statistical analysis of
domains compositions.
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8 Protein Domain Distributions in Eukaryotes

In general, we observe very little variation in the number of domains per protein. A
significant increase is found in human and fruitfly only. It is unclear, however, whether this
a true effect or an artifact arising from a bias in Pfam database. In [11], a difference in the
complexity of chromatin proteins between Diplomonads and Dicristates on the one hand, and
Alveolates and Stramenopiles on the other hand. Our data do not show such a systematic
difference for proteins containing an rC domain.

In Figure 3 we observe a systematic avoidance of functionally distinct GO-classes of protein
domains. Satisfactorily, the patterns obtained from Pfam and SUPERFAMILY annotations are
largely consistent. Not surprisingly, we find fewer significant relations in the SUPERFAMILY
data due the much smaller number of domains.

The main exceptions are the co-occurrences bN-rB, rC-rB, and bP-rE. The latter is not
unexpected, since regulators of enzymatic activity (rE) can be expected to act by protein-
protein binding (bP). The positive correlations between nucleic acid binding domains (bN)
and chromatin associated domains (rC) with domains involved in the regulation of binding
deserved further investigation. It is consistent with intimate link of both DNA and RNA
binding with chromatin regulation reported in [25].

The improved coverage and accuracy of the gene prediction procedure has a major
impact on the observed domain co-occurrences. In an earlier study using the non-trainable
genscan gene predictor we observed similarly wide-spread functional avoidance only for the
large genomes of multicellular organisms [23]. At least a moderate positive correlation was
found for most other genomes. In the light of the present data, i.e., a much larger set of
annotated domains as well as a substantially improved set of underlying gene predictions,
these co-occurrences are largely identified as artifacts.

4 Conclusion

The distribution of protein domains is an informative fingerprint of metabolic and regulatory
capabilities of an organism. We have shown here that quantitative comparative analysis are
possible based on predictions of trainable gene predictor such as AUGUSTUS. The training
phase is necessary to overcome in particular artifacts introduced by peculiarities of the
genome structure. Untrained tools such as genscan, for instance, have problems to recognize
the protein boundaries in polycistronic transcripts of kinetoplastids, experience difficulties
with extreme A/T contents, or lack sensitivity e.g. in very intron-poor genomes. Such effects
are largely alleviated by species-specific training.

The second source of major ascertainment biases in the analysis of large scale evolutionary
patterns of functional domains are the protein domain databases themselves. Recent studies
reported the innovation of a large number of domain innovation events within both the green
plants [12] and the animals [19]. The number of identified clade-specific domains must be
expected to depend on the depths in which the clade is studied. The domain inventory
is thus probably more complete in animals, fungi, and plants animals compared to most
protozoan lineages. Large numbers unannotated domains of course undermine the analysis
presented here since the lead to a systematic under-estimation of an organisms metabolic or
regulatory capability, in particular since [12] also reported that the novel domains in stress
response and developmental innovations. A more systematic survey of so-far undescribed
protein domains thus constitutes a natural next step towards a comprehensive understanding
of functional evolution in the eukaryotes.

Accurate domain inventories are not only of interest in their own right but also constitute
an important source of phylogenetic information [36], in particular in “deep phylogeny”
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applications. The presence/absence patterns of protein domains were recently used for
instance to place the Strepsiptera as a sister group of beetles in insect phylogeny [20].
Improved pipelines to estimate the protein domain content directly from genomic data thus
have the potential to greatly facilitate phylogenomic investigations.
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References
1 G. Apic, J. Gough, and S. A. Teichmann. Domain combinations in archaeal, eubacterial

and eukaryotic proteomes. J Mol Biol, 310:311–325, 2001.
2 S. L. Baldauf. An overview of the phylogeny and diversity of eukaryotes. J. Syst. Evol.,

46:263–273, 2008.
3 E. Bornberg-Bauer, A. K. Huylmans, and T. Sikosek. How do new proteins arise? Curr.

Opin. Struct. Biol., 20:390–396, 2010.
4 M. Buljan and A. Bateman. The evolution of protein domain families. Biochem Soc Trans,

37:751–755, 2009.
5 C. Burge and S. Karlin. Prediction of complete gene structures in human genomic DNA.

J. Mol. Biol., 268:78–94, 1997.
6 C. B. Burge and S. Karlin. Finding the genes in genomic DNA. Curr. Opin. Struct. Biol.,

8:346–354, 1998.
7 D. A. de Lima Morais, H. Fang, O. J. Rackham, D. Wilson, R. Pethica, C. Chothia, and

J. Gough. SUPERFAMILY 1.75 including a domain-centric gene ontology method. Nucleic
Acids Res., 39:D427–D434, 2011.

8 I. A. Drinnenberg, D. E. Weinberg, K. T. Xie, J. P. Mower, K. H. Wolfe, G. R. Fink, and
D. P. Bartel. RNAi in budding yeast. Science, 326:544–550, 2009.

9 S. R. Eddy. Accelerated profile HMM searches. PLoS Comp. Biol., 7:e1002195, 2011.
10 K. Forslund and E. L. L. Sonnhammer. Predicting protein function from domain content.

Bioinformatics, 24:1681–1687, 2008.
11 L. M. Iyer, V. Anantharaman, M. Y. Wolf, and L. Aravind. Comparative genomics of

transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int
J Parasitol, 38:1–31, 2008.

12 A. R. Kersting, E. Bornberg-Bauer, A. D. Moore, and S. Grath. Dynamics and adaptive
benefits of protein domain emergence and arrangements during plant genome evolution.
Genome Biol Evol, 4:316–329, 2012.

13 K. M. Kim and G. Caetano-Anollés. The proteomic complexity and rise of the primordial
ancestor of diversified life. BMC Evol Biol, 11:140, 2011.

14 E. Koonin, L. Aravind, and A. Kondrashov. The impact of comparative genomics on our
understanding of evolution. Cell, 101:573–576, 2000.

15 F. Lu, H. Jiang, J. Ding, J. Mu, J. G. Valenzuela, J. M. C. Ribeiro, and X.-z. Su. cDNA
sequences reveal considerable gene prediction inaccuracy in the Plasmodium falciparum
genome. BMC Genomics, 8:255, 2007.

16 G. Melzer, R Theissen. MADS and more: transcription factors that shape the plant.
Methods Mol Biol, 754:3–18, 2011.

17 S. Michaeli. Trans-splicing in trypanosomes: machinery and its impact on the parasite
transcriptome. Future Microbiol., 6:459–474, 2011.

18 A. D. Moore, Å. K. Björklund, D. Ekman, E. Bornberg-Bauer, and A. Elofsson. Arrange-
ments in the modular evolution of proteins. Trends Biochem. Sci., 33:444–451, 2008.

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 27, 2017. ; https://doi.org/10.1101/142182doi: bioRxiv preprint 

https://doi.org/10.1101/142182
http://creativecommons.org/licenses/by-nd/4.0/


10 Protein Domain Distributions in Eukaryotes

19 A. D. Moore and E. Bornberg-Bauer. The dynamics and evolutionary potential of domain
loss and emergence. Mol Biol Evol, 29:787–796, 2012.

20 O. Niehuis, G. H. Hartig, S. Garth, H. Pohl, J. Lehmann, H. Tafer, A. Donath, V. Krauss,
C. Eisenhardt, J. Hertel, M. Petersen, C. Mayer, K. Meusemann, R. S. Peters, P. F. Stadler,
R. G. Beutel, E. Bornberg-Bauer, D. D. McKenna, and B. Misof. Genomic and morpho-
logical evidence converge to resolve the enigma of Strepsiptera. Current Biol., 2012.

21 T. Nilsson, M. Mann, R. Aebersold, J. R. Yates 3rd, A. Bairoch, and J. J. Bergeron. Mass
spectrometry in high-throughput proteomics: ready for the big time. Nat Methods, 7:681–
685, 2010.

22 C. A. Orengo and J. M. Thornton. Protein families and their evolution – a structural
perspective. Annu Rev Biochem, 74:867–900, 2005.

23 A. A. Parikesit, P. F. Stadler, and J. Prohaska, Sonja. Evolution and quantitative compar-
ison of genome-wide protein domain distributions. Genes, 2:912–924, 2011.

24 A. A. Parikesit, P. F. Stadler, and S. J. Prohaska. Quantitative comparison of genomic-wide
protein domain distributions. In D. Schomburg and A. Grote, editors, German Conference
on Bioinformatics 2010, volume P-173 of Lecture Notes in Informatics, pages 93–102, Bonn,
2010. Gesellschaft für Informatik.

25 S. J. Prohaska, P. F. Stadler, and D. C. Krakauer. Innovation in gene regulation: The case
of chromatin computation. J. Theor. Biol., 265:27–44, 2010.

26 M. Punta, P. C. Coggill, R. Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell, N. Pang,
K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E. L. Sonnhammer, S. R. Eddy,
A. Bateman, and R. D. Finn. The Pfam protein families database. Nucleic Acids Res,
40:D290–D301, 2012.

27 J. Schug, S. Diskin, J. Mazzarelli, B. P. Brunk, and C. J. Stoeckert Jr. Predicting Gene
Ontology functions from ProDom and CDD protein domains. Genome Res, 12:648–655,
2002.

28 E. Shelest. Transcription factors in fungi. FEMS Microbiol Lett, 286:145–151, 2008.
29 M. Stanke. Lab session on gene prediction with AUGUSTUS, 2011. http://bioinf.

uni-greifswald.de/augustus/binaries/tutorial/training.html.
30 M. Stanke, M. Diekhans, R. Baertsch, and D. Haussler. Using native and syntenically

mapped cDNA alignments to improve de novo gene finding. Bioinformatics, 24:637–644,
2008.

31 M. Stanke, O. Schöffmann, B. Morgenstern, and S. Waack. Gene prediction in eukaryotes
with a generalized hidden Markov model that uses hints from external sources. BMC
Bioinformatics, 7:62, 2006.

32 M. Stanke and S. Waack. Gene prediction with a hidden Markov model and a new intron
submodel. Bioinformatics, 19:ii215–ii225, 2003.

33 The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat
Genet, 25:25–29, 2000.

34 S. Thomas, A. Green, N. R. Sturm, D. A. Campbell, and P. J. Myler. Histone acetylations
mark origins of polycistronic transcription in Leishmania major. BMC Genomics, 10:152,
2009.

35 S. Yang and P. E. Bourne. The evolutionary history of protein domains viewed by species
phylogeny. PLoS ONE, 4:e8378, 2009.

36 S. Yang, R. F. Doolittle, and P. E. Bourne. Phylogeny determined by protein domain
content. Proc. Natl. Acad. Sci. USA, 102:373–378, 2005.

37 C. M. Zmasek and A. Godzik. Strong functional patterns in the evolution of eukaryotic
genomes revealed by the reconstruction of ancestral protein domain repertoires. Genome
Biol., 12:R4, 2011.

Supplemental Data: http://www.bioinf.uni-leipzig.de/supplements/12-007

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 27, 2017. ; https://doi.org/10.1101/142182doi: bioRxiv preprint 

http://bioinf.uni-greifswald.de/augustus/binaries/tutorial/training.html
http://bioinf.uni-greifswald.de/augustus/binaries/tutorial/training.html
http://www.bioinf.uni-leipzig.de/supplements/12-007
https://doi.org/10.1101/142182
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Material and Methods
	Genome Sequences and Gene Prediction
	Domain Annotation
	Functional Classification
	Co-occurrence Analysis

	Results and Discussion
	Conclusion

