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Abstract

Motivation: We introduce an algorithm for selectively aligning high-throughput sequencing reads to a
transcriptome, with the goal of improving transcript-level quantification. This algorithm attempts to bridge
the gap between fast “mapping” algorithms and more traditional alignment procedures.

Results: We adopt a hybrid approach that is able to increase mapping accuracy while still retaining much
of the efficiency of fast mapping algorithms. To achieve this, we introduce a new approach that explores
the candidate search space with high sensitivity as well as a collection of carefully-engineered heuristics
to efficiently filter these candidates. Additionally, unlike the strategies adopted in most aligners which first
align the ends of paired-end reads independently, we introduce a notion of co-mapping. This procedure
exploits relevant information between the “hits” from the left and right ends of paired-end reads before full
alignments or mappings for each are generated, which improves the efficiency of filtering likely-spurious
alignments. Finally, we demonstrate the utility of selective alignment in improving the accuracy of efficient
transcript-level quantification from RNA-seq reads. Specifically, we show that selective-alignment is able
to resolve certain complex mapping scenarios that can confound existing fast mapping procedures, while
simultaneously eliminating spurious alignments that fast mapping approaches can produce.

Availability: Selective-alignment is implemented in C++11 as a part of Salmon, and is available as open
source software, under GPL v3, at: https://github.com/COMBINE-lab/salmon/tree/selective-alignment
Contact: rob.patro@cs.stonybrook.edu

1 Introduction is finding potential alignment locations for the read using a pre-processed
index that is generated from the reference genome or transcriptome. Then,

Since the introduction of high-throughput, short read sequencing 3 . ”
in the second step, the potential locations are filtered, and reads are

technologies, many algorithms and tools have been designed to tackle

the problem of aligning short sequenced reads to a reference genome aligned to the positions that pass the initial filtering, based on a variety

of heuristics. The exact method for generating the initial index varies
for each tool. For example, tools like Bowtie (Langmead et al., 2009),
Bowtie2 ((Langmead and Salzberg, 2012)), BWA (Li and Durbin, 2009),
and BWA-mem (Li, 2013) use Burrows-Wheeler transformation (BWT)
based indices, whereas, k-mer based indices are used by tools such as
Subread-aligner (Liao et al., 2013), Maq (Li et al., 2008), SNAP (Zaharia
et al., 2011), and GMAP and GSNAP (Wu and Nacu, 2010). Similarly,
the heuristic for choosing the most probable locations is also different.
However, each method is based on the principle of trying to find the
reference loci that support the best (or near-best) alignment score between

or transcriptome accurately and efficiently. While there exist “full-
sensitivity” aligners (e.g. RazerS3 (Weese ef al., 2012), Masai (Siragusa
et al., 2013)) which guarantee to find all reference positions within a
given edit-distance threshold of a read sequence, the most widely-used
tools employ heuristic strategies to enable much faster alignment of reads
in the typical case (i.e., only a small number of easy-to-find candidate
locations exist for each alignment). The common procedure followed by
these tools for aligning reads can be divided into two major steps. The first
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the read and the reference. Repeating this for a large number of reads
comes with a considerable cost in terms of computation. Some tools, like
STAR (Dobin et al., 2013), considerably speed up the alignment process by
combining efficient heuristics with data structures (like the uncompressed
suffix array) that trade working memory for exact pattern lookup speed.
Recently, tools like HISAT (Kim ef al., 2015) have also demonstrated that
cache-friendly compressed indices (the hierarchical FM index in this case)
can provide similarly efficient pattern search, even with a very moderate
memory budget. The alignment of sequenced reads to the reference is
the first step in pipelines leading to various downstream studies, such as
estimation of transcript abundances and differential expression analysis,
calculation of splicing rates (Shen et al., 2014; Vaquero-Garcia et al.,
2016), and detection of fusion events (Nicorici et al., 2014; Davidson
etal., 2015).

While alignment is a staple of many genomic analyses, it sometimes
represents more information than is actually necessary to address the
analysis at hand. For example, recent tools like Sailfish (Patro et al.,
2014), kallisto (Bray et al., 2016), and Salmon (Patro et al., 2017),
demonstrate that accurate quantification estimates can be obtained without
all of the information encoded in traditional alignments. By avoiding
traditional alignment procedure, these tools are much faster than their
alignment-based counterparts. Furthermore, by building the mapping
phase of the analysis directly into the quantification task, they dispense
with the need to write, store, and read, large intermediate alignment files.
However, these “mapping-based” tools, while highly-efficient, have the
disadvantage of potentially losing sensitivity or specificity in certain cases
where alignment-based methods would perform well. For example, in
the presence of paralogous genes, with high sequence similarity, there is
an increased probability that the mapping strategies employed by such
tools, and the efficient heuristics upon which they rely, will mis-map reads
between the paralogs (or return a more ambiguous set of mapping locations
than an aligner, which expends effort to verify the returned alignments,
would have) (Axtell, 2014). Similarly, in the case of de novo assemblies,
poorly assembled contigs may have a larger number of mis-mapped reads
due to lower sensitivity (here, the issue would be primarily due to aberrant
exact matches masking the true origin of a read).

Other than suffering from spurious mappings, these fast mapping-
based approaches can also miss true mappings of a read in rare cases
where errors are positioned adversarially on the read. An obvious case of
losing the true mapping is if a read contains no subsequence of sufficient
length from the true transcript. In another case, the true mapping of the read
might be lost from the set of potential mapping loci due to the greedy nature
of the mapping procedures. For some reads, multiple positions might be
found on the same transcript where the read maps. In such cases, improved
heuristics are required to address these challenges.

In this paper, we present a novel algorithm, selective-alignment, that
extends quasi-mapping to compute and store edit distance information
where necessary. The reads for alignment are chosen based on certain
criteria calculated during mapping. This strikes a balance between speed
and accuracy; not compromising the superior speed of fast mapping
algorithms, while also addressing some of the challenges mentioned
above. Specifically, the motivation for selective-alignment is to enhance
both the sensitivity and specificity of fast mapping algorithms by
reducing or eliminating cases where spurious exact matches mask true
mapping locations as well as cases where small exact matches support
otherwise poor alignments. Selective-alignment algorithm is built atop
the framework of RapMap (Srivastava et al., 2016), which uses an index
that combines a fixed-length prefix hash table and an uncompressed
suffix array (Manber and Myers, 1993). We introduce a coverage-based
consensus scheme to identify critical read candidates for which alignment
is necessary. Further, we explored the challenging cases where the
heuristics used by the fast mapping algorithms fail to locate the correct
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Fig. 1: Calculation of k-safe-LCP from the suffix array data structure.
The transcripts present in each suffix array interval determine the relevant
transcript sets, and which k-mers will be considered as intruders. Detection
of ak-mer that maps to suffix array interval labeled (¢1, t2, t3) determines
the k-safe-LCP here.

locations for a read, while the traditional aligners do not, and show that
selective-alignment enables us to retain much of the improved accuracy
of traditional aligners, but to do so more quickly. We also introduce
filtering steps based on edit distance to further refine probable alignments
in order to enhance quantification estimates (e.g., eliminating situations
where the best mapping is still unlikely to represent the true origin of
the read). In this work, we focus on the effect of selective-alignment in
improving transcript quantification estimates, and we leave a thorough
evaluation of the alignment qualities themselves as future work. In
particular, evaluation of alignment qualities is considerably complicated
by prevalent multi-mapping in the transcriptome.

2 Methods

The process of selective-alignment builds upon many of the basic data
structures of Srivastava et al. (2016) yet there are a number of important
algorithmic distinctions. Hence, we begin with a brief summary of the
data structures backing the quasi-mapping implementation of RapMap.
To start with, the index built on the transcriptome in selective-alignment is
a combination of a suffix array and a hash table constructed from unique
k-mers and suffix array intervals. The suffix array of a sequence, T'—
denoted S A(T')—is an array of starting positions of all suffixes from 7" in
the original sequence. The values in the array are sorted lexicographically
by the suffixes they represent. Therefore, all suffixes starting with the same
prefix are located in adjacent positions of the suffix array. Formally, given
asuffix array, SA(T) = A, constructed from the transcriptome sequence,
T, we construct a hash table, h, that maps each k-mer, x, to a suffix array
interval, I (k) = [b, €), if and only if all the suffixes within interval [b, )
contain the k-mer & as a prefix. We define A[z] for every 0 < ¢ < |A| to
be the suffix T[S A7]] (i.e., the suffix of T starting from position S A[i]).
In selective-alignment’s index, in addition to suffix array intervals, we also
store two extra pieces of information for each interval; the longest common
prefix (LCP) and the k-safe-LCP corresponding to the interval. These are
detailed below.

2.1 Defining and computing k-safe-LCPs

Here, we formally define the concept of k-safe-LCPs. The determination
of k-safe-LCPs starts by labeling each suffix array interval with the length
of its corresponding longest common prefix and the associated transcript
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Fig. 2: The three main steps of the selective-alignment process are demonstrated here. First, suffix array “hits” are collected. Then, in co-mapping,
spurious mappings are removed by the orientation filter and then distance filter. At most a single locus per-transcript is selected based on the coverage

filter. Finally, an edit-distance-based filter is used to select the valid target transcripts.

set it represents. Formally, LCP(A[b], Ale — 1]) for an interval [b, e) is
the length of the common prefix of the suffixes A[b] and Afe — 1].

Given k-mer x, where k € IC and IC is the set of all k-mers from
the reference sequence 7, and the related interval I (k) = [b,e), for
all p € [b,e), we consider each transcript ¢ such that the suffix A[p]
starts in transcript ¢ in the concatenated text. Then, for this interval, we
can construct a set C* = {¢;,t;, ...}, which denotes the set of distinct
transcripts that appear in the suffix array interval, indicated by . We note
that this notion discards duplicate appearances of the same transcript in
this interval.

We now wish to define the notion of the k-safe-LCP of a suffix array
interval. The k-safe-LCP of an interval I (k) is the longest common prefix
of the suffixes in the interval, where no k-mer occurring in this prefix
belongs to a transcript not appearing in C* (as defined above). We compute
the k-safe-LCP for an interval indicated by k-mer «; iteratively. The initial
length for the k-safe-LCP of the interval is k, length of a k-mer. We
check, sequentially, each of the k-mers in the longest common prefix of
the interval. For each new k-mer, the k-safe-LCP is increased by one
character. We terminate the k-safe-LCP extension if any of the following
conditions is encountered: (1) we reach the last k-mer contained in the
LCP of this interval, (2) we encounter a k-mer «; such that C*i Z C*
or (3) we encounter a k-mer x; such that the reverse complement of & ;
appears elsewhere in transcriptome. When we encounter case (2) or (3), we
call the k-mer «; an intruder. That is, the k-mer will potentially alter our
belief about the set of potential transcripts to which a sequence containing
this k-mer maps (by strictly expanding this set), or the orientation with
which it maps to the transcriptome. We denote the k-safe-LCP of a
particularinterval T (k;)ask-safe-LCP(I (k;)).AsshowninFigure 1,
the k-safe-LCP determination for the top suffix array interval starts with
matching k-mers within the longest common prefix. The k-mer “CAACG”
maps to a suffix array interval labeled with (¢1,¢2). The next k-mer
“AACGG”, on the other hand, maps to a suffix array interval (shaded in
green) labeled with (¢1, t2, t3), thereby implying the k-safe-LCP, shown
as a dotted line. For each k-mer in the hash table, we store the length of the
LCP and k-safe-LCP, along with the corresponding suffix array interval.

2.2 Discovering relevant suffix array intervals

As shown in Figure 2, the selective-alignment approach can be broken
into three major steps: collecting suffix array intervals, co-mapping,
and selecting the high quality mappings. Gathering the suffix array
intervals for a query read closely follows the quasi-mapping approach.
It involves iterating over the read from left to right and repeating two
steps. First, hashing k-mer from the read sequence and then discovering
the corresponding suffix array intervals. The process of k-mer lookup is
aided by the k-safe-LCP stored in the index (discussed in Section 2.1). The
inbuilt lexicographic ordering of the suffixes in the suffix array, and the
computed k-safe-LCP values of intervals enable safely extending k-mers to
longer matches without the possibility of masking potentially-informative
substring matches. Given a matching k-mer, ., from the read sequence r,
we extend the match to find the longest substring of the read that matches
within k—safe-LCP(I (kr)). The matched substring can be regarded
as maximum mappable prefix (MMP) (Dobin et al., 2013), that resides
within the established k-safe-LCP. We call this a maximal mappable safe
prefix (MMSP — eliding k where implied). For a k-mer, ., and interval,
[b, e), we note that k—safe-LCP(I (k,)) > LMMsp, . » Where Euvmisp,.
is the length of MMSP,; ., the MMSP between the read’s suffix starting
with k. and the interval I (x,). The next k-mer lookup starts from the
(MMSP,,. — k + 1)-th position. By restricting our match extensions to
reside within the MMSP, we ensure that we will not neglect to query any
k-mer that might expand the set of potential transcripts where our read may
map. We note here both the theoretical and practical relation between the
MMSP matching procedure, and the concept of a uni-MEM, as introduced
by Liu et al. (2016). The k-safe-LCP for suffix array intervals are closely
related to the lengths of unipaths in the reference de Bruijn graph of order
k. Thus, our procedure for finding MMSPs, that limits match extension
by the k-safe-LCP, is similar to the uni-MEM seed generation procedure
described in deBGA (Liu et al., 2016), with the distinction that here, we
only consider extending seeds in one direction.

Given all the suffix array intervals collected for a read end (i.e. one
end of a paired-end read), we take the union of all the transcripts they
encode. Formally, if a read  maps to suffix array intervals labeled with
Cri ...,C"n, then we consider all transcripts in the set C"t UC™2 U. ..U
C™, and the associated positions implied by the suffix array intervals. As
shown in Figure 2; this step is done before co-mapping. We note that,
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Fig. 3: The distribution of k-safe-LCP lengths and LCP lengths are similar
and tend to be large in practice (human transcriptome). Here, we truncate
all lengths to a maximum value of 100 (so that any LCP or k-safe-LCP
longer than 100 nucleotides is placed in the length 100 bin).

in practice, we actually adopt a hybrid approach for collecting the suffix
array intervals. Specifically, when the MMSP is only of length k, instead of
moving to the next k-mer, we jump by |r| /10 nucleotides (where |r| is the
read length) before looking up the next k-mer, otherwise (if [MMSP| > k),
we skip by the MMSP length as described. This heuristic prevents us from
performing excessive lookups in low-complexity and repetitive regions of
the transcriptome. We observe that, in practice, the k-safe-LCP, and hence
the MMSP lengths can be quite large (Figure 3).

2.3 Co-Mapping

After collecting the suffix array intervals corresponding to left and right
ends of the read, we wish to exploit the paired-end information in
determining which potential mapping locations might be valid. Hence,
from this step onward, we use the joint information for determining
the position and target transcripts. Given the suffix array intervals for
individual ends of a paired end read, the problem of aligning both ends of
the pair poses a few challenges. First, a single read can map to multiple
transcripts, and we wish to report all equally-best loci. Second, there
can be multiple hits from a read on a single transcript (e.g., if a transcript
contains repetitive sequence), and extra care must be taken to determine the
correct mapping location. Finally, there may be hits that do not yield high-
quality alignments (i.e. long exact matches that are nonetheless spurious).
To address the first and third points, we employ an edit distance filter
to discard spurious and sub-optimal alignments. To address the second
challenge, we devise a consensus strategy to choose at most one unique
position from each transcript.

Before applying the above mentioned strategy, we remove transcripts
that do not contain hits from both the left and right ends of the read.
Formally, given two ends of aread r as, €1 and r°2, and the corresponding
crnt and €T,
respectively, we only consider transcripts present in the set (C it U...uU
crn' )N (C’Ti2 U...ucmi ). We further refine this set by checking the
validity of the alignments these hits might support. Currently, we use two
validity checks illustrated in Figure 2. First, we apply an orientation-based

suffix array intervals labeled with crit e

check, and second we employ a distance-based check. The orientation
check removes potential mappings which have an orientation inconsistent
with the underlying sequencing library type (e.g., both ends of a read
mapping in the same orientation). The distance-based check removes
potential alignments where the implied distance between the read ends is
larger than a given, user-defined threshold (1, 000 nucleotides by default).

2.3.1 Coverage based consensus

In selective-alignment, the potential positions on a transcript are scored
by their individual coverage on the target transcript. Figure 4 depicts the
mechanism of choosing the best postion on a transcript among multiple
probable mapping to the same transcript. The coverage mechanism
employed in selective-alignment makes use of the MMSP lengths collected
during a prior step of the algorithm rather than simply counting k-mers.
In figure 4 the transcript t2 has two potential mapping position given
the reads: 10 and 20, the coverage consensus mechanism selects 20 over
position 10 due to higher coverage by tiling MMSPs on the read.

2.3.2 Selecting the best candidate transcripts

Once the positional ambiguity within a transcript is resolved, the next
step is selecting the best candidate transcripts from a set of mappings.
Since mapping relies on finding exact matches, the length of the matched
subsequence between the read and reference can sometimes be misguiding
when comparing different candidate transcripts. That is, the transcripts
with the longest exact matches do not always support optimal alignments
for a read. At this point in our procedure, we follow the approach taken
by many conventional aligners, and use an existing optimal alignment
algorithm to compute the edit distance, by which we select the best
candidate transcripts.

When performing alignment, we assume that a given read aligns
starting at the position computed in the previous steps. This helps us to
reduce the search space within the transcript where we must consider
aligning the read, and thereby considerably reduces the cost of alignment.
To align the read at a specific position on the transcript and calculate the
edit distance between them, we use Myer’s bounded edit distance bit-
vector algorithm (Myers, 1999), as implemented in ed1ib (Soi¢ and
§ikié, 2017). For a fixed maximum allowable edit distance, this algorithm
is linear in the length of the read. We note that the bounded edit distance
algorithm we employ will automatically terminate an alignment when the
required edit distance bound is not achievable.

We remove all alignments with edit distance greater than a user-
provided threshold. This is similar to the approach used by many existing
aligners, and allows us to specify that even the best mapping for a given
read may have too many edits to believe that it reasonably originated from
a known transcript in the index. An appropriate threshold should be based
on the expected error rate of the instrument generating the sequenced reads,
and a very low threshold can, of course, lead to decreased mapping rate.

2.3.3 Enhancement of quantification accuracy based on edit distance
score

We investigated the effect of incorporating edit distance in downstream

quantification. Since we integrated the selective-alignment scheme into

the quantification tool Salmon (Patro et al., 2017), the edit distance scores

from selective-alignment can be used as a new parameter to Salmon’s

inference algorithm.

In the framework of abundance estimation, we define the conditional
probability of a fragment, f;, originating from a transcript, ¢;, as P(f; |
t;). Given the edit distance between the fragment and the transcript, we can
incorporate this parameter into this conditional probability. Soft filtering
introduces a new term in the conditional probability based on d;, ;, which
is the sum of the edit distances between the read ends of fragment, fj and
transcript, ¢;. We set this probability according to an exponential function,
P(aj|fj t;) = e *%i.i. The aggregate of threshold filtering and soft
filtering can be described as follows:

0 d;,j > threshold
Pr (a; |di,]~,ti)—{ a7

» ~ M
e~ *%.i d; ; < threshold

“main” — 2017/8/24 — page 4 — #4


https://doi.org/10.1101/138800
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/138800; this version posted August 24, 2017. The copyright holder for this preprint (which was not certified by peer review) is
the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Towards selective-alignment 5

Position of suffix

MMSPs with one on concatenated

overlap size
nucleotide skip adiusted position= _ transcriptome ¢ coverage
here k-mers are of size 6 ) P _ final score
(pos on t- MMPs start pos
offset) Y /

ca A@Gqﬂ

BN t220:6+6-4=8 10:6

T A
t2 22-2=20 P2ITCAAGGT —T

—> 13 25-2=23 P5[TCAAGGGCAT
startposition: 2. ¢, 15.0-13 |15l TCAAGGA

transcript — {pos : coverage}

t; — {10:6,36:6)
to— {10:6,20:8)
t3 = {23: 10}
ts —> {13:6}

t3 29-6=23 PO|GGGCAT
start position: 6

» t; 10-0=10 [10JCGTCAAC
start position: 0 ¢, 20-0=20 po]CGTCAAGGC

t3 27-4=23 R7|AAGGGCAT
L———— t:144=10 [14|JAAGGGCTT
start position: 4 ¢, 40-4=36 Bo[AAGGGCTT

S\

Suffix Array

We select the leftmost
position (10 here)

Fig. 4: The MMSPs corresponding to a read, are derived from multiple suffix array intervals. Here, all MMSPs happen to be of length k£ as LCPs are of

size k. The coverage scheme finds out the exact positions on each transcript by adjusting the starting position of the MMSPs. The total score takes into
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Table 1. The percentage of hits that skip the full alignment process on five
different experimental samples, due to extension by the maximum mappable
safe prefix (MMSP), or projection of duplicate alignments given the longest
common prefix (LCP) sequences.

Sample (SRR121)
Skipped alignments 50.36% 54.85% 47.92% 48.06% 50.80%

5996 5997 5998 5999 6000

2.4 Shared LCPs prevents redundant alignments

Exploiting the common subsequences in the transcriptome is instrumental
to the superior speed of fast mapping tools. Reads generated from
exonic sequences common to multiple transcripts from the same gene or
paralogous genes are the main source of ambiguous mapping. As we rely on
the suffix array data structure to obtain the initial set of transcripts to which
a read maps, there are cases where exactly identical reference sequences
all act as mapping targets for the read. For a suffix array interval [b, €), we
identify such common subsequences by examining the longest common
prefix (LCP) of the interval. If the length of the LCP is equal or greater
than the length of the read, then the actual alignment to the underlying
reference at these positions will be identical.

Given the computationally intensive nature of alignment, this approach
can be exploited to avoid the process altogether for some set of reference
positions by simply reusing the alignment information from one read
transcript pair and then passing it to other transcripts that share the LCP.
As a proof of concept, we profiled the specific cases where such redundant
alignments have been skipped in our algorithm. We observed (Table 1)
that for almost half of the read-transcript pairs, the alignment process can
be avoided. Note that if the read sequence shares a complete match with
the common prefix, meaning that maximum mappable safe prefix length
is equal to read length (i.e., the read matches the reference exactly at some
set of positions), we can also bypass the Meyer’s edit distance algorithm
call completely.

3 Results

To evaluate the effectiveness of selective-alignment, we coupled it with
the quantification tool Salmon. This enables us to measure the effect of
different mapping/alignment algorithms on transcript-level quantification
results directly, holding the statistical estimation procedure fixed. We
also include kallisto in our benchmarks, which provides a perspective
on pseudoalignment-based quantification. Furthermore, we compare the

performance of selective-alignment with the recent, fast, abundance
estimation tool Hera !. We note, this is an early version of the Hera
software (v 1.0), which is already performing well, but is subject to changes
and improvements. We measure the Spearman correlation and Mean
Absolute Relative Differences (MARD) of read counts as performance
metrics when comparing the different methods.

3.1 Adversarial Synthetic Data

Genes with multiple isoforms are among the most challenging cases for
aligning/mapping reads, since isoforms of the same gene share exonic
sequences and are prone to a high degree of multi-mapping. Particularly
complex regions of the transcriptome can pose a challenge to fast mapping
algorithms, since many exact matches may occur at loci other than
those which generate an optimal alignment. This can cause spurious
mappings to mask true alignment locations, harming both sensitivity
and specificity. Here, we generate an adversarial synthetic dataset which
highlights potential mis-mapping problems. We restrict both the generation
and assessment to multi-isoform genes. From the set of all multi-isoform
genes in the human transcriptome (referred to as ground set), we selected
a subset of transcript isoforms from which to generate reads. Through
this mechanism, we ensure that only a fraction of the ground set of
transcripts are truly expressed. Since the unexpressed transcripts share
considerable sequence with the expressed transcripts, we expect a high
rate of ambiguous multi-mapping.

The simulation procedure is randomized, and can be described as a
two-step process. In the first step, we select a set of target transcripts
(the foreground set) and quantify their abundances using reads from an
experimental RNA-seq sample. In the second step, we generate synthetic
reads from this set of estimated abundances and quantify the resulting data
using the entire transcriptome.

To select the foreground set, we first examine each multi-isoform
gene that produces protien coding transcripts, and select one such gene
with probability p. Given the chosen gene, we select a candidate isoform
with probability g. Following this protocol, we ensure that the number
of truly expressed transcripts never exceeds 100 X pq percent of the
number of transcripts in the ground set. For the two simulated datasets
used here, 100 X pq is 30 and 60, respectively (p = 0.6,¢q = 0.5 and

! https://github.com/bioturing/hera
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Table 2. Performance of methods in terms of quantification accuracy on two
foreground sets, 30% and 60%. quasi-mapping is the mapping approach used
by RapMap. For STAR and Bowtie 2 we only record the timing for alignment
step, and quantification is performed by Salmon. For kallisto and Hera timing
includes the integrated quantificatios step alongside mapping.

Method Foreground Spearman MARD time (s)
STAR 30% 0.84 0.03 241
Hera 30% 0.80 0.04 187
kallisto 30% 0.79 0.05 54
quasi-mapping 30% 0.78  0.05 52
selective-alignment 30% 0.85 0.03 91
Bowtie 2 30% 0.86 0.03 1,158
STAR 60% 0.84 0.06 244
Hera 60% 0.83 0.06 119
kallisto 60% 0.81 0.07 63
quasi-mapping 60% 0.81 0.07 52
selective-alignment 60% 0.85 0.06 85
Bowtie 2 60% 0.85 0.06 1,174

p = 1.0,q = 0.6). The motivation for this experimental set up comes
from a previous analysis of the effect of expression “bleed through”? on
different quantification procedures.

To simulate data, RSEM (Li and Dewey, 2011) was run on sample
N12716_7 of the Geuvadis study (Lappalainen et al., 2013), with
the selected foreground set of transcripts (30% and 60% respectively)
used as a reference to learn the model parameters and estimate true
expression. The learned model is then used to generate 15 million,
75bp paired-end reads from each foreground set. These reads are then
aligned/mapped to the set of all known transcripts from GRCh38.p10
using Bowtie 2, Hera, kallisto, RapMap, selective-alignment and STAR.
Subsequently, transcripts are quantified by Salmon using the relevant
alignments/mappings as input (except in the cases of kallisto and Hera,
which implement their own quantification algorithm). The alignment
mode of Salmon enables us to use STAR and Bowtie 2 output as a
direct input to the quantification module — thereby reducing variability
due to differences in the underlying quantification model. To achieve
the most sensitive alignment, Bowtfie 2 is run with the alignment
options suggested for use with RSEM (Li and Dewey, 2011). For
aligning reads to transcriptome using STAR we used the same option
described in (Srivastava et al., 2016). When processing alignments,
Salmon wasrun with -—useRangeClusterEqClasses (Zakerietal.,
2017) and --useErrorModel. With selective-alignment, Salmon
was run using ——useRangeClusterEqgClasses, ——softFilter
(discussed in Section 2.3.3) and an edit distance threshold of 4. kallisto
was run with default parameters. Both the Salmon and kallisto indices
were built with k = 25; Hera does not allow k-mer size as a user-defined
parameter.

As displayed in Table 2, for the dataset where at most 30% of
transcripts are truly expressed, the STAR, Bowtie 2, and selective-
alignment-based methods perform better than the fast mapping approaches.
Hera outperforms kallisto and quasi-mapping enabled Salmon, but does not
perform as well as selective-alignment or the traditional alignment-based
approaches. Presumably, this is because Hera uses a fast, banded alignment
method to validate mappings. Thus, it benefits from similar improvements
to precision as enjoyed by selective-alignment, though it doesn’t obtain the
same improvements in sensitivity. Table 2 also demostrats that in terms
of speed selective-alignment based salmon is comparable with ultrafast

2 https://cgatoxford.wordpress.com/2016/08/17/why-you-should-stop-
using-featurecounts-htseq-or-cufflinks2-and-start-using-kallisto-salmon-
or-sailfish/

Table 3. Quantification results with different methods for aligning/mapping
reads on transcriptome wide synthetic data. The quantification is performed
using same convention described in Table 2

Method Spearman MARD time (s)
STAR 0.81 0.22 512
Hera 0.81 0.22 224
kallisto 0.81 0.23 96
qm 0.81 0.23 107
selective-alignment 0.82 0.22 192
Bowtie 2 0.82 0.21 2,860

alignment-free approaches such as kallisto and quasi-mapping, which is
considerably faster than alignment-based methods such as Bowtie 2.

In the experiment where at most 60% of transcripts are truly expressed,
the accuracy of all methods starts to converge, though the same trend of
accuracy differences exists. Though we have designed these experiments
to be adversarial in nature, they nonetheless raise an interesting point
about how divergence between the true set of expressed transcripts and
those considered during quantification might affect accuracy. Specifically,
aligning/mapping against a larger and more comprehensive set of potential
isoforms need not always yield superior results. When unexpressed
isoforms share considerable sequence with those that are truly expressed,
the probability of mis-assigning ambiguously mapping reads can increase.
Though this is true regardless of how reads are aligned/mapped,
alignment-based methods (and selective-alignment) seem less prone to
mis-assignment in such cases.

3.2 Synthetic reads from human transcriptome

We have also explored the performance of different alignment-based
and alignment-free methods and selective-alignment on the full human
transcriptome. We follow the procedure described in (Bray et al., 2016) to
generate 30M, 75bp paired end reads using the RSEM simulator. Reads are
mapped/aligned to the human transcriptome (Ensembl release 80 (Yates
et al., 2015)) with different methods, and then quantified by Salmon,
kallisto or Hera. The Spearman correlation and MARD values for different
methods are reported in Table 3. The performance of both alignment-based
and alignment-free methods are similar to each other at the transcriptome-
wide scale (and when not focusing on adversarial situations). Bowtie
2-based quantification seems to marginally outperform the mapping-based
methods. Selective-alignment’s accuracy is very similar to that of Bowtie 2,
but it requires considerably less time (it is similar to the fast mapping-based
methods in this respect).

Transcriptome-wide assessments on synthetic data, like that explored
in this experiment, suggest that fast mapping-based methods generally
perform well (and similar to alignment-based methods). However, small
global differences in quantification accuracy at the transcriptome-wide
scale tend to arise from larger differences in the quantification of particular
transcripts (e.g., those where accurate mapping tends to be difficult,
and where additional modeling fidelity is required to obtain accurate
estimates (Zakeri et al., 2017)). Such differences also arise, and tend to be
somewhat larger, when analyzing experimentally-derived data, as we do
in Section 3.3.

3.3 Experimental reads from human transcriptome

We have also benchmarked our proposed selective-alignment method, on
experimental data from SEQC(MAQC-III) consortium (SEQC/MAQC-
IIT Consortium and others, 2014) (NCBI GEO accession SRR1215996
- SRR1216000). Each of five technical replicates consists of
~11M, 100bp, paired-end reads, sequenced on an Illumina Hiseq 2000
platform. The options used for all methods are the same as those mentioned
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Table 4. The Spearman correlation and MARDS between transcript abundances
computed by all methods on experimental data. Each number is the mean on 5
different samples; the numbers in the lower left triangle of the matrix are the
Spearman correlations and the ones in upper right are the MARD values.

Method STAR | Hera| kallisto | quasi- | selective- | Bowtie
mapping| alignment | 2
STAR o012 (014 [0.14 0.10 0.11
Hera 0.89 [~0]0.17 [0.17 0.10 0.11
kallisto 0.89 |0.85 |1 0f 0.02 0.14 0.15
quasi-mapping 0.90 [0.8510.99 |y 0l 0.14 0.15
selective-alignment | 0.92 | 0.90 | 0.90 0.90 1 0f 0.06
Bowtie 2 091 [0.89|0.89 0.89 0.96 1 0

in Section 3.1. In Table 4, we compare the quantification results produced
by different methods. Here, we note that we do not know the ground
truth, and so we instead measure the overall concordance between different
approaches. Each individual cell contains the average obtained across all
five samples. High Spearman correlation and low MARD value between
Bowtie 2 and selective-alignment show that selective-alignment produces
results more similar to Bowtie 2 than to the other alignment-free methods.

4 Conclusion

Recently, fast mapping approaches have been developed for mapping
RNA-seq reads to transcriptomes. Rather than generating full alignments,
these approaches compute “mapping”
sufficient for a number of given analysis tasks (e.g.,

information that is often
transcript
quantification (Bray et al., 2016; Patro et al., 2017) or metagenomic
abundance estimation (Schaeffer ef al., 2017)). Yet, there exist scenarios
where such mapping approaches can go awry; either failing, by the
greedy nature of their procedures, to find the true target of origin of a
read, or by allowing spurious mappings to targets supported by exact
matches that would nonetheless fail reasonable alignment scoring filters.
Moreover, it is sometimes desirable to be able to produce, on demand,
the edit distance or alignment that would result from a given mapping
location. The recently-introduced Hera validates mapping quality using
alignment, which resolves spurious mappings, though it still suffers a loss
of sensitivity compared to traditional alignment. In this paper, we introduce
a selective alignment algorithm that attempts to bridge the gap between
these fast mapping algorithms and more traditional alignment algorithms.
Selective-alignment improves upon both the sensitivity and specificity of
these mapping algorithms while making very moderate concessions with
respect to the computational budget. To achieve this level of efficiency,
a number of algorithmic innovations were required, some of which may
be of general interest. In the future, we hope to expand upon the notion
of selective alignment even further, both by improving the algorithm and
implementation, and by exploring use cases where selective alignment
applies. Such situations are those where fast mapping approaches are
inappropriate and traditional alignment approaches are too slow.
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