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Abstract 

The existence of abnormal connectivity patterns between resting state networks in 

neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well 

established. Traditional treatment methods in ASD are limited, and do not address the aberrant 

network structure. Using real-time fMRI neurofeedback, we directly trained 3 brain nodes in 

participants with ASD, in which the aberrant connectivity has been shown to correlate with 

symptom severity. 17 ASD participants and 10 control participants were scanned over multiple 

sessions (123 sessions in total). Desired network connectivity patterns were reinforced in real-

time, without participants’ awareness of the training taking place. This training regimen 

produced large, significant long-term changes in correlations at the network level, and whole 

brain analysis revealed that the greatest changes were focused on the areas being trained. These 

changes were not found in the control group. Moreover, changes in ASD resting state 

connectivity following the training were correlated to changes in behavior, suggesting that 

neurofeedback can be used to directly alter complex, clinically relevant network connectivity 

patterns.  

 

Significance Statement 

Many disorders are characterized by underlying abnormalities in network connectivity. These 

abnormalities are difficult to address with explicit training procedures (which are unlikely to 

target the specific abnormalities). Covert neurofeedback however, can directly target these 

networks, positively reinforcing the desired connections. We have developed a method for 

reinforcing correlations in real-time, and show that such training is effective, inducing 

significant, long-lasting changes in connectivity between aberrant networks in Autism Spectrum 

Disorder. This provides a potential mechanism for modulating aberrant correlation structures in 

other clinical groups as well. 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2017. ; https://doi.org/10.1101/139824doi: bioRxiv preprint 

https://doi.org/10.1101/139824
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 3 

Introduction 

Autism Spectrum Disorder (ASD) refers to a group of neurobiological disorders, which affect a 

growing proportion of the population. Patients with ASD suffer from a range of social and 

communication impairments, along with other characteristic behaviours and deficits. 

Behavioural treatment options are limited in their efficacy, and often do not generalize well 

beyond the specific training paradigm (Otero et al., 2015, Williams White et al., 2007). 

Numerous studies have documented widespread patterns of aberrant brain functional 

connectivity in patients with ASD, involving many cortical regions including frontal, parietal, 

and temporal lobes (Muller et al., 2011, Picci et al., 2016a, Di Martino et al., 2014). Specifically, 

these studies show that multiple cortical areas are significantly under-connected in patients with 

ASD compared to typically developing (TD) control subjects, although over-connectivity has 

also been reported (Hahamy et al., 2015, Belmonte et al., 2004). At the individual level, the 

degree of diminished connectivity as well as measures of cortical thickness were found to be 

correlated with symptom severity (Gotts et al., 2012, Wallace et al., 2012) and this measure of 

connectivity was even predictive of future progression of autistic symptoms (Plitt et al., 2015). 

Together, these findings suggest a causal link between connectivity and behavior, such that 

changing the connectivity might lead to a change in behavior. Traditional, explicit training 

paradigms, activate these aberrant networks (Kana et al., 2009, Di Martino et al., 2009a), thus 

potentially reinforcing the sub-optimal connectivity. An implicit training paradigm, which allows 

the direct reinforcement of the desired networks, bypassing the atypical activation induced by 

explicit tasks, might be a better candidate for potential intervention in ASD.  

Real-time fMRI neurofeedback (rt-fMRI-nf) is an emerging technique with great potential for 

clinical applications (Stoeckel et al., 2014, Sulzer et al., 2013, Weiskopf, 2012, Birbaumer et al., 

2013). With this technique, network states can be monitored in real-time, and desired states can 

be reinforced through positive feedback. Covert neurofeedback is a variant of neurofeedback, in 

which participants are given no strategy with which to control the feedback, and might not even 

be cognizant that the feedback is related to brain activity. This tool is therefore extremely 

flexible, as it does not require the formulation of a specific strategy and is not limited by what we 

know about the networks or the ways in which they are typically activated. Instead, desired states 

are reinforced when they occur spontaneously, allowing for implicit training of networks, such as 
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those found to be under-connected in ASD. We designed a covert neurofeedback experiment, to 

test whether it would be possible to change connectivity between these aberrantly connected 

network nodes, through direct reinforcement of spontaneously occurring network states. This 

decision is motivated by recent work  showing that positive and negative reinforcement of brain 

activity patterns are sufficient for promoting small but widespread changes in network 

connectivity, even without any learning intention on the part of participants (Ramot et al., 2016).  

Further evidence that covert neurofeedback can change networks, and that these changes can 

have behavioral effects, comes from other recent work. A number of studies have been 

successful at training complex patterns of activity within a given network using multi-voxel 

pattern analysis (MVPA) techniques (deBettencourt et al., 2015, Amano et al., 2016, Shibata et 

al., 2011), with feedback related changes corresponding to robust behavioural changes after only 

a few sessions, and significant change being detectable after as little as one training session. 

Feedback induced behavioural changes have been shown to range from very local and low level, 

such as changes in perception of line orientation after V1 training (Shibata et al., 2011), or 

inducing color association in V1 in a somewhat less local paradigm (Amano et al., 2016), to 

changes in high level functions such as attention (deBettencourt et al., 2015), and fear perception 

(Koizumi et al., 2016). Such changes can even be bi-directional, both behaviourally and at the 

network level (Cortese et al., 2017). This previous work sets up covert neurofeedback as a good 

candidate for a potential intervention in ASD, though whether specific, long-ranging 

connectivity changes can be induced through neurofeedback, which regions / networks are 

amenable to such reinforcement, how such training will affect wider brain networks, and how 

long these changes last, are all still open questions. In this study, we lay out a proof of principle 

of the plausibility of such training, showing robust, long-lasting feedback induced changes in 

these aberrant networks, coupled with preliminary results as to the behavioural correlates of 

these changes. These results reflect not only on the potential uses of such training in ASD, but 

also in other disorders with underlying aberrant connectivity at their core. 
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Results 

Selection of training targets 

We used previously collected resting state data on large groups of ASD and TD participants (N = 

56 ASD, 62 TD) to identify two target brain regions that showed large under-connectivity in 

ASD compared with TD individuals, while also being physically distant from each other, and 

belonging to separate networks (Fig. 1): target1 in superior temporal sulcus (STS) and target2 in 

somatosensory cortex, both of which have been consistently implicated in social processing 

(Allison et al., 2000, Frith and Frith, 2010, Adolphs, 2009, Damasio et al., 2000), and have 

previously been found to be under-connected and atypically activated in ASD (Chen et al., 2015, 

Gotts et al., 2012, Müller et al., 2001, Tuttle et al., 2016, Khan et al., 2015, Khan et al., 2013). 

This dataset is an expansion of previously reported data (Gotts et al., 2012), which found very 

similar aberrant connectivity patterns, matching results from other studies using large datasets 

(Cheng et al., 2015). As in the previously published subset of the dataset, we found that under-

connectivity between these two networks (STS and somatosensory) in ASD was significant in 

both this large dataset and in the 17 participants recruited for the neurofeedback study (p < 0.001 

for both cohorts), as well as significantly correlated to social symptom severity, as measured by 

the Social Responsiveness Scale (SRS) (r= -0.35 p<0.009 without regressors, r = -0.31, p < 

0.026, using age and motion as regressors). The SRS is a parent filled questionnaire, which is 

designed to be a continuous, cardinal measure of social symptom severity in ASD, and has been 

shown to correlate with functional brain connectivity measures in multiple studies (Anderson et 

al., 2011, Di Martino et al., 2009b). This result indicates that connectivity between these two 

networks is clinically relevant, i.e. the lower the connectivity, the more severe the social 

symptoms (higher score on the SRS). The first goal of the training was therefore to increase the 

connectivity between target1 in STS, and target2 in somatosensory cortex. 

In order to ascertain that we would only be reinforcing connectivity between our two targets, 

rather than global changes that cause an overall increase in correlations across the entire brain in 

an undifferentiated manner, we selected a third control region (in the inferior parietal lobule or 

IPL, part of the default mode network), which was chosen for being uncorrelated to the two 

target regions in our dataset of TD participants during resting state. IPL was significantly over-

correlated to STS target1 in the ASD cohort participating in this study (Fig. 1C). This 
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combination of under-connectivity between STS and somatosensory with over-connectivity to 

the default mode network, is in line with recent evidence of reduced within-network cohesion 

coupled with reduced between-network differentiation (Hahamy et al., 2015, Keown et al., 

2016). The goal of the neurofeedback training was therefore to induce greater differentiation 

between these three regions of interest (ROIs) in participants with ASD, so as to bring 

connectivity levels between those three networks closer to those of TD individuals. This meant 

increasing connectivity between the two target regions, while simultaneously decoupling the two 

target-control pairs. To this end, we came up with the composite difference measure, combining 

the target-target and target-control correlations (see Methods). This measure was also 

significantly different between the ASD group and the TD group in both the previous large 

dataset, and in our cohort (p < 0.004 for both cohorts, Fig 1B-C). 

 

Training paradigm 

For the initial part of the study, 17 patients with ASD participated in four training sessions, over 

the course of 8 days (two sessions of two consecutive days each, a week apart). Each session 

consisted of two rest scans, followed by four neurofeedback training scans, and finally two more 

rest scans (Each scan was 9 minutes in duration. See Fig. 2). During the neurofeedback scans, 

participants started with a blank screen, and were instructed to attempt to reveal the picture 

hidden underneath (see fig. S1 for an example). This was described to them as a puzzle task. No 

further instructions were given. Parents filled out behavioral questionnaires before training 

began, and two weeks after the last training session. An additional follow up study was then 

carried out, in which 15 of the 17 original participants returned for a final, slightly shorter 

training session. The interval between the original training and the follow up varied greatly 

between subjects, and ranged from 5 to 56 weeks.  

One of the barriers to carrying out connectivity-based rt-fMRI-nf has been the slow timescale of 

fMRI recordings, making online calculations of correlations very limited. We therefore 

developed a method that can approximate the correlations using only two time points: every two 

seconds, for each TR (time to repetition), the signals from the three ROIs were analyzed in real-

time (see Methods), and the trend in the signal compared to the previous TR was noted for each 

of the three ROIs (increase / decrease). Positive feedback, in the form of revealing a part of the 
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picture accompanied by an upbeat sound, was given whenever the network was deemed to have 

reached its desired state. As our goal was to increase correlation between the two target regions, 

and decrease correlations between the target and the control regions, feedback (i.e. revealing a 

part of the picture) was given whenever the signal trend in the two target ROIs was the same, and 

opposite from the trend in the control ROI (Fig. 2, Methods). This “two-point” method was 

validated as being a good proxy for correlation analysis by comparing the results from this to 

standard Pearson’s correlation offline (r = 0.61, p <  1x10-4 permutation test, fig. S2). 

At the end of each neurofeedback scan, participants were presented with their score, i.e. how 

many picture squares they had managed to reveal. They were then given a chance to attempt to 

beat their score on the next run, to win an additional bonus on top of the normal study 

compensation. The pictures were chosen to be neutral, depicting mostly scenes devoid of people 

and text, or abstract art/objects. Random pictures were chosen for each run, from a large set of 

such pictures.  

Participants were blind to the purpose of the study, as well as to the mechanism of the 

neurofeedback, and even to the fact that it was neurofeedback. This was ascertained by exit 

questionnaires at the end of the last day of scanning, in which participants were interviewed 

regarding their thoughts on the study, their motivation, and their strategies during the training 

(see table S1 for responses). Responses as to the perceived nature of the “puzzle task” varied 

widely, as did reported strategies, but none held any resemblance to the neurofeedback 

algorithm. Strategies mostly revolved around different ways of looking at the picture, as it was 

being revealed. Despite not knowing what they were supposed to do, most participants were 

highly motivated to solve the puzzles, with only 3 of the 17 participants reporting a motivation 

score of less than 5 (on a scale of 1-10, see table S1). 

 

Control group 

An additional control group of 10 TD participants completed the same initial 4-day training 

regimen, following the same protocol as the above. This group received feedback on the same 

three nodes, but in a different network configuration: target1 in the STS remained the same, but 

somatosensory target2 and the IPL control region switched roles, so that feedback was given 

whenever STS (target1) and IPL (now target2) were co-modulated, and were opposite to 
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somatosensory cortex (now control), see fig. S3. This provided feedback orthogonal to that given 

to the ASD group. Another key difference is that this feedback was antithetical to the normal 

connectivity patterns found in the typically developing brain, as STS and somatosensory are well 

correlated in the typically developing brain, whereas the IPL region used in this study was 

explicitly chosen to be as uncorrelated as possible with STS in TDs during rest (Fig. 1B-C). This 

control therefore served a dual purpose: in terms of the network that the ASD participants were 

being trained on, which rewarded increased connectivity between STS and somatosensory and 

decoupling of these from IPL, this was random feedback. That is to say, the feedback given to 

the TD participants was uncorrelated with the feedback they would have received had they been 

trained on the same network configuration as the ASD participants. This served as a control for 

any changes in connectivity in that direction being driven by something other than the feedback. 

At the same time, this control also examined whether it is possible to modulate any network, 

regardless of the native connectivity. 

 

Learning 

To assess whether any learning took place over the course of these initial four training days, we 

examined the correlations between the two target regions (which had been trained to increase 

connectivity), the two target-control pairs (which were trained to decrease connectivity), as well 

as the composite difference measure. Figure 3 shows the results of this analysis for the ASD 

group. As can be seen, over the course of the four training days, correlations between the two 

target regions steadily increased (with a significant difference between most days, P = 4x10-4 

between day1 and day4, mean change in correlation = 0.11, Fig. 3A), while correlations between 

target1 and control decreased (significant difference between day1 and all other days, P = 8x10-4 

between day1 and day4 mean change = -0.13, Fig. 3B). Though there is an overall decrease 

between target2 and control, this does not reach significance and the mean change is small (Fig. 

3C). This is in line with the lack of differentiation between the ASD group and the TD group in 

target2-control correlations (Fig 1C), suggesting neurotypical network connectivity is more 

resilient to change. Figure 3D shows the overall composite difference measure, taking into 

account all three correlation pairs, where there is a strong and consistent increase between day1 

and day4 (P <2x10-4, mean change = 0.19). 15 of the 17 participants showed a positive change in 

this measure (14/17 had a positive change in target1-target2 correlations, as well as a negative 
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change in target1-control correlations). The TD control group on the other hand, showed no 

significant changes between days in any of the three pairwise combinations, or in the composite 

difference measure. Only 4/10 participants in this group showed a change in the trained direction 

in the composite measure, within the range of chance, and the magnitude of change was minimal 

relative to the change seen in the ASD participants. Figure 4A shows these data for all the 

individual ASD participants, while Figure 4B shows the individual TD participants. The full 

results for all individual participants, for all days, are displayed in fig. S4. To further ensure that 

the differences in results between the ASD and the TD groups were not due to lower statistical 

power in the TD group because of the smaller sample size, we re-calculated the change in 

correlations for each of the possible subsets of 10 participants from our ASD group, and found 

that the significant difference between day1 and day4 was maintained for all subsets in the 

target-target correlations, for 83% of possible subsets in the target1-control correlations, and for 

all possible subsets in the composite correlation difference measure (p-value < 0.007 for all 

subsets). 

We next set out to test how long this learning would be maintained. To address this question, we 

called back the participants for a follow up study, in which they returned for another, shorter 

round of training. To get a good indication of the persistence of the training effect, participants 

were called back in a staggered manner, from as little as 5 weeks and up to 56 weeks from their 

original training. Our results indicate that the learning was mostly, though not fully, preserved, 

even after such an extended time period (Fig. 3A-D, follow up). In fact, although there was 

variation between subjects in the degree of retention, there was no correlation between the time 

that had elapsed and the rate of retention (see fig. S5). Since there were only two feedback runs 

in this follow up scan, we also compared them to just the first two feedback runs for the first four 

days, in order to account for any differences arising from the different number of runs. The 

results using just the first two runs for the first four days were not in any way different from the 

results using the full data (see fig. S6). 

 

Whole brain analysis 

So far we had only considered what happens in the regions that were trained. In order to get a 

more comprehensive picture of the effects of the training on the brain, we conducted a whole 
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brain analysis, which looked for changes during the training period (i.e. from day1 to day4). We 

calculated three maps, one for target1, one for target2, and one for the control region, with each 

map showing the change from day1 to day4 in the correlation of each voxel in the brain to the 

corresponding region. We then carried out a t-test across all participants for each of these three 

analyses, and the resulting maps for the ASD group are displayed in Figure 5. The changes were 

exactly as predicted by the training: the strongest positive change in correlation to target1 over 

the training period was in the somatosensory cortex (with a peak at target2), and the strongest 

negative change was in the control region. Changes to correlations with target2 were seen in the 

STS with a peak in target1, and changes in correlation to control were seen in bilateral STS (Fig. 

5A). Since we were training a network of three nodes, rather than a simple connection between 

two regions, we next calculated the composite change: for each voxel, the change between day1 

and day4 in its correlation to target1 minus its correlation to control (Fig. 5B), and the same 

change in its correlation to target2 minus control (Fig. 5C). This analysis yielded similar but far 

stronger results. The maps of the composite correlations were corrected at a very conservative 

cluster threshold determined by random permutation testing, in accordance with recent statistical 

recommendations for analyses utilizing cluster size (Eklund et al., 2016) (see Methods). These 

results support a causative role for the feedback itself, as the specific relationship that was 

trained between the two targets and the control came up in completely independent, whole-brain 

analysis. That is, using target1 relative to the control seed, the largest change in the whole brain 

was found in target2, even though that region was not pre-selected and the analyses did not 

constrain this to happen, and vice-versa using target2 and control. Note that we do not expect to 

find changes between day1 and day4 in either target1 or control in the target1-control map, as 

these regions did not change in relation to themselves. Rather, this analysis highlights all the 

other areas, outside of those two regions, which changed their correlation over the course of 

training in relation to target1 (increasing) and to control (decreasing), finding the peak of this 

change in target2. The same is true for the target2-control map, which shows an even greater 

effect focused on target1, consistent with the ROI analysis results showing a greater decoupling 

of target1 from control than target2 from control. Note that figure 5 shows results only for the 

ASD group, as, no significant peaks were identified in any of the target or control regions for the 

TD control group, and no voxels survived the cluster correction threshold. 
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Transfer to resting state following training 

The training-related changes we have demonstrated to this point were during the neurofeedback 

scans themselves. To be of any potential clinical value, these changes must also generalize 

beyond the training sessions, to the resting state scans, which reflect the baseline connectivity of 

the brain when not engaged in a specific task. Changes were overall smaller than those seen 

during the training, but significant changes were found between day1 and day4 (target1-target2 

correlations mean change = 0.07, P<0.038, composite correlations measure mean change = 0.1, 

P<2x10-4), and between day1 and the follow up (target1-target2 mean change = 0.09, P<0.011, 

composite correlations measure mean change = 0.11, P<2x10-4). Change in rest was significantly 

correlated to change during the neurofeedback scans (r = 0.42, P<0.04, permutation test). 

Moreover, 14/15 participants who came in for the follow up showed an increase in the composite 

correlation measure (Fig. 6A). To assess whether the changes seen in the follow up could simply 

be a function of the elapsed time, we examined data from all participants in the previous study 

(used to define the training regions) which had at least two resting state scans from two different 

time points, and evaluated the change in connectivity seen between the sessions. 19 participants 

had two such data points, and the average time between the sessions was 13.2 months. The 

change however was not significant for any of the pairwise correlations, or the composite 

correlation measure (Fig. 6A). We next looked at the composite measure for the 10 participants 

from our study who had also participated in the previous resting state experiment (and in the 

follow up), and compared change from the previous experiment to the first rest sessions on day1, 

before any training, and in this subset also the change from day1 of the training to day4 and to 

the follow up (Fig. 6B). While there was no significant change from the previous experiment to 

day1 (mean time interval = 38.3 months, mean change = -0.14), there was significant change to 

day4 (mean change = 0.1, P<0.025) and to the follow up (mean change = 0.11, P<0.006). Taken 

together, these analyses provide strong evidence that the changes we observed were not a 

function of elapsed time but rather occurred as a direct result of our neurofeedback regime.  

 

Behavioral relevance 

Finally, we asked whether the changes we see as a result of the training are in any way correlated 

to behavior. To this end, we looked at changes in behavior as measured by the behavioral 
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questionnaires filled out by the parents prior to training, and two weeks after the end of the initial 

training set. These behavioral results included two statistical outliers who were removed from the 

analysis (see Methods). We compared the change in these behavioral questionnaires to the 

change in correlations during the resting state scans on the first and last days. There were two 

measures of behavior: the first, the Social Responsiveness Scale (SRS), has previously been 

found to correlate with functional connectivity in this network (see section on target selection), 

and therefore the change in this rating was expected to correlate with the change in the network. 

The second, the Behavior Rating Inventory of Executive Function (BRIEF), measures executive 

function rather than social abilities, and though patients with ASD show deficits on this measure 

(Gioia et al., 2000), it is expected to reflect prefrontal functioning, and we expected that changes 

on this measure would not correlate to changes in the social network being trained (Anderson et 

al., 2002, Anderson et al., 2005, Mahone et al., 2009). Indeed, there was a significant correlation 

between changes in the resting state network and the change (pre training minus post training, so 

that a positive change corresponds to a reduction in symptoms) in SRS (Figure 7), but no such 

correlation with the BRIEF (change in SRS vs. change in resting state correlations: r = 0.56, p = 

0.016; change in BRIEF vs. change in resting state correlations: r = 0.09, p =0.39). We further 

tested for the correlation between the change in SRS vs. change in the resting state correlations, 

after partialing out the contribution of the BRIEF. After removing the variance explained by the 

BRIEF, the correlation between the rest and SRS was even higher (r = 0.6, p = 0.02), indicating 

that change in resting state correlations was captured by the change in SRS scores, but not the 

BRIEF. Note that the SRS was chosen as our behavioral measure because it has consistently 

been shown to correlate with aberrations in network structure in ASD (Gotts et al., 2012, 

Wallace et al., 2012, Di Martino et al., 2009b, Anderson et al., 2011). Nevertheless, it was not 

designed to be used with such a short test-retest interval (3 weeks), and has only been validated 

for intervals of 6 months or more (Hus et al., 2013, Constantino et al., 2003, Bolte et al., 2008). 

We can therefore make no claims regarding the absolute values of the change in scores.  
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Discussion 

The study of rt-fMRI covert neurofeedback – feedback given on pre-specified brain activity, but 

without providing participants with further information regarding the nature of the task or an 

explicit strategy through which to control the feedback – is still in its infancy (for a review see 

(Sitaram et al., 2017)). These results not only help solidify the existing evidence that reward-

mediated learning through covert neurofeedback is possible (Shibata et al., 2011, Ramot et al., 

2016, Amano et al., 2016), but also expand our knowledge in important ways. In this study, we 

have demonstrated that covert neurofeedback can be used to modulate correlations between 

distinct, physically distant networks (Figure 3), in the great majority of participants (15 of17, 

Figure 4, Figure S4). We have further shown that this modulation is possible even in cases of 

aberrant network structure, in clinical populations, and is sustainable for extended periods of 

time (some of our follow up sessions were a year after the original training, and we saw no 

evidence for an effect of time as a modulator of retention, Figure S5).  

It could be argued that the changes in functional connectivity that we found were not a result of 

the feedback, but rather of the multiple fMRI visits, or were somehow precipitated by the nature 

of the puzzle task. Though imperfect because of the different population, the control using the 

TD group, which received feedback largely orthogonal to the network trained in the ASD group, 

provided further evidence for the necessity of the feedback itself in inducing these changes. The 

TD group, which went through the exact same protocol as the ASD group but received feedback 

on a different network, did not demonstrate the changes in connectivity seen in the ASD group 

(Figure 4, Figure S4). Moreover, the extraordinary specificity of the changes revealed by the 

whole brain analysis (Figure 5), peaking exactly at the small ROIs that were chosen for the 

training, would also seem to preclude an alternative explanation. The further significance of the 

whole-brain analysis is that this learning is spatially specific even when training disparate 

networks, meaning that it is possible to target specific regions of the brain. However, it is 

important to note in this regard that though the peaks were centered on the regions we were 

training, the changes spread to entire networks, as would be expected from the architecture of the 

brain, which is composed of large-scale networks of multiple brain regions, making it difficult to 

induce changes to just one region in isolation.  
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In a larger context, the failure to induce change in the direction of training in the control subjects, 

suggests that while it is possible to train networks that are fundamentally connected, it is much 

more difficult to train networks that are uncorrelated or weakly correlated in the typically 

developing brain. This conclusion is also bolstered by the failure of the training to induce change 

in the ASD group between target2 and control, regions which did not differ in their connectivity 

from that of the TDs. It is also possible that some networks may be more difficult to train than 

others, as has previously been suggested (Harmelech et al., 2015). Future studies will be needed 

to better understand the basic constraints in modifying these relationships.  

The prohibitive cost of rt-fMRI, or fMRI scans in general, limits the number of training sessions 

in these paradigms. Moreover, the under-connectivity between the target regions chosen here 

explains only some of the behavioral deficits, and is clearly not the sole underlying cause of 

autism. This study was therefore designed as a proof of principle that aberrant connectivity can 

be addressed through neurofeedback, rather than as a clinical intervention, and whatever 

behavioral effects we found were expected to be modest. Once such a causal relationship is 

established, future potential clinical applications might pursue more cost effective options, such 

as identifying EEG signatures that correspond to activity from these areas, as several groups 

have already begun to develop (Zotev et al., 2014, Meir-Hasson et al., 2014). 

From a clinical perspective, the most important result in this study is the successful transfer of 

the change in correlations to the resting state. By itself, change during training does not 

guarantee generalization of the learning, or in this case of the change in the network structure. 

Though the change in the resting state was somewhat more modest than the change seen during 

training, it was reliable and consistent, and could not be explained simply by the passage of time 

(Figure 6). The behavioral results, though preliminary in their scope and limited by the timescale 

on which they were measured, demonstrate that change in behaviorally relevant networks 

correlates with change in behavior, which is a crucial and entirely non-trivial point in terms of 

the potential clinical applications of neurofeedback. This finding also adds to the debate 

regarding the nature of the functional and structural hypoconnectivity found in ASD, whether it 

plays a causative role in ASD or is simply a downstream effect (Vasa et al., 2016). A change in 

behavior following a change in connectivity suggests the former, bolstering the mechanistic 

approach to functional connectivity in ASD. However, it should be noted that underconnectivity 

is not the full story in ASD, and there is growing evidence for hyper cortico-thalamic 
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connectivity, alongside the cortico-cortico hypoconnectivity (Picci et al., 2016b). Future studies 

will have to replicate and expand on the behavioral findings, but this method of testing 

behavioral changes following connectivity changes could be a promising tool for assessing 

different models of autism as well as other neuropsychiatric disorders.  

The targets used in this paradigm were derived from a group analysis, and were not individually 

localized. As the variance within groups suggests, this is likely not the optimal method for ROI 

selection, especially if the focus is on behavioral change. These results are therefore probably an 

under estimation of what this tool can do, with individually tailored ROIs. It is not clear what the 

best method for individual ROI selection would be, or which localizer would best identify target 

regions, but it is another direction that should be pursued in future studies.  

Since the lack of an explicit strategy allows covert neurofeedback to be used to directly target all 

manner of abstract, behaviorally relevant networks, potential applications could be far ranging, 

encompassing many clinical disorders with underlying aberrant connectivity at their core. 

Moreover, this is a promising technique to be used in more basic science questions, as a tool to 

investigate questions of causality.  

 

Methods 
Participants: 

19 Males aged 15-25 (mean age = 20.93) who met the DSM-IV criteria for autistic disorder, an 

autism cut-off score for social symptoms on the Autism Diagnostic Review (ADR) and/or an 

ASD cutoff score from social+communication symptoms on the Autism Diagnostic Observation 

Schedule (ADOS), all administered by a trained, research-reliable clinician, were recruited for 

this experiment. Additionaly, 11 age matched typically developing males were recruited for the 

control group. All participants had normal to corrected to normal vision. IQ scores were obtained 

for all participants, and all full-scale IQ scores were ≥85 as measured by the Wechsler 

Abbreviated Scale of Intelligence, the Wechsler Adult Intelligence Scale-III, or the Wechsler 

Intelligence Scale for Children-IV. Participant groups did not differ in terms of full-scale IQ. 

1 ASD participant was removed due to discomfort in scanner on day1, and another ASD 

participant was removed on day 2 due to anxiety. 1 TD participant was removed after day1 for 

excessive motion. 17 ASD and 10 TD participants completed all four days of neurofeedback 
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training. 15 ASD participants returned for the follow up experiment. The experiment was 

approved by the NIMH Institutional Review Board. Written informed consent was obtained from 

all participants.  
 

Definition of ROIs:  

3 Regions of Interest (ROIs) were selected for training: two targets and one control. The targets 

were chosen according to previous research as those with a large degree of reduced connectivity 

in Autism Spectrum Disorder compared with typically developing (TD) controls, based on 

between group analysis as explained in (Gotts et al., 2012). For this analysis, we used an 

expansion of the dataset published in (Gotts et al., 2012), N = 56 ASD, 62 TD. Of the 56 ASDs 

in this dataset, 11 participated in the neurofeedback study. Additional constraints placed on the 

choice of ROIs was for them to be physically distant from each other, and in different networks 

(see (Gotts et al., 2012) for details). All ROIs were defined as spheres of 4mm radius 

surrounding the focal points: Target1 - left Superior Temporal Sulcus (Talairach coordinates: -

49, -29, 0), Target2 - left somatosensory cortex (Talairach coordinates: -54, 14, 39), and Control 

- right Inferior Parietal Lobe (chosen to be as uncorrelated with these two targets as possible in 

the TD dataset, Talairach coordinates: 49, -50, 42). Fig. 1 shows the between group difference in 

the correlations between the ROIs. 
 

Imaging data collection and MRI parameters:  

All scans were collected at the Functional Magnetic Resonance Imaging Core Facility on an 8 

channel coil GE 3T (GE Signa HDxT 3.0T) magnet and receive-only head coil, with online slice 

time correction and motion correction. The scans included a 5 minute structural scan (MPRAGE) 

for anatomical co-registration, which had the following parameters: TE = 2.7, Flip Angle = 12, 

Bandwidth = 244.141, FOV = 30 (256 x 256), Slice Thickness = 1.2, axial slices. EPI was 

conducted with the following parameters: TR = 2s, Voxel size 3.2*3.2*3.2, Flip Angle: 60, TE = 

30ms, Matrix = 72x72, Total TRs = 270, Slices: 37. All scans used an accelerated acquisition 

(GE's ASSET) with a factor of 2 in order to prevent gradient overheating. 
 

Neurofeedback Experiment: 

The initial neurofeedback experiment consisted of 4 training sessions over 8 days. There were 2 

consecutive training days, a 6 day delay, then a final set of 2 consecutive training days. Each 
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training day had 2 initial rest scans, 4 neurofeedback sessions, and 2 final rest scans. All scans 

were 9 minutes long. Participants were instructed to maintain an eyes-open rest and look at the 

blank screen. Neuropsychological tests were administered at two timepoints: on the first training 

day before scanning, and two weeks following the last training day.  
 

Follow-Up Experiment: 

Follow up scans were conducted 5-56 weeks after the final training day and consisted of a single, 

abbreviated neurofeedback session with 2 rest scans followed by 2 neurofeedback sessions. 
 

Online real-time data collection:  

Regions of Interest (ROIs) were defined in Talairach space as described above. The standard 

Talairach brain was then co-registered to the structural scan collected that day, which was in turn 

co-registered to a short (10 TRs) functional echo-planar imaging scan (setup EPI) collected for 

that purpose each day before the first resting state session, to bring the ROIs into the native space 

during neurofeedback processing. All coregistration was carried out with the AFNI (Analysis of 

Functional Neuro-Images) software package (Cox, 1996). 

 

Real-time fMRI algorithm: 

During online processing of the data, 3D motion correction and slice time correction were 

carried out on all functional images. BOLD signal was extracted from each voxel in the ROIs 

and the mean signal was calculated for each ROI.  

Feedback decisions were determined by a difference measure, taking into account both the 

changes in the trend between the two target ROIs and the control ROI. This difference measure 

was calculated for each TR and for each of the three ROIs. Our rt-fMRI algorithm calculated the 

difference between the mean signal in the current TR minus the signal in the preceding TR, 

giving the signal trend in each ROI (increasing or decreasing). If the trend in the two targets was 

the same, and opposite from the trend in the control ROI, then feedback was given, meaning both 

conditions had to be fulfilled for feedback to be given: 
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!"(!"#$%&! !"!! )!!"(!"#$%&! !"!!!! )
!"(!"#$%&! !"!! )!!"(!"#$%&! !"!!!! )

 > 0    &    !"(!"#$%&! !"!! )!!"(!"#$%&! !!!!!! )
!"(!"#$%"& !"!! )!!"(!"#$%"& !"!!!! )

 < 0 

(ms = mean signal)   
 

 

Neurofeedback Procedure: 

Each training session had 4 neurofeedback training scans. The scans started out with a uniformly 

grey screen. Participants were told that there is a picture hidden underneath, and were instructed 

to try to unveil the image during what was described as the puzzle task. Importantly, no further 

cognitive strategies or suggestions were given to the participant for the duration of the 

experiment. Participants were not informed that their performance on the puzzle task was 

determined by brain activation.  
 

Neurofeedback Stimuli: 

Participants received two forms of positive reinforcement whenever the real-time algorithm 

determined that the network requirements had been met: a “puzzle piece”, i.e. a square of the 

hidden picture, would become visible on the screen with a concomitant sound of positive 

valence. This feedback was chosen to maximize engagement with the paradigm during the scan 

by providing a complex and interesting visual stimulus in a game-like setting, and the auditory 

stimulus was paired to ensure that participants would be aware of positive feedback independent 

of their visual attendance.  
 

Visual Stimuli:  

During rest scans participants were shown a uniformly grey screen.  

During Neurofeedback training participants would begin with a uniformly grey screen. Then the 

image would become visible in small rectangular blocks, described to the participants as “puzzle 

pieces.” There were 25 “puzzle pieces” per board, which would be displayed piece by piece until 

a whole image was unveiled. After a full board was completed, the screen would become blank 

and a new image would begin to appear. The images were randomly selected from a set of 100 

non-social images devoid of people or text, like a landscape or an abstract painting. 
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At the end of each 9 minute training round, participants viewed a scoreboard which told them 

how many individual pieces they had unveiled that round, as well as the top score that they had 

received that day. Participants were financially incentivized to beat their best score for that day.  
 

fMRI offline data preprocessing: 

Post-hoc signal preprocessing was conducted in AFNI. The first four EPI volumes from each run 

were removed to ensure remaining volumes were at magnetization steady state, and remaining 

large transients were removed through a squashing function (AFNI's 3dDespike). Volumes were 

slice-time corrected and motion parameters were estimated with rigid body transformations. 

Volumes were coregistered to the anatomical scan. Volumes were smoothed with 6mm blurring 

and normalized by the mean signal intensity of each voxel. The AFNI ANATICOR procedure 

was then applied to remove nuisance physiological and nonphysiological artifacts from the data 

(Jo et al., 2010). The anatomical scan was segmented into tissue compartments with Freesurfer 

(Fischl et al., 2002), Ventricle and white-matter masks were created and applied to the volume-

registered EPI. Prior to smoothing, these masks gave pure nuisance times series for the ventricles 

and local estimates of the BOLD signal in white matter, averaged within a 15-mm radius. The 

measured respiration and heart rate signals were used to create Retroicor (Glover et al., 2000) 

and respiration volume per time (RVT) regressors (Birn et al., 2008). All nuisance time series in 

every run (average ventricle time series, average local white matter time series, 6 parameter 

estimates for head motion, and thirteen RVT and Retroicor regressors) were detrended with 

fourth-order polynomials before least-squares model fit to each voxel time series. No other 

filtering of the data was done. All participant data was aligned by affine registration to AFNI’s 

TT-N27 template in standardized Talairach and Tournoux (Talairach and Tournoux, 1988) 

space.  

 

Neuropsychological tests: 

Baseline neuropsychological tests were conducted before the initial training session, and post-

experiment surveys were collected two weeks after the final neurofeedback session. Parents 

filled out the Social Behavior Scale (SRS) to identify common social behaviors in autism, as well 

as the Behavioral Rating Inventory of Executive Function (BRIEF). The ‘informant’ report 

(filled in by a parent) was used as it has been shown to be more accurate (McMahon and 
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Solomon, 2015). An independent dataset of ASD subjects who did not participate in this 

experiment but had SRS test-retest data was used to determine change reliability. Data points 

that were beyond 3 standard deviations from the mean as determined by this analysis were 

excluded. 
 

Cognitive Strategy Questionnaire  

We developed a cognitive strategy questionnaire that was completed by 11 of the 17 participants. 

Following their final scan session on day4 of the training, each of these participants was asked 

what they thought the experiment was about. Participants were then asked what they were doing 

during the scans, and if they used a particular cognitive strategy. 

Finally, participants were asked to rate on a scale of 1-10 how hard they had been trying to solve 

the puzzles each day, how satisfied they felt when a new puzzle piece came up, and if there were 

differences between days. The first six participants did not complete this questionnaire, but were 

interviewed after the final scan and reported no knowledge of the objective of the task, and 

similar cognitive strategies to those later reported in the questionnaire. See Table S1 for the data 

from these questionnaires. 

 

Data Analysis: 

All data were analyzed with in-house software written in Matlab, as well as the AFNI software 

package. Data on the cortical surface were visualized with SUMA (SUrface MApping) (Saad et 

al., 2004). The composite difference measure was computed by subtracting the average 

correlation of the two target/control pairs, from the target/target correlation:   

𝑐𝑜𝑟𝑟 𝑇𝑎𝑟𝑔𝑒𝑡1,𝑇𝑎𝑟𝑔𝑒𝑡2 −
1
2 (𝑐𝑜𝑟𝑟 𝑇𝑎𝑟𝑔𝑒𝑡1,𝐶𝑜𝑛𝑡𝑟𝑜𝑙 +  𝑐𝑜𝑟𝑟 𝑇𝑎𝑟𝑔𝑒𝑡2,𝐶𝑜𝑛𝑡𝑟𝑜𝑙 ) 

All p-values for the changes in correlation between days were computed through permutation 

tests, randomly permuting the days for 5000 iterations.  

 

Whole-brain analysis: 

For each participant, for each neurofeedback scan on day1 and day4, we first transformed the 

correlation values with Fisher’s z-transform to improve normality, then calculated a difference 

measure per voxel: corr(voxel time series, avg. Target1 time series) - corr(voxel time series, avg. 

Control time series). The resulting maps held information regarding each voxel’s differential 
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correlation to the Target1 vs. Control ROIs. We then averaged the maps for each participant 

across all 4 neurofeedback scans for each of the two days, and subtracted the average day1 map 

from the average day4 map. Each voxel in the resulting map now signified the change in 

correlation from day1 to day4, in the differential correlation to the Target1 ROI vs. the Control 

ROI, where a positive value means that this voxel was differentially more correlated to Target1 

than to Control on day4 compared with day1. Normality of these data were ascertained using 

Lilliefor’s goodness of fit test. We then carried out a t-test across the 17 participants, to identify 

voxels with a consistent change across subjects. Maps were corrected using a permutation test to 

determine significant cluster size, with day1 and day4 randomly permuted for each participant 

across 5000 permutations (as suggested by (Eklund et al., 2016)). These permutations were 

carried out at p-value thresholds of 0.05, 0.01, 0.005, 0.001 and 0.0005, and a mask was created 

of voxels that survived any of these corrections. The mask was then applied to the map shown in 

Fig. 5A, which was set at a p-value threshold of 0.05.  

The same procedure was carried out for the Target2 minus Control differential correlation, and 

the resulting map is shown in Fig. 5B.  

 

Data availability 

Data will be made available in a public data repository such as XNAT. 
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Fig. 1. Choosing ROIs. (A) Groups differences between TD (N = 62) and ASD participants (N = 56), 

matched for motion, age and IQ. Difference maps calculated on the average correlation of each voxel with 

all other grey matter voxels in the brain. Target1 was chosen as the region with the greatest between-

group difference, and Target2 was chosen as the region in which the difference in connectivity to Target1 

was greatest between groups, while also being in a physically distant, distinct network based on(Gotts et 

al., 2012). (B) Pairwise correlations for the dataset shown in (A), between the two targets (top left), 

target1 and control (top right), target2 and control (bottom left), and the composite difference measure, 

based on the difference in correlations between the two targets and the target-control pairs (see Methods). 

Difference between the ASD and TD groups is significant for target1-target2 correlations, and the 

composite difference measure. (C) Same as (B), but for the current cohort of participants who took part in 

the neurofeedback study. Correlations are averaged across the first two rest scans of the first day, before 

training. Between group difference is significant for target1-target2 correlations, target1-control 

correlations, and the composite difference measure. Blue bars represent the subject mean, cyan error bars 

mark +/- SEM. Red dots represent each individual subject. 
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Fig. 2. Experimental paradigm. A. Timeline. B. Location of ROIs, and network being trained. C. 

Feedback session. Data was collected and analyzed in real-time, and a decision whether to present 

feedback (reveal a square of the picture + positive sound) was made based on the change in signal from 

one time (t-1) to the next (t) in the three ROIs. Feedback was given if the direction of change in the two 

targets was the same, and opposite from the direction of change in the control ROI. 
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Fig. 3. Learning across days, ASD group. (A) Correlations between the two target regions per day, 

averaged across all four neurofeedback scans per day. Blue bars represent the subject mean, cyan error 

bars mark +/- SEM. Red dots represent each individual subject. The difference in correlations between 

day1 and all other days is significant, as is the difference between day2 and day4. (B) Correlations 

between Target1 and Control. There is a significant change between day1 and all other days. (C) 

Correlations between Target2 and Control. (D) Composite difference measure, showing the difference 

between target-target and target-control correlation pairs (see Methods). Day1 correlations are 

significantly different from all other days, and day2 is significant different from day4. In all panels N=17 

for days 1-4, N=15 for the follow up. All p-values for differences between days were determined by 

permutation tests. 
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Fig. 4 Individual participant data. (A) Difference in the composite difference correlation from day1 to 

day4, for each of the 17 individual ASD participants averaged across all four neurofeedback scans per 

day, presented chronologically in order of scanning. (B) Same analysis for each of the 10 TD participants, 

presented chronologically. Note that the composite difference measure is comprised of target-target 

correlations minus the target-control pairs, and that the definition of targets and control differed between 

the two groups. 
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Fig. 5. Whole-brain analysis during neurofeedback, ASD group. (A) Top left: change in correlations to 
Target1, between day1 and day4, t-test across participants. High values represent voxels that showed a 
consistent change between day1 and day4, such that on day4 they were more correlated to Target1 than 
they were on day1. Note the positive peak in target2, and the negative peak in the control region. Top 
right: change in correlations to Target2, between day1 and day4, t-test across participants. Note the 
positive peak in target1. Bottom: change in correlations to the control region, between day1 and day4, t-
test across participants. Note the negative peak in target1 and bilateral STS. (B) Change in differential 
correlation to the Target1 and Control ROIs, between day1 and day4, t-test across participants. High 
values represent voxels that showed a consistent change between day1 and day4, such that on day4 they 
were more correlated to Target1 and less correlated to Control than they were on day1. Inset shows the 
same analysis at a higher threshold. (C) Same as (B), for Target2 and Control. Note that for both maps, 
the other target, which was not included in the analysis, emerges as the area of greatest change across 
training days. Maps corrected through permutation tests (see Methods). 
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Fig. 6. Changes in resting state correlations. (A) Left panel shows the changes in resting state 

composite difference correlations for the 19 participants for which two previous data points were 

available from a previous study, prior to neurofeedback (average time between sessions 13.2 months). 

The right panel shows the change in resting state composite difference correlations from the very first pre-

training rest sessions on the first day of neurofeedback, to the rest sessions collected in the follow up 

session (also before the neurofeedback training sessions that day), for the 15 participants who took part in 

the follow up session. Average time between sessions for this group was 6.2 months. (B) Changes in 

resting state composite difference correlations for the 10 participants who had data from both the previous 

study, and the follow up session. Change between neurofeedback day1 and neurofeedback day4 as well as 

neurofeedback follow up, are significant. All correlations are taken from the resting state scans at the 

beginning of the relevant session. NF = neurofeedback. 
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Fig. 7. Behavioral changes. Correlation between the change in the behavioral measure (SRS) score before 

and after training, and the change in resting state connectivity from the post-training rest scans on day4 to 

the rest scans on day1. (A) Behavioral change vs. change in Target1-Target2 correlations. (B) Behavior 

vs. Target1-Control. (C) Behavior vs. Target2-Control. (D) Behavior vs. composite difference corr. R 

values represent Pearson’s correlation. 
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