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Abstract

Genome wide association studies (GWAS) rely on microarrays, or more recently
mapping of whole-genome sequencing reads, to genotype individuals. The reliance on
prior sequencing of a reference genome for the organism on which the association study
is to be performed limits the scope of association studies, and also precludes the
identification of differences between cases and controls outside of the reference. We
present an alignment free method for association studies that is based on counting
k-mers in sequencing reads, testing for associations directly between k-mers and the trait
of interest, and local assembly of the statistically significant k-mers to identify sequence
differences. Results with simulated data and an analysis of the 1000 genomes data
provide a proof of principle for the approach. In a pairwise comparison of the Toscani in
Ttalia (TSI) and the Yoruba in Ibadan, Nigeria (YRI) populations we find that
sequences identified by our method largely agree with results obtained using standard
GWAS based on variant calling from mapped reads. However unlike standard GWAS,
we find that our method identifies associations with structural variations and sites not
present in the reference genome revealing sequences absent from the human reference
genome. We also analyze data from the Bengali from Bangladesh (BEB) population to
explore possible genetic basis of high rate of mortality due to cardiovascular diseases
(CVD) among South Asians and find significant differences in frequencies of a number
of non-synonymous variants in genes linked to CVDs between BEB and TSI samples,
including the site rs1042034, which has been associated with higher risk of CVDs
previously, and the nearby rs676210 in the Apolipoprotein B (ApoB) gene.

Author Summary

We present a method for associating regions in genomes to traits or diseases. The
method is based on finding differences in frequencies of short strings of letters in
sequencing reads and do not require reads to be aligned to a reference genome. This
makes it applicable to study of organisms with no or incomplete reference genomes. We
test our method with simulated data and sequencing data from the 1000 genomes
project and find agreement with the conventional approach based on alignment to a
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reference genome. In addition, our method finds associations with sequences not in
reference genomes and reveals sequences missing from the human reference genome. We
also explore high rates of mortality due to cardiovascular diseases among South Asians
and find prevalence of variations in genes associated with heart diseases in samples from
the Bengali from Bangladesh population including one that has been reported to be
associated with early onset of cardiovascular diseases.

Introduction

Association mapping refers to the linking of genotypes to phenotypes. Most often this is
done using a genome-wide association study (GWAS) with single nucleotide
polymorphisms (SNPs). Individuals are genotyped at a set of known SNP locations
using a SNP array. Then each SNP is tested for statistically significant association with
the phenotype. In recent years thousands of genome-wide association studies have been
performed and regions associated with traits and diseases have been located.

However, this approach has a number of limitations. First, designing SNP arrays
requires knowledge about the genome of the organism and where the SNPs are located
in the genome. This makes it hard to apply to study organisms other than human. Even
the human reference genome is incomplete [1] and association mapping to regions not in
the reference is difficult. Second, structural variations such as insertion-deletions (indels)
and copy number variations are usually ignored in these studies. Despite the many
GWA studies that have been performed a significant amount of heritability is yet to be
explained. This is known as the “missing heritability” problem [2]. A hypothesis is some
of the missing heritability is due to structural variations. Third, the phenotype might
be caused by rare variants which are not on the SNP chip. In last two cases, follow up
work is required to find the causal variant even if association is detected in the GWAS.

Some of these limitations can be overcome by utilizing high throughput sequencing
data. As sequencing gets cheaper association mapping using next generation sequencing
is becoming feasible. The current approach to doing this is to map all the reads to a
reference genome followed by variant calling. Then these variants can be tested for
association. But this again requires a reference genome and it may induce biases in
variant calling and regions not in the reference genome will not be included in the study.
Moreover, sequencing errors make genotype calling difficult when sequencing depth is
low [3] and in repetitive regions. Methods have been proposed to do population genetics
analyses that avoid the genotype calling step [4}/5] but these methods still require reads
to be aligned to a reference genome. An alternate approach is simultaneous de novo
assembly and genotyping using a tool such as Cortex [6] but this is not suited to large
number of individuals. Furthermore, both these approaches are computationally very
expensive.

In the past, alignment free methods have been developed for a number of problems
including transcript abundance estimation [7], sequence comparison [8], phylogeny
estimation [9], etc. Nordstrom et al. introduced a pipeline called needle in the k-stack
(NIKS) for mutation identification by comparison of sequencing data from two strains
using k-mers [10]. Here we present an alignment free method for association mapping.
It is based on counting k-mers and identifying k-mers associated with the phenotype.
The overlapping k-mers found are then assembled to obtain sequences corresponding to
associated regions. Our method is applicable to association studies in organisms with no
or incomplete reference genome. Even if a reference genome is available, this method
has the advantage of avoiding aligning and genotype calling thus allowing association
mapping to many types of varaints using the same pipeline and to regions not in the
reference.

We have implemented our method in a software called ‘hitting associations with
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k-mers’ (HAWK). Experiments with simulated and real data demonstrate the promises
of this approach. We leave taking into account confounding factors such as population
structure as future work and apply our method to analyze sequencing data from three
populations in the 1000 genomes project treating population identity as the trait of

interest. Agreement with sites found using read alignment and genotype calling indicate

that k-mer based association mapping will be applicable to studying disease associations.

Methods

Association mapping with k-mers.

We present a method for finding regions associated with a trait using sequencing reads
without mapping reads to reference genomes. The workflow is illustrated in Fig
Given sequencing reads from case and control samples, we count k-mers appearing in
each sample. We assume the counts are Poisson distributed and test k-mers for
statistically significant association with case or control using likelihood ratio test for
nested models (see Supplementary for details). The differences in k-mer counts may be
due to single nucleotide polymorphisms (SNPs), insertion-deletions (indels) and copy
number variations. The k-mers are then assembled to obtain sequences corresponding to
each region.

Counting k-mers

The first step in our method for association mapping from sequencing reads using
k-mers is to count k-mers in sequencing reads from all samples. To count k-mers we use

the multi-threaded hash based tool JELLYFISH developed by Marcais and Kingsford [11].

We use k-mers of length 31 and ignore k-mers that appear once in a sample for
computational and memory efficiency as they are likely from sequencing errors.

Finding significant k-mers

Then for each k-mer we test whether that k-mer appears significantly more times in
case or control datasets compared to the other using a likelihood ratio test for nested
models. Suppose, a particular k-mer appears K; times in cases and K times in
controls, and N7 and Ny are the total number of k-mers in cases and controls
respectively. The k-mer counts are assumed to be Poisson distributed with rates #; and
f5 in cases and controls. The null hypothesis is Hy : §; = 62 = 0 and the alternate
hypothesis is H; : 81 # 62. The likelihoods under the alternate and the null are given by
(see Supplementary for details)

e~ 0N (91N1)K1 e 02NNz (HQNQ)KQ

L(01,02) = K;! Ko

and
e INT(ON,)Kr e=0N2 (9N, ) K2

K;! Ky!

Since the null model is a special case of the alternate model, 21n A is approximately
chi-squared distributed with one degree of freedom where A is the likelihood ratio. We
get a p-value for each k-mer using the approximate x? distribution of the likelihood
ratio and perform Bonferroni corrections to account for multiple testing.

L) =
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Figure 1. Workflow for association mapping using k-mers. The HAWK pipeline starts with
sequencing reads from two sets of samples. The first step is to count k-mers in reads from each sample.
Then k-mers with significantly different counts in two sets are detected using likelihood ratio test. Finally,
overlapping k-mers are assembled into sequences to get one or few sequences for each associated locus.

Merging k-mers

We then merge overlapping k-mers to get a sequence for each differential site using the
assembler ABySS [12|. ABySS was used as the assemblies it generated were found to
cover more of the sequences to be assembled compared to other assemblers [13]. We
construct the de Bruijn graph using hash length of 25 and retain assembled sequences of
length at least 49. It is also possible to merge k-mers and pair sequences from cases and
controls using the NIKS pipeline [10]. However, we find that this is time consuming
when we have many significant k-mers. Moreover, when number of cases and controls
are not very high we do not have enough power to get both of sequences to be paired
and as such pairing is not possible.

Implementation

Our method is implemented in a tool called ‘hitting associations with k-mers’ (HAWK)
using C++. To speed up the computation we use a multi-threaded implementation. In
addition, it is not possible to load all the k-mers into memory at the same time for large
genomes. So, we sort the k-mers and load them into memory in batches. To make the
sorting faster JELLYFISH has been modified to output internal representation of k-mers
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instead of the k-mer strings. In future the sorting step may be avoided by utilizing the
internal ordering of JELLYFISH or other tools for k-mer counting. The implementation is
available at http://atifrahman.github.io/HAWK/

Downstream analysis

The sequences can then be analyzed by aligning to a reference if one is available or by
running BLAST [14] to check for hits to related organisms. The intersection results in
this paper were obtained by mapping them to the human reference genome version

GRCh37 using Bowtie2 [15] to be consistent with co-ordinates of genoptypes called by
1000 genomes project. The breakdown analysis was performed by first mapping to the
latest version of the reference, hg38 and then running BLAST on some of the ones that
did not map. Specific loci of interest were checked by aligning them to RefSeq mRNAs
using Bowtie 2 and on the UCSC Human Genome Browser [16] by running BLAT [17].

Results

Verification with simulated data.

The implementation was tested by simulating reads from genome of an Escherichia coli
strain. We introduced different types mutations - single nucleotide changes, short indels
(less than 10bp) and long indels (between 100bp and 1000bp) into the genome. Then
wgsim of SAMtools 18] was used to first generate two sets of genomes by introducing
more random mutations (both substitutions and indels) into the original and the
modified genomes and then simulate reads with sequencing errors. The HAWK pipeline
was then run on these two sets of sequencing reads. The fraction of mutations covered
by resulting sequences are shown in for varying numbers of case and control
samples and different types of mutations. The results are consistent with calculation of
power to detect k-mers for varying total k-mer coverage with slightly lower
values expected due to sequencing errors and conditions imposed during assembly.

Verification with 1000 genomes data.

To analyze the performance of the method on real data we used sequencing reads from
the 1000 genomes project [19]. The population identities were used as the phenotype of
interest circumventing the need for correction of population structure. For verification,
we used sequencing reads from 87 YRI individuals and 98 TSI individuals for which both
sequencing reads and genotype calls were available at the time analysis was performed.

The analysis using k-mers resulted in 2,970,929 sequences associated with YRI
samples and 1,865,285 sequences of significant association with TSI samples. We also
performed similar analysis with genotype calls. VCFtools [20] was used to obtain
number of individuals with 0, 1 and 2 copies of one of the alleles for each SNP site.
Each site was then tested to check whether the allele frequencies are significantly
different in two samples using likelihood ratio test for nested models for multinomial
distribution (details in . We found that 2,658,964 out of the 39,706,715 sites
had allele frequencies that are significantly different.

Figure a) shows the extent of overlap among these discarding the sequences that
did not map to the reference. We find that 80.3% (2,135,415 out of 2,658,964) of the
significant sites overlapped with some sequence found using HAWK. Approximately
95.2% of the sites overlapped with at least one k-mer.

We also observe that around 42% of sequences found using k-mers do not overlap
with any sites found significant using genotype calling. While upto 20% of them
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Figure 2. Intersection analysis and comparison of powers of tests. (a) Venn diagrams showing intersections among
sequences obtained using HAWK and significant sites found by genotype calling. 80.3% of the sites overlapped with some
sequence. Around 42% of sequences do not overlap with any such site which can be explained by more types of variants found
by HAwK as well as more power of the test using Poisson compared to Multinomial distribution. (b) Fraction of runs found
significant (after Bonferroni correction) by tests against minor allele frequency of the case samples (with that of the controls
fixed at 0) are shown. The curves labeled multinomial and Poisson correspond to likelihood ratio test using multinomial
distribution and Poisson distributions with different k-mer coverage.

correspond to regions for which we did not have genotype calls (chromosome Y,
mitochondrial DNA and small contigs), repetitive regions where genotype calling is
difficult and structural variations, many of the remaining sequences are possibly due to
more power of the test based on counts than the one using only number of copies of an
allele. We performed Monte Carlo simulations to determine powers of the two tests.
Figure b) shows the fraction of trials that passed the p-value threshold after
Bonferroni correction as the allele frequencies in cases were increased keeping the allele
frequencies of control fixed at 0.

This is consistent with greater fraction of sequences in YRI (47.3%) not overlapping
with sites obtained by genotyping compared to TSI (38.7%) as some low frequency
variations in African populations were lost in other populations due to population
bottleneck during the migration out of Africa. However, some false positives may result
due to discrepancies in sequencing depth of the samples and sequencing biases. We
provide scripts to lookup number of individuals with constituent k-mers and leave
dealing with these confounding factors as well as population structure as future work.

Table [I] shows p-values of some of the well known sites of variation between African
and European populations.

HAWK maps associations to different types of variants

HAwk enables mapping associations to different types of variants using the same
pipeline. Figure (a) shows breakdown of types of variants found associated with YRI
and TSI populations. The ‘Multiple SNPs/Structural’ entries correspond to sequences
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Table 1. Known variants in YRI-TSI comparison.

Gene SNP ID Description Allele | p-value %YRI | %TSI
ACKRI1 | 152814778 | Duffy antigen C 9.72x10~ 1% | 84.39% | 1.78%
SLC24A5 | rs1426654 | Skin pigmentation G 8.45x10~ M4 | 87.39% | 1.02%
SLC45A2 | 1516891982 | Skin/hair color C 1.89x107122 | 92.18% | 4.67%
G6PD 11050829 | G6PD deficiency C 1.53x1072° | 24.92% | 1.02%
G6PD 151050828 | G6PD deficiency T 5.83x1072° | 18.32% | 0.00%

Table [I] shows p-values of sequences at some well known sites of variation between

populations. The (%) values denote fraction of individuals in the sample with the allele
present. The p-values and % values are averaged over k-mers constituting the associated

sequences.

of length greater than 61 (the maximum length of a sequence due to a single SNP with
k-mer size of 31). In addition to SNPs we find associations to sites with indels and
structural variations. Furthermore, we find sequences that map to multiple regions in
the genome indicating copy number of variations or sequence variation in repeated
regions where genotype calling is known to be difficult. Although the majority of the
sequences map outside of genes, we find variants in genes including in coding regions

(Figure [3[b)).
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Figure 3. Breakdown of types of variations in comparison of YRI-TSI . (a) Bars showing breakdown of
2,970,929 and 1,865,285 sequences associated with YRI and TSI samples respectively. The ‘Multiple SNPs/Structural’
entries correspond to sequences of length greater than 61, the maximum length of a sequence due to a single SNP with
k-mer size of 31 and ‘SNPs’ correspond to sequences of maximum length of 61. (b) Numbers of sequences with alignments
to hg38, RefSeq mRNAs and Ensembl exons and coding regions.

We performed similar analysis on sequencing reads available from 87 BEB and 110
TSI individuals from the 1000 genomes project and obtained 529,287 and 462,122
sequences associated with BEB and TSI samples respectively, much fewer than the
YRI-TSI comparison. shows breakdown of probable variant types corresponding
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to the sequences found associated with BEB and TSI samples.

Histograms of sequence lengths show , peaks at 61bp which is the
maximum length corresponding to a single SNP for k-mer size of 31. We also see drops
off after 98bp in all cases providing evidence for multinucleotide mutations (MNMs)
reported in [21] since this is the maximum sequence length we can get when k-mers of
size 31 are assembled with minimum overlap of 24.

HAWK reveals sequences not in the human reference genome.

As HAWK is an alignment free method for mapping associations, it is able to find
associations in regions that are not in the human reference genome. The analysis
resulted in 94,795 and 66,051 sequences of lengths up to 2,666bp and 12,467bp
associated with YRI and TSI samples respectively that did not map to the human
reference genome. Similarly BEB-TSI comparison yielded 19,584 and 18,508 sequences
with maximum lengths of 1761bp and 2149bp associated with BEB and TSI respectively.

We found that few of the sequences associated with TSI samples some as long as
12kbp and 2kbp in comparisons against YRI and BEB respectively that mapped to the
Epstein—Barr virus (EBV) genome, strain B95-8 [GenBank: V01555.2]. EBV strain
B95-8 was used to transform B cells into lymphoblastoid cell lines (LCLs) in the 1000
Genomes Project and is a known contaminant in the data [22].

Table [2| summarizes the sequences that could not be mapped to either the human
reference genome or the Epstein-Barr virus genome using Bowtie2. Although an
exhaustive analysis of all remaining sequences using BLAST is difficult, we find
sequences associated with YRI that do not map to the human reference genome (hg38)
with high score but upon running BLAST aligned to other sequences from human (for
example to [GenBank: AC205876.2] and some other sequences reported by Kidd et
al. [23]). We also find sequences with no significant BLAST hits to human genomic
sequences some with hits to closely related species. Similarly, we find sequences
associated with TSI aligning to human sequences such as [GenBank: AC217954.1] not
in the reference. Although there are much fewer long sequences obtained in the
BEB-TSI comparison, we find sequences longer than 1kbp associated with each
population with no BLAST hit.

Table 2. Summary of sequences not in the human reference genome.

Population | Population Total no. | No. sequences | Total length in | No. sequences | Total length in
compared to | sequences with sequences with with sequences with
length>1000bp| length>1000bp | length>200bp length>200bp
YRI TSI 94,795 41 59,956 478 225,426
TSI YRI 66,051 10 13,896 184 77,383
BEB TSI 19,584 3 3,835 75 33,954
TSI BEB 18,508 2 2,105 81 28,134

Table [2[ shows summary of sequences associated with different populations that did not map to the human reference genome
(hg38) or to the Epstein-Barr virus genome.

Differential prevalence of variants in genes linked to CVDs in

BEB-TSI comparison.

We noted that cardiovascular diseases (CVD) are a leading cause of mortality in
Bangladesh [24] and age standardized death rates from CVDs in Bangladesh is higher
compared to Italy [24]. Moreover, South Asians have high rates of acute myocardial
infarction (MI) or heart failure at younger ages compared to other populations and in

PLOS

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209


https://doi.org/10.1101/141267
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/141267; this version posted July 19, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC 4.0 International license.

several countries migrants from South Asia have higher death rates from coronary heart
disease (CHD) at younger ages compared with the local population [25,26] and
according to the INTERHEART Study, the mean age of MI among the poeple from
Bangladesh is considerably lower than non-South Asians and the lowest among South
Asians [27],28]. This motivated us to explore probable underlying genetic causes.

The sequences of significant association with the BEB sample were aligned to RefSeq
mRNAs and the ones mapping to genes linked to CVDs [29] were analyzed. Table
shows non-synonymous variants in such genes that are significantly more common in the
BEB sample compared to the TSI sample. It is worth mentioning that the ‘C’ allele at
the SNP site, rs1042034 in the gene Apolipoprotein B (ApoB) has been associated with
increased levels of HDL cholesterol and decreased levels of Triglycerides [30] in
individuals of European descent but individuals with the ‘CC’ genotype have been
reported to have higher risk of CVDs in an analysis of the data from the Framingham
Heart Study [31]. The SNP rs676210 has also been associated with a number of
traits [32,|33]. Both alleles of higher prevalence in BEB at those sites have been found to
be common in familial hypercholesterolemia patients in Taiwan [34]. On the other hand,
prevalence of the risk allele, ‘T’ at rs3184504 in the gene SH2B3 is higher in TSI
samples compared to BEB samples.

We also observe a number of sites in the gene Titin (TTN) of differential allele
frequencies in BEB and TSI samples (S1 Table]). However, TTN codes for the largest
known protein and although truncating mutations in TTN are known to cause dilated
cardiomyopathy [35H37], no such effect of other kinds of mutations are known.

Table 3. Variants in genes linked to cardiovascular diseases.

Gene SNP ID Variant type Allele | p-value %BEB | %TSI
APOB rs2302515 Missense C 1.30x10~2 | 29.29% 8.37%
APOB 1676210 Missense A 7.73x1072° | 72.93% | 33.08%
APOB rs1042034 Missense C 2.28x1072% | 68.67% | 31.91%
CYP11B2 | rs4545 Missense T 1.31x1072% | 31.33% | 0.91%
CYP11B1 | rs4534 Missense T 9.36x10736 | 33.00% 0.91%
WNK rs2290041 Missense T 1.53x10714 | 13.24% 0.47%
WNK/ rsbh 781437 Missense T 1.30x10712 | 15.21% 0.91%
SLC12A3 | rs2289113 Missense T 7.40x10713 8.14% 0.00%
SCNNI1A | rs10849447 Missense C 8.67x1071% | 62.88% | 39.92%
ABO - 4bp (CTGT) deletion - 1.17x10713 | 29.15% | 10.55%
ABO rs8176741 Missense A 2.06x10716 | 27.70% 8.45%
SH2B3 rs3184504 Missense C 8.22x1072% | 92.88% | 63.87%
RAII 1s3803763 Missense C 1.32x107'2 | 75.86% | 51.17%
RAII rs11649804 Missense A 1.95x10719 | 81.57% | 52.79%

Variants in genes linked to cardiovascular diseases found to be significantly more common in
BEB sample compared to TSI sample.The (%) values denote fraction of individuals in the
sample with the allele present. The p-values and % values are averaged over k-mers constituting
the associated sequences.

Discussion

In this paper, we presented an alignment free method for association mapping from
sequencing reads. It is based on finding k-mers that appear significantly more times in
one set of samples compared to the other and then locally assembling those k-mers.
Since this method does not require a reference genome, it is applicable to association
studies of organisms with no or incomplete reference genome. Even for human our
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method is advantageous as it can map associations in regions not in the reference or
where variant calling is difficult.

We tested our method by applying it to data from the 1000 genomes project and
comparing the results with the results obtained using the genotypes called by the
project as well as using simulated data. We observe that more than 80% of the sites
found using genotype calls are covered by some sequence obtained by our method while
also mapping associations to regions not in the reference and in repetitive areas.
Moreover, simulations suggest tests based on k-mer counts have more power than those
based number of copies of an allele present at some site.

Breakdown analysis of the sequences found in pairwise comparison of YRI, TSI and
BEB, TSI samples reveals that this approach allows mapping associations to SNPs,
indels, structural and copy number variations through the same pipeline. In addition we
find 2-4% of associated sequences are not present in the human reference genome some
of which are longer than 1kbp. The YRI, TSI comparison yields almost 60kbp sequence
associated with the YRI samples in sequences of length greater than 1kbp alone. This
indicates populations around the world have regions in the genome not present in the
reference emphasizing the importance of a reference free approach.

We explored variants in genes linked to cardiovascular diseases in the BEB, TSI
comparison as South Asians are known to have a higher rate of mortality from heart
diseases compared to many other populations. We find a number of non-synonymous
mutations in those genes are more common in the BEB samples in comparison to the
TSI ones underscoring the importance of association studies in diverse populations. The
SNP rs1042034 in the gene Apolipoprotein B (ApoB) merits particular mention as the
CC genotype at that site has been associated with higher risk of CVDs.

The results on simulated data and real data from the 1000 genomes project provide
a proof of principle of this approach and motivate extension of this method to
quantitative phenotypes and correction for population structure and other confounding
factors and then application to association studies of disease phenotypes in humans and
other organisms.

Supporting Information

S1 Text

Additional details. Contains additional details about the method and all supporting
figures and tables.

S1 Fig

Sensitivity with simulated E. coli data. The figure shows sensitivity for varying
number of case and control samples for different types of mutations. Sensitivity is
defined as the percentage of differing nucleotides that are covered by a sequence. All of
the sequences covered some location of mutation.

S2 Fig

Power for different k-mer coverages. The figure shows power to detect a k-mer
present in all case samples and no control sample against total k-mer coverage of cases
using Bonferroni correction for different number of total tests for p-value=0.05.

S3 Fig

Breakdown of types of variations in BEB-TSI comparison. (a) Bar plots
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showing breakdown of 529,287 and 462,122 sequences associated with BEB and TSI
samples respectively. The ‘Multiple SNPs/Structural’ entries correspond to sequences of
length greater than 61, the maximum length of a sequence due to a single SNP with
k-mer size of 31 and ‘SNPs’ correspond to sequences of maximum length of 61. (b)
Numbers of sequences with alignments to hg38, RefSeq mRNAs and Ensembl exons and
coding regions.

S4 Fig

Histograms of sequence lengths in YRI-TSI comparison. Figures show sections
of histograms of lengths of sequences associated with (a),(c) YRI and (b),(d) TSI in
comparison of YRI and TSI samples. Figures (a), (b) show peaks at 61, the maximum
length corresponding to a single SNP with k-mer size of 31. Figures (c), (d) show drop
off after 98 which is the maximum length corresponding to two close-by SNPs as
31-mers were assembled using a minimum overlap of 24.

S5 Fig

Histograms of sequence lengths in BEB-TSI comparison. Figures show
sections of histograms of lengths of sequences associated with (a),(c) BEB and (b),(d)
TSI in comparison of BEB and TSI samples. Figures (a), (b) show peaks at 61, the
maximum length corresponding to a single SNP with k-mer size of 31. Figures (c), (d)
show drop off after 98 which is the maximum length corresponding to two close-by
SNPs as 31-mers were assembled using a minimum overlap of 24.

S1 Table

Variants in Titin of differential prevalence in BEB-TSI comparison. Variants
in Titin, a gene linked to cardiovascular diseases, that were found to be significantly
more common in BEB samples compared to TSI samples. The (%) values denote
fraction of individuals in the sample with the allele present. The p-values and % values
are averaged over k-mers constituting the associated sequences.
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