

1 Serial quantification of brain oxygenation in acute stroke using streamlined-

2 qBOLD

3

4 Alan J Stone¹, George WJ Harston², Davide Carone², Thomas W Okell¹, James
5 Kennedy², Nicholas P Blockley¹

6

⁷ ¹ Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of
⁸ Clinical Neurosciences, University of Oxford, Oxford, United Kingdom

⁹ ²Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of
¹⁰ Oxford, Oxford, United Kingdom

11

12 **Running title:** Serial quantification of oxygenation in stroke using streamlined-

13 qBOLD

14 Word count 4527

15 **Address for correspondence:** Alan Stone, Wellcome Centre for Integrative

16 Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of
17 Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.

¹⁸ E-mail address: alan.stone@ndcn.ox.ac.uk

1 Abstract

2 It has been proposed that metabolic markers of baseline brain oxygenation have a
3 role to play in the early identification of the ischemic penumbra. Streamlined-qBOLD
4 is a magnetic resonance imaging technique that does not require exogenous
5 contrast. It is a refinement of the quantitative BOLD methodology that provides a
6 simplified approach to mapping and quantifying baseline brain oxygenation related
7 parameters (reversible transverse relaxation rate (R_2'), deoxygenated blood volume
8 (DBV) and deoxyhaemoglobin concentration ([dHb])) in a clinically relevant manner.
9 Streamlined-qBOLD was applied to an exploratory cohort of acute stroke patients in
10 a serial imaging study. Detailed voxel-level analysis was used to quantify the
11 metabolic profile of ischaemic tissue on presentation and investigate these metrics in
12 relation to tissue outcome. Individual patient examples illustrate the appropriate
13 interpretation of R_2' , DBV and [dHb] in acute stroke and demonstrate the ability of
14 this method to deliver regional information related to oxygen metabolism in the
15 ischaemic tissue. Regional analysis confirms that R_2' , DBV and [dHb] vary between
16 regions of ischaemia with different tissue outcomes.

17

1 **Introduction**

2 Ischaemic stroke is characterised by restricted blood supply to regions of tissue that
3 may ultimately result in infarction. However, the brain can tolerate a limited reduction
4 in perfusion if tissue oxygenation levels can be preserved. Therefore, techniques to
5 map brain oxygenation in the acute phase of stroke may help to identify viable tissue
6 that requires intervention to minimise the final infarct volume (Astrup et al., 1981).

7 Positron Emission Tomography (PET) is the current benchmark for imaging oxygen
8 metabolism in acute stroke (Ackerman et al., 1981; Baron, 1999) but this technique
9 requires specialist expertise and equipment, and is not widely available in clinical
10 settings.

11

12 Magnetic resonance imaging (MRI) has the potential to be a viable alternative to
13 PET that is more widely available. Measurements related to oxygen metabolism are
14 made possible by the inherent sensitivity of the transverse MR relaxation rate (R_2^*)
15 to deoxyhaemoglobin. R_2^* ($= R_2 + R_2'$) is composed of the irreversible (R_2) and
16 reversible (R_2') transverse relaxation rates with respect to a spin echo. As changes in
17 R_2 (and hence R_2^*) are known to be affected by numerous factors aside from tissue
18 oxygenation (An et al., 2014; 2012), R_2' is predicted to have better specificity to
19 baseline brain oxygenation (Yablonskiy and Haacke, 1994). This sensitivity has
20 previously been exploited to demonstrate that alterations in R_2' are dependent on the
21 final outcome of ischaemic tissue (Bauer et al., 2014; Geisler et al., 2006; Seiler et
22 al., 2012; Siemonsen et al., 2008; Zhang et al., 2011). However, it is well known that
23 R_2' is dependent on both deoxyhaemoglobin concentration ([dHb]) and the
24 deoxygenated blood volume (DBV) (Yablonskiy, 1998), resulting in ambiguity
25 regarding the physiological origin of a measured R_2' alteration. Therefore, the ability

1 to separate $[dHb]$ from R_2' would provide a quantitative physiological metric directly
2 related to tissue oxygenation. To achieve this, knowledge of the underlying DBV is
3 required.

4

5 The quantitative-BOLD (qBOLD) method aims to separate out these physiological
6 terms by modelling the transverse MR signal decay in the presence of a vascular
7 network (An and Lin, 2000; He and Yablonskiy, 2007). These endogenous qBOLD
8 methods are particularly suitable for application in acute stroke as they can be
9 acquired non-invasively in a clinically relevant manner (An et al., 2015; Lee et al.,
10 2003). However, in practice qBOLD techniques require several confounding effects
11 to be considered including the influences of macroscopic field inhomogeneities
12 (MFIs), underlying R_2 -weighting and off-resonance effects of partial volumes of
13 cerebral spinal fluid (CSF). Streamlined-qBOLD (sqBOLD) is a recently proposed
14 refinement of the qBOLD method targeted at minimising the effect of these
15 confounds during data acquisition rather than by post-processing (Stone and
16 Blockley, 2017). By removing these confounding effects from the acquired signal,
17 baseline brain oxygenation maps can be acquired in a rapid acquisition (< 5
18 minutes), without the need for external contrast agents and using a simple analysis
19 pipeline. As such, this approach represents a clinically practical solution for tracking
20 the progression of oxidative metabolism in acute ischaemic stroke.

21

22 The aim of this study is to demonstrate the utility of sqBOLD for identifying regional
23 changes in brain oxygenation during the acute phases of stroke. Here, sqBOLD is
24 applied in a prospective cohort of patients with acute ischaemic stroke. Using
25 detailed voxel-level analysis, the metabolic profile of ischaemic tissue is quantified

- 1 on presentation and regional measures of sqBOLD parameters (R_2' , DBV and [dHb])
- 2 are investigated in relation to tissue outcome.
- 3

1 **Material and Methods**

2 *Patients*

3 Patients with ischaemic stroke were recruited into a prospective observational cohort
4 study regardless of age or stroke severity under research protocols agreed by the
5 UK National Research Ethics Service committees (ref: 13/SC/0362). MRI was
6 performed at presentation, 2 hours, 24 hours, 1 week and 1 month whenever
7 possible. Nine consecutive patients were scanned on presentation. One patient was
8 excluded from further analysis because the final lesion ROI could not be defined (no
9 follow-up scan) and one patient was excluded from further analysis due to
10 haemorrhagic transformation at the time of the presenting MRI leading to no relevant
11 presenting data being acquired. As such, seven patients were included in the final
12 analysis (**Table 1**).

13

14 *Image acquisition*

15 Scanning was performed on a Siemens 3T Verio scanner for all time points.
16 Scanning protocols included diffusion weighted imaging (DWI) (three directions, 1.8
17 x 1.8 x 2.0 mm, field of view = 240 mm², four averages, b = 0 and 1000 s/mm², TR /
18 TE = 9000 / 98 ms, 50 slices, 2 min 53 s) with apparent diffusion coefficient (ADC)
19 calculation; T₁-weighted MP-RAGE for structural imaging (1.8 x 1.8 x 1.0 mm, field of
20 view = 228 mm, TR / TE = 2040 / 4.55 ms, TI = 900 ms, 192 slices, scan duration 3
21 min 58 s); and T₂-weighted FLAIR turbo spin echo (1.9 x 1.9 x 2.0 mm, field of view
22 = 240 x 217.5 mm², TR / TE = 9000 / 96 ms, TI = 2500 ms, 58 slices, scan duration 2
23 min 8 s). A FLAIR-GASE acquisition was used to measure baseline brain
24 oxygenation using the streamlined-qBOLD approach (Stone and Blockley, 2017) (96
25 x 96 matrix, field of view = 220 mm², nine 5 mm slabs consisting of four 1.25 mm

1 sub-slices, 100% partition oversampling, 1 mm slice gap, TR / TE = 3000 / 82 ms,
2 $TI_{FLAIR} = 1210$ ms, ASE-sampling scheme $T_{start} / T_{finish} / \Delta\tau = -16 / 64 / 8$ ms, scan
3 duration 4 min 30 s). FLAIR-GASE consists of three separate components, nulling of
4 CSF partial volumes using FLuid Attenuated Inversion Recovery (FLAIR) (Hajnal et
5 al., 1992), minimisation of MFI using Gradient Echo Slice Excitation Profile Imaging
6 (GESEPI) (Yang et al., 1998) and direct measurement of R_2' using an Asymmetric
7 Spin Echo (ASE) (Wismer et al., 1988). This FLAIR-GESEPI-ASE (FLAIR-GASE)
8 (Blockley and Stone, 2016) acquisition reduces confounding effects and when
9 combined with quantitative modelling offers a streamlined qBOLD approach. For the
10 patient presented in **Figure 3**, perfusion information was acquired on presentation
11 using vessel encoded pseudo-continuous arterial spin labelling (VEPCASL) (EPI
12 readout, $3.4 \times 3.4 \times 4.5$ mm, field of view = 220×220 mm, 24 slices, TR / TE = 4080
13 / 14 ms, Labelling Duration = 1.4 s, Post-labelling Delays = 0.25, 0.5, 0.75, 1, 1.25
14 and 1.5 s, scan duration 5 min 55 s). Post-processing details of VEPCASL data to
15 produce cerebral blood flow (CBF) maps have previously been described (Harston et
16 al., 2017b; Okell et al., 2013).

17

18 *Post-processing*

19 All image analysis was performed using the Oxford Centre for Functional MRI of the
20 Brain (FMRIB) Software Library (FSL) (Jenkinson et al., 2012) and MATLAB
21 (Mathworks, Natick, MA). Full details of the calculation of R_2' , DBV and [dHb]
22 parameter maps from the FLAIR-GASE data have previously been described (Stone
23 and Blockley, 2017). In brief, the τ -series were motion corrected using the FSL linear
24 motion correction tool (MCFLIRT) (Jenkinson et al., 2002) to the spin-echo image.
25 The spin-echo image was brain extracted using the FSL brain extraction tool (BET)

1 (Smith, 2002) to create a binary mask of brain tissue and all remaining τ -weighted
2 volumes were brain extracted using this mask. This data was then fit on a voxel-wise
3 basis to obtain parameter maps of R_2' by using a weighted log-linear fit to the mono-
4 exponential regime ($\tau \geq 16$ ms (Yablonskiy and Haacke, 1994)). The intercept of this
5 fit is in effect the log of the ASE signal at $\tau = 0$ extrapolated from the mono-
6 exponential regime ($\ln(S(\tau = 0)_{\text{extrap}})$). By subtracting the log of the measured spin-
7 echo signal ($\ln(S(\tau = 0 \text{ ms}))$) from this value, parameter maps of DBV can be
8 produced, as previously described (Yablonskiy, 1998) (**Equation 1**).

$$DBV = \ln(S(\tau = 0)_{\text{extrap}}) - \ln(S(\tau = 0)) \quad (1)$$

9
10 Parameter maps of [dHb] were calculated using **Equation 2**, where DBV and R_2'
11 were measured as above and other parameters are known or assumed constants
12 ($\Delta\chi_0 = 0.264 \times 10^{-6}$, $\kappa = 0.03$ (He and Yablonskiy, 2007)).

$$[dHb] = \frac{3 \cdot R_2'}{DBV \cdot 4 \cdot \gamma \cdot \pi \cdot \Delta\chi_0 \cdot \kappa \cdot B_0} \quad (2)$$

13
14 *Regions of interest*
15 The presenting infarct region of interest (ROI) was defined using the presenting
16 apparent diffusion coefficient (ADC) parameter map and a previously described
17 clustering method (Harston et al., 2015), as follows. Binary masks of presenting ADC
18 lesions were automatically generated using a threshold-defined ($620 \times 10^{-6} \text{ mm}^2/\text{s}$)
19 (Purushotham et al., 2015) cluster-based analysis of the ADC data. The ROI cluster
20 was identified and smoothed (Gaussian kernel of standard deviation 1 mm) and
21 followed by repeat cluster analysis using the FSL Cluster tool
22 (<http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Cluster>). These automated ADC masks were
23 inspected by a clinician to ensure their accuracy and manually corrected when

1 necessary. The final infarct ROI was manually defined by an independent observer.
2 This was done preferentially using the 1-week T₂-FLAIR image or, if not available,
3 the 24 hour $b = 1000 \text{ s/mm}^2$ DWI image (Harston et al., 2017a).
4 The following tissue outcomes were used in the analysis and were defined from the
5 infarct ROIs in the native space of the sqBOLD parameter maps.
6 • The ischaemic core is tissue common to both the presenting infarct and final
7 infarct.
8 • The infarct growth is tissue present in the final infarct that is not present in the
9 presenting infarct.
10 • The contralateral tissue is defined by a composite mask of the presenting and
11 final infarct tissue mirrored to the contralateral side of the brain.

12

13 *Registration*

14 Registration of imaging modalities within a single time point was achieved using rigid
15 body registration (6 degrees of freedom (DOF)) (Jenkinson and Smith, 2001).
16 Between time point registration was performed using non-linear registration of the
17 T₁-weighted structural scans to limit potential error introduced by edema and atrophy
18 (Harston et al., 2017a). To create contralateral ROIs, the infarct masks were
19 mirrored in standard space following non-linear registration of the T₁-weighted image
20 to a standard atlas (MNI152)(Mazziotta et al., 2001). At each time point, the FLAIR-
21 GASE spin-echo image ($\tau = 0 \text{ ms}$) was registered (6 DOF) to the T₁-structural using
22 the $b = 0 \text{ s/mm}^2$ DWI image as an intermediate registration step.

23

24 *Data extraction and analysis*

1 Voxel values of R_2' , DBV and [dHb] were extracted from the native space of the R_2' ,
2 DBV and [dHb] parameter maps using the ROI definitions of ischaemic core, infarct
3 growth and contralateral tissue.

4

5 *Statistics*

6 For each parameter (R_2' , DBV and [dHb]), differences between the voxel-value-
7 distributions from the tissue outcome ROIs on presentation (infarct core, infarct
8 growth and contralateral tissue) were tested. To test the null hypothesis of no
9 difference between the voxel-value-distributions from the tissue outcome ROIs a
10 Kruskal-Wallis test was used. The Kruskal-Wallis test is a non-parametric version of
11 the classical one-way ANOVA. This non-parametric test was chosen as the
12 distribution of [dHb] values in healthy grey matter made using this technique have
13 been shown to be better represented by the median compared to the mean (Stone
14 and Blockley, 2017). Although the equivalent grey matter distributions of R_2' and
15 DBV are normally distributed, for consistency the same non-parametric test was
16 applied to investigate the distributions of these parameters also.

17

1 **Results**

2 *Group characteristics*

3 Nine consecutive large volume stroke patients were scanned on presentation, seven
4 of which were included in the final analysis (**Table 1**). One patient was excluded from
5 the analysis because the final lesion ROI could not be defined (no follow-up scan)
6 and one patient was excluded from further analysis due to haemorrhagic
7 transformation at the time of the presenting MRI leading to no presenting FLAIR-
8 GASE data being acquired. The median National Institute of Health Stroke Scale at
9 presentation was 12 (range 3 - 25) and the median symptom onset to MRI was 10
10 hours 52 minutes (range 2 hours 20 minutes – 1 day 4 hours 19 minutes). Eight
11 patients received intravenous thrombolysis.

12

13 *Voxel-level analysis*

14 To relate the presenting sqBOLD parameter maps to tissue outcome, the extracted
15 voxel values of R_2' , DBV and [dHb] were pooled across all patients for each tissue
16 outcome ROI. **Figure 1a-c** shows distributions of parameters in each tissue type at
17 the presenting time point and **Figure 1d-f** shows median and interquartile ranges of
18 these distributions via box and whisker plots (whisker length 1.5 x interquartile range,
19 outliers outside the whisker length are not shown). On presentation and for each
20 parameter (R_2' , DBV and [dHb]), the null hypothesis was rejected suggesting that the
21 voxel-value-distributions differed significantly between the tissue outcome ROIs
22 (Kruskal-Wallis test, $p < 0.001$). Following this, post hoc multiple comparisons
23 analysis was used to perform pairwise comparisons of the three tissue outcome
24 ROIs and revealed statistically significant differences between the tissue outcome

1 ROIs for each parameter (infarct core and contralateral tissue; infarct growth and
2 contralateral tissue; infarct core and infarct growth; $p < 0.01$ in all cases).

3

4 *Patient-level analysis*

5 Using extracted voxel values, median R_2' , DBV and [dHb] were calculated for each of
6 the tissue outcome ROIs in each patient. **Figure 2** presents group-average (\pm
7 standard deviation) baseline brain oxygenation measurements for each of the tissue
8 outcome ROIs. No significant differences were found between parameters and tissue
9 outcome using a classical one-way ANOVA or Kruskal-Wallis test. These patient-
10 level measures demonstrate a marked heterogeneity across the group in all
11 parameters and this can be broadly attributed to two sources: physiological variability
12 between patients imaged at different states of ischaemia or reperfusion and noise or
13 error on the sqBOLD measurement. To illustrate the pertinent features of sqBOLD as
14 applied in acute stroke, R_2' , DBV and [dHb] parameter maps are displayed for three
15 example patients (**Figures 3 – 5**).

16

17 *sqBOLD parameter maps: Individual examples*

18 For each example patient, R_2' , DBV and [dHb] parameter maps are presented
19 alongside T1-structural and DWI ($b = 1000$ s/mm 2 and ADC maps) images.
20 Ischaemic core, infarct growth and contralateral tissue ROIs are displayed on the
21 spin-echo image of the sqBOLD acquisition.

22

23 The images in **Figure 3** were acquired on presentation (2 hours 20 minutes post-
24 onset) and 24 hours after presentation. On presentation, an apparent lesion is visible
25 on the $b = 1000$ s/mm 2 and ADC maps. The presenting R_2' parameter map shows a

1 large region of elevated R_2' in the area surrounding the presenting DWI lesion, which
2 goes on to infarct. At the follow up imaging time point (24 hours), the DWI lesion has
3 grown to include the region that was elevated on the presenting R_2' parameter maps.
4 The elevation in R_2' indicates an increase in the presence of deoxyhaemoglobin in
5 this region which is driven by increases in DBV and/or [dHb], as seen in the
6 accompanying parameter maps. In contrast to the large elevated region of R_2' there
7 is a region of reduced R_2' that coincides with the presenting DWI lesion. The
8 measure of R_2' in this region appears to decrease between the presenting and
9 follow-up imaging time points.

10

11 **Figure 4** shows images acquired from a second sample patient scanned on
12 presentation (28 hours 20 minutes post onset), with follow up scanning performed at
13 38 hours and 1 month after presentation. A heterogeneous pattern of elevated signal
14 can be seen on the sqBOLD parameter maps that coincide with the DWI lesion
15 suggesting the presence of deoxyhaemoglobin in at least some regions of the
16 diffusion lesion. In the presenting time point, apparent elevations in R_2' are visible in
17 regions containing CSF. This can be ascribed to unsuccessful CSF suppression due
18 to significant head motion.

19

20 **Figure 5** shows images acquired from a sample patient scanned on presentation (13
21 hours 49 minutes post onset), with follow up scanning performed at 24 hours and 1
22 week after presentation. On presentation, there is an obvious deep grey matter
23 lesion on the affected side of the brain that is clearly visible on the $b = 1000 \text{ s/mm}^2$
24 image. However, the presenting R_2' parameter maps show bilateral elevations in R_2'
25 on both the affected and unaffected sides. These deep grey matter structures are

1 known to have high iron content and the presence of this iron causes an elevation in
2 R_2' that is unrelated to oxygenation and confounds the oxygenation measurement
3 that is made within this region. This highlights the importance of considering sources
4 of susceptibility other than deoxyhaemoglobin in the locality of the region of interest.
5

1 **Discussion**

2 In the acute phases of stroke, sqBOLD is shown to provide metabolic information
3 that is indicative of the viability of ischaemic tissue. Serial-imaging from example
4 patient cases and detailed regional analysis demonstrate that R_2' , DBV and $[dHb]$
5 are sensitive to oxygenation related changes in ischaemic tissues with varying
6 outcomes. Significant pairwise differences in voxel distributions were observed
7 between the regional tissue ROIs using multiple comparisons analysis for R_2' , DBV
8 and $[dHb]$ (infarct core and contralateral tissue; infarct growth and contralateral
9 tissue; infarct core and infarct growth; $p < 0.01$ in all cases). Median distribution
10 values for all parameters increased in the ischaemic regions (ischaemic core and
11 infarct growth) when compared to healthy tissue on the contralateral side (**Figure 1**).
12 The most obvious increase is seen in R_2' and this is driven by a statistically
13 significant increase in both deoxyhaemoglobin volume fraction (DBV) and
14 concentration ($[dHb]$).

15

16 *Ischaemic penumbra*

17 The definition of the infarct growth region used in this study is expected to be
18 spatially and metabolically consistent with the ischaemic penumbra. In this region, an
19 increase in $[dHb]$ is anticipated in order to maintain the rate of oxygen metabolism in
20 tissue that is experiencing restricted blood flow. The potential of sqBOLD to detect
21 these changes was demonstrated by the statistically significant increase in $[dHb]$
22 measured in the infarct growth ROIs across the group (**Figure 1**) (multiple
23 comparisons analysis, $p < 0.01$). The spatial correspondence of the sqBOLD
24 parameter maps with the infarct growth ROI can also be observed at the individual
25 patient level (**Figure 3**). At presentation, R_2' , DBV and $[dHb]$ are elevated in regions

1 that correspond to the infarct growth ROI. The CBF parameter map, acquired in this
2 patient on presentation, demonstrates a large region of decreased CBF that
3 coincides with the elevated regions on the sqBOLD parameter maps. A restriction in
4 flow is expected to result in an elevated oxygen extraction fraction (OEF), which in
5 turn causes an increase in the relative amount of deoxyhaemoglobin produced. As
6 such, the observation of reduced CBF and elevated [dHb] in this patient is
7 suggestive of the early identification of tissue exhibiting the physiological traits of the
8 ischaemic penumbra. This opens up the prospect that concurrent MR based
9 oxygenation and flow imaging can be used to identify tissue at risk of infarction
10 (Astrup et al., 1981). In this patient, infarction occurs in this region at some point
11 between the presenting and follow up scan times as evidenced by the infarct growth
12 ROI (defined from the $b = 1000 \text{ s/mm}^2$ image). Therefore, early identification of
13 penumbral tissue would provide a window of opportunity for interventions that might
14 salvage this tissue.

15

16 *Ischaemic core*

17 From **Figure 1**, larger increases in all parameters were observed in the ischaemic
18 core compared to infarct growth on presentation. This trend appears surprising at
19 first, particularly if the elevated signal in the core is to be associated with the
20 presence of deoxyhaemoglobin as a by-product of ongoing metabolism. The infarct
21 growth region is expected to contain tissue that is metabolically active on
22 presentation but later recruited to the final infarct volume. This is in contrast to the
23 non-viable tissue present in the ischaemic core. However, the elevated brain
24 oxygenation signal measured in the ischaemic core can be explained by a)

1 stationary deoxyhaemoglobin in metabolically inactive regions with no blood supply

2 and b) ongoing metabolism in the diffusion lesion.

3

4 a) *Stationary deoxyhaemoglobin*

5 A similar regional trend in R_2' can be extrapolated from a previous study (Geisler et

6 al., 2006) which looked at comparable tissue outcome ROIs. Here it was proposed

7 that the elevated R_2' in the ischaemic core may result from stationary

8 deoxyhaemoglobin present in vessels without blood supply. In the event of a

9 complete occlusion of flow, stationary haemoglobin beyond the blockage will become

10 fully deoxygenated as the remaining oxygen is metabolised leading to an increase in

11 the amount of deoxyhaemoglobin present. This is likely to be the main contributing

12 factor to the trend seen in **Figure 1**, where the ischaemic core demonstrates the

13 largest elevation in R_2' , DBV and [dHb]. In contrast, R_2' and [dHb] parameter maps in

14 **Figure 3** demonstrate a decrease in the ischaemic core. This may be explained by

15 the presence or restoration of flow to an infarcted region. Here the metabolically

16 inactive tissue does not produce new deoxyhaemoglobin and previously produced

17 deoxyhaemoglobin is removed by blood flow, leading to a decrease in R_2' , DBV and

18 [dHb].

19

20 b) *Ongoing metabolism in the diffusion lesion*

21 Elevated [dHb] and DBV in the ischaemic core may also be explained by

22 observations made using PET, which have shown that regions of ongoing oxygen

23 metabolism are possible within the presenting diffusion lesion (Fiehler et al., 2002;

24 Guadagno et al., 2004; 2006; Kidwell et al., 2000). As such, it is possible that

25 deoxyhaemoglobin production may still be occurring in regions of decreased ADC

1 and contribute towards elevated R_2' in the ischaemic core. Parameter maps shown in
2 **Figure 4** are consistent with the heterogeneous pattern of blood oxygenation within
3 the diffusion lesion observed using PET, but cannot be confirmed due to a lack of
4 blood flow information.

5

6 *Interpretability of [dHb] and OEF*

7 It is evident that the relaxometry based method used in this study is sensitive to
8 deoxyhaemoglobin regardless of the patency of the blood supply and can therefore
9 exhibit elevated R_2' in the ischaemic core. As such, knowledge of the local blood
10 supply is important to distinguish stationary deoxyhaemoglobin present in infarcted
11 tissue from active tissue with an elevated metabolism. This motivated the calculation
12 of [dHb] rather than OEF to avoid the false interpretation of a high R_2' as elevated
13 oxygen extraction in the absence of flow information. This sensitivity to stationary
14 deoxyhaemoglobin also reconciles the apparent differences between PET and BOLD
15 based measurements (Geisler et al., 2006). In PET the oxygen sensitive tracer is
16 prevented from being delivered to the ischaemic core, meaning that signal is not
17 detected there and reduced oxygen metabolism is inferred. This is in contrast to
18 BOLD based measurements, which don't rely on the arrival of a tracer and hence the
19 presence of deoxyhaemoglobin will still cause an increase in R_2' .

20

21 *Confounds: Non-deoxyhaemoglobin related elevations in R_2' and patient-motion*
22 Streamlined-qBOLD is sensitive to other sources of susceptibility in the brain not
23 related to deoxyhaemoglobin and care must be taken when interpreting elevations in
24 signal. Ferritin and myelin are known sources of susceptibility that can confound the
25 accurate quantification of brain oxygenation with this method and are of particular

1 relevance as both can vary during ageing and in different pathologies. **Figure 5**
2 shows bilateral elevations in R_2' on both the affected and unaffected sides of the
3 brain due to the high iron content of the deep grey matter structures. The presenting
4 [dHb] map appears elevated in deep grey matter on the affected side, pointing
5 towards the importance of interpreting the R_2' , DBV and [dHb] parameter maps in
6 combination, as well as being aware of non-oxygen related sources of susceptibility
7 in the locality of the region of interest.

8

9 Significant head-motion during imaging is a challenge in acute stroke patients.
10 Despite the segmented nature of the FLAIR-GASE acquisition, image artefacts were
11 minimal. However, large head motions did impact the accuracy of the FLAIR CSF
12 suppression. Slice selective inversion recovery pulses were used to optimise CSF
13 suppression for each slice. However, large head motions between this FLAIR
14 preparation and image acquisition resulted in ineffective removal of the CSF signal.
15 This is evident in the presentation parameter maps in **Figure 4**, where elevated
16 signal can be seen within the ventricles, particularly in the R_2' map. As the presence
17 of CSF signal can lead to apparent elevations in R_2' not related to oxygenation, it
18 may obscure the oxygenation changes within the diffusion lesion on presentation
19 (Dickson et al., 2009; He and Yablonskiy, 2007; Simon et al., 2016). However, it is
20 encouraging that heterogeneous patterns of oxygenation can be seen within the
21 diffusion lesion at the follow-up imaging time points where CSF suppression was
22 effective.

23

24 *Group heterogeneity, flow and further work*

1 From the patient-level analysis (**Figure 2**), considerable heterogeneity was apparent
2 across the group, meaning regional trends in R_2' , DBV and [dHb] were not
3 significantly different. The heterogeneity in regional parameters across the group can
4 be attributed, at least in part, to the differences in onset to scan time (**Table 1**) and
5 differences in the perfusion and reperfusion status of the ischaemic tissue. As such,
6 it is difficult to hypothesise the expected metabolic state of this tissue on
7 presentation, but it is likely to be varied across the group, with each patient
8 potentially undergoing a different pathway to infarction (del Zoppo et al., 2011). This
9 is supported by the high coefficient of variation across subjects measured in the
10 infarct growth region, particularly for DBV and [dHb] (**Figure 2**).

11
12 The absence of comprehensive perfusion information is a distinct limitation of this
13 study. Non-invasive MRI measures of blood flow can be routinely made using arterial
14 spin labelling (ASL) (Harston et al., 2017b) and **Figure 3** provides a demonstration of
15 how flow and oxygenation measurements can be used to provide a unique insight
16 into tissue viability. Conversely, the information provided by sqBOLD should also aid
17 the interpretation of ASL CBF measurements, since low flow does not always
18 progress to infarction in regions experiencing benign oligaemia (Kidwell et al., 2003).
19 Finally, in combination CBF and [dHb] measurements would allow for the calculation
20 of the cerebral metabolic rate of oxygen consumption (CMRO₂) (Blockley et al.,
21 2015). This has been shown to improve tissue outcome prediction and may partly
22 explain the variability seen in the presenting sqBOLD oxygenation measurements
23 (An et al., 2015).

24

1 Despite the heterogeneity of the observed signal, both between and within
2 individuals, the pooled voxel-wise analysis (**Figure 1**) and the individual examples
3 (**Figures 3 - 5**) demonstrate the potential of R_2' , DBV and [dHb] for investigating
4 oxidative metabolism within the ischaemic penumbra. The identification of tissue
5 outcomes based solely on measurements from this method don't currently appear
6 possible, as evidenced by the considerable overlap between tissue outcome
7 distributions in **Figure 1**. However, Kruskal-Wallis tests and post hoc multiple
8 comparisons analysis found significant differences between these distributions
9 suggesting that tissue outcome is dependent on tissue oxygenation and that the
10 parameter maps derived from sqBOLD are sensitive to identifying this information on
11 presentation. As such, sqBOLD provides complimentary information to existing
12 imaging modalities such as DWI and ASL and the combination of this information
13 may allow for earlier identification of tissue under metabolic stress during the acute
14 phases of stroke (An et al., 2015).

15
16 In addition, this study supports the further investigation of sqBOLD in a larger scale
17 study and highlights the importance of controlling for onset to scan time and tissue
18 perfusion status. The non-invasive, quantitative nature of this method also means it
19 is suitable for longitudinally monitoring stroke evolution and may provide unique
20 insight into the various pathways to infarction and recovery, as well as providing
21 valuable biomarkers with which to assess treatment and intervention.

22

1 **Conclusion**

2 Streamlined-qBOLD was used to acquire information about oxidative metabolism in
3 a cohort of acute ischaemic stroke patients, which is complimentary to conventional
4 MRI methodologies. It was found that resting brain oxygenation related parameters
5 (R_2' , DBV and [dHb]) vary between regions with different tissue outcomes. The
6 appropriate implementation of R_2' , DBV and [dHb] parameter maps has the potential
7 to refine the identification of the ischemic penumbra.

8

9 **Acknowledgements**

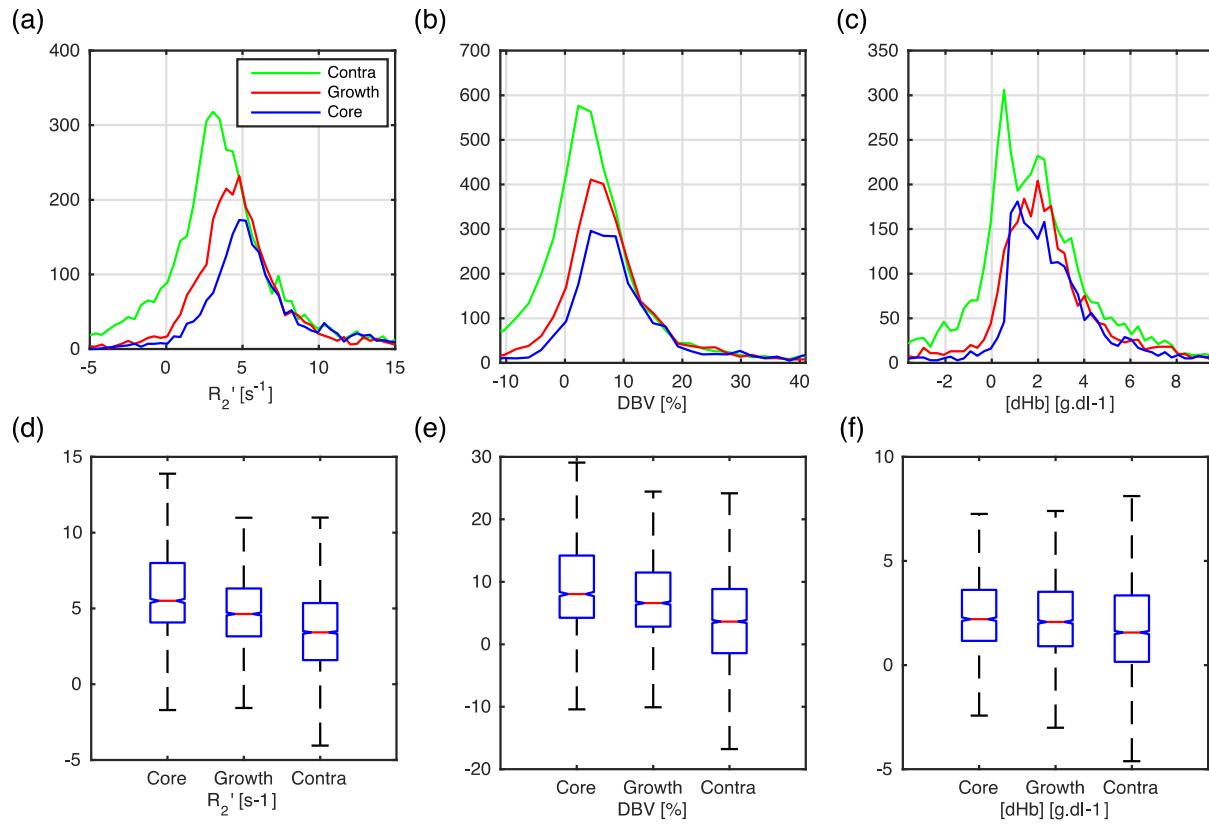
10 This work was supported by the Engineering and Physical Sciences Research
11 Council [grant number EP/K025716/1], the National Institute of Health Research
12 Biomedical Research Centre Oxford, the National Institute of Health Research
13 Clinical Research Network, the Royal Academy of Engineering, the Dunhill Medical
14 Trust [grant number: OSRP1/1006] and the Wellcome Trust Institutional Strategic
15 Support Fund (2014-2015). We also wish to acknowledge the staff and facilities
16 provided by the Oxford Acute Vascular Imaging Centre.

17

18 **Appendix A. Supplementary data**

19 The parameter maps and ROIs that underpin **Figures 1 - 5** can be accessed via the
20 Oxford Research Archive repository, doi:
21 <http://dx.doi.org/10.5287/bodleian:VYmwzrzpd> alongside scripts which can be used
22 to reproduce the charts in **Figure 1 & 2** doi: <http://dx.doi.org/10.5281/zenodo.833474>

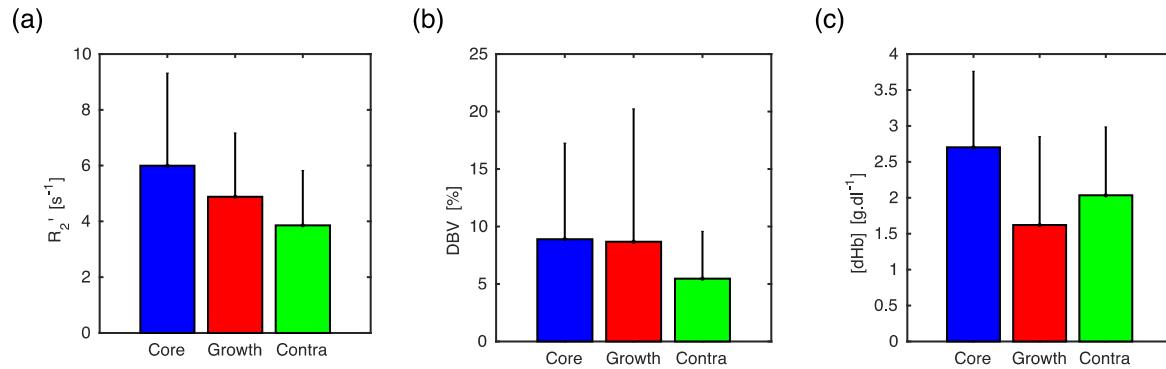
23


1 **Table 1:** Patient characteristics.

Patient	Stroke syndrome	Hemisphere	Sex	Age	NIHSS	Thrombolyzed	Onset to Scan	Follow scan times
P01*	PACs	Right	F	76	25	Y	00:02:29	24hrs, 1wk, 1mth
P02*	TACS	Right	F	90	19	Y	00:08:00	-
P03	PACs	Right	F	69	6	Y	00:10:52	1wk, 1mth
P04	LACS	Right	M	76	10	Y	00:13:44	1wk, 1mth
P05	POCS	Left	M	68	3	Y	00:04:11	2hrs, 1wk, 1mth
P06	TACS	Left	M	79	14	Y	00:02:20	24hrs
P07	POCS	Left	M	68	12	Y	00:19:33	24hrs
P08	PACs	Right	M	78	4	N	01:04:19	24hrs (38hrs), 1mth
P09	PACs	Right	M	87	19	Y	00:13:49	24hrs, 1wk

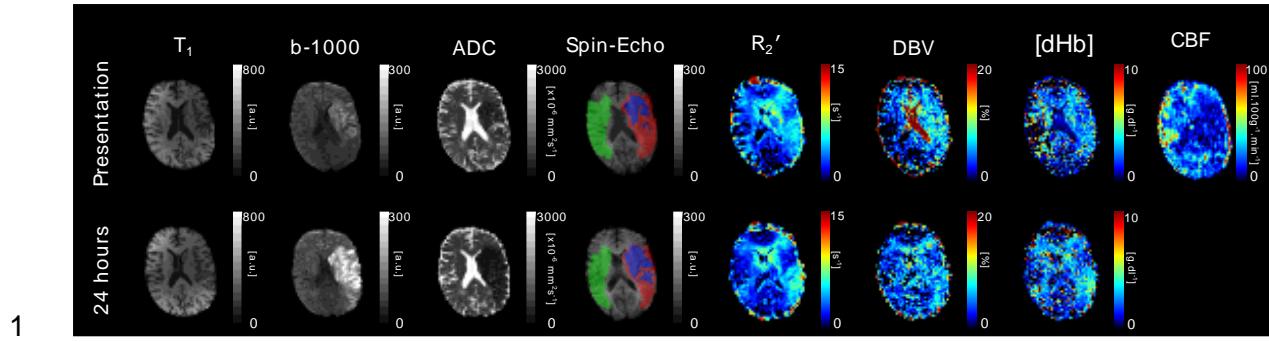
2 NIHSS = National Institute of Health Stroke Scale; LACS = lacunar stroke; TACS = total anterior circulation stroke; PACS = partial anterior circulation stroke; POCS = posterior circulation stroke; NA = not available.

* Patient excluded from voxel-level and patient-level analysis.


1 **Figures**

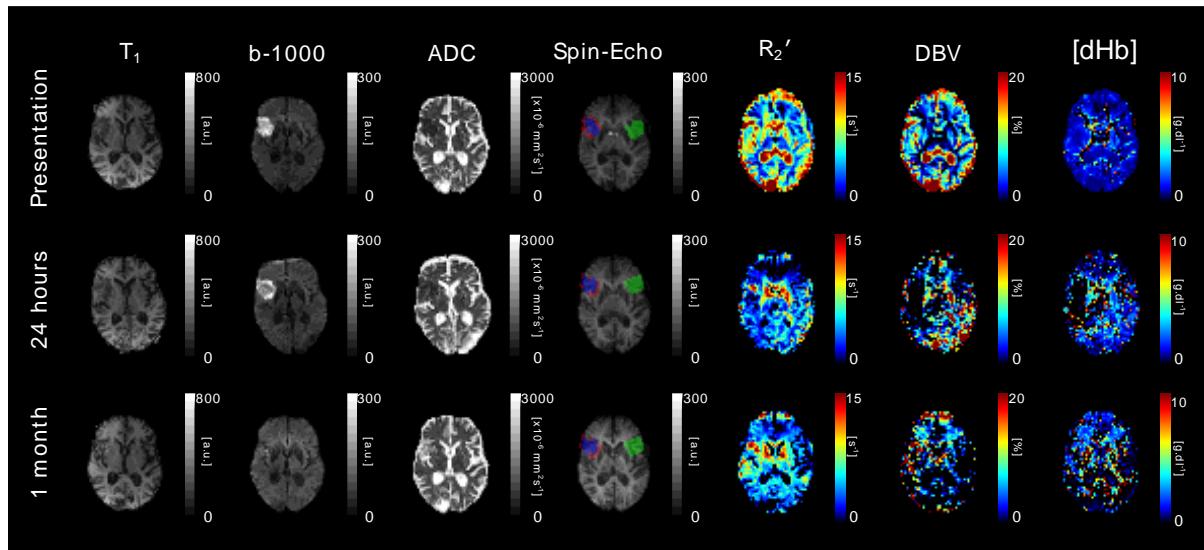
2

3 **Figure 1:** Box and Whisker plot and histograms showing voxel-level analysis of the
4 tissue outcome from presenting time points. For each parameter (R_2' , DBV and
5 [dHb]) at presentation, the null hypothesis was rejected suggesting that the voxel-
6 value-distributions differed between the tissue outcome ROIs (Kruskal-Wallis test, p
7 < 0.001 in all cases). Post hoc multiple comparisons analysis showed statistically
8 significant pairwise differences between the tissue outcome ROIs (infarct core and
9 contralateral tissue; infarct growth and contralateral tissue; infarct core and infarct
10 growth; $p < 0.01$ in all cases) for each parameter.


11

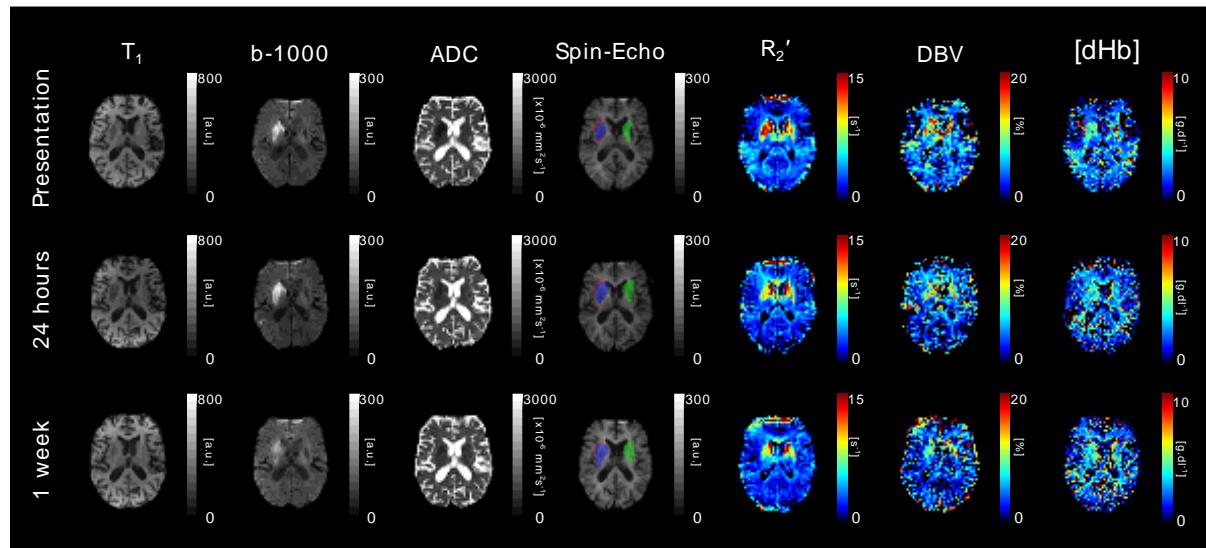
1

2 **Figure 2:** Patient-level, group average values showing tissue outcome from
3 presenting time points. Statistical tests failed to reject the null hypothesis (p
4 threshold = 0.05), finding no difference between the tissue outcome ROIs for any of
5 the parameters (R_2' , DBV and $[dHb]$).


6

1 **Figure 3:** T₁, DWI (b = 1000 s/mm² and ADC) and streamlined-qBOLD parameter
2 maps (R₂', DBV and [dHb]) are presented for a single axial slice in an example
3 patient. Presenting blood flow information is displayed in the form of a CBF map.
4 Core (blue), growth (red) and contralateral (green) tissue outcome ROIs are
5 displayed on the spin-echo image of the streamlined-qBOLD acquisition. Patient P06
6 (Male, 79 years old, NIHSS = 14, thrombolysis at 1 hour 24 minutes post onset) was
7 scanned on presentation (2 hours 20 minutes post onset) and again at 24 hours. On
8 presentation, the DWI lesion is surrounded by areas of elevated R₂', DBV and [dHb].
9 These regions are later recruited to the 24 hour DWI lesion.

10
11


1

2

3 **Figure 4:** T_1 , DWI ($b = 1000 \text{ s/mm}^2$ and ADC) and streamlined-qBOLD parameter
4 maps (R_2' , DBV and $[dHb]$) are presented for a single axial slice in an example
5 patient. Core (blue), growth (red) and contralateral (green) tissue outcome ROIs are
6 displayed on the spin-echo image of the streamlined-qBOLD acquisition. Patient P08
7 (Male, 78 years old, NIHSS = 4, no IV thrombolysis) was scanned on presentation
8 (28 hours 20 minutes post onset) and again at 38 hours and 1 month post initial
9 scan. The R_2' maps both show a heterogeneous pattern within the DWI lesion.

10

Figure 5: T_1 , DWI ($b = 1000 \text{ s/mm}^2$ and ADC) and streamlined-qBOLD parameter maps (R_2' , DBV and $[dHb]$) are presented for a single axial slice in an example patient. Core (blue), growth (red) and contralateral (green) tissue outcome ROIs are displayed on the spin-echo image of the streamlined-qBOLD acquisition. Patient P09 (Male, 87 years old, NIHSS = 19, IV thrombolysis 3 hours 28 minutes post onset) was scanned on presentation (13 hours 49 minutes post onset) and again at 24 hours and 1 week post initial scan. Elevated R_2' matches the DWI lesion in the basal ganglia, though partly obscured by the bilateral elevation of R_2' . $[dHb]$ maps delineate the DWI lesion more clearly from the normal contralateral hemisphere.

11

12

13

1 **References:**

2 Ackerman, R.H., Correia, J.A., Alpert, N.M., Baron, J.C., Gouliamos, A., Grotta, J.C.,
3 Brownell, G.L., Taveras, J.M., 1981. Positron imaging in ischemic stroke disease
4 using compounds labeled with oxygen 15. Initial results of clinicophysiological
5 correlations. *Arch. Neurol.* 38, 537–543.
6 doi:10.1001/archneur.1981.00510090031002

7 An, H., Ford, A.L., Chen, Y., Zhu, H., Ponisio, R., Kumar, G., Shanechi, A.M.,
8 Khouri, N., Vo, K.D., Williams, J., Derdeyn, C.P., Dinger, M.N., Panagos, P.,
9 Powers, W.J., Lee, J.M., Lin, W., 2015. Defining the Ischemic Penumbra Using
10 Magnetic Resonance Oxygen Metabolic Index. *Stroke* 46, E95–E95.
11 doi:10.1161/STR.0000000000000063

12 An, H., Ford, A.L., Vo, K.D., Liu, Q., Chen, Y., Lee, J.-M., Lin, W., 2014. Imaging
13 Oxygen Metabolism in Acute Stroke Using MRI. *Curr Radiol Rep* 2, 39–10.
14 doi:10.1007/s40134-013-0039-3

15 An, H., Lin, W., 2000. Quantitative measurements of cerebral blood oxygen
16 saturation using magnetic resonance imaging. *J Cereb Blood Flow Metab* 20,
17 1225–1236. doi:10.1097/00004647-200008000-00008

18 An, H., Liu, Q., Chen, Y., Vo, K.D., Ford, A.L., Lee, J.-M., Lin, W., 2012. Oxygen
19 metabolism in ischemic stroke using magnetic resonance imaging. *Transl Stroke
20 Res* 3, 65–75. doi:10.1007/s12975-011-0141-x

21 Astrup, J., Siesjö, B.K., Symon, L., 1981. Thresholds in Cerebral-Ischemia - the
22 Ischemic Penumbra. *Stroke* 12, 723–725.

23 Baron, J.C., 1999. Mapping the ischaemic penumbra with PET: Implications for
24 acute stroke treatment. *Cerebrovasc. Dis.* 9, 193–201. doi:10.1159/000015955

25 Bauer, S., Wagner, M., Seiller, A., Hattingen, E., Deichmann, R., Noeth, U., Singer,
26 O.C., 2014. Quantitative T2'-Mapping in Acute Ischemic Stroke. *Stroke* 45,
27 3280–3286. doi:10.1161/STROKEAHA.114.006530

28 Blockley, N.P., Griffeth, V.E.M., Stone, A.J., Hare, H.V., Bulte, D.P., 2015. Sources
29 of systematic error in calibrated BOLD based mapping of baseline oxygen
30 extraction fraction. *NeuroImage* 122, 105–113.
31 doi:10.1016/j.neuroimage.2015.07.059

32 Blockley, N.P., Stone, A.J., 2016. Improving the specificity of R 2' to the
33 deoxyhaemoglobin content of brain tissue: Prospective correction of macroscopic
34 magnetic field gradients. *NeuroImage* 135, 253–260.
35 doi:10.1016/j.neuroimage.2016.04.013

36 del Zoppo, G.J., Sharp, F.R., Heiss, W.-D., Albers, G.W., 2011. Heterogeneity in the
37 penumbra. *J Cereb Blood Flow Metab* 31, 1836–1851.
38 doi:10.1038/jcbfm.2011.93

39 Dickson, J.D., Williams, G.B., Harding, S.G., Carpenter, T.A., Ansorge, R.E., 2009.
40 Nulling the CSF Signal in Quantitative fMRI, in: Presented at the Proceedings of
41 International Society of Magnetic Resonance in Medicine, Honolulu, Hawai'i,
42 USA, p. 1640.

43 Fiehler, J., Foth, M., Kucinski, T., Knab, R., Bezold, von, M., Weiller, C., Zeumer, H.,
44 Röther, J., 2002. Severe ADC decreases do not predict irreversible tissue
45 damage in humans. *Stroke* 33, 79–86.

46 Geisler, B.S., Brandhoff, F., Fiehler, J., Saager, C., Speck, O., Rother, J., Zeumer,
47 H., Kucinski, T., 2006. Blood Oxygen Level-Dependent MRI Allows Metabolic
48 Description of Tissue at Risk in Acute Stroke Patients. *Stroke* 37, 1778–1784.
49 doi:10.1161/01.STR.0000226738.97426.6f

1 Guadagno, J.V., Warburton, E.A., Aigbirhio, F.I., Smielewski, P., Fryer, T.D.,
2 Harding, S., Price, C.J., Gillard, J.H., Carpenter, T.A., Baron, J.-C., 2004. Does
3 the acute diffusion-weighted imaging lesion represent penumbra as well as core?
4 A combined quantitative PET/MRI voxel-based study. *J Cereb Blood Flow Metab*
5 24, 1249–1254. doi:10.1097/01.WCB.0000141557.32867.6B
6 Guadagno, J.V., Warburton, E.A., Jones, P.S., Day, D.J., Aigbirhio, F.I., Fryer, T.D.,
7 Harding, S., Price, C.J., Green, H.A., Barret, O., Gillard, J.H., Baron, J.C., 2006.
8 How affected is oxygen metabolism in DWI lesions?: A combined acute stroke
9 PET-MR study. *Neurology* 67, 824–829.
10 doi:10.1212/01.wnl.0000233984.66907.db
11 Hajnal, J.V., Decoene, B., Lewis, P.D., Baudouin, C.J., Cowan, F.M., Pennock, J.M.,
12 Young, I.R., Bydder, G.M., 1992. High Signal Regions in Normal White Matter
13 Shown by Heavily T2-Weighted Csf Nulled Ir Sequences. *J Comput Assist
14 Tomogr* 16, 506–513.
15 Harston, G.W.J., Minks, D., Sheerin, F., Payne, S.J., Chappell, M., Jezzard, P.,
16 Jenkinson, M., Kennedy, J., 2017a. Optimizing image registration and infarct
17 definition in stroke research. *Ann Clin Transl Neurol* 4, 166–174.
18 doi:10.1002/acn3.388
19 Harston, G.W.J., Okell, T.W., Sheerin, F., Schulz, U., Mathieson, P., Reckless, I.,
20 Shah, K., Ford, G.A., Chappell, M.A., Jezzard, P., Kennedy, J., 2017b.
21 Quantification of Serial Cerebral Blood Flow in Acute Stroke Using Arterial Spin
22 Labeling. *Stroke* 48, 123–130. doi:10.1161/STROKEAHA.116.014707
23 Harston, G.W.J., Tee, Y.K., Blockley, N., Okell, T.W., Thandeswaran, S., Shaya, G.,
24 Sheerin, F., Cellerini, M., Payne, S., Jezzard, P., Chappell, M., Kennedy, J.,
25 2015. Identifying the ischaemic penumbra using pH-weighted magnetic
26 resonance imaging. *Brain* 138, 36–42. doi:10.1093/brain/awu374
27 He, X., Yablonskiy, D.A., 2007. Quantitative BOLD: mapping of human cerebral
28 deoxygenated blood volume and oxygen extraction fraction: default state.
29 Magnetic Resonance Medicine 57, 115–126. doi:10.1002/mrm.21108
30 Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Improved optimization for
31 the robust and accurate linear registration and motion correction of brain images.
32 *NeuroImage* 17, 825–841.
33 Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M., 2012.
34 FSL. *NeuroImage* 62, 782–790. doi:10.1016/j.neuroimage.2011.09.015
35 Jenkinson, M., Smith, S., 2001. A global optimisation method for robust affine
36 registration of brain images. *Med Image Anal* 5, 143–156.
37 Kidwell, C.S., Alger, J.R., Saver, J.L., 2003. Beyond Mismatch: Evolving Paradigms
38 in Imaging the Ischemic Penumbra With Multimodal Magnetic Resonance
39 Imaging. *Stroke* 34, 2729–2735. doi:10.1161/01.STR.0000097608.38779.CC
40 Kidwell, C.S., Saver, J.L., Mattiello, J., Starkman, S., Vinuela, F., Duckwiler, G.,
41 Gobin, Y.P., Jahan, R., Vespa, P., Kalafut, M., Alger, J.R., 2000. Thrombolytic
42 reversal of acute human cerebral ischemic injury shown by diffusion/perfusion
43 magnetic resonance imaging. *Ann Neurol.* 47, 462–469. doi:10.1002/1531-
44 8249(200004)47:4<462::AID-ANA9>3.0.CO;2-Y
45 Lee, J.-M., Vo, K.D., An, H., Celik, A., Lee, Y., Hsu, C.Y., Lin, W., 2003. Magnetic
46 resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke
47 patients. *Ann Neurol.* 53, 227–232. doi:10.1002/ana.10433
48 Mazziotta, J., Toga, A., Evans, A., FOX, P., Lancaster, J., Zilles, K., Woods, R.,
49 Paus, T., Simpson, G., Pike, B., Holmes, C., Collins, L., Thompson, P.,
50 MacDonald, D., Iacoboni, M., Schormann, T., Amunts, K., Palomero-Gallagher,

1 N., Geyer, S., Parsons, L., Narr, K., Kabani, N., Le Goualher, G., Boomsma, D.,
2 Cannon, T., Kawashima, R., Mazoyer, B., 2001. A probabilistic atlas and
3 reference system for the human brain: International Consortium for Brain
4 Mapping (ICBM). *Philos. Trans. R. Soc. Lond., B, Biol. Sci.* 356, 1293–1322.
5 doi:10.1098/rstb.2001.0915

6 Okell, T.W., Chappell, M.A., Kelly, M.E., 2013. Cerebral blood flow quantification
7 using vessel-encoded arterial spin labeling. *J Cereb Blood Flow Metab* 33, 1716–
8 1724. doi:10.1038/jcbfm.2013.129

9 Purushotham, A., Campbell, B.C.V., Straka, M., Mlynash, M., Olivot, J.-M., Bammer,
10 R., Kemp, S.M., Albers, G.W., Lansberg, M.G., 2015. Apparent Diffusion
11 Coefficient Threshold for Delineation of Ischemic Core. *Int J Stroke* 10, 348–353.
12 doi:10.1111/ijjs.12068

13 Seiler, A., Jurcoane, A., Magerkurth, J., Wagner, M., Hattingen, E., Deichmann, R.,
14 Neumann-Haefelin, T., Singer, O.C., 2012. T2' Imaging Within Perfusion-
15 Restricted Tissue in High-Grade Occlusive Carotid Disease. *Stroke* 43, 1831–
16 1836. doi:10.1161/STROKEAHA.111.646109

17 Siemonsen, S., Fitting, T., Thomalla, G., Horn, P., Finsterbusch, J., Summers, P.,
18 Saager, C., Kucinski, T., Fiehler, J., 2008. T2' Imaging Predicts Infarct Growth
19 beyond the Acute Diffusion-weighted Imaging Lesion in Acute Stroke. *Radiology*
20 248, 979–986. doi:10.1148/radiol.2483071602

21 Simon, A.B., Dubowitz, D.J., Blockley, N.P., Buxton, R.B., 2016. A novel Bayesian
22 approach to accounting for uncertainty in fMRI-derived estimates of cerebral
23 oxygen metabolism fluctuations. *NeuroImage* 129, 198–213.
24 doi:10.1016/j.neuroimage.2016.01.001

25 Smith, S.M., 2002. Fast robust automated brain extraction. *Hum. Brain Mapp.* 17,
26 143–155. doi:10.1002/hbm.10062

27 Stone, A.J., Blockley, N.P., 2017. A streamlined acquisition for mapping baseline
28 brain oxygenation using quantitative BOLD. *NeuroImage* 147, 79–88.
29 doi:10.1016/j.neuroimage.2016.11.057

30 Wismer, G.L., Buxton, R.B., Rosen, B.R., Fisel, C.R., Oot, R.F., Brady, T.J., Davis,
31 K.R., 1988. Susceptibility Induced Mr Line Broadening - Applications to Brain
32 Iron Mapping. *J Comput Assist Tomogr* 12, 259–265.

33 Yablonskiy, D.A., 1998. Quantitation of intrinsic magnetic susceptibility- related
34 effects in a tissue matrix. Phantom study. *Magn Reson Med* 39, 417–428.
35 doi:10.1002/mrm.1910390312

36 Yablonskiy, D.A., Haacke, E.M., 1994. Theory of NMR signal behavior in
37 magnetically inhomogeneous tissues: the static dephasing regime. *Magnetic
38 Resonance Medicine* 32, 749–763. doi:10.1002/mrm.1910320610

39 Yang, Q.X., Williams, G.D., Demeure, R.J., Mosher, T.J., Smith, M.B., 1998.
40 Removal of local field gradient artifacts in T-2*-weighted images at high fields by
41 gradient-echo slice excitation profile imaging. *Magnetic Resonance Medicine* 39,
42 402–409. doi:10.1002/mrm.1910390310

43 Zhang, J., Chen, Y.-M., Zhang, Y.-T., 2011. Blood-Oxygenation-Level-Dependent-
44 (BOLD-) Based R2' MRI Study in Monkey Model of Reversible Middle Cerebral
45 Artery Occlusion. *Journal of Biomedicine and Biotechnology* 2011, 1–8.
46 doi:10.1155/2011/318346

47